
Received 18 April 2023, accepted 1 May 2023, date of publication 15 May 2023, date of current version 30 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3276476

Mitigating Software Integrity Attacks
With Trusted Computing in a Time
Distribution Network
DIANA GRATIELA BERBECARU 1, (Member, IEEE), SILVIA SISINNI1, ANTONIO LIOY 1,
BENOIT RAT2, DAVIDE MARGARIA 3, AND ANDREA VESCO 3
1Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy
2Seven Solutions (Currently Orolia Spain), 18014 Granada, Spain
3LINKS Foundation, 10138 Torino, Italy

Corresponding author: Diana Gratiela Berbecaru (diana.berbecaru@polito.it)

This work was supported by the ROOT (Rolling Out OSNMA for the secure synchronization of Telecom networks) project funded by the
European Global Navigation Satellite Systems Agency (now European Union Space Programme Agency – EUSPA) under the European
Union’s Horizon 2020, the EU Framework Programme for Research and Innovation, under Grant Agreement n. 101004261.

ABSTRACT Time Distribution Networks (TDNs) evolve as new technologies occur to ensure more
accurate, reliable, and secure timing information. These networks typically exploit several distributed time
servers, organized in a master-slave architecture, that communicate via dedicated timing protocols. From
the security perspective, timing data must be protected since its modification or filtering can lead to grave
consequences in different time-based contexts, such as health, energy, finance, or transportation. Thus,
adequate countermeasures must be employed in all the stages and systems handling timing data from its
calculation until it reaches the final users. We consider a TDN offering highly accurate (nanosecond level)
time synchronization through specific time unit devices that exploit terrestrial atomic or rubidium clocks
and Global Navigation Satellite Systems (GNSS) receivers. Such devices are appealing targets for attackers,
who might exploit various attack vectors to compromise their functionality. We individuate three possible
software integrity attacks against time devices, and we propose a solution to counter them by exploiting the
cryptographic Trusted Platform Module (TPM), defined and supported by the Trusted Computing Group.
We used remote attestation software for cloud environments, namely the Keylime framework, to verify
(periodically) the software daemons running on the time devices (or their configuration) from a trusted
node. Experiments performed on a dedicated testbed set up in the ROOT project with customized time unit
devices from Seven Solutions (currently Orolia Spain) allow us to demonstrate that exploiting TPMs and
remote attestation in the TDNs is not only helpful but is fundamental for discovering some attacks that
would remain otherwise undetected. Our work helps thus TDN operators build more robust, accurate, and
secure time synchronization services.

INDEX TERMS Software attacks, time distribution networks, GNSS, trusted computing, remote attestation,
keylime.

I. INTRODUCTION
Nowadays, more and more infrastructures - including energy
grids, transport, industrial automation services, finance,
banking applications, and telecommunication networks -
need accurate, reliable, and trusted time for their correct

The associate editor coordinating the review of this manuscript and

approving it for publication was Dr. Mueen Uddin .

operation. Time synchronization has been traditionally
required to support billing, alarm functions, or monitoring
of delays in Internet Protocol (IP) networks with accuracy of
milliseconds or hundreds of microseconds. In present days,
time synchronization is highly required in mobile networks,
as well as by applications looking for finer time accuracy, less
than 10 microseconds or even less than tens of nanoseconds
(ns), such as for MIMO (Multiple-Input Multiple Output)

50510 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1930-9473
https://orcid.org/0000-0002-5669-9338
https://orcid.org/0000-0002-5275-2138
https://orcid.org/0000-0001-7431-6655
https://orcid.org/0000-0003-1919-3407

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

transmitter diversity [1]. Moreover, timing information must
be delivered via resilient time distribution networks that can
operate and respond in case of malfunctions or deliberate
security attacks.

In the telecommunication sector, the availability of accu-
rate timing information has become a fundamental require-
ment in the Fifth Generation (5G) mobile networks to provide
the expected high Quality of Service (QoS). This requirement
poses unprecedented challenges for management of multiple
timing sources across the 5G networks. In [2], the authors
describe possible 5G time synchronization solutions. Some
solutions can be implemented in the RAN (Radio Access Net-
work) domain, while others can run in the transport domain.
However, a combination of techniques in both domains could
be exploited to create a robust and reliable time distribution
solution. Since an increasing range of time-based applica-
tions are also considered security critical [3], [4], e.g., in the
financial, health, transportation, or energy contexts, the tim-
ing information needs appropriate protection against cyber-
attacks. If such attacks occur, they might seriously affect the
applications with potentially devastating effects, like the loss
of financial information, data compromise, and even human
life loss.

This paper describes a solution for mitigating software
integrity attacks in a TDN providing time synchronization
and distribution in the transport domain. We classify and
discuss first the cyberattacks against the installed software
(or its configuration) running on the time units operating
in an IP-based network. Next, we propose and experiment
with a possible solution against software integrity attacks by
exploiting a TPM [5] on the dedicated time units support-
ing the White Rabbit Precision Time Protocol (WR-PTP)
[6], [7] for the distribution of ns-level timing information.
TPM 2.0 is a cryptographic chip that enables trust in com-
puting platforms. It is widely used to support the creation
of trusted environments on servers, laptops, e.g., TPM 2.0 is
required to run Windows 11, and in IoT environments [8].

Before explaining the motivation and contribution of our
work, we briefly detail the increased need for accuracy and
security in the TDNs.
Need for Time Accuracy: The 5G technology offers the

benefits of the Time Division Duplex (TDD) [9] spectral effi-
ciency, whose full potential can be exploited if highly accu-
rate time, frequency, and phase synchronization are available
at different hierarchical levels of the network architecture.
In this sense, 5G networks require increased reliability of
the timing sources since a degradation or loss in the timing
accuracy and in the precision can impact the RAN perfor-
mance. On the other hand, legacy networks based on Long-
Term Evolution-Frequency Division Duplex (LTE-FDD) can
survive lengthy (>1 hour) loss of synchronization without
significant performance degradation [10].

The Global Navigation Satellite Systems (GNSS) tech-
nologies play a key role in satisfying the stringent require-
ments for the distribution of an absolute time reference in

TDD-based 5G networks: atomic (or sometimes rubidium)
clocks may be integrated with GNSS receivers and may be
deployed in the TDNs as Centralized Grand Master Clocks
(C-GMCs) [1], [11], which generate a Coordinated Univer-
sal Time (UTC) traceable time reference. Specifically, the
C-GMC obtains a 10MHz clock signal from a rubidium or
atomic clock and steers such signal using a One Pulse-per-
Second (1-PPS) signal generated by a GNSS receiver. Next,
to enable the time distribution to the other nodes in the TDN,
the so-calledmaster clocks communicate with multiple slave
clocks through appropriate time protocols. For example, the
Network Time Protocol (NTP) [12] allows time synchroniza-
tion over packet-switched networks. Nevertheless, NTP is
suitable for large and dynamic networks requiring time accu-
racy of a few milliseconds. In case of monitoring of delays in
IP networks, time synchronization must be accurate within
some hundreds of microseconds. In other applications, the
accuracy required is much more stringent, like 5 microsec-
onds for LTE TDD (large cell), 1.5 microseconds for UTRA-
TDD, LTE-TDD (small cell), or even hundreds or tens of
nanoseconds for cluster-based synchronization [13].

Among the standardization efforts we mention the ITU-T
recommendations G.8271 [13] and G.8272 [14] defining time
and phase synchronization aspects in telecommunication net-
works. In time synchronization distributed via packet based
methods, the time synchronization is created by a Primary
Reference Time Clock (PRTC) [14] exploiting GNSS tech-
nology. The G.8272 standard describes a clock that delivers
less than 100 ns phase and time performance suitable for
packet networks. To increase performance for phase and time
required by the emergingmobile access network technologies
and improve security for protection against GNSS outages,
the ITU-T organization has consented to a new standard
(namely, the enhanced Primary Reference Timing Clock -
ePRTC) [15]) that called for better performance, i.e., 30 ns,
for time, phase, and frequency.

In a network of clocks organized in a master-slave hier-
archy, as defined in the IEEE-1588 standard [16], [17], the
reference timing signal is carried through dedicated timing
protocols, such as PTP (Precision Time Protocol). This proto-
col can achieve an absolute time synchronization of hundreds
of nanoseconds through hardware assistance (SyncE). Fur-
thermore, it can provide sub-nanosecond accuracy through
the White Rabbit extension of PTP (WR-PTP).
Need for Security:With the increase of the number of net-

work nodes and to achieve a more scalable solution for time
synchronization, the time reference nodes have started to be
moved as close as possible to the RAN stations to ‘‘preserve
the synchronization budget typically spent across the network
hops’’ [1]. This trend will lead to multiple atomic clocks
and a distributed timing infrastructure based on Distributed
Grandmaster Clocks (D-GMCs). On the other hand, having
such dedicated time units spread in the transport networks
also make them more vulnerable to various types of security
attacks.

VOLUME 11, 2023 50511

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

We observe that intentional or unintentional events against
time synchronization networks may have a devastating effect.
An example of such an attack/event occurred in 2013 [18]
affecting Eurex, a famous international stock exchange.
In practice, a PTP infrastructure glitch forced Eurex to post-
pone its market opening because an incorrect leap-second
calculation caused an erroneous synchronization of the crit-
ical systems. Other incentives the attacker could follow in
performing time manipulation are: a) change time backward
for movie rentals or digital rights management, b) disrupt
forensic analysis process exploiting time for ordering facts,
or c) proving to be physically present at a place where he is
not [19].

Thus, possible synchronization inaccuracies between the
timing sources across the network can directly degrade the
performance and the QoS provided by the time synchro-
nization network, leading to reduced throughput, increased
latency, or jitter. In extreme cases, a synchronization error
can lead to a complete service disruption, which may have
a cascading effect on the data managed. For example,
in scenarios involving digital identity systems [20], [21],
a wrong time reference impacts the application services since,
in such systems, the verification of the authentication asser-
tions exploits time. We observe that both the GNSS Radio
Frequency (RF) spectrum and the TDN represent viable
targets requiring appropriate protection against specific
cyberattacks [22], [23].
Motivation and Focus of This Work: The cyberattacks

applicable to the GNSS RF spectrum [24], [25], [26], to the
PTP protocol [27], [28], [29], [30], or to the WR-PTP pro-
tocol [6], [31] have been extensively investigated so far,
together with some possible countermeasures. On the other
hand, new ideas and solutions are needed to counter the
software integrity attacks affecting the dedicated time units
in a TDN, though some works have been proposed in this
sense (see Section II).

The ROOT (Rolling Out OSNMA for the secure synchro-
nization of Telecom networks) project [32] studied both the
attacks against GNSS, like jamming, spoofing, and mea-
coning (see [1] for detailed description) and the cyberat-
tacks affecting the time units in charge of calculation and
distribution of the time reference, that is the D-GMCs and
C-GMCs. Furthermore, a selected subset of GNSS and cyber-
security attacks have been tested in a controlled environ-
ment hosted at Telefonica’s Automation and Innovation Lab
(Madrid, Spain). Last but not least, the project evaluated the
performance of OSNMA (Open Service Navigation Message
Authentication) signal [33] in the GNSS receivers placed on
the exploited time units.

This paper deals with the protection against software
integrity attacks targeting the nodes operating both as
C-GMC and as D-GMC of the ROOT time distribution net-
work. We assume that a trusted operating system runs on
these devices. Moreover, the network attacks are not consid-
ered, though we underline their relevance in the classification
presented in Section II. The ROOT architecture exploited

tailored time synchronization devices from Seven Solutions
(named WR-Z16 [34]) operating at different TDN layers.
As said, these devices generate time reference by combining
different time sources (GNSS, cesium atomic clock, rubid-
ium clock, or Oven-Controlled Crystal Oscillator depending
on whether they behave as C-GCM or D-GCM), and are
capable to grant sub-nanosecond synchronization accuracy
by exploiting specific software and the WR-PTP protocol.

To protect from software tampering attacks on the ded-
icated time unit devices, we exploited a TPM, as well as
specific Trusted Computing (TC) and remote attestation soft-
ware. More specifically, we used a software TPM installed on
the dedicated time units, along with software implementing
the TCG (Trusted Computing Group) software stack specifi-
cation [35] to interact with the TPM. To measure the software
components, like executables, configuration files, and kernel
modules, we exploited IMA (Integrity Measurement Archi-
tecture) [36], which is part of the Linux kernel since 2009.
In addition, we used the Keylime framework [37] to perform
TPM-based remote attestation of the time units from a remote
trusted node in a highly scalable manner.

We detail the experimental results performed on a real
testbed exploiting the WR-Z16 devices installed in a con-
trolled environment, the same one used for GNSS attacks
evaluation described in [1].We show how theKeylime remote
attestation software can mitigate a selected set of software
integrity attacks against the considered devices. In practice,
we have tested the following ones: 1) modification of the
software configuration on the time unit. 2) alteration or
replacement of the executable software on the time unit.
3) change the GNSS receiver configuration placed on board
the WR-Z16 devices.
Organization: The paper is organized as follows.

Section II presents shortly the related work addressing cyber-
security attacks and countermeasures in time synchronization
networks. Section III introduces the ROOT architecture (at a
high level), Section IV gives an overview of the attacks that
might affect a TDN and classifies them into categories based
on different views, namely hardware, software, time distribu-
tion/synchronization, or management. Section V details the
main trusted computing concepts and technologies used for
software integrity protection on the time units, Section VI
describes the experimental testbed software (including the
Keylime software) running on the TDN nodes, Section VII
illustrates the experiments performed on the installed testbed,
Section VIII presents the results obtained in the experimental
attacks. Finally, Section IX draws the final remarks and
conclusions.

II. RELATED WORK
The series of works of Alghmadi and Schukat [38], [39], [40],
[41] is closest to the work reported in this paper since they
have addressed both the network attacks as well as the
advanced persistent threats [42], [43] and internal attacks [44]
targeting the software or the configuration of the time devices.
Nevertheless, the abovementioned research papers have not

50512 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

TABLE 1. Summary of (selected) related papers.

exploited TC or remote attestation experimentally in a TDN,
as presented in this work. For example, [44] discusses how
countermeasures based on public key infrastructures, trusted
platform modules, network intrusion detection systems and
time synchronization supervisors could be adopted to defeat
or at least detect such internal attacks but still lacks practical
results on employing such technologies in a time synchro-
nization network. The importance of trusted time for various
applications is discussed in [19]. The authors examined in
a detailed manner the timing capabilities of various TEE
(Trusted Execution Envirnnments) that put their root of trust
in hardware, including Intel SGX, ARM TrustZone, and
TPM. They established that these technologies are suscep-
tible to timing attacks by a malicious operating system and
an untrusted network. The same paper ([19]) argued that it
is essential to protect time-based primitives across all layers,
i.e., the hardware timers, platform software, and network time
packets, even if it did not perform an experimental evaluation
in this sense.

Some authors of the current paper sketched a preliminary
classification of attacks in TDNs and designed a solution
for TC-based time distribution in an environment using a
Raspberry Pi 4 device (used as an attester node), a trusted
Verifier node, and the Keylime software [45]. In parallel, the
authors in [46] have analyzed the principal attack vectors
in the context of Industry 4.0 applications and highlighted
the need for software integrity controls of the TDN nodes.
They have also proposed a solution based on TC principles
to protect the integrity of the nodes of a time synchronization
network. Furthermore, they demonstrated the effectiveness
of the proposed approach with a simplified testbed based on
low-cost Internet of Things (IoT) devices capable of achiev-
ing microsecond-level synchronization accuracy.

In the past, the security of the time information in transit
over the TDNs has been extensively studied, mainly because
unsecured formats were employed for transporting such

data [47]. Some works, such as [48], adopted secure data
formats, whereas other authors [49] proposed secure timing
protocols, like NTP secured through the Network Time Secu-
rity (NTS) protocol. To secure broadcast time synchroniza-
tion, [50] set forth using data origin authentication.

Regarding remote attestation, several possible implemen-
tations exist. Several works performed remote attestation
by experimenting with different hardware or software solu-
tions [51], [52], [53]. Some solutions used additional hard-
ware features to perform the attestation, like Intel TXT [54].
A survey of (hardware) remote attestation schemes for var-
ious contexts, including cloud computing, IoTs, and critical
network infrastructures, can be found in [55]. Others (mainly
for embedded systems) removed the hardware components
suggesting a solution relying entirely on software [51]. In the
IoT networks, the current trend goes toward collective remote
attestation (CRA) schemes [56] capable of remotely perform-
ing attestation of large networks of (IoT) devices. Selected
papers tighlty related to the topic of this work are resumed
in Table 1.

III. THE ROOT ARCHITECTURE: HIGH-LEVEL VIEW
To achieve high-accuracy time distribution (e.g., from 65 ns
to 130 ns for 5G front-haul applications) and secure time syn-
chronization, the ROOT project designed and experimented
with a network architecture exploiting centralized master
clocks and distributed grandmaster clocks.

A high-level view of the ROOT architecture is shown on
the right hand in Fig. 1, while the left side of the figure shows
internal details of the C-GMC, D-CGMC, and Boundary
Clock(BC)/Grandmaster(GM). A C-GMC generates a time
reference by combining different time sources. In particular,
the C-GMC uses a GNSS receiver together with a co-located
Cesium Atomic Clock (Cs AC), as shown in Fig. 1 a).
Multiple distributed reference clocks, namely the D-GMCs,
are spread across the network to provide robustness and

VOLUME 11, 2023 50513

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 1. ROOT time synchronization architecture exploiting WR-Z16 devices acting as C-CGM and D-CGM deployed at different levels of the
telecom network operator.

resilience in case of temporary malfunctioning or intentional
attacks. Specifically, the D-GMC combines multiple time
sources to generate a time reference, that is, a GNSS receiver
and a (less expensive) Oven-Controlled Crystal Oscillator
(OCXO) or a Rubidium (Rb) clock. For resilience purposes,
the proposed TDN exploits two C-GMCs and two D-GMCs,
namely a primary and a secondary one. Generally, the primary
and secondary devices have similar configurations, but they
operate in different physical locations. The time synchroniza-
tion signal is transported to the connected devices over fiber
optical channels by exploiting the WR-PTP protocol.

The telecom network operator installs the C-GMC and
D-GMC devices at different operational levels. In the TDN
architecture shown in Fig. 1 b), the C-GMC and D-GMC
devices occur at the regional level (H3) and the metro aggre-
gation level (H4) of Telefonica telecom operator network
(more details on the so-called FUSION hierarchy levels can
be found in [1]). At the hierarchical level (H5) operates a
less complex time distribution device (called BC/GM), which
exploits as well a GNSS receiver for time calculation and no
terrestrial clocks. The H5 level is the most distributed one
where mobile base stations connect.

IV. CYBERATTACKS APPLICABLE TO THE TDNs
In [45], we preliminary classified the attacks affecting TDNs,
by considering different possible attack vectors. Concerning
the TDN architectures, an adversary may pick one or a com-
bination of the following security attack scenarios:

• GNSS attacks against the communication links between
the satellites and the GNSS-enabled nodes in the TDN.

An attacker might calculate and broadcast a fake GNSS
signal (a.k.a. spoofing attack [57], [58]), retransmit
a real but delayed GNSS signal (meaconing attack),
or launch denial of service attacks (including jam-
ming [59]); These attacks affect the GNSS signal links
shown in Fig. 1 b).

• hardware attacks - deal with physical corruption of the
specific devices. Examples include heating, cooling,
or physical manipulation of parts of the device to deviate
from its ‘‘normal’’ operation. We do not consider these
attack types in this work because we assume the C-GMC
and D-GMC devices are resilient to such attacks or
operate in protected locations.

• time distribution attacks - regard all the attacks dis-
covered so far against the time distribution protocols
(i.e., PTP or WR-PTP) such as: denial of service (DoS)
attacks, man in the middle (MITM) attacks, replay
attacks, or delay attacks [31], [60]. These attacks affect
the network timing distribution links shown in Fig. 1 b).

• network attacks - refer to the networking attacks, includ-
ing DoS attacks, MITM attacks, and replay attacks,
targeting the network management protocols employed
by a legitimate network administrator to perform remote
access (and authentication) to the time device(s) for
management and configuration purposes. Examples of
such protocols are the Secure Shell (SSH), Transport
Layer Security (TLS) [62], or SNMP (Simple Network
Management Protocol). These attacks, such as MITM
SSL [63], or TLS truncation attack [64], [65] affect the
network management links shown in Fig. 1 b). They

50514 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

can be damaging because, if successful, the attacker can
actively intercept authentication credentials (allowing
him/her to connect as a legitimate user). Moreover, the
attacker could alter the installation code or configuration
parameters sent to the time devices.

• software attacks against the specific D-GMC or C-GMC
devices, including:

– modification of the specific software or its config-
uration through unauthorized access to the device
(including software engineering attacks), installa-
tion of malware, or software backdoors. In this
category are included also the memory scraping and
the side-channel attacks, as well as the exploitation
of buffer overflows in the installed operating system
or software;

– installation of malicious code/software, either
through injection attacks [66], worms/trojans, ran-
somware, rootkits, botnets, or malicious network
functions.

The architecture shown in Fig. 1 b) can thus be further
decomposed into different views, namely time distribution,
network (management), hardware, and software. For each
view, multiple potential attacks exist. Theoretical or practical
attacks could exploit vulnerabilities in the timing protocols,
the network management protocols, the physical protection,
or the software installed (and configured) on the time unit
devices.

In this paper, we concentrate on the software view.
Thus, we consider the entire software stack running on the
time unit devices, including the operating system, the man-
agement software, and the specialized daemons employed
for time synchronization, such as ptpd [67], gpsd [68],
or ppsi [69]. In general, software attacks - sometimes called
low-level attacks - rely on characteristics of the hardware,
compiler, or operating system used to execute software pro-
grams to make these programs misbehave or extract sensitive
information from them. A possible solution to detect inten-
tional changes in the software running on the C-GMC or
D-GMC devices could exploit trusted computing by taking
advantage of a TPM to support trusted or secure boot, the pro-
tected storage of the TPM for sensitive data, and to perform
remote attestation [70].

V. PROTECTING FROM SOFTWARE INTEGRITY ATTACKS
WITH TRUSTED COMPUTING
This section provides the background information necessary
to understand the TC techniques used to counter the software
(integrity) attacks in TDN devices. Then, we present in brief
the Keylime framework.

A. TPM 2.0, CHAIN OF TRUST, TPM KEY HIERARCHIES
The Trusted Computing Platform Alliance (TCPA), formed
by companies like Microsoft, Intel, IBM, Hewlett Packard
(HP), and Compaq started to promote in 1999 the develop-
ment of Trusted Computing relying on both hardware and

software implementations. The TCPA proposed a hardware
anchor for PC security, namely the TPM, which can be used
as a base to build secure systems. The core idea behind this
chip stands in protecting (efficiently) the device’s crypto-
graphic assets [71]. The TPM is now present in almost all
commercial PCs and servers, with specifications managed by
the TCG (Trusted Computing Group) (successor of TPCA),
whose members are famous companies like AMD, Hewlett
Packard, IBM, Intel, Microsoft, Sony, or Sun Microsystems.
Several forms of TPM exist nowadays [72]: the discrete and
integrated hardware TPMs are used in critical systems or
gateways and offer a higher security level and have high-
to-medium costs, the virtual TPM (typically used in cloud
environments) is a software implementation of the TPM run-
ning in an isolated execution environment and has a low cost,
whereas the software TPM runs as a regular program within
the operating system. The software TPM does not offer any
security guarantee because it is subject to physical tamper-
ing and (software) attacks addressing the operating system
on which it runs and the software TPM itself. However,
it is appropriate for testing (purposes) since it allows one to
emulate an environment with TPM-enabled applications and
measure its performance. We have used such a TPM in the
solution described herein.

The TPM must be secure itself. It can be seen as a Root
of Trust providing confidentiality, protection, and integrity
services even if it’s not robust against hardware-based attacks.
A key aspect of the TPM is the identification, which means
it can manage identity keys, more precisely, an endorse-
ment key (EK) pair representing TPM identity. According
to the TCG specification, a platform is trusted if it behaves
as expected for a specific purpose. Thus, it’s imperative to
determine the identity of its hardware and software com-
ponents. The TPM (as proposed by TCG) allows to collect
and report these identities in a way that permits to determine
the expected behavior and (from that expectation) to estab-
lish trust [73]. The TPM is separate from the host system,
interacting with it only through the interface defined in the
TCG specification. The TPM specification 2.0 published in
2014 [74] supports many more new features and algorithm
agility in contrast to the previous version (namely 1.2).

Relevant to this work are the key hierarchies and the
Platform Configuration Registers (PCRs) in the TPM. The
PCRs are shielded locations of memory used to validate the
measurements made by the system to its internal components.
These registers hold measurements of the software done
through a hash function, starting from the BIOS (loaded at
device boot) up to regular files or configuration files accessed
at application run time. PCRs 0 to 9 store measurements
about BIOS, firmware, and boot loader, while PCR 10 stores
measurements about applications, made with the Integrity
Measurement Architecture - IMA. The content of the PCRs
can be modified only at reboot time, or with a particular oper-
ation called extension. The PCR values are cleared every time
the TPM is restarted, usually, the values are set to all zeros,
and they cannot be erased or modified manually. As said, the

VOLUME 11, 2023 50515

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

only operation that can be done on a PCR is the extension,
through an operation indicated below, where PCRnewvalue is
the new hash values stored in the PCR after the extension,
HashhAlg is the hash algorithm used for hash calculation
associated with a specific PCR bank, PCRoldvalue is the PCR
value before the extension operation, and data − hash is the
new data (measurement) that must be protected:

PCRnewvalue = HashhAlg(PCRoldvalue||data− hash)

The PCRs’content can be read internally or externally to
validate the state of the system, usually through a TPM quote
operation. Besides the cryptography subsystem that imple-
ments all TPM’s cryptographic functions (such as the hash
engine, the asymmetric cryptographic engine, the symmetric
encryption engine, and the random number generator used
to generate keys securely), the TPM has additional features
ensuring the security of the node on which is hosted. The
TPM allows, for instance, the secure generation of keys (via a
random number generator) and the secure storage of objects
(including keys) that are accessible only through protected
capabilities preventing thus unauthorized deletion, modifica-
tion or disclosure.

1) ROOTS OF TRUST
The core idea in trusted computing is the creation of a Chain
of Trust starting from a Root of Trust (RoT), a component
considered trusted since its misbehavior is not detectable.
For example, a certificate provided by an independent testing
lab may report the Evaluation Assurance Level of the TPM,
providing thus confidence in the correct implementation of
its RoTs. A Root of Trust is the minimum set of system
elements that convey trustworthiness to a platform and is
strongly bounded to the concept of a Trusted Building Block.
Since the characteristics affecting the trustworthiness of a
platform are multiple, a more appropriate term is roots of
trust, where each one of them is the starting point for one of
the parts in which the process of trust attestation is divided.
According to its specification, the TCG group requires that a
trusted platform provides (at minimum) the following three
roots of trust: the Root of Trust for Measurement (RTM), the
Root of Trust for Storage (RTS), and the Root of Trust for
Reporting (RTR).

The RTS is the TPM memory, which has the property of
being shielded from access by entities other than the TPM.
The RTM supports the integrity measurement of the TPM
by calculating digests taken on the configuration data and
program code and sending them to the RTS. The integrity
measurement of a platform exploits the transitive trust con-
cept, meaning that the trust in a software component is used
to evaluate the trustworthiness of the subsequent software
component that will take control of the platform.

The RTM of a platform is typically a small subset of the
BIOS, called Core Root of Trust for Measurement (CRTM),
which the CPU executes at system reset. The CRTM contains
the first set of instructions that get control of the system.
Its purpose is to record in the TPM which BIOS is used to

boot the system before passing control to the full BIOS. The
CRTM is the starting point of a chain of trust, transferred to
subsequent software components.

The RTR reports on the contents of the RTS. Typically,
an RTR report is a digitally signed digest calculated on the
values of some shielded locations within a TPM, such as
the content of PCRs, which provide evidence of the plat-
form status. In this case, the RTR report is called Integrity
Report (IR).

2) TPM KEY HIERARCHIES
The TPM reports on the integrity state of a trusted platform
by quoting the PCR values. Yet, external entities may check
the platform state through quote operation provided that the
TPM issuing the quote (actually, the RTS inside it) identifies
itself. The RTR (and TPM) identification is accomplished
through non-migratable asymmetric keys called Endorsement
Keys (EKs), derived from an endorsement seed contained in
the TPM. The seed (large random number that never leaves
the TPM) is probably the most significant element. It acts
as a starting point from which primary keys are generated.
Subsequently, from these primary keys, other objects are
derived, namely the proof values used by the TPM to attest
its identity when sending some data. The TPM supports three
types of persistent hierarchies: a) the platform hierarchy, used
to ensure the integrity of the system firmware; b) the storage
hierarchy, used by the platform owner for a variety of non-
privacy-sensitive purposes; c) the endorsement hierarchy,
used when the user wants to ensure the integrity of privacy-
sensitive data, attesting TPM identity since its primary keys
are guaranteed to be constrained and unique to each TPM by
the manufacturer. The keys of this hierarchy are also known
as Endorsement Keys (EKs) and are created starting from the
unique endorsement seed contained in the TPM. These keys
are also used in critical tasks, including the remote attestation
process.

The endorsement hierarchy and the EK have a key role in
the platform identification: the RTR and the reporting phase
itself are meaningless if not strictly linked to the TPM they
refer to. In other words, a proof of the physical bounding
between the RTM and the RTR is needed to be sure that
a particular quote was sent by a well-defined TPM. This
property is achieved through the EK since it is almost impos-
sible to have two TPMs with the same endorsement seed,
that is, with identical endorsement keys. The EKs can raise
privacy problems: since they represent the TPM identity, their
direct use could permit the creation of activity logs, which
could reveal personal information that the user of a platform
would not otherwise want to reveal to entities that aggregate
data [73]. To counter this issue, TCG recommends not to
use EKs either for data signing or encryption operations,
but only to decrypt certificates of other non-migratable keys
generated by the TPM, namely the Attestation Keys (AKs)
or Attestation Identity Keys (AIKs). These keys are obtained
during the Attestation Key Identity Certification procedure,
which attests that an AK has been generated by an authentic

50516 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 2. Software integrity measurement components (exploiting IMA and TPM).

but unidentified TPM, is a non-migratable key, and can be
used to sign the contents of shielded locations. This happens
upon request of the TPM owner with the cooperation of an
Attestation CA (or Privacy CA). Overall, its purpose is to
certify that a given AK has been generated by a valid TPM.
AKs, in turn, can only be used to sign digest values that
the TPM generates, like the digest calculated on the content
of PCRs.

3) MEASURING SYSTEM INTEGRITY WITH IMA
The TCG specifications define all the concepts staying at
the base of TC philosophy, including the definition of the
RoTs that a trusted platform has to implement. Moreover,
TCG specifications define the building blocks for creating
a Trusted Boot. In particular, the CRTM and the transitive
trust concept allow for establishing an RTM, which measures
the system boot components and stores the measurements
in the RTS, more specifically, into the PCRs in the TPM.
Thus, an external entity may verify that the system booted
securely. However, TCG specifications are operating system
(OS) agnostic. They do not state how the RTMof the platform
extends in the OS. The Integrity Measurement Architecture
(IMA) is the Linux kernel’s implementation of the integrity
measurement system conceived by the TCG. It allows extend-
ing the chain of trust from the BIOS up to the application
layer, as shown in Fig. 2.

IMA is currently one of the most accepted TCG-compliant
solutions for measuring dynamic executable contents [75],
being part of the Linux Integrity Subsystem starting with the
version 2.6.30 of 2009. IMA measures all the executables,
configuration files and kernel modules as soon as they are
loaded onto the Linux system before passing the control to
them. Then, it extends these measures in the TPM, more
precisely in the PCR 10.

Yet, IMA does not measure everything, but it processes all
files accessed at runtime according to some rules specified

in the IMA policy configured on the system. The policy can
be one of the IMA built-in policies allowing to measure the
Trusting Computing Base of the system, or it can be a custom
policy created according to the needs of a specific context.
The files are measured by means of a digest applied over their
complete content, using the SHA1 algorithm (by default) or a
hash algorithm specified through a kernel command parame-
ter, like SHA256. All the measurements are stored in a Mea-
surement List (ML) inside inside two log files in the security
file system (named ascii_runtime_measurements
and binary_runtime_measurements) so the mea-
surements are available in the user space. IMA allows to store
in the ML other metadata along with the file measurement by
exploiting a set of built-in templates, such as ima, ima-ng
(default), or ima-sig. When a new entry is added to the
ML, IMA computes a digest on all fields specified by the
IMA template, and if the platform is equipped with a TPM,
it extends the digest in the PCR 10.This process permits
an external entity to verify not only the system boot but
also to check which applications and kernel modules have
been loaded in the platform, whether they are expected or
undesirable invocations, whether the software has a trusted
state, or its configuration is as expected. Consequently, these
checks do not necessarily require a new CPU mode of exe-
cution or a new operating system but merely rely on the
hardware RoT provided by the TPM, which is nowadays
ubiquitous in many platforms.

4) REMOTE ATTESTATION TECHNIQUE ADOPTED
Remote attestation [76] is a process through which a remote
trusted node (called Verifier) can attest that a device (Prover)
is in a legitimate state, i.e., uncompromised. The pro-
cess exploits an asymmetric challenge/response technique,
in which the Verifier generates a challenge (nonce) and sends
an attestation request to the Attester, or Prover (see Fig. 3).

Given that the time unit devices are equipped with a TPM
and run a custom Linux distribution, we have considered a

VOLUME 11, 2023 50517

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 3. Remote attestation.

remote attestation implementation in which the Prover dig-
itally signs the measurements created with IMA by using
asymmetric keys generated from the EK inside the TPM
residing on the Prover.With TPM, the attestation schemes can
ensure the attestation response is trustworthy [77]. To ensure
scalability, the entire process is managed by employing the
Keylime framework.

Each Attester platform, equipped with a TPM 2.0 chip, has
its EK key, from which the AK keys may be derived, along
with the corresponding certificate EKcert issued by the TPM
manufacturer. The AK keys are used for signing the Integrity
Reports (IRs). Upon receiving the attestation request, the
attestation agent collects the attestation data, signs it with an
AK key of the platform by performing a TPM quote operation
(signature over the PCR 10 content), then combines it with
the nonce and the ML and sends back to the Verifier the IR.
The Verifier must be able to verify the AK certificate, which
binds the Initial Attestation Key or the Local Attestation Key
with the device’s identity. Moreover, it must have a so-called
whitelist holding a set of known-good values compared to the
ones in the Attester’sML during the attestation process. Thus,
to check theAttester at run time, the Verifier can use PCR 10’s
content to verify that the ML has not been tampered with.
If the ML is valid, the Verifier analyzes it entry by entry by
confronting each entry against the ones in the whitelist. This
processing allows for determining if the change in the system
state represented by each entry in the ML is trustworthy.

To resume, the Verifier performs the following operations:
1) checks the TPM quote signature; 2) validates that the ML
entries match the value of PCR 10; 3) checks whether the
files in the ML are the same ones as in the Verifier’s whitelist
(golden values) and their digests must match. Amore detailed
explanation of this process can be found also in [72] and [78].

B. SCALABLE REMOTE ATTESTATION WITH THE KEYLIME
FRAMEWORK
Developed by a security research group in Massachusetts
Institute of Technology (MIT) ‘‘Lincoln Laboratory’’
and presented in 2016 through the whitepaper [79], the
Keylime framework aims to provide high scalability to
the remote boot attestation process. Nowadays, Keylime

FIGURE 4. Main components of the Keylime architecture employed for
scalable remote attestation in the prototyped TDN.

security software is deployed to the IBM cloud, and is a
Cloud Native Computing Foundation sandbox technology
with more than 30 open-source developers [80]. The Keylime
framework was born in the cloud computing context and,
more specifically, in the scenarios supporting Infrastructure
as a Service (IaaS). In these scenarios, the final user (called
Tenant) is provisioned with resources (cloud nodes) that
could be physical or virtual machines. The resources are
given to the user who will deploy and control his software to
these nodes. The key point is that the tenants have no control
over the underlying infrastructure. Thus, they cannot ensure,
with their own implementation, that the platform given by
the IaaS provider remains in a good and safe state during the
computation.

The Keylime architecture exploits four main components,
as depicted in Fig. 4:

• the Tenant: is the module that kicks off the framework; it
registers the Could Agent with the Cloud Verifier, send-
ing it all the information (that is the whitelist, exclude
list, and TPM policy) necessary to start the periodic
remote attestation on the node. Moreover, it verifies

50518 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 5. Testbed description.

the authenticity of the TPM of the remote platform by
checking the validity of the certificate of the TPM’s
Endorsement Key (EKcert). If the TPM does not have a
certificate, the Cloud Agent sends the public part of the
EK key (EKpub) and the Tenant should verify that the
EKpub is among those allowed;

• the Cloud Agent: is a service running on the node to
be attested (Attester) and is in charge of sending the
Integrity Reports (IRs) to the Cloud Verifier.

• the Registrar: is the component to which every network
node has to register via its own UUID, an alphanumer-
ical identifier. For each registered node, the Registrar
stores three different pieces of information: the EKpub
keys, the AIKpub keys, and the EKcert . In this way, the
Tenant can associate an EKpub and an AIKpub to a node,
which holds the corresponding EKpriv and AIKpriv. The
verification of the EKcert is fulfilled by the Tenant (not
by the Registrar) in the key derivation protocol.
The Registrar receives the TPM credentials from the
Agent and sends them: a) to the Cloud Verifier, to allow
it to check the TPM 2.0 quotes signed with the private
part of the AIK, namely AIKpriv, and b) to the Tenant,
to allow it to verify the validity of the EKcert /EKpub;

• the Cloud Verifier: is the core element of the whole
framework. Once a node is registered, the Tenant can
start monitoring it by asking the Cloud Verifier to ver-
ify the node’s integrity state. By default, the Verifier
sends every 2 seconds an attestation request to the Cloud
agent. However, this value can be changed (because it’s

configurable) to check the Attester more frequently.
To evaluate the integrity level of the node running the
Agent, the Verifier processes the IRs based on the infor-
mation received from the Tenant (e.g., the whitelist,
the TPM policy), as well as the data received from
the Registrar like the AIKpub used for quote’ signature
verification.

VI. DESCRIPTION OF TESTBED EXPLOITING KEYLIME
We have installed the Keylime components on a testbed TDN
exploiting WR-Z16 devices in a controlled environment at
Telefonica premises, as shown in Fig. 5. The entire testbed
is extensively described in [1]. In the tested scenarios, the
attested nodes H4a and H5a acted as primary (time unit)
devices, while H4b and H5b acted as backup (secondary)
devices. A remote trusted node acted as Verifier in the remote
attestation process, while the attacks have been initiated from
an Attacker node. We deliberately excluded details about the
execution of GNSS attacks (shown as RF attacks in Fig. 5)
since they are out of scope in this paper.

To counter the software integrity attacks, we used a soft-
ware TPM namely IBM’s TPM 2.0 simulator [81], which has
been installed on the H4a, H4b, H5a, H5b, and H5c devices.
More precisely, on theWR-Z16 devices running a customized
Linux version with a Xilinx kernel, we installed the following
software: IBM’s TPM2.0 simulator (ibmtpm1661), Python
(version 3.10), TPM-related software like tpm2-tss (version
3.1.0) [82], tpm2-tools (version 4.3.2) [83], and the Keylime

VOLUME 11, 2023 50519

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 6. Installed Keylime components on the time unit devices (indicated as Attester) and on the trusted remote node
(indicated as Verifier).

(Cloud) Agent (version 6.2.1) [84]. On the Verifier machine,
running an Ubuntu 20.04 Linux distribution, we installed
tpm2-tools (version 5.2), Python (version 3.8.10), and
the Registrar, Verifier, and Tenant Keylime components
(version 6.2.1), as illustrated in Fig. 6. Additionally, we devel-
oped and installed a script developed in Python for generating
automatically the whitelist instead of manually editing this
file.

VII. EXPERIMENTS
To perform the experiments we have exploited the testbed
detailed in Section VI. To modify the daemons or their con-
figuration, we have connected remotely (with OpenSSH1)
from the Attacker machine to the time devices under attack.
We used classical Linux commands (e.g., mv, cp, or vi) to
move, copy or edit files.

A. SOFTWARE INTEGRITY ATTACKS: DESCRIPTION
We have considered and tested the following software
integrity attacks:

1) SOFTWARE CONFIGURATION MODIFICATION
This test simulates a scenario in which an attacker may
gain access to the H4a WR-Z16 unit, e.g., an impostor who
manages to steal access credentials for the administrator
account or a legitimate administrator behaving maliciously.
Subsequently, the attacker changes the configuration file of
the WR-PTP daemon, that is, /root/.config file. In this
way, he can modify a calibration value (such as by adding
100 ns), which results in a change of the 1-PPS offset of the
slaves after a reboot. This attack is applied to the H4a node
only, but subsequently, it can affect the synchronization of the
H5a and H5b nodes.

1https://github.com/openssh/openssh-portable

Countermeasure Adopted: The attack is detectable by
adding the entry corresponding to the IMA measurement of
the abovementioned configuration file in the whitelist of the
Verifier. Thus, with the Keylime remote attestation process,
any change in the parameters listed in the configuration file
would generate a different IMAmeasurement than the golden
value in the whitelist of the Verifier.

2) EXECUTABLE SOFTWARE MODIFICATION
In this case, the attacker wants to modify or replace the
WR-PTP software, that is, the ppsi daemon. First,
we assume the attacker can access with superuser privileges
the software installed and running on the H5a WR-Z16 unit.
Next, he replaces the executable file of the PPSI daemon
(i.e., /wr/bin/ppsi) with a malicious file, which will
slowly shift the 1-PPS of the H5a node. With a sufficiently
long attack duration, the attacker can gradually introduce
an arbitrarily large time offset on the 1-PPS output of the
target node. We note that the slow shift of the 1-PPS may go
‘‘undetected’’ unless the mitigation solution we propose with
Keylime is adopted. Moreover, we remark that ppsi is open-
source, so any potential attacker with sufficient knowledge
can modify it.
Countermeasure Adopted: The attack is detectable by

exploiting the Keylime remote attestion process, which peri-
odically checks the IMA measurement of the running WR-
PTP software, more precisely, every 2 seconds. As part of
the verification steps in the remote attestation process, this
measurement is cryptographically checked against the PCR
10 value stored in the WR-Z16’s TPM and is confronted with
the golden value saved in the whitelist on the Verifier.

3) GNSS RECEIVER CONFIGURATION MODIFICATION
This attack targets the configuration of the GNSS receiver
module (i.e., mosaic-T) installed on the H5c WR-Z16 unit.

50520 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 7. Software Configuration Modification (H4-SW-PC) test results.

We assumed that, through privilege escalation, an attacker
could gain access to the command interface of the GNSS
receiver, i.e., UART. Thus, he could modify the calibra-
tion parameters of the receiver. In practice, the attack
consists of sending a malicious configuration command
(i.e., setPPSParameters) to the mosaic-T receiver on the
H5c unit, with a wrong calibration parameter for its 1-PPS
signal output (i.e., a wrong cable delay). According to the
mosaic-T Reference Guide [85], this parameter can be set in
a range from −1 ms to +1 ms, thus potentially resulting in a
considerable time offset on H5c compared to the other nodes
on the network.
Countermeasure Adopted: To detect this attack, a ded-

icated daemon in charge with monitoring and control of
the GNSS receiver on the H5c node periodically polls
the current GNSS configuration through the specific com-
mandlstConfigFile, Current. In detail, the daemon
retrieves the configuration at bootstrap and stores it in a file,
named nominalGNSSconfig.txt. Next, it periodically
polls the GNSS configuration and stores it in a separate
file named currentGNSSconfig.txt. The digests of
both configuration files have also been added to the Keylime
whitelist. In this way, any modification on the GNSS con-
figuration results in a different IMA measurement detectable
by Keylime by confronting it with the golden values in the
Verifier whitelist.

VIII. EXPERIMENTAL RESULTS
This section describes the experimental results obtained dur-
ing the test campaign.

A. SOFTWARE CONFIGURATION MODIFICATION
This test (namedH4-SW-PC) consisted in modifying the con-
figuration file (i.e., /root/.config) on the H4a timing
device, to change calibration values (by adding 100 ns) that
affects the time synchronization of slave nodes (i.e., H5a and
H5b nodes).

The test began with all the nodes in nominal conditions
(at time t0). After modifying the H4a configuration file,
we restarted both H4a and H4b. Next, we have detected that
the 1-PPS output of H4a was shifted by 100 ns.

The results of this test are reported in Fig. 7. In detail,
the actions sequentially carried out during the test are given
below:

1) At t1, we modified the calibration value in the
.config file of H4a. At this point, from the opera-
tional point of view, nothing happened, as the daemon
has not loaded yet the modified value. Nevertheless,
Keylime has already detected the modified calibration
value, since the digest of the modified file has a differ-
ent value than the golden value stored on the Verifier.
Thus, an entry indicating the integrity check error is
added by the Verifier in a specific Log file.

2) At t2, we killed the hald daemon at the H4a node,
forcing the daemon to reload the (modified) calibration
value when it has been (automatically) restarted. Since
we have killed the daemon in H4a, the H5a loosed
its primary timing source (i.e., H4a, shown in yellow
in Fig. 7). Thus, it switched to use the H4b node
as timing source (whose evolution is shown in green
in Fig. 7).

VOLUME 11, 2023 50521

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 8. Executable Software Modification (H5-SW-PS) test results (raw PPS in black, moving average of 60 s in blue).

3) At t3, we killed the daemon in theH4b node, so that H5a
switched back to using H4a (shown in yellow in Fig. 7)
as primary timing source. At this point, the H5b node
also loosed its primary reference (H4b) so it switched
to the H4a node. Finally, when both the H5a and H5b
nodes reconnected to the network, they had a 100 ns
offset with respect to the unaffected nodes, namely the
H3a, H3b, and H5c nodes, until the end of the test at t4.

Each of the above actions is represented by a pink dashed
vertical line in Fig. 7, by using the UTC timescale.
We highlight that the Keylime Verifier has signaled already

at the time t1 that the configuration file has been modified.
Thus, it allows early detection of this attack before any mea-
surable impact on the synchronization of the nodes could
occur.

We also mention that in the WR-Z16 units, the conven-
tional Best Master Clock (BMC) algorithm has been replaced
by a custom Failover algorithm (i.e., FOCA) to enhance
security and robustness. The FOCA algorithm [1] provides an
extra layer of protection against this type of attack, as when a
failure is detected on H4a (i.e., killing H4a hald daemon to
reload modified calibration value), the node following H4a
will switch to H4b and will not return to H4a unless there
is also a failure on H4b. In future firmware releases of WR-
Z16, the device will be able to detect that the offset from
H4a has been shifted by 100 ns after being available again
(e.g., at 17:13:41 in Fig. 7) and will discard this source from
being selected.

B. EXECUTABLE SOFTWARE MODIFICATION
This test (named H5-SW-PS) is somehow similar to the
previous one (i.e., H4-SW-PC), but it emulates a malicious

modification of the WR-PTP software (that is, the ppsi
daemon). We had killed the authentic ppsi daemon to force
the node to reload its modified version.

Fig. 8 shows the results of this test for the H5a node,
since this attack only affects the H5a device and no other
devices.2 This graph shows the RAW PPS data (in black) and
its corresponding moving average of 60 seconds (in blue).

This test has also started with all the nodes in nominal
conditions (at time t0). The following actions (represented
by pink dashed vertical lines in Fig. 8) have been carried out
during the test execution:

1) At t1, we replaced the authentic ppsi daemon with
a modified version obtained by changing the original
ppsi source code to introduce some new instructions
to read a value in picoseconds from a file and append
it at each iteration to the offset. In this way, this altered
version may introduce an arbitrary synchronization
error on the node.

2) At t2, we rebooted the H5a time unit device to simu-
late an ‘‘external maintenance’’. This action was done
shortly (i.e., a few seconds) after uploading a modi-
fied version of ppsi. Nevertheless, it is realistic to
imagine an attacker waiting for days or (even) months
until an operator reboots this device. After rebooting,
the H5a device reconnected itself to H4a. However,
as expected, it used the modified ppsi daemon instead
of the authentic one. At this point, although the attacker
has completed the first attack step, no measurable

2This was done for simplicity/clarity, but one could also modify the ppsi
running at master that could affect synchronization of all devices below it but
not himself.

50522 VOLUME 11, 2023

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

FIGURE 9. GNSS Receiver Configuration Modification (H5-SW-GC) test results (log10 scale on y-axis).

impact has been observed on the synchronization of the
device. The modified ppsi daemon was waiting for
new inputs from the attacker.

3) At t3, we introduced a modest drift at each iteration
(once per second).

4) At t4, we stopped the drift, reaching a stable offset of
100 ns on the H5a node until the end of the test at t5.

During this test, theVerifier node detected at t1 the changes on
(the digest of) the ppsi daemon at H5a. Thus, it discarded
this device from its trusted list. However, without Keylime
verification, an attacker could successfully introduce an arbi-
trary synchronization offset, without any alert in the sys-
tem. So, this particular attack was fully countered with the
proposed Keylime-based solution. Without monitoring and
detection with Keylime, this attack would remain undetected.
In this case, the protection of the software deamon with TC
and Keylime technique was the only effective method to
counter this insidious attack.

C. GNSS RECEIVER CONFIGURATION MODIFICATION
This test (H5-SW-GC) focused on the mosaic-T GNSS
receiver embedded in the H5c node. The attack consisted in
slightly changing receiver’s configuration parameter related
to the calibration delay of the GNSS antenna so that the 1-
PPS output has been smoothly shifted from its reference time
source. To make the attack scenario more realistic, we have

defined three different rates (i.e., R1 = 1 ns/s, R2 = 15 ns/s,
R3 = 100 ns/s) to achieve a smooth drift from the reference
clock.

Fig. 9 reports the results of this test, using a log10 scale
on the y-axis for H4a, H4b, H5a, H5b, and H5c nodes. In this
way, it is possible to appreciate the different rates and the total
synchronization offset reached by the H5c node at the end of
the test.

For this attack, the test has started also with all the nodes
in nominal conditions (at time t0), and the following actions,
represented by pink dashed vertical lines in Fig. 9, have been
carried out during the test execution:

1) At t1, we started the attack (simulation) on H5c by
increasing the antenna delay with the initial rate R1
(1 ns/s). This modest rate resulted in the introduction of
a slowly increasing offset, which was difficult to detect.

2) At t2, we stopped the offset increase of the antenna
delay.

3) At t3, we resumed the attack on H5c antenna delay,
but using a larger increase rate (i.e., R2 = 15 ns/s).
This increased rate was close to the boundary for which
the WR-Z16 oscillator could track the changes, while
higher rates could result in instability or a loss of lock.

4) At t4, we stopped again the offset increasing.
5) At t5, the attack was performed with a very high

(unrealistic) rate of increase (i.e., R3 = 100 ns/s).

VOLUME 11, 2023 50523

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

It is possible to appreciate in Fig. 9 that the internal
oscillator of the H5c cannot follow this high increase
rate because it would result in a loss of lock, making
this part of the attack immediately detectable by the
device.

6) At t6, we stopped again the offset increasing, and the
H5c device synchronized once more its oscillator to the
GNSS receiver output, resulting in an offset of more
than 1 µs until the end of the test at t7 (i.e., out of scale
in Fig. 9).

During this test, the Verifier detected the changes on the
configuration of the mosaic-T and signaled the event via
messages (e.g., ‘Hashes for file /root/currentGNSSconfig.txt
dont’match f98281164d55. . . ’) in a Log file generated on the
Verifier node.

At t1 (i.e., 16:17:31.336), the digest of the configura-
tion file (currentGNSSconfig.txt) did not match the
golden value in the whitelist. Thus, the Verifier immediately
stopped validating the H5c device. In this way, the ongoing
attack was detected at t1, corresponding to the first attack
stage, before any measurable impact on the synchronization
occurred.

It is also worth mentioning that, in the actual configuration
of the Verifier, when a device is not valid anymore, the Veri-
fier stops polling it until the Keylime service is restarted. For
this reason, we did not reboot the devices during this attack
simulation, as we were aware that no further messages would
have been logged (unless Keylime is restarted) by changing
the rate to another value.

IX. CONCLUSION AND FUTURE WORK
With the rise of 5G networks, mobile telecom operators look
for finer time accuracy for synchronization between RAN
nodes. At the same time, more and more applications ask for
stringent time synchronization in the range of a fewmicrosec-
onds or even tens of nanoseconds. TDNs may respond to
such time requirements by employing specialized time device
units and specific timing protocols. Nonetheless, TDNs must
also be protected against cybersecurity attacks since their
components and the provided service represent an appealing
target for internal and external attackers.

We considered a TDN exploiting custom-tailoredWR-Z16
time unit devices (acting as C-GMCs and D-GMCs) and the
WR-PTP protocol for distributing ns-level timing informa-
tion. We reviewed the attack types applying to TDNs. Then,
we focused on the software integrity attacks in which an
adversary could compromise the software running on the time
unit devices, or its configuration. We designed a TC-enabled
solution exploiting the TPMon the time unit devices, a remote
trusted node for monitoring the time devices, and the remote
attestation protocol supported by the Keylime framework.
With this solution, we successfully detected three types
of software integrity attacks involving the (software) dae-
mons or configuration of time devices. Through experiments,
we showed the effectiveness of this solution in mitigating

all the tested attacks, some of which would have remained
undetected otherwise.

Future work could address considerable more intricate
combined attacks applicable to the network management,
time distribution, hardware and software TDN views, and the
relative costs needed to activate them.

ACKNOWLEDGMENT
The authors would like to thank all the partners of the ROOT
project for the fruitful collaboration leading to the achieve-
ments of the results described in this article. Additionally,
they would like to thank the anonymous reviewers of IEEE
Access journal, for providing useful comments to improve
this article.

REFERENCES
[1] A. Minetto, B. Rat, M. Pini, B. Polidori, I. De Francesca, L. M. Contreras,

and F. Dovis, ‘‘Nanosecond-level resilient GNSS-based time synchroniza-
tion in telecommunication networks through WR-PTP HA,’’ TechRxiv,
Feb. 2023, doi: 10.36227/techrxiv.22032446.v1.

[2] S. Ruffini, M. Johansson, B. Pohlman, and M. Sandgren. (2021). 5G
syncronization requirements and solutions. Ericsson Technology Review.
Accessed: Dec. 12, 2022. [Online]. Available: https://www.ericsson.
com/en/reports-and-papers/ericsson-technology-review/articles/5g-
synchronization-requirements-and-solutions

[3] Council of the European Union. (Dec. 2008). Council Directive
2008/114/EC of 8 December 2008 on the Identification and Designation
of European Critical Infrastructures and the Assessment of the Need to
Improve Their Protection. Accessed: Dec. 12, 2022. [Online]. Available:
https://eur-lex.europa.eu/eli/dir/2008/114/oj

[4] E. Falletti, D. Margaria, G. Marucco, B. Motella, M. Nicola, and
M. Pini, ‘‘Synchronization of critical infrastructures dependent upon
GNSS: Current vulnerabilities and protection provided by new sig-
nals,’’ IEEE Syst. J., vol. 13, no. 3, pp. 2118–2129, Sep. 2019, doi:
10.1109/JSYST.2018.2883752.

[5] Information Technology—Trusted Platform Module—Part 1: Overview,
Standard ISO/IEC 11889-1:2015. Accessed: Apr. 18, 2023. [Online].
Available: https://www.iso.org/standard/50970.html

[6] F. Girela-López, J. López-Jiménez, M. Jiménez-López, R. Rodríguez,
E. Ros, and J. Díaz, ‘‘IEEE 1588 high accuracy default profile: Applica-
tions and challenges,’’ IEEE Access, vol. 8, pp. 45211–45220, 2020, doi:
10.1109/ACCESS.2020.2978337.

[7] M. Lipinski, T. Wlostowski, J. Serrano, and P. Alvarez, ‘‘White rabbit:
A PTP application for robust sub-nanosecond synchronization,’’ in Proc.
IEEE Int. Symp. Precis. Clock Synchronization for Meas., Control Com-
mun., Sep. 2011, pp. 25–30, doi: 10.1109/ISPCS.2011.6070148.

[8] D. G. Berbecaru and S. Sisinni, ‘‘Counteracting software integrity attacks
on IoT devices with remote attestation: A prototype,’’ in Proc. 26th Int.
Conf. Syst. Theory, Control Comput. (ICSTCC), Oct. 2022, pp. 380–385,
doi: 10.1109/ICSTCC55426.2022.9931765.

[9] M. Agiwal, A. Roy, and N. Saxena, ‘‘Next generation 5G wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1617–1655, 3rd Quart., 2016.

[10] K. Boyle. 5G is All in the Timing. Accessed: Dec. 12, 2022. [Online]. Avail-
able: https://www.ericsson.com/en/blog/2019/8/what-you-need-to-know-
about-timing-and-sync-in-5G-transport-networks

[11] M. Pini, A. Minetto, A. Vesco, D. Berbecaru, L. M. C. Murillo, P. Nemry,
I. De Francesca, B. Rat, and K. Callewaert, ‘‘Satellite-derived time for
enhanced telecom networks synchronization: The ROOT project,’’ in Proc.
IEEE 8th Int. Workshop Metrol. Aerosp. (MetroAeroSpace), Jun. 2021,
pp. 288–293, doi: 10.1109/MetroAeroSpace51421.2021.9511780.

[12] D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kasch, Network
Time Protocol Version 4: Protocol and Algorithms Specification, document
IETF RFC 5905, Jun. 2010.

[13] Time and Phase Synchronization Aspects of Telecommunication Net-
works, document ITU-TR G.8271/Y.1366 03/20. Accessed: Dec. 12, 2022.
[Online]. Available: https://www.itu.int/rec/T-REC-G.8271-202003-I/en

50524 VOLUME 11, 2023

http://dx.doi.org/10.36227/techrxiv.22032446.v1
http://dx.doi.org/10.1109/JSYST.2018.2883752
http://dx.doi.org/10.1109/ACCESS.2020.2978337
http://dx.doi.org/10.1109/ISPCS.2011.6070148
http://dx.doi.org/10.1109/ICSTCC55426.2022.9931765
http://dx.doi.org/10.1109/MetroAeroSpace51421.2021.9511780

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

[14] Timing Characteristics of Primary Reference Time Clocks, document ITU-
TR G.8272/Y.1367 11/18. Accessed: Feb. 26, 2023. [Online]. Available:
https://www.itu.int/rec/T-REC-G.8272-201811-I/en

[15] Timing Characteristics of Enhanced Primary Reference Time Clock, doc-
ument ITU-T R G.8272.1/Y.1367.1 11/16. Accessed: Feb. 26, 2023.
[Online]. Available: https://www.itu.int/rec/T-REC-G.8272.1/en

[16] Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Standard 1588-
2008 (Revision of IEEE Standard 1588-2002), 2008, pp. 1–300, doi:
10.1109/IEEESTD.2008.4579760.

[17] Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Standard 1588-
2019 (Revision IEEE Standard 1588-2008), 2020, pp. 1–499, doi:
10.1109/IEEESTD.2020.9120376.

[18] P. V. Estrela, S. Neusüß, and W. Owczarek, ‘‘Using a multi-source
NTP watchdog to increase the robustness of PTPv2 in financial indus-
try networks,’’ in Proc. IEEE Int. Symp. Precis. Clock Synchroniza-
tion for Meas., Control, Commun. (ISPCS), Sep. 2014, pp. 87–92, doi:
10.1109/ISPCS.2014.6948697.

[19] F. M. Anwar and M. Srivastava, ‘‘Applications and challenges in securing
time,’’ in Proc. UNIX CSET Workshop, 2019, pp. 1–5. [Online]. Available:
https://www.usenix.org/conference/cset19/presentation/anwar

[20] D. Berbecaru, A. Lioy, and C. Cameroni, ‘‘Supporting authorize-then-
authenticate for Wi-Fi access based on an electronic identity infrastruc-
ture,’’ J. Wireless Mobile Netw., Ubiquitous Comput., Dependable Appl.,
vol. 11, no. 2, pp. 34–54, 2020, doi: 10.22667/JOWUA.2020.06.30.034.

[21] D. Berbecaru, A. Atzeni, M. De Benedictis, and P. Smiraglia, ‘‘Towards
stronger data security in an eID management infrastructure,’’ in Proc.
25th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Saint Petersburg, Russia, 2017, pp. 391–395, doi: 10.1109/PDP.2017.90.

[22] T. Mizrahi, Security Requirements of Time Protocols in Packet Switched
Networks, document IETF RFC 7384, Oct. 2014.

[23] D. Berbecaru, ‘‘On creating digital evidence in IP networks with nettrack,’’
in Handbook of Research on Network Forensics and Analysis Techniques.
Hershey, PA, USA: IGI Global, 2018, doi: 10.4018/978-1-5225-4100-
4.ch012.

[24] K. Samalla and P. N. Kumar, ‘‘A novel study and analysis on global
navigation satellite system threats and attacks,’’ in High Performance
Computing and Networking (Lecture Notes in Electrical Engineering),
vol. 853, C. Satyanarayana, D. Samanta, X. Z. Gao, R. K. Kapoor, Eds.
Singapore: Springer, 2022, pp. 371–381, doi: 10.1007/978-981-16-9885-
9_31.

[25] D. Margaria, B. Motella, M. Anghileri, J. Floch, I. Fernandez-Hernandez,
and M. Paonni, ‘‘Signal structure-based authentication for civil GNSSs:
Recent solutions and perspectives,’’ IEEE Signal Process. Mag., vol. 34,
no. 5, pp. 27–37, Sep. 2017, doi: 10.1109/MSP.2017.2715898.

[26] I. Fernández-Hernández, V. Rijmen, G. Seco-Granados, J. Simon,
I. Rodríguez, and J. D. Calle, ‘‘A navigation message authentication pro-
posal for the Galileo open service,’’ Navigation, vol. 63, no. 1, pp. 85–102,
Mar. 2016, doi: 10.1002/navi.125.

[27] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. A. Wojciak, and
S. Guendert, ‘‘Impact of cyberattacks on precision time protocol,’’ IEEE
Trans. Instrum. Meas., vol. 69, no. 5, pp. 2172–2181, May 2020, doi:
10.1109/TIM.2019.2918597.

[28] M. Dalmas, H. Rachadel, G. Silvano, and C. Dutra, ‘‘Improving PTP
robustness to the Byzantine failure,’’ in Proc. IEEE Int. Symp. Precis.
Clock Synchronization Meas., Control, Commun. (ISPCS), Beijing, China,
Oct. 2015, pp. 111–114, doi: 10.1109/ISPCS.2015.7324693.

[29] E. Itkin and A. Wool, ‘‘A security analysis and revised security exten-
sion for the precision time protocol,’’ IEEE Trans. Depend. Sec. Com-
put., vol. 17, no. 1, pp. 22–34, Jan. 2020, doi: 10.1109/TDSC.2017.
2748583.

[30] W. Alghamd and M. Schukat, ‘‘A detection model against preci-
sion time protocol attacks,’’ in Proc. 3rd Int. Conf. Comput. Appl.
Inf. Secur. (ICCAIS), Riyadh, Saudi Arabia, Mar. 2020, pp. 1–3, doi:
10.1109/ICCAIS48893.2020.9096742.

[31] S. Barreto, A. Suresh, and J.-Y. Le Boudec, ‘‘Cyber-attack on packet-
based time synchronization protocols: The undetectable delay box,’’ in
Proc. IEEE Int. Instrum. Meas. Technol. Conf., May 2016, pp. 1–6, doi:
10.1109/I2MTC.2016.7520408.

[32] The ROOT (Rolling Out OSNMA for the Secure Synchronisation of Tele-
com Networks) Project. Accessed: Dec. 12, 2022. [Online]. Available:
https://www.gnss-root.eu/

[33] European Global Navigation Satellite System Agency. (Feb. 2021).
Tests of Galileo OSNMA Underway. Accessed: Dec. 12, 2022. [Online].
Available: https://www.gsa.europa.eu/newsroom/news/tests-galileo-
osnma-underway

[34] Seven Solutions. (2022). WR-Z16 the Reliable Precise Time Fan-Out for
White Rabbit Distribution on 1G Ethernet-Based Networks. Accessed:
Apr. 18, 2023. [Online]. Available: https://sevensols.com/wr-z16/

[35] TCG Software Stack (TSS) Specification. Accessed: Feb. 25, 2023.
[Online]. Available: https://trustedcomputinggroup.org/resource/tcg-
software-stack-tss-specification/

[36] Integrity Measurement Architecture (IMA). Accessed: Feb. 26, 2023.
[Online]. Available: https://sourceforge.net/projects/linux-ima/

[37] Keylime. Bootstrap & Maintain Trust on the Edge/Cloud and IoT.
Accessed: Dec. 12, 2022. [Online]. Available: https://keylime.dev/

[38] W. Alghamdi and M. Schukat, ‘‘Precision time protocol attack strategies
and their resistance to existing security extensions,’’ Cybersecurity, vol. 4,
no. 1, pp. 1–17, Dec. 2021, doi: 10.1186/s42400-021-00080-y.

[39] W. Alghamdi and M. Schukat, ‘‘Practical implementation of APTs on PTP
time synchronisation networks,’’ in Proc. 31st Irish Signals Syst. Conf.
(ISSC), Jun. 2020, pp. 1–5, doi: 10.1109/ISSC49989.2020.9180157.

[40] W. Alghamdi and M. Schukat, ‘‘Cyber attacks on precision time protocol
networks—A case study,’’ Electronics, vol. 9, no. 9, p. 1398, Aug. 2020,
doi: 10.3390/electronics9091398.

[41] W. Alghamdi and M. Schukat, ‘‘A security enhancement of the precision
time protocol using a trusted supervisor node,’’ Sensors, vol. 22, no. 10,
p. 3671, May 2022, doi: 10.3390/s22103671.

[42] A. Beuhring and K. Salous, ‘‘Beyond blacklisting: Cyberdefense in the
era of advanced persistent threats,’’ IEEE Secur. Privacy, vol. 12, no. 5,
pp. 90–93, Sep. 2014, doi: 10.1109/MSP.2014.86.

[43] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, ‘‘A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019, doi: 10.1109/COMST.2019.2891891.

[44] W. Alghamdi and M. Schukat, ‘‘Advanced methodologies to deter inter-
nal attacks in PTP time synchronization networks,’’ in Proc. 28th Irish
Signals Syst. Conf. (ISSC), Killarney, Ireland, Jun. 2017, pp. 1–6, doi:
10.1109/ISSC.2017.7983636.

[45] D. G. Berbecaru and A. Lioy, ‘‘Attack strategies and countermeasures in
transport-based time synchronization solutions,’’ in Intelligent Distributed
Computing XIV (Studies in Computational Intelligence), vol. 1026,
D. Camacho, D. Rosaci, G. M. L. Sarné, and M. Versaci, Eds. Cham,
Switzerland: Springer, 2022, doi: 10.1007/978-3-030-96627-0_19.

[46] D.Margaria and A. Vesco, ‘‘Trusted GNSS-based time synchronization for
industry 4.0 applications,’’ Appl. Sci., vol. 11, no. 18, p. 8288, Sep. 2021,
doi: 10.3390/app11188288.

[47] T. Mizhari, Security Requirements of Time Protocols in Packet Switched
Networks, document RFC 7384, Oct. 2014. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7384

[48] P. Kemparaj and S. S. Kumar, ‘‘Secure precision time protocol in packet
switched networks,’’ in Proc. IEEE Int. Symp. Precis. Clock Synchroniza-
tion Meas., Control, Commun. (ISPCS), Portland, OR, USA, Sep. 2019,
pp. 1–6, doi: 10.1109/ISPCS.2019.8886643.

[49] M. Langer, K. Teichel, D. Sibold, and R. Bermbach, ‘‘Time synchro-
nization performance using the network time security protocol,’’ in Proc.
Eur. Freq. Time Forum (EFTF), Turin, Italy, Apr. 2018, pp. 138–144, doi:
10.1109/EFTF.2018.8409017.

[50] R. Annessi, J. Fabini, and T. Zseby, ‘‘It’s about time: Securing broad-
cast time synchronization with data origin authentication,’’ in Proc. 26th
Int. Conf. Comput. Commun. Netw. (ICCCN), Vancouver, BC, Canada,
Jul. 2017, pp. 1–11, doi: 10.1109/ICCCN.2017.8038418.

[51] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, ‘‘SWATT:
Software-based attestation for embedded devices,’’ in Proc. IEEE Symp.
Secur. Privacy, Berkeley, CA, USA, May 2004, pp. 272–282, doi:
10.1109/SECPRI.2004.1301329.

[52] J. Kong, F. Koushanfar, P. K. Pendyala, A.-R. Sadeghi, and C.Wachsmann,
‘‘PUFatt: Embedded platform attestation based on novel processor-based
PUFs,’’ inProc. 51st Annu. Design Autom. Conf., San Francisco, CA, USA,
Jun. 2014, pp. 1–6, doi: 10.1145/2593069.2593192.

[53] H. Tan, W. Hu, and S. Jha, ‘‘A remote attestation protocol with trusted
platform modules (TPMs) in wireless sensor networks,’’ Secur. Com-
mun. Netw., vol. 8, no. 13, pp. 2171–2188, Sep. 2015, doi: 10.1002/
sec.1162.

VOLUME 11, 2023 50525

http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://dx.doi.org/10.1109/IEEESTD.2020.9120376
http://dx.doi.org/10.1109/ISPCS.2014.6948697
http://dx.doi.org/10.22667/JOWUA.2020.06.30.034
http://dx.doi.org/10.1109/PDP.2017.90
http://dx.doi.org/10.4018/978-1-5225-4100-4.ch012
http://dx.doi.org/10.4018/978-1-5225-4100-4.ch012
http://dx.doi.org/10.1007/978-981-16-9885-9_31
http://dx.doi.org/10.1007/978-981-16-9885-9_31
http://dx.doi.org/10.1109/MSP.2017.2715898
http://dx.doi.org/10.1002/navi.125
http://dx.doi.org/10.1109/TIM.2019.2918597
http://dx.doi.org/10.1109/ISPCS.2015.7324693
http://dx.doi.org/10.1109/TDSC.2017.2748583
http://dx.doi.org/10.1109/TDSC.2017.2748583
http://dx.doi.org/10.1109/ICCAIS48893.2020.9096742
http://dx.doi.org/10.1109/I2MTC.2016.7520408
http://dx.doi.org/10.1186/s42400-021-00080-y
http://dx.doi.org/10.1109/ISSC49989.2020.9180157
http://dx.doi.org/10.3390/electronics9091398
http://dx.doi.org/10.3390/s22103671
http://dx.doi.org/10.1109/MSP.2014.86
http://dx.doi.org/10.1109/COMST.2019.2891891
http://dx.doi.org/10.1109/ISSC.2017.7983636
http://dx.doi.org/10.1007/978-3-030-96627-0_19
http://dx.doi.org/10.3390/app11188288
http://dx.doi.org/10.1109/ISPCS.2019.8886643
http://dx.doi.org/10.1109/EFTF.2018.8409017
http://dx.doi.org/10.1109/ICCCN.2017.8038418
http://dx.doi.org/10.1109/SECPRI.2004.1301329
http://dx.doi.org/10.1145/2593069.2593192
http://dx.doi.org/10.1002/sec.1162
http://dx.doi.org/10.1002/sec.1162

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

[54] Intel Trusted Execution Technology Enabling Guide. Accessed: May 19,
2023. [Online]. Available: https://www.intel.com/content/www/us/en/
architecture-and-technology/trusted-execution-technology/txt-enabling-
guide.html

[55] I. Sfyrakis and T. Gross, ‘‘A survey on hardware approaches for remote
attestation in network infrastructures,’’ 2020, arXiv:2005.12453.

[56] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise,
‘‘Collective remote attestation at the Internet of Things scale: State-of-the-
art and future challenges,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2447–2461, 4th Quart., 2020, doi: 10.1109/COMST.2020.3008879.

[57] C. Günther, ‘‘A survey of spoofing and counter-measures,’’ Navigat., J.
Inst. Navigat., vol. 61, no. 3, pp. 159–177, Sep. 2014, doi: 10.1002/navi.65.

[58] D. Margaria, G. Marucco, and M. Nicola, ‘‘A first-of-a-kind spoofing
detection demonstrator exploiting future Galileo E1 OS authentication,’’ in
Proc. IEEE/ION Position, Location Navigat. Symp. (PLANS), Apr. 2016,
pp. 442–450, doi: 10.1109/PLANS.2016.7479732.

[59] D. Borio, F. Dovis, H. Kuusniemi, and L. Lo Presti, ‘‘Impact and
detection of GNSS jammers on consumer grade satellite navigation
receivers,’’ Proc. IEEE, vol. 104, no. 6, pp. 1233–1245, Jun. 2016, doi:
10.1109/JPROC.2016.2543266.

[60] M. Ullmann and M. Vögeler, ‘‘Delay attacks—Implication on NTP
and PTP time synchronization,’’ in Proc. Int. Symp. Precis. Clock
Synchronization Meas., Control Commun., Oct. 2009, pp. 1–6, doi:
10.1109/ISPCS.2009.5340224.

[61] T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection Protocol,
document IETF RFC 4254, 2006.

[62] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
document IETF RFC 8446, 2018.

[63] M. Conti, N. Dragoni, and V. Lesyk, ‘‘A survey of man in the middle
attacks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2027–2051,
3rd Quart., 2016, doi: 10.1109/COMST.2016.2548426.

[64] D. Berbecaru and A. Lioy, ‘‘On the robustness of applications based
on the SSL and TLS security protocols,’’ in Public Key Infrastructure
(Lecture Notes in Computer Science), vol. 4582, J. Lopez, P. Samarati,
and J. L. Ferrer, Eds. Berlin, Germany: Springer, 2007, doi: 10.1007/978-
3-540-73408-6_18.

[65] D. G. Berbecaru and G. Petraglia, ‘‘TLS-monitor: A monitor for TLS
attacks,’’ in Proc. IEEE 20th Consum. Commun. Netw. Conf. (CCNC),
5th Int. Workshop Secur. Trust Privacy Cyber-Phys. Syst. (STP-CPS),
Las Vegas, NV, USA, Jan. 2023, pp. 8–11.

[66] Y. Guan and X. Ge, ‘‘Distributed attack detection and secure estimation of
networked cyber-physical systems against false data injection attacks and
jamming attacks,’’ IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 1,
pp. 48–59, Mar. 2018, doi: 10.1109/TSIPN.2017.2749959.

[67] (Jun. 2015). Precision Time Protocol Daemon (1588–2008).
Accessed: Dec. 12, 2022. [Online]. Available: https://manpages.debian.
org/stretch/ptpd/ptpd.8.en.html

[68] (Mar. 2021). The GPSD Project. GPSD(8) Manual Page. Accessed:
Dec. 12, 2022. [Online]. Available: https://gpsd.io/gpsd.html

[69] (Aug. 2014). PPSi: PTP Ported to Silicon, Wiki—Open Hardware Repos-
itory. Accessed: Dec. 12, 2022. [Online]. Available: https://ohwr.org/
project/ppsi/wikis/home

[70] S. F. J. J. Ankergård, E. Dushku, and N. Dragoni, ‘‘State-of-the-art
software-based remote attestation: Opportunities and open issues for
Internet of Things,’’ Sensors, vol. 21, no. 5, p. 1598, Feb. 2021, doi:
10.3390/s21051598.

[71] W. Arthur and D. Challener, A Practical Guide to TPM 2.0. NewYork, NY,
USA: Apress, 2015.

[72] S. Sisinni, ‘‘Verification of software integrity in distributed systems,’’
M.S. thesis, Politecnico di Torino, Torino, Italy, 2021. [Online]. Available:
https://webthesis.biblio.polito.it/20403/1/tesi.pdf

[73] Trusted Computing Group Trusted PlatformModule Library Part 1: Archi-
tecture, TCG Published, New Delhi, India, Nov. 2019.

[74] TPM 2.0 Library. Accessed: May 19, 2023. [Online]. Available:
https://trustedcomputinggroup.org/resource/tpm-library-specification/

[75] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, ‘‘Design and imple-
mentation of a TCG-based integrity measurement architecture,’’ in Proc.
13th USENIX Secur. Symp. (USENIX Security), San Diego, CA, USA,
Aug. 2004, pp. 223–238. Accessed: May 19, 2023. [Online]. Available:
https://www.usenix.org/legacy/publications/library/proceedings/sec04/
tech/full_papers/sailer/sailer.pdf

[76] B. Kuang, A. Fu, W. Susilo, S. Yu, and Y. Gao, ‘‘A survey of
remote attestation in Internet of Things: Attacks, countermeasures, and
prospects,’’ Comput. Secur., vol. 112, Jan. 2022, Art. no. 102498, doi:
10.1016/j.cose.2021.102498.

[77] W. Xu, X. Zhang, H. Hu, G.-J. Ahn, and J.-P. Seifert, ‘‘Remote attes-
tation with domain-based integrity model and policy analysis,’’ IEEE
Trans. Depend. Sec. Comput., vol. 9, no. 3, pp. 429–442, May 2012, doi:
10.1109/TDSC.2011.61.

[78] S. Sisinni, D. Margaria, I. Pedone, A. Lioy, and A. Vesco, ‘‘Integrity ver-
ification of distributed nodes in critical infrastructures,’’ Sensors, vol. 22,
no. 18, p. 6950, Sep. 2022, doi: 10.3390/s22186950.

[79] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, ‘‘Boot-
strapping and maintaining trust in the cloud,’’ in Proc. 32nd Annu. Conf.
Comput. Secur. Appl., New York, NY, USA, Dec. 2016, pp. 65–77, doi:
10.1145/2991079.2991104.

[80] K. Foy. (Jul. 27, 2021). Keylime Security Software is Deployed to
IBM Cloud. Accessed: May 9, 2023. [Online]. Available: https://news.
mit.edu/2021/keylime-security-software-deployed-ibm-cloud-0727

[81] IBM’s Software TPM 2.0. Accessed: May 9, 2023. [Online]. Available:
https://sourceforge.net/projects/ibmswtpm2/

[82] Linux TPM2 & TSS2 Software, TPM2-TSS (Version 3.1.0). Accessed:
May 9, 2023. [Online]. Available: https://github.com/tpm2-software/tpm2-
tss.git

[83] Linux TPM2 & TSS2 Software, TPM2-Tools. Accessed: May 9, 2023.
[Online]. Available: https://github.com/tpm2-software/tpm2-tools.git

[84] Keylime V6.2.1. Accessed: May 9, 2023. [Online]. Available:
https://github.com/keylime/keylime.git

[85] Mosaic-T Reference Guide, Version 4.10.0, Septentrio, Leuven, Belgium,
Jun. 2021.

[86] U. Kröner, C. Bergonzi, J. Fortuny-Guasch, R. Giuliani, F. Littmann,
D. Shaw, and D. Symeonidis. (2010). Hardening of GNSS Based Trackers.
Accessed: Dec. 12, 2022. [Online]. Available: https://publications.jrc.ec.
europa.eu/repository/bitstream/JRC58733/reqno_jrc58733_st_report_on_
hardening_of_gnss_based_trackers_release_final.pdf

DIANA GRATIELA BERBECARU (Member,
IEEE) received the M.Sc. degree in computer
science and engineering from the University of
Craiova, Romania, and the Ph.D. degree in com-
puter science from Politecnico di Torino, Italy.
She is currently an Assistant Professor with the
Department of Control and Computer Engineer-
ing (DAUIN), Politecnico di Torino. Her research
interests include X.509 certificates, digital identi-
ties, privacy, authentication, TLS protocol, cyber-

attacks, time synchronization, and trusted computing. She is a member of the
TORSEC Cybersecurity Research Group.

SILVIA SISINNI received the M.Sc. degree in
computer engineering from Politecnico di Torino.
She is currently pursuing the Ph.D. degree in com-
puter engineering. Her current research interests
include trusted execution environments, trusted
computing, trusted channels, and confidential
computing. She is a member of the TORSEC
Cybersecurity Research Group.

ANTONIO LIOY received the M.Sc. degree
(summa cum laude) in electronic engineering and
the Ph.D. degree in computer engineering from
Politecnico di Torino. He is currently a Full Pro-
fessor with Politecnico di Torino, where he leads
the TORSEC Cybersecurity Research Group. His
research interests include network security, policy-
based system protection, trusted computing, and
electronic identity.

50526 VOLUME 11, 2023

http://dx.doi.org/10.1109/COMST.2020.3008879
http://dx.doi.org/10.1002/navi.65
http://dx.doi.org/10.1109/PLANS.2016.7479732
http://dx.doi.org/10.1109/JPROC.2016.2543266
http://dx.doi.org/10.1109/ISPCS.2009.5340224
http://dx.doi.org/10.1109/COMST.2016.2548426
http://dx.doi.org/10.1007/978-3-540-73408-6_18
http://dx.doi.org/10.1007/978-3-540-73408-6_18
http://dx.doi.org/10.1109/TSIPN.2017.2749959
http://dx.doi.org/10.3390/s21051598
http://dx.doi.org/10.1016/j.cose.2021.102498
http://dx.doi.org/10.1109/TDSC.2011.61
http://dx.doi.org/10.3390/s22186950
http://dx.doi.org/10.1145/2991079.2991104

D. G. Berbecaru et al.: Mitigating Software Integrity Attacks With Trusted Computing in a Time Distribution Network

BENOIT RAT received the M.Sc. degree in com-
munication systems from the Swiss Federal Insti-
tute of Technology in Lausanne (EPFL), in 2008.
He joined Seven Solutions (acquired by Orolia,
in 2021) as an Embedded Software Developer.
In 2010, he started collaborating with the CERNs
Timing Group on the development of the White
Rabbit Technology and since, he has been con-
tinued bringing sub-nanosecond synchronization
(PTP-HA v2019) to a wide range of devices in

time-critical infrastructures. He is currently a Solution Architect and also
responsible of identifying market needs and trends (i.e. fintech, datacenters,
and telecom) and to design and deploy innovative solutions.

DAVIDE MARGARIA received the B.Sc. and
M.Sc. degrees in telecommunication engineering
from Politecnico di Torino, in 2003 and 2007,
respectively. He is currently a Senior Researcher
with the Connected Systems and Cybersecu-
rity research domain of the LINKS Foundation.
Throughout his career, he has also held a teaching
role with Politecnico di Torino, as a Lecturer under
grant. He is coauthor of more than 60 papers on
peer-reviewed scientific journals and conference

proceedings. His current research interests include cybersecurity solutions
for cyber-physical systems in the industry 4.0 paradigm and on cryptographic
protocols for zero-knowledge proof (ZKP) and verifiable credentials (VCs).
His past research interests included Galileo and modernized GPS receivers,
especially innovative signal processing strategies, GNSS authentication tech-
niques, and the mitigation of multipath, jamming, and spoofing signals.

ANDREA VESCO received the M.Sc. degree
in telecommunication engineering and the Ph.D.
degree in computer and system engineering from
Politecnico di Torino, in 2003 and 2009, respec-
tively. After one year of Postdoctoral Researcher
with the Control and Computer Engineering
Department, as a member of the Computer Net-
works Group, Politecnico di Torino, he joined the
Networking Laboratory, Istituto Superiore Mario
Boella (ISMB), in 2010. He is currently with

the LINKS Foundation a non-profit institution promoting, conducting and
strengthening innovation, research processes and the technology transfer.
He leads the cybersecurity research team focusing on the security of con-
nected systems, such as the IoT and critical infrastructures. His research
interests include the Quality of Service (QoS) over packet switched networks
and wireless access networks. Moreover he carried out research activities on
the QoS over Network on Chip (NoC) in collaboration with the System-Level
Design Group, Columbia University of the city of New York. He had the
opportunity to focus his researches on digital smart cities, from 2013 to 2018.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

VOLUME 11, 2023 50527

