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ABSTRACT Nowadays, modern technologies in power systems have been attracting more attention,
and households can supply a portion of or all of their electricity based on on-site generation at their
location. This can be challenging for utilities in terms of monitoring and recording the data because the
households’ facilities can generate or consume the energy without passing it through a meter, increasing
the complexity of a distribution network. The speed of transferring data to utilities is another important
concern. There is a necessity to send the smart meter (SM) data of each house to a distribution management
system (DMS) for more analysis in the shortest possible time. This paper presents a novel deep learning
framework collaborating with sequence-to-sequence (seq2seq), long short-term memory (LSTM), and
stacked autoencoders (SAEs) to forecast residential load profiles considering the photovoltaic (PV), battery
energy storage system (BESS), and electric vehicle (EV) loads with more capability based on pre-defined
patterns. Experimental results show that the proposed method achieves outstanding performance in the
forecasting process of residential load profiles in comparisonwith other algorithms. Also, a smart distribution
transformer can help utilities to receive the data instantly via wireless communication, which can reduce the
transfer duration to every minute and make the prediction and monitoring more manageable considering the
different combinations of distributed energy resources (DERs) in residential locations.

INDEX TERMS Battery energy storage system, behind-the-meter, electric vehicle, load forecasting, LSTM-
based sequence-to-sequence, photovoltaic system, smart meters.

I. INTRODUCTION
Smart grid advancements have made it necessary to manage
both sides of generation and demand for monitoring. Intel-
ligent technologies for energy production have created an
enthusiasm for people to utilize microgrids as on-site gen-
eration resources in their residences. To manage and curb the
demand side effectively, it is indispensable to first perceive
the nature of the loads on the demand side [1]. The position
of an energy system in relation to SM determines whether
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it is a behind-the-meter (BTM) or front-of-meter (FOM)
distribution system. A BTM system delivers electricity to
on-site locations without passing it through a meter, whereas
an FOM network transmits energy to off-site places. Before
reaching an end-user, the power supplied by an FOM system
must pass through a meter so that it is suitable for utilities
to track the energy consumption of households. This helps
utilities to provide an accurate prediction of pattern changes
and facilitates the detection of privacy or cyber-attack issues
for residential households.

The growing integration of DERs into power distribu-
tion networks has put pressure on utilities to enrich their
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systematic awareness to implement load control techniques
in BTM systems [2]. Consider a house with PV, BESS, and
residential EV charging as a BTM model. In this case, the
aforementioned facilities have different operational modes
that contain the generation and stop modes for a PV system,
in which the energy produced by the PV system can be
hidden from utilities and does not pass through a meter for
measurement. This happens for a BESS in discharging mode
because it supplies energy for household appliances and an
EV even though it is connected to the power grid. The surplus
energy produced by DERs (e.g., rooftop solar systems) can
be stored in a BESS and used locally as needed. A BESS
would lead to increased self-consumption of energy produced
by PV systems in some regions where electricity exported to
the grid is not remunerated. Distribution system technicians
may experience difficulties receiving higher variable gener-
ation from different sources of energy in areas with a high
concentration of rooftop solar PV systems. Hence, residential
PV, BESS, and EV charging assessments can be challenging
for utilities in terms of electricity generation and consumption
tracking.

When confronted with these concerns, load monitoring
appears as an important aspect in a distribution grid of which
one of the methods is intrusive monitoring, wherein each
load/appliance has an information acquisition device. Non-
intrusive load monitoring (NILM) is the process of disag-
gregating the collected electric power/current and converting
it into individual appliances by assessing variations in the
voltage and current coming into the load profile [3]. The
measurements are made from the power entering the NILM,
and the signal is processed and assessed, then network loads
are detected. NILM techniques may be classified into two
groups based on the machine learning (ML) method, includ-
ing supervised and unsupervised algorithms. The supervised
technique requires training to recognize the classes in order to
conduct the load forecasting well; however, the unsupervised
method has a lower cost [4].

The use of advanced metering infrastructure (AMI) has
increased the monitoring capabilities of the grid. SMs,
devices located at the customers’ residences, are the main
components of AMIs [2]. It is necessary for utilities to moni-
tor the energy usage of customers during the day. Therefore,
SMs can be installed in houses to send information to the
distribution transformers, and then the transformers trans-
fer data to the remote terminal unit (RTU) using a sensor
remotely. SMs are very advantageous in measuring data for
each house; some of their benefits include the elimination of
manual readings, access to the consumption data 24/7, remote
accessibility, prompt service, and high compatibility with dis-
tributed generation resources (e.g., PV and wind turbine) [5].
The RTU is a multi-functional electronic device controlled
by a microprocessor that allows for remote monitoring and
control of different automation systems. It is generally used
in an industrial setting and performs a similar function to
programmable logic circuits (PLCs) but to a greater extent.

The database contains measurements of both real and reactive
power injection [6].

A utility company (e.g., DTE Energy) deals with data
collection from customers’ SMs as quickly as possible.While
the duration of data transfer is already every 15 minutes, that
is not adequate and needs to be improved [7]. That means a
distribution transformer reads the data from all houses (as a
data collector) and sends the data to the utilities four times
per hour. In this case, the utilities are not able to analyze
each customer’s data accurately, and the forecasting process
cannot be applicable.

Deep learning algorithms have become one of the most
prominent technologies, with a sophisticated and mathemat-
ically complex evolution of ML methods. Recently, this field
has been getting significant attention in many research areas
related to the multiple-layer structures of neural networks.
It depends on stochastic optimization to improveML capabil-
ity and task performance. The LSTM model can be regarded
as the most effective solution for variable-length sequences
due to its property of selectively remembering patterns by
having a recurrent hidden state, the activation of which at
each time is reliant on that of the previous time. Hence, the
LSTM algorithm has been applied extensively in time-series
prediction [8]. However, the features have several highly
correlated variables in the multi-time series data problems.
Random initialization of a large number of neurons is a
challenge of the LTSM method that will lead the learning
algorithm to converge to different local minima, depending
on the values of the parameter initialization [9]. Therefore,
an SAE has recently been widely applied in many fields to
overcome the randomized initial weight obstacle of LSTM
algorithms. It also outperforms due to its ability to synthesize
deep information from complex data [10], [11], [12], [13].

A. MOTIVATION AND CONTRIBUTIONS
This paper focuses on the BTM forecasting process in the
presence of different combinations of PV, BESS, and EV
for three houses using a seq2seq LSTM-SAE architecture.
The SAE is the core structure of the model adopted to learn
the shallow and deep features of the residential load profiles
by exploiting multiple single-layer autoencoders in which
the output feature of each layer is fed to the inputs of the
successive layer. As a result, SAEs have achieved efficiency
in representing invariant and abstract features [14].Moreover,
an LSTM architecture is incorporated for enhanced predic-
tion accuracy. This study proposes the seq2seq LSTM-based
model to predict the load changes, which is more accurate
and efficient than other algorithms based on the performance
evaluation metrics. Furthermore, this dataset is based on
times-series changes for every minute that can make a better
understanding of utilities to follow the energy consumption
of customers. It helps to make more accurate predictions
of load patterns. To recap, the final goal of this study is to
assist utilities in receiving SM data instantly to provide an
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accurate analysis of their consumers’ load patterns. Themajor
contributions of this paper are as follows:

• An assessment of a new dataset is carried out with
different DERs to infer important features linked to time.
The time interval is one minute (rather than the conven-
tional transfer time of 15 minutes). In contrast to other
research, this paper considers BESS and EV consump-
tion data in addition to the PV systems. Other papers
are focused on PV forecasting in most cases. It helps
utilities to make better monitoring of the consumers’
energy consumption.

• A seq2seq LSTM-SAE algorithm is introduced to fore-
cast residential load profiles. This method offers the
advantages of synthesizing abstract features from com-
plex data and solving the random weight initialization
problem of the LSTM algorithm.

• The proposed model is verified through a BTM sys-
tem by considering different DERs with the feature of
remembering patterns. This algorithm is able to deter-
mine whether data in a sequence should be retained or
discarded based on its importance. Then, it can transfer
important information down a long chain of sequences to
recognize patterns as a result. This method shows better
accuracy and efficiency, considering the performance
evaluation metrics, than previous methods.

B. PAPER ORGANIZATION
The rest of the paper is organized as follows: Section II
provides a literature survey on limitations and existing prob-
lems regarding ML methods in BTM systems. Section III
presents the configuration of the BTM system along with
some characteristics of the distribution transformer. Sec-
tion IV outlines the principles of load prediction as well as
the cyber-physical system, including the data description. The
proposedMLmethod for load forecasting is presented in Sec-
tion V. Section VI discusses the results and validation of the
proposed method in terms of accuracy and speed by provid-
ing performance analyses. Finally, the paper is concluded in
Section VII.

II. LITERATURE REVIEW
There has been a wide range of approaches proposed for
load forecasting methods based onML algorithms. Statistical
approaches (e.g., multiple linear regression and exponen-
tial smoothing) and ML methods, including artificial neu-
ral networks (ANNs), support vector machine (SVM), and
convolutional neural network (CNN) have been proposed
by researchers as forecasting methods [15], [16], [17], [18],
[19], [20]. Khodayar et al. [21] proposed a novel spatiotem-
poral graph method to determine the most important spa-
tiotemporal aspects of the net demand using hidden fea-
tures to disaggregate the historical demand into PV genera-
tion and other loads for future pattern forecasting. However,
this approach provides a static description of the correlation
across wind farms, which evidently fails to account for the

temporal and spatial dynamics involved in correlation. In
[22], a short-term household load forecasting technique was
introduced that used deep learning to exploit the spatiotem-
poral correlation in the load data of appliances. However,
the authors did not consider DERs with unpredictable and
fluctuating behavior (e.g., EV and PV), which penetrate smart
grids through households these days and have considerable
impacts on energy consumption. Wang et al. [23] proposed
a deep CNN to exploit information from SMs automatically.
To detect the socio-demographic statistics of consumers, the
CNN is paired with an SVM algorithm that can eliminate the
overfitting issue. According to [24], the authors developed
a forecasting model using a hybrid method that includes
similar day selection, empirical mode decomposition, and an
LSTM algorithm. Li et al. in [4] elaborated an extraction
technique based on current data aggregation over time and
frequency to alleviate the issue of employing a specific appli-
ance feature by introducing a combined CNN algorithm. Rafi
and colleagues proposed a serial CNN-LSTM model. The
CNN module first collected the trend of the heat load data,
which was subsequently flattened for input into the LSTM
module [25].

To forecast the short-term energy needs of consumers,
Kong et al. [26] employed the LSTM model, in which the
density-based clusteringmethodologywas used to assess how
well users’ energy consumption patterns match up with one
another. Ahmad et al. [27] developed a forecasting model
based on random forests and then compared the results to
those obtained by the SVM algorithm. It has been demon-
strated that the forecasting model that they have proposed has
good performance in terms of mean absolute error (MAE)
and root mean square error (RMSE). Nevertheless, it mostly
relies on PV generation as a DER. A finite-state-machine
(FSM) algorithm for extracting the root mean square (RMS)
current and time value was investigated in [28] to identify
the critical state and detect repeating patterns of household
loads. The implementation of this technique is made more
difficult by the fact that long-term load activity results in
a prolonged data sample time. This makes the technique
challenging to implement. Regarding the SMs data, Oprea et
al. proposed an unsupervisedMLmethod to detect anomalous
data provided by SMs because there are some problems in the
data extracted from the meters (e.g., missing data, fraudulent
data, duplication) [29].

Massaoudi et al. proposed two integrated algorithms to
create a novel computing platform for merely solar fore-
casting methods. Using correlation patterns between weather
data andmeta-learning aggregation aswell as hyperparameter
tuning in ML algorithms, this model provides an accurate
daily prediction of PV output. However, only the values
that can be reasonably anticipated for the future generation
of solar power are predicted using such a method. Taking
into account the intrinsic fluctuations and unpredictability
of solar resources, this strategy will inevitably lead to an
error in PV power forecasting, which will propel inaccurate
subsequent decisions regarding energy management. Also,
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different combinations of DERs could be more challenging to
implement for a forecasting process [30], [31]. A method for
BTM PV-load decomposition and customer baseline predic-
tion that considers the net load data, temperature, and solar
irradiation was addressed for a residential distribution sys-
tem. It relies on historical data rather than requiring specific
information on individual PV outputs [32]. For the purpose
of estimating the average temperature inside a building, Lin
et al. [33] suggested a hybrid approach for the short-term
load forecasting method of the individual user to analyze
a dynamic model based on the temperature. This model
combines less historical data and output weather conditions
for the heater and air conditioning (HAC) and non-HAC
loads (e.g., appliances and electric lighting) as the input. The
authors used the bi-directional LSTM algorithm to forecast
the load changes, but this method and input are not accurate
and comprehensive, and they have the drawback of ignoring
the auto-encoding process of the algorithm, which is indis-
pensable for an accurate prediction. Furthermore, their input
does not include important DERs, which are very critical and
make the forecasting process complicated. To disaggregate
a number of customers’ net load measurements into their
electric load and solar PV power, Kabir et al. represented
an unsupervised approach that used a physical PV system
framework (not other BTM resources such as EV and BESS)
for individual solar PV generation estimation. However, they
employed the hiddenMarkovmodel to estimate the joint load.
A 15-minute period of load pattern variations is obtained and
used by the model to predict load behavior, which cannot
efficiently preserve the privacy of energy consumers [34].

In the modern power grid, the factors that contribute to
uncertainty include not only the appliances, power loads, and
heat loads but also the PV systems, BESSs, EVs, wind tur-
bines, and so on. A multi-energy power grid is also becoming
incredibly popular. The provision of power, heating, air con-
ditioning, and gas should all be accompanied by equivalent
forecasting systems. In the context of the LSTM forecasting
method, it is important to understand how to take into consid-
eration the connection and coordination forecasting processes
of various forms of energy. Hence, a new dataset considering
different forms of energy resources, including PV, BESS,
and EV, with an interval of one minute was considered to
enhance the prediction precision by employing the proposed
algorithm.

III. REPRESENTATION OF BEHIND-THE-METER
OPERATION IN DISTRIBUTION SYSTEMS
In recent years, different DERs have been utilized to gener-
ate, store, and transmit energy, making distribution systems
more sophisticated. Residential buildings can generate their
own energy from some DERs and then store their surplus
energy in BESSs for future consumption. Hence, it can be
difficult and more complicated for utilities to detect all the
energy consumption by residential buildings. The three main
components of BTM systems can be defined as PV systems,
BESSs, and EV chargers. In this system, PV systems and

FIGURE 1. A typical distribution system with different facilities for the
data transfer process.

BESSs are connected to each other as well as to the power
grid using an inverter. Customers will be able to use the
grid as a source of backup energy while earning credits for
exporting energy to the power grid. The largest contributions
of energy consumption and generation can be considered PV
generation, BESS charging and discharging, and EV charging
modes. Fig. 1 illustrates the general scheme of a distribution
system with different components, including SMs, AMIs,
power substations, and utility data centers.

As can be observed, a three-feeder power system with
distribution transformers for each feeder is considered. Over-
current relays (OCRs) are installed at the beginning of the
feeder to disconnect the feeder when fault currents occur.
Houses have SMs connected to each other and to the main
power grid by a mesh network. Miniature circuit breakers
(MCBs) are installed in houses for possible tripping, and an
AMI collects data through the distribution transformer and
transfers the data remotely by WiFi or ZigBee communica-
tions to the utilities for further analysis. Wireless communi-
cations can be conducted through the Tropos router, which
connects all wireless facilities in a robust way. Moreover,
all MCBs are closed during normal conditions. According to
the given information, different combinations of three houses
with defined parameters are shown in Fig. 2.

In order to transfer SMs’ data to the utilities, some com-
panies have provided a monitoring device for distribution
transformers to send information to the DMS with high
accuracy and reliability. GRID20/20, a company located in
Richmond, VA, has presented a new solution for this concern.
OptaNODE DTM, represented in Fig. 3, is a single-phase
distribution transformer monitoring device that can connect
to a distribution transformer. It combines precise sensing,
measurement, and communication parts into a simple and
well-set independent device. It can be attached to the trans-
former using embeddedmagnets and takes only a fewminutes
to set up [35]. Furthermore, there is another type of moni-
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FIGURE 2. An illustration of BTM combinations with defined parameters
for forecasting by an ML method.

FIGURE 3. A single-phase distribution transformer monitoring device
manufactured by GRID20/20 [35].

toring device called OptaNODE PDTM that can be utilized
for three- or four-wire applications. Some advantages of this
monitoring device are shown in Fig. 4.
In terms of communication technologies, it has several

options for transferring the data, including WiFi technol-
ogy based on IEEE 802.11g wireless, a global system for
mobile (GSM) communication with an internal antenna, and
power line communication. Moreover, it satisfies IEC 61000-
4 requirements (e.g., electrostatic discharge) and immunity
to electromagnetic and radiated fields, voltage interruptions,
dips, and so on. Because this device does not need a meter-
to-cash process, it can help utilities reduce the time and
effort required to assess energy consumption on a daily basis,
generate and distribute accurate bills, collect monthly pay-
ments from customers, and accurately record revenues [36].
Moreover, it has the specification of lower deployment costs
and nomaintenance. Also, it can decrease the efforts and costs
for additional facilities that preserve the privacy of customers,
so utilities are able to check and monitor the data variations
every second remotely.

IV. LOAD FORECASTING
The goal of this paper is to present the aggregated load pattern
forecasting for three houses with different combinations of
PV, BESS, and EV using ML algorithms. There are baseline
current loads in which combinations of PV, BESS, and EV
can be added to the baseline load and can be read by a

FIGURE 4. Advantages of an applicable distribution transformer
monitoring device.

smart distribution transformer [37]. This current should be
transferred to the DMS for further analysis that is required
by the forecasting method to obtain the load pattern. These
combinations have different operational modes that can be
used to train an ML algorithm based on historical data. Fig. 5
illustrates an algorithm for the proposed methodology.

Based on the given flowchart, various combinations,
including PV and BESS (house #1), PV and EV (house
#2), and BESS and EV (house #3) loads are considered.
Each combination has different operational modes, based on
Table 1. Changes are applied to the baseline load, and the
total current can be aggregated by a distribution transformer.
This is the final current profile versus time for each minute.
Utilities need to monitor households’ consumption by pre-
dicting the integrated load pattern. They need to use intel-
ligent algorithms to provide good accuracy and assessment
of households’ energy consumption and to preserve their
privacy and security when an attack or anomalous behavior
happens [18], [20].

PV generation can be estimated based on solar irradiation
(W/m2) data extracted from the National Renewable Energy
Laboratory (NREL) [38] that can be converted to electric
currents by suitable PV modules. Operational modes for
BESSs and EVs have been considered based on historical
data regarding other factors (e.g., peak times). Accordingly,
the following equation can be calculated for each house. The
purpose is to predict the ITr during specific times of the
day for each house with high accuracy and minimum error
using the proposed algorithm. There is no difference between
choosing an electric current (ampere) or load power (kW) in
the model because the voltage is considered constant (120
V) in the dataset. Thus, the final result will be the output
currents of a distribution transformer regarding a combination
of different DERs in which the load power values of PVs,
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FIGURE 5. An architecture of proposed methodology.

BESSs, and EVs are converted to electric currents to be added
to the baseline current (e.g., appliances and lighting) for each
house. In Eq. (1), Ibaseline can be defined as the consumption
current by other appliances in a house [30], [31]

ITr = IPV + IBESS + IEV + Ibaseline. (1)

There are forecasting models for PV current due to solar
radiation, BESS current, EV current based on the rated power,

TABLE 1. Different operational modes of PV, BESS, and EV.

and residual current as Eqs. (2) – (4) [32], [39]:

ĨPV ,t+h = fIPV (IPV , IBESS , IEV ), (2)

ĨBESS,t+h = fIBESS (IPV , IBESS , IEV ), (3)

ĨEV ,t+h = fIEV (IPV , IBESS , IEV ). (4)

where ĨPV ,t+h, ĨBESS,t+h, and ĨEV ,t+h are defined as the fore-
casting of PV, BESS, and EV currents. Furthermore, fIPV ,
fIBESS , and fIEV are denoted by the gradient boosting regression
tree (as an ML method) for different currents. Now, Eqs. (5)
– (8) are the vector combinations for feature data that may be
used to perform an assessment:

IPV = [IPV ,t , IPV ,t+1, IPV ,t+2, . . . , IPV ,t+n], (5)

IBESS = [IBESS,t , IBESS,t+1, . . . , IBESS,t+n], (6)

IEV = [IEV ,t , IEV ,t+1, IEV ,t+2, . . . , IEV ,t+n], (7)

Ires = [Ires,t , Ires,t+1, Ires+2, . . . , Ires,t+n]. (8)

A. CYBER-PHYSICAL SYSTEM FOR A BTM DERS
Some information regarding the given data is provided in
this section. Solar irradiation for PV systems is extracted
from NREL based on Watt/m2 unit. According to Fig. 2, the
voltage (V ) level is constant in the study, and the current (I )
is the aggregation of the three houses’ electric currents. A 10
m2 PVmodule is used and calculated the total PV currents for
the 1st and 2nd houses. BESSs and EVs experience different
operational modes during the day, as shown in Table 1. For
instance, it is reasonable to consider the charging mode of
EVs and BESSs from 12 a.m. to 6 a.m., which are not peak
hours for energy consumption. PV operational modes are
considered based on the irradiation levels, and once there
is an irradiation during the day, it can be assumed to be 1;
otherwise, it can be regarded as 0. The data collection is
carried out based on the different parameters in which PV
systems, EVs, and BESSs can be affected. The weather con-
dition, PV array size, and irradiance changes during different
days are considered for data generation of the PV resource.
The peak hours are considered for data generation of EVs
and BESSs to make appropriate artificial data. Because there
is no comprehensive data that can include all DERs in a
real-world scenario, all data are generated considering the
aforementioned aspects based on one-minute intervals. There
is no such residential data for these integrated DERs for the
one-minute intervals. Most of the residential data are based
on the 15-minute intervals in which all DERs are considered
simultaneously. It makes a real-world scenario challenging
without considering different types of DERs with one-minute
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FIGURE 6. A portion of feature data for different combinations of each
house regarding a constant voltage.

intervals. This proposed data transfer time helps utilities to
receive the residential smart meters’ data every minute to
have better monitoring of energy consumption during abnor-
mal activities. A portion of the provided data displayed in
the h1, h2, and h3 columns of Fig. 6 shows the various
combinations of houses #1, #2, and #3, respectively. The next
three columns demonstrate the total current values for each
house, and ITr is the aggregated transformer current that must
be transferred to the AMI.

Moreover, Fig. 7 illustrates the total electric current
changes of each house as sampled during a day. It can
be observed that houses #1 and #2 have more generations
because of the presence of PV systems, and the current pro-
files are in the negative section most of the time (returning
energy to the power grid). This originates from PV generation
in these two houses during a specific time of solar irradiation.
However, there is no significant generation for house #3,
and it only takes advantage of BESS charging or discharging
and EV charging processes without any generation. Now, the
transformer current can be achieved using the electric current
profiles for these houses, as demonstrated in Fig. 8.

V. PROPOSED METHODOLOGY
Autility company’s operations and long-term strategy depend
on reliable models for predicting electric power demand.
Decisions on acquiring and generating electricity, load shift-
ing, and infrastructure projects may all be made with the aid
of a utility’s load forecasting procedure. In different sectors of
power systems (e.g., generation, transmission, and distribu-
tion), load predictions are essential for energy providers and
financial institutions. Load forecasting is critical for utilities
because of the unpredictable nature of demand and supply,
as well as the impact of energy bills. Predicting short-term
load flows and taking actions to avoid overloading may be
done by using short-term forecasting techniques. The net-
work’s resilience and equipment failures are minimized as
a result of the timely execution of these actions. When it
comes to evaluating energy price contracts and other com-
plex financial services, load forecasting would be a critical
component [40].

Here, a regression problem for BTM load forecasting is
defined. The architecture of the proposed model employs a
seq2seq SAE using multiple LSTM models. The proposed
model estimates transformer currents using a smart distribu-
tion transformer and SM data. The proposed model consists

FIGURE 7. Household load profiles during 24 hours for six days.

FIGURE 8. Total distribution of transformer current for a period of
24 hours.

of an LSTM encoder and decoder. The overall architecture
of the proposed LSTM-SAE model is shown in Fig. 9. The
encoder part compresses the given input sequence into a
fixed-length vector to summarize the information of the input
sequence. This fixed-length vector is known as a context
vector and is used as the input of the decoder to predict the
output sequence. Furthermore, a repeat vector layer and a
time-distributed dense layer are added to this architecture.
The repeat vector layer repeats the context vector obtained
from the encoder. It is then fed to the decoder as input.
This process is repeated for F steps, where F is the number
of next steps that will be predicted in the future [41]. The
output of the decoder with respect to each time step is mixed.
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FIGURE 9. An architecture of the stacked LSTM-SAE.

Therefore, the LSTM decoder output is transformed directly
by the time-distributed dense layer, utilizing a fully connected
time-wrapped layer on each time step, and its output is sepa-
rated.

An input sequence for the proposed LSTM-SAE can be
written as Eq. (9):

Xt:t+T−1 = x(t), x(t + 1), . . . , x(t + T − 1), (9)

where t is the time step, and x(t) is defined as:

x(t) = [ITr,t+T , Ih1,t , Ih2,t , Ih3,t , ht ,mt ]T . (10)

In Eq. (10), ITr,t+T is the electric currents of the trans-
former at time (t + T ); Ih1,t , Ih2,t , Ih3,t , ht , and mt are the
electric current of houses #1, #2, #3, the hour, and minute
parameters at the time t , respectively. The output sequence
can be defined as Eq. (11):

Yt+T :t+T+F−1 = y(t + T ), y(t + T + 1),

. . . , y(t + T + F − 1), (11)

where F is the time window for the output, and y(t + T ) at
the time step (t + T ) is defined as Eq. (12):

y(t + T ) = [Ĩh1,t+T , Ĩh2,t+T , Ĩh3,t+T ]T . (12)

In Eq. (12), Ĩh1,t+T , Ĩh2,t+T , and Ĩh3,t+T are current esti-
mates for houses #1, #2, and #3, correspondingly. There-
fore, the proposed LSTM-SAEmodel predicts Yt+T :t+T+F−1

from observations Xt:t+T−1. The pseudo-code for the pro-
posed method presented in Algorithm 1 is explained as fol-
lows:

Algorithm 1 Pseudo-Code for Stacked LSTM-SAE
Architecture

1: Input: Sequence time-series data Xt:t+T−1 of length
T in (9).
<LSTM Encoder>
Input: Xt:t+T−1 of length T

2: for n = 1 : N layers do
Random initial states;

3: for t ∈ T time step do
Step 1: Running LSTM architecture;
Step 2: Update cell memory state vector and
hidden state vectors.

4: end for
Save final states in each layer.

5: end for
Output: Summary state of final LSTM architecture
and final states in each layer.

6: Using a repeat vector from the output of the encoder in the
forward F steps.
<LSTM Decoder>
Input: Repeat vector of length F .

7: for n = 1 : N layers do
Initial states are updated from the final states of
the encoder, respectively;

8: for f ∈ F time step do
Step 1: Running LSTM architecture;
Step 2: Update cell memory state vector and
hidden state vectors;
Step 3: Save final outputs of LSTM architecture.

9: end for
10: end for

Output: Summary final output of each LSTM
architecture in the F time step.
<Time distributed>:

11: Running fully connected dense layer for
three houses.

12: Output: Predict currents for houses #1, #2, and #3,
Yt+T :t+T+F−1 for F future observations in (11).

• The encoder layer of the LSTM-SAE processes the input
sequence Xt:t+T−1 of length T .

• The cell memory state vectors and the hidden state
vectors are updated through the LSTM architecture at
each time step. The encoder output summarizes the input
sequence through the final LSTM state.

• The repeat vector layer is utilized to repeat the context
vector received from the encoder to feed it into a decoder
input and initial cell memory state vectors of the decoder
layer apply vectors from the final encoder state at the
respective time step.

• After that, the decoder learns features from the ini-
tial cell memory state vectors and the repeat vectors
wrapped in the forward F steps that can be used to
predict F future observations.

• Time distributed dense layer adopts a fully connected
dense layer on each decoder output [9].
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During the training phase, the adaptive moment estima-
tion (Adam) algorithm (one of the best stochastic optimizer
techniques for deep learning models) is chosen as the opti-
mizer, with a constant learning rate of lr = 0.001 [42].
The parameters are learned via a back-propagation algorithm
by minimizing the mean squared error (MSE) between the
prediction and the ground truth.

A specific region’s historical load data is gathered, and
null values are evaluated. The variation of the load pattern
acquired from the preceding record must be used to com-
pensate for the missing data. As a result, information quality
may be attained with minimal influence on predicting perfor-
mance. Following that, a dataset must be segmented into test
and training sets in order to assess the suggested modeling
approach. This data frame may be reformed to define a model
that can forecast the current profile for the next week or
month. After the decoding process and time-distributed layer,
the estimated current and predicted output can be achieved.
Additionally, it is necessary to update the fit model function
to integrate all features from the previous time steps as the
input for the next step and consider every last observation as
input data for the next time step [25].

VI. RESULTS AND DISCUSSION
In this section, the performance evaluations of the proposed
LSTM-SAE model for the BTM load forecasting approach
are presented. The input sequence is described by combining
six features, including the electric current of the transformer;
the electric current of houses #1, #2, and #3; the hour and
minute parameters to acquire the appropriate characteristic
according to the designed LSTM-SAE algorithm. Based on
the purpose of this paper for the prediction of total electric
currents in households for a specific area, the most important
feature is the total electric currents of distribution trans-
formers which is the aggregation of electric currents from
houses #1, #2, and #3. Because of the uncertain behavior of
users in households in energy consumption, the assessment
of these currents is considered at time (t +T ) to check future
changes. From that, the currents for houses #1, #2, and #3
are predicted. The simulation obtained a dataset containing
31,680 observations of minute-wise speed within the 22-
date range. This dataset was divided into three subsets using
23040, 4320, and 4320 splits for training, validation, and
testing, respectively. For the training and validation stages,
a sliding window with a size of T = 20 and a recurrent
step size of 1 is applied. The forecasting interval chosen is
F = 20 minutes.

Table 2 depicts the optimized progression of the
hyperparameters within the boundary range of minimum and
maximum values and whether the parameter values were an
integer or real. During the training phase, the optimization is
executed to derive hyperparameters optimized through grid
search, including the initial learning rate {0.1, 0.01, 0.001},
batch size {32, 64, 128, 256, 512}, number of layers {1, 2, 3},
and embedding size of the LSTMalgorithm {32, 64, 128, 256,
512}. The model tunes different combinations of parameters,

TABLE 2. Maximum and minimum bound of hyperparameter
optimization.

FIGURE 10. An architecture of a repeating LSTM block including four
layers.

and the final proposed model is the best combination. Trials
are carried out to alleviate the consequences of random initial
values on the network during the tests, and then an average
is made for the results. Such averaging is needed to enhance
the robustness of the proposed model.

Using the BTM load dataset, the proposed LSTM-SAE
model was compared with the conventional LSTM, Recur-
rent Neural Network (RNN), Feedforward Neural Network
(FNN), and Deep Belief Network (DBN) algorithms to eval-
uate its predictive efficacy [43], [44]. During the training
process, the hyperparameters of the models are derived by
conducting multiple tests to choose the best combination
for the models. Considering the conventional LSTM and the
LSTM-SAE models, better results were obtained when using
3 hidden layers with 512, 256, and 128 hidden nodes at each
layer, respectively. The number of epochs was 50 neurons,
with a small batch size of 64 training samples. The outputs
of the conventional LSTM and the LSTM-SAE models were
also applied to the time-distributed dense layer with 3 nodes
to produce the final output sequence predicting BTM loads
for houses #1, #2, and #3 at each time step.

Overfitting problems often occur in deep learning models
without sufficient training samples. Therefore, data augmen-
tation algorithms have been adopted to increase the number
of training samples to improve generalization accuracy and
provide high reliability. Here, the training and validation
processes use overlapping data with a sliding window with
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a size of T = 20, and the forecasting interval chosen is
F = 20 minutes. A recurrent step size (t) of one minute is
applied where t = (0, 1, 2, . . .). This process is depicted in
Figure 10.
Fig. 11 shows the convergence of the proposed LSTM-SAE

and conventional LSTM methods over epochs with the train-
ing and validation sets. The experiments were built using
Python 3 under the framework of Keras on Tensorflow [45],
[46]. The training process of all models was conducted on
a PC computer with an AMD Ryzen Threadripper 2990WX
32-core processor with 80GBRAM and an NVIDIAGeForce
RTX 2080 Ti GPU. The best performances for each model
are analyzed. Here, early stopping is adopted in determining
optimum parameters for predictive models [47], which quits
the training process by monitoring validation loss to prevent
overfitting issues in the training dataset. After 50 iterations,
if the validation loss error diminishes again, the training
process proceeds; otherwise, the training process is paused
and the parameters are recorded. The proposed LSTM-SAE
model achieved the minimum validation loss at 20 epochs
while the conventional LSTM model achieved the minimum
validation loss at 38 epochs. This indicates the improvement
in forecasting performance and computational cost of the pro-
posed method in employing residential electric loads along
with the BTM system.

Table 3 shows a comparison of training and testing times
for the DBN, FNN, RNN, LSTM, and proposed LSTM-SAE
methods for three different forecast intervals (10 minutes,
15 minutes, and 20 minutes). It can be observed that the
training time of the proposed LSTM-SAE model was slower
than that of the other benchmark models. This was because
the design of the LSTM-SAE utilized the composition of
the encoder and decoder to overcome the problem of ran-
dom initial values in the network. The testing time of the
proposed LSTM-SAE model took a similar amount of time
to make predictions compared to FNN, RNN, and LSTM.
The LSTM-SAE model performed well not only in terms of
prediction accuracy but also in terms of training and testing
time, indicating that it can be a practical and efficient solution
for the BTM system.

A. PERFORMANCE EVALUATION OF THE PREDICTION
METHOD
The suggested BTM forecasting method is evaluated using
the following metrics [48], [49]. Eq. (13) represents the error
function of the network, which is called the MSE. When
comparing predicted and actual values, the MSE index is able
to calculate the differences in the square error. More accurate
network predictions may be made with a lower MSE.

MSE =
1
n

×

n∑
i=1

(xm,i − xf ,i)2. (13)

Mean absolute error (MAE) determines the averagemag-
nitude of errors in a series of forecasts without taking into
account the direction of the errors. It is the average of the

FIGURE 11. A loss improvement over epochs: (a) conventional LSTM and
(b) proposed LSTM-SAE algorithms.

absolute changes between the predicted and actual interpre-
tations over the test sample, in which all single deviations are
given similar weights.

MAE =
1
n

×

n∑
i=1

| xm,i − xf ,i |. (14)

RMSE is an error indicator dependent on the scale, which
is also used in the forecasting process and is represented as
Eq. (15):

RMSE =

√√√√1
n

×

n∑
i=1

(xm,i − xf ,i)2. (15)

Mean absolute percentage error (MAPE) is the error
criterion that is the most commonly used error metric in the
forecasting domain, where n is the forecast horizon or the size
of the sample, xm,i is the actual measured value at time i, and
xf ,i is the forecasted value for the same time.

MAPE =
100
n

×

n∑
i=1

| xm,i − xf ,i |

xm,i
. (16)

Table 4 provides a comparison of the evaluation perfor-
mance of the proposed LSTM-SAE model, conventional
LSTM, RNN, FNN, and DBN for forecast intervals of 10, 15,
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TABLE 3. Training and testing time comparisons of the models for different forecast intervals.

TABLE 4. The performance metric comparisons of the models for different forecast intervals.

and 20 minutes including three houses. From this table, it is
evident that the proposed LSTM-SAE model outperformed
the other ML models for most of the evaluation metrics
and forecast intervals. For instance, in terms of MSE, the
LSTM-SAE model achieved the lowest values (i.e., 1.178,
1.733, and 4.543) compared to the othermodels for the 10, 15,
and 20 mins time intervals, respectively. Similarly, for MAE,
RMSE, and MAPE, the LSTM-SAE model outperformed the
other models, achieving the lowest values for most of the
evaluation metrics and forecast intervals. Therefore, based on
this table, it can be inferred that the proposed LSTM-SAE
model is superior to the other models evaluated in this study,
in terms of its ability to accurately predict the outcome for the
various energy resources of the BTM system in houses.

The MSE, MAE, RMSE, and MAPE indexes for the elec-
tric load and combination of BTM resources for each resi-
dential location are reported in Table 5. As can be inferred
from this table, the LSTM-SAEmodel outperforms the DBN,
FNN, RNN, and traditional LSTM algorithms. Especially, the
MAPE indicator of the LSTM-SAEmodel has been perceived
as effective in forecasting recurrent load at 38.223% which is
much lower than that of the DBN, FNN, RNN, and traditional
LSTM models at 147%, 92.224%, 109.451%, and 63.084%
for house #1, respectively. Meanwhile, the indexes of MAPE
of the LSTM-SAE model have also shown a capability of
estimating with accuracy rates of 78.875% and 13.476% for

house #2 and house #3, correspondingly, which are signifi-
cantly superior to other algorithms. These results corroborate
the premise of this work in which an LSTM-SAE structure
is helpful for the forecasting process of the BTM system in
residents based on different combinations of DERs which has
many complexities and fluctuations in load profiles. These
combinations can make the forecasting process more chal-
lenging in comparison with only PV systems as a resource.

To dive into the behavioral difference between conven-
tional LSTM and the proposed LSTM-SAE, Figs. 12–14
illustrate the forecasts for the BTM loads estimated by con-
ventional LSTM and LSTM-SAE models for houses #1, #2,
and #3, respectively. As can be seen, both methods produce
smooth series. To be more specific, the MAPE values are
calculated for two different time ranges zoomed in the figures
where the accuracy is low due to the large variation in the load
profiles at that time. It shows that the proposed LSTM-SAE
model performs better than the other baseline models for pre-
dicting the electric currents related to houses #1, #2, and #3.

The LSTM-SAE algorithm provides more accurate fore-
casting compared with other algorithms in all error metrics.
These four evaluation indexes are obtained based on the
prediction of electric currents (voltage is considered as a
constant) for each house as can be observed in Figs. 12–14.
The proposed algorithm shows an enhanced accuracy (e.g.,
the MSE index, of twice that of the conventional LSTM for
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TABLE 5. The performance metrics of the proposed LSTM-SAE models for three houses.

FIGURE 12. The forecasting results of different algorithms in comparison with the proposed LSTM-SAE models
for house #1.

house #2). An error reduction (based on the MSE index) of
the proposed LSTM-SAEmodel for house #2, in comparison
with FNN, RNN, and conventional LSTM models, can be
written as follows, respectively:

ImprovementFNN (%) =
6.208 − 5.018

6.208
× 100 = 19.17%

ImprovementRNN (%) =
8.436 − 5.018

8.436
× 100 = 40.52%

ImprovementLSTM (%) =
10.688 − 5.018

10.688
× 100 = 53.05%

This observation indicates that not only the LSTM-SAE
structure learning component contributes a significant part
to the overall accuracy, but an SAE also has contributed

crucially to the overall performance thanks to the learning
strategy of initialization parameter values.

There are two main reasons for this proposed algorithm’s
better performance in terms of the power system’s per-
spective. First, better accuracy in the forecasting process
than in previous methods is demonstrated. Unlike most of
the papers, which focus on PV generation forecasting as
a BTM load, this research proposed different combinations
of resources with variable energy consumption. Therefore,
residential electric loads along with these BTM systems are
proposed as a real-world scenario in this paper. Second, the
sampling period for data is one minute for this research,
so it can provide more accurate data with high reliability in
the forecasting procedure, while most of the other research

VOLUME 11, 2023 49389



A. Zaboli et al.: LSTM-SAE-Based Behind-the-Meter Load Forecasting Method

FIGURE 13. The forecasting results of different algorithms in comparison with the proposed LSTM-SAE models
for house #2.

FIGURE 14. The forecasting results of different algorithms in comparison with the proposed LSTM-SAE models
for house #3.

deals with a 15-minute time period. A sampling procedure
for every minute is very helpful for utilities to conveniently
estimate and predict their customers’ energy consumption,
and also can be useful for customers by preserving their
privacy regarding any possible anomaly in their SM data.
Considering Table 5, there is a slight difference between the
MAPE indexes for the house #3. That is because there is no
PV generation in this house, and BESS and EV are regarded
as BTM loads in which BESS has a discharging mode in this
case.

VII. CONCLUSION
In this paper, a more complex case of a BTM load is presented
that concentrates on more than PV generation for forecasting
analysis. Alternative combinations of PV, BESS, and EV
loads for each household are assessed, in which different
factors affect the residential feature data. Furthermore, a fore-
casting process based on data extraction for every minute is
another contribution of this research. Finally, an LSTM-SAE
algorithm is proposed based on stacked decoding to predict
the total load currents of each house with good accuracy.
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The results demonstrate better performance and accuracy
compared with the traditional LSTM algorithms, even though
there is a variational BTM load (e.g., PV, BESS, and EV
charging) with fluctuating load patterns. A purpose for future
work is to forecast different combinations of residential BTM
loads, considering complex features of PV, BESS, and EV
components, by extracting data for every second with high
accuracy.
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