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ABSTRACT With the further development of knowledge graphs, manyweighted knowledge graphs (WKGs)
have been published and greatly promote various applications. However, current deterministic knowledge
graph embedding algorithms cannot encode weighted knowledge graphs well. This paper gives a promising
framework WeExt that can extend deterministic knowledge graph embedding models to enable them to
learn weighted knowledge graph embeddings. In addtion, we introduce weighted link prediction to evaluate
the weighted knowledge graph embedding models’ performance on completing WKGs. Finally, we give
concrete implementation of WeExt based on two translational distance models and two semantic matching
models. Our experimental results show the proposed framework achieves promising performance in link
prediction, weight prediction, and weighted link prediction.

INDEX TERMS Weighted knowledge graph embedding, weighted link prediction.

I. INTRODUCTION
Knowledge graphs (KG) are thriving and promoting many
downstream tasks, such as academic search [1], social
relationship recognition [2], and drug discovery [3]. Facts
encoded in KG are mostly formalized as triples (h, r, t),
in which h denotes the head entity, t denotes the tail entity,
and r denotes the relation between h and t . This formalism is
sometimes referred to as deterministic knowledge graph [4],
[5], [6] since triples are employed to represent facts.

Much recent attention has been paid to weighted knowl-
edge graphs (WKG) such as Probase [7], NELL [8], Con-
ceptNet [9], and the Protein-Protein Interaction Knowledge
Base STRING [10], [11], which generalize deterministic
knowledge graphs by associating a weight w ∈ R to each
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triple. Facts encoded in WKG are mostly formalized as
weighted triples ⟨(h, r, t),w⟩, though the semantics of weight
can be various. For example, it has been used to represent
uncertainty [9], confidence score [8], degree of relations [7],
edge importance [12], and even out-of-band knowledge [10]
in a growing number of scenarios. In real-world usages,
it is obvious that the weighted triples model more precise
knowledge. For example, while both (Honda, competeswith,
Toyota) and (Honda, competeswith,Chrysler) look somewhat
correct, the former fact should have a higher confidence than
the latter one, since Honda and Toyota are both Japanese car
manufacturers and have highly overlapping customer bases.
This modelling can be done if one supposes the semantics
of weights based on the confidence score and associates the
former triple with a higher value.

As for basic elements in deterministic knowledge graphs,
entities and relations are discrete symbols, which are not
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FIGURE 1. Knowledge graph embedding.

easy to be utilized by machine learning and deep learning
models. To address this issue, knowledge graph embedding
(KGE) [13] has been investigated to represent the discrete
symbols in knowledge graphs as a set of vectors in a
specific low-dimensional vector space, and it requires that
the representation should enable to deduce the knowledge
graphs from this set of vectors. Link prediction (LP) is widely
adopted as a task to evaluate the performance of embedding
in deducing the structure of any KG. An illustration of
knowledge graph embedding is shown in Figure 1.
While KGE algorithms focus on representing deterministic

knowledge graphs, they cannot work well when the semantics
of triples are imposed by weights. This problem leads to
an extended study on weighted knowledge graph embedding
(WKGE) aimed to embed entities and relations in aWKG into
a set of vectors in a specific low-dimensional vector space.
The embeddings of WKG are required to be able to not only
deduce the triples in a WKG but also deduce the weight of
the triples, which requires that the embeddings of entities and
relations have encoded the weight information.

To determine the embedding of weighted triples in WKG,
some WKGE algorithms [14], [15] have been proposed to
decompose this main task further into two sub-tasks, namely
link prediction, and weight prediction. An illustration of this
decomposition is shown in Figure 2. However, we observe
that this embedding scheme does not achieve the best
performance on the link prediction task and on the weight
prediction task synchronously. An obvious illustration of the
performance of UKGE [14] in link prediction and weight
prediction on NL27K is shown in Figure 3. It is easy to notice
that while the weight prediction task can perform very well in
the early epoch, the performance of the link prediction does
not converge to the optimum yet.

There exist works that investigate the encoding weight
information in KGE. UKGE [14] and PASSLEAF [15] adopt
a non-linear function to convert triple plausibility scores
to the weight of the corresponding triples, equating the
plausibility of triples with the weight of the triples. But even
though the positive triplesmay have been attached to different
weights conveying different meanings, the plausibility of all
positive triples should be the same.

To mitigate this issue, we introduce the WeExt framework
that uses an independent weight predictionmodule to existing
deterministic knowledge graph embedding models, enabling
them to encode the weight information of the triples. The

FIGURE 2. Knowledge graph embedding.

FIGURE 3. The performance of UKGE on NL27K. The red line is the mean
reciprocal rank in link prediction. The blue line is the mean square error
in weight prediction.

introduced weight prediction module takes the embeddings
of any head, relation, and tail entity as input, which contain
richer information than the plausibility of the triple. During
training, we jointly optimize the model’s performance in
encoding facts and weights.

We also fill a gap of the WKGE model evaluation task.
We design the weighted link prediction (WLP) task to
comprehensively evaluate the model’s ability in deducing
weighted triplets. WLP adjusts the ranking of positive triples
in all possible triples according to the accuracy of weight
prediction to simultaneously demonstrate the performance of
the model on link prediction and weight prediction.

We conduct extensive experiments with two representative
KGE translational distance models TransE, TransH, and two
KGE representative semantic matching models DistMult,
HolE. The results show that WeExt achieves competitive
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performance over the baseline models on link prediction,
weight prediction, and weighted link prediction.

II. RELATED WORK
A. DETERMINISTIC KNOWLEDGE GRAPH EMBEDDING
MODELS
Deterministic knowledge graph embedding models [13] are
designed for deterministic knowledge graphs, focusing on
encoding facts in knowledge graphs. According to different
modeling of the interaction between entities and relations,
deterministic knowledge graph embedding models can be
divided into translational distance models and semantic
matching models.

1) TRANSLATIONAL DISTANCE MODELS
The translational distance model, such as TransE [16] and
TransH [17], regards the relation as a translation operation
from the head entity to the tail entity and utilizes a distance-
based scoring function to measure the plausibility of triples.

2) SEMANTIC MATCHING MODELS
The semantic matching models, such as RESCAL [18],
DistMult [19], and HolE [20], are based on the tensor
factorization and model the interaction of entities and
relations by vector-matrix product, obtaining high expressive
power due to the use of a full rank matrix for each relation in
the score functions which are in the form of h⊤Wr t .

B. WEIGHTED KNOWLEDGE GRAPH EMBEDDING
MODELS
1) UKGE
UKGE [14] is an embedding model for uncertain knowledge
graphs which associate each triple to a confidence score.
The model requires logical rules as additional inputs to
help enforce the global consistency of predicted facts.
UKGE learns the weight of a given triple by squashing the
plausibility score of the triple calculated by DistMult using a
non-linear function, such as

φ (s (l)) =
1

1 + e−(w·s(l)+b) (1)

or

φ (s (l)) = min (max (w · s (l)+ b, 0) , 1) . (2)

where w is a weight, b is a bias and s (l) is the score of the
triple l given by DistMult. UKGE adopts mean square error
(MSE) to measure the loss on learning the weights. Given a
set of positive relation facts, the loss on the positive triples is

Lpos =

∑
l∈L+

|φ (s (l))−w|
2 (3)

UKGE estimates the weight of negative triples using
probabilistic soft logic [21] and measures the loss on negative
triples by the square of the distance [22]

Lneg =

∑
l∈L−

∑
γ∈0

∣∣ψγ (φ(s (l)))∣∣2 (4)

where L− be a set of negative relaions and 0 be a set of
grounded rules. ψγ (φ(l)) denotes the distance to satisfaction
of the rule γ in PSL. For any rule γ ≡ γbody → γhead , the
distance dγ describing the satisfaction of the rule is

dγ = max
{
0, I

(
γbody

)
− I (γhead )

}
(5)

where I (l) is the soft truth value of the triple l

I (l) =

{
w, l is positive
φ(s (l)), l is negative

(6)

But for negative triples not covered by the rule, the loss is

Lneg =

∑
l∈L−

|φ (s (l))− 0|2 (7)

which treats the weight of triples not covered by the rules as 0.
Thus, the total loss is

L = Lpos + Lneg (8)

UKGE only optimizes its ability on weight prediction but
does not put attention to its performance on link prediction.

2) PASSLEAF
PASSLEAF [15] extends UKGE to be able to utilize
the scoring functions of translation-based approaches and
semantic matching-based approaches. PASSLEAF also fits
the weight of a given triple using its plausibility and nonlinear
function. PASSLEAF utilizes the model being trained itself
to predict the weights of unseen triples, rather than utilizing
probabilistic soft logic.

Though, as a data augmentation approach, negative sam-
pling can effectively complement the lack of negative triplets
in most knowledge graphs, it takes the potential hazard
to bring in false-negative samples. PASSLEAF introduces
semisupervised samples to ease this issue. The loss function
is

L = Lpos +
1

Ngen

(
Lsemi + Lneg

)
(9)

where Lpos is the loss on positive triples

Lpos =

∑
l∈L+

|φ (s (l))−w|
2 (10)

Lneg is the loss on negative triples

Lneg =

∑
l∈L−

|φ (s (l))− 0|2 (11)

Lsemi is the loss on negative triples

Lsemi =

∑
l∈Lsemi

∣∣φ (s (l))− w′
∣∣2 (12)

PASSLEAF introduces a sample pool to maintain semisu-
pervised samples generated at different time steps to retain
experiences accumulated from seeing different randomly
drawn negative samples. The pool-based design can be
regarded as an ensemble of past models, which further
strengthens the effectiveness of semi-supervised samples.
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3) TransHExt
TransHExt [23] adopts a 3-layer feed-forward neural network
to TransH for predicting the weight wp of any triple (h, r, t)

wp = N
((

h − w⊤
r hwr

)
+ r −

(
t − w⊤

r twr

))
whereN is the 3-layer feed-forward neural network andwr is
the normal vector of the relation-specific hyperplane. h, r, t
are corresponding vectors of the triple (h, r, t), respectively.
The accuracy of weight prediction is measured by

acc(wp,w) =


w−

∣∣w− wp
∣∣

w
, wp ∈ [0, 2w]

0, otherwise

TransHExt simultaneously optimizes its performance on link
prediction and weight prediction through a joint loss

L =

∑
l∈L+

∑
l−∈L−

γ +
[
f (l)+ acc

(
wp,w

)]
− f

(
l−

)
C. EVALUATION TASKS FOR KNOWLEDGE GRAPH
EMBEDDING MODELS
1) LINK PREDICTION
Link prediction (LP) is the task of predicting the existence of
a relation between two entities. LP can be adopted to predict
friend relation among users in a social network [24], predict
co-author relation in a citation network [25], and predict
interactions between genes and proteins in a biological
network [26]. Mean rank (MR) [27], mean reciprocal rank
(MRR) [28] and Hits@N [16] are widely used for evaluation
of the models. For each test triple, the head is removed and
replaced by each of the entities of the dictionary in turn.
The scores of those corrupted triples are first computed by
the models and then sorted by ascending order; the rank
of the correct entity is finally stored. This whole procedure
is repeated while removing the tail instead of the head.
MR calculates the mean of those predicted ranks, MRR
calculates the mean of the reciprocal of the ranks, and the
Hits@N calculates the proportion of correct entities ranked
in the top N .

2) WEIGHT PREDICTION
Weight prediction task (WP) [14] is to predict weights of
unseen triples. For each weighted triple ⟨(h, r, t), ?⟩ in the
test set, the task is to predict the missing weight w. The mean
squared error (MSE) and the mean absolute error (MAE)
between the predicted values and the ground truth are adopted
as the evaluation metrics.

III. METHODOLOGY
A. WeExt
To embed the WKGs, we introduce a weight prediction
module consisting of preprocessing and a neural weight
predictor (nwp) to predict the weight for a given triple. The
architecture of the proposed framework WeExt is shown in
Figure 4.

For any deterministic KGEmodel, a head entity, a relation,
and a tail entity interact according to a preset paradigm to
produce an interaction vector. This interaction can be divided
into two steps, the first step is to preprocess the entities and
relations, and the second step is to perform addition operation
(translation distance model) or multiplication operation (two-
line sex model) to get the interaction vector. The plausibility
of the triple is obtained by modulo the interaction vector.
UKGE computes the weight of the triple by squashing the
plausibility of the triple by a non-linear function, while we
argue that the interaction vector of the triple maintains richer
information than the plausibility of the triple, thus it may be
possible to predict the weights with higher accuracy using the
interaction vector.

Based on the above assumption, we design the inter_vec
(ivec) preprocessing. ivec processes the entities and the
relations following the base model but removes the modulo
operation and outputs the interaction vectors directly.

Translational distance models calculate the plausibility of
a triple as the negative modulo of the distance between the
head and the translated tail entity (as shown in Equation 22
and Equation 23). During training, the model optimizes
the distance between the head and the translated tail entity
to become smaller. As a result, well-trained translational
distance models generate interaction vectors that are close to
the zero vector. To mitigate the above problem, we design
another preprocessing that concatenates the processed head
entity, the relation, and the tail entity after the first step of the
interaction of the base model. We call this preprocessing as
concatenating (cat).

We implement WeExt on the basis of four deterministic
knowledge graph embeddingmodels, including two represen-
tative translational distance models TransE and TransH, and
two representative semantic matching models DistMult and
HolE.

Next, we demonstrate the implementation of ivec and
cat and how they function. The scoring functions of the
base models are presented in Equation 22, Equation 23,
Equation 24, and Equation 25, respectively. The inter_vec
preprocessing for the base models are:

• TransE: p = h + r − t
• TransH: p =

(
h − w⊤

r hwr
)
+ r −

(
t − w⊤

r twr
)

• DistMult: p = r ◦ (h ◦ t)
• HolE: p = r ◦ (h ⋆ t)
The concatenating preprocessings for the base models are:
• TransE: p = cat (h, r, −t)
• TransH: p = cat

(
h − w⊤

r hwr , r, −(t − w⊤
r twr )

)
• DistMult: p = cat (h, r, t)
• HolE: p = cat (r, h ⋆ t)
We implement the neural weight predictor using a four-

layer feed-forward neural network. The neural weight
predictor predicts the weight based on the output of the
preprocessing component:

wp = nwp(p)

48904 VOLUME 11, 2023
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FIGURE 4. The framework of WeExt. The green components are the components of the base KGC model.

To better illustrate the workflow of WeExt, we take TransH
as an example and explain how WeExt is used to extend the
base model (TransH) in Figure 5.

B. TRAINING PROTOCOL
For a given positive training set

S =
{
⟨(hi, ri, ti) ,wi⟩

}u
i=1,

we generate a corresponding negative set by replacing the
head entity using all other entities and replacing the tail entity
using all other entities:

S ′
=

{(
h′, r, t ′

)}
=

{
(h′
i, ri, ti) | h′

i ∈ E \ {hi}
}u
i=1

∪
{
(hi, ri, t ′i ) | t ′i ∈ E \ {ti}

}u
i=1 . (13)

We adopt margin ranking loss [16] to measure the loss on
learning the facts:

Llink =

∑
(h,ℓ,t)∈S

∑
(h′,ℓ,t ′)∈S ′

[
γ + f (h, r, t) − f

(
h′, r, t ′

)]
+

(14)

We measure the loss of the weight prediction module on
learning the weight of the positive triple using

Lweight =

∣∣w− wp
∣∣

w
(15)

The total loss of the model is

L = (1 − α) · Llink + α · Lweight (16)

where combination coefficient α is a hyper-parameter that
balances the model between learning facts and learning
weights.

C. WEIGHTED LINK PREDICTION TASK
1) TASK DESCRIPTION
Weighted link prediction (WLP) aims to simultaneously add
missing relations and the corresponding missing weights to
the incompleted WKGs. We describe WLP as follows:

Given a weighted knowledge graph

WKG =
{
⟨(hi, ri, ti) ,wi⟩

}u
i=1

where hi, ti ∈ E , ri ∈ R and wi ∈ (0, 1], the E and R are
entity and relation sets, respectively. A corrupted weighted
triple is defined as a weighted triple without the relation and
the weight, i.e., ⟨(h, ?, t) , ?⟩. WLP is to complete the missing
relations and the weights of the corrupted weighted triples in
WKG, making them to completed weighted triples of the form
⟨(h, r, t) ,w⟩.

2) EVALUATION PROTOCOL
For a test weighted triple ⟨(hi, ri, ti) ,wi⟩, wi is omitted. The
head entity hi is replaced by each of the entities of the dic-
tionary in turn to form all possible triples ⟨

(
hj, ri, ti

)
, ?⟩|j=|u|

j=1 .
Triple scores are calculated by the scoring function of the base
model and then sorted in ascending order. After sorting, the
ranking of the testing weighted triple rki is recorded. This
whole procedure is repeated while removing ti instead of hi.

We measure the accuracy of predicting the weight by

acc(h, r, t,w) =
w−

∣∣w− wp
∣∣

w
(17)

We adjust the ranking of the positive triple rki using the
accuracy of the weight prediction acc(hi, ri, ti,wi) and a
threshold τ :

rk′
i = rki ·exp (τ − acc(hi, ri, ti,wi)) (18)

We adopt mean rank (MR), mean reciprocal rank (MRR),
and Hits@N to measure the performance of the models on
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FIGURE 5. An example of the proposed framework based on TransH.

WLP, shown in Equations 19, 20, and 21, respectively.

MR =

u∑
i=1

rk′
i, (19)

MRR =

u∑
i=1

1
rk′
i
, (20)

Hits@N =

u∑
i=1

I[rk′
i ≤ N ] (21)

where the I[expn] is the indicator function, which outputs 1 if
expn is true, and 0 otherwise.

IV. EXPERIMENTS AND RESULTS
To measure the performance of the proposed WeExt frame-
work, we evaluate the weighted extensions of the base models
on link prediction, weight prediction, and weighted link
prediction.

A. EXPERIMENT SETTING
We conducted experiments on CN15K, NL27K, and
PPI5K [29] datasets. CN15K is a subgraph of ConceptNet [9],
containing 15,000 entities and 229,235 weighted triples in
English. The original scores in ConceptNet vary from 0.1 to
22, while the weights in CN15K are normalized to [0.1,
1.0]. NL27k is extracted from NELL [8], a weighted KG
obtained from webpage reading. NL27k contains 27,221
entities, 405 relations, and 175,412 weighted triples. The
weights in NL27K are normalized to the interval [0.1,
1.0]. PPI5k is a subset of the protein-protein interaction
knowledge base STRING [10] that contains 255,114
weighted triples for 4,999 proteins and 7 interactions.
STRING labels the interactions between proteins with the
probabilities of occurrence. The weights in PPI5k fall in the

TABLE 1. Statistics of weighted knowledge graphs. #Ent denotes the
number of the entities, #Rel denotes the number of the relations, #Tri
denotes the number of the triples, INR denotes the interval of the
weights, Avg(d) denotes the average of the degree of the entities, and
Med(d) denotes the median of the degree of the entities.

interval [0.15, 1.0]. We drop out duplicated quadruplets in
CN15K and PPI5K. The statistics of the WKGs are shown
in Table 1.

We implemented the proposed framework and the
weighted link prediction task based on the PyKEEN
toolkit [30]. We choose 0.01 as the learning rate λ for the
stochastic gradient descent and searched the combination
coefficient α for loss function among {0.1, 0.2, 0.01, 0.001,
0.0001}. The margin of the loss function γ was set to 1.
The dimension of embeddings was set to 50. We trained the
models for 3000 epochs, evaluated the models per 10 epochs,
and save their best results.

B. BASE MODELS
We implemented the proposed framework based on two
representative translational distance models: TransE and
TransH, and two representative semantic matching models:
DistMult and HolE.
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FIGURE 6. The weight distribution in the datasets.

1) TransE
TransE [16] is one of the most representative translational
distance models. It interprets entities as vectors and the
relation as a translation vector of the head entity in one
embedding space. The scoring function of TransE is

s = −∥h + r − t∥p (22)

2) TransH
It has been well investigated that TransE is effective for
1-to-1 relations, but cannot model the 1-to-N or N-to-
N relation well. TransH [17] models 1-to-N and N-to-N
relations by introducing the mechanism of projecting to
relation-specific hyperplanes. The scoring function of TransH
is

s = −

∥∥∥(
h − w⊤

r hwr

)
+ r −

(
t − w⊤

r twr

)∥∥∥2
2

(23)

wherewr stands for the normal vector of the relation-specific
hyperplane.

3) DistMult
DistMult [19] represents each relation as a diagonal matrix
that models pairwise interactions between entities to capture
the latent semantics. The scoring function of DistMult is

s = ∥r ◦ h ◦ t∥ (24)

where ◦ is the element-wise product.

4) HolE
For a given triple, HolE [20] first composes the head entity
and tail entity using the circular correlation operation [31],
then matches the relational with the compositional vector of
the head entity and tail entity to score the given triple. Since
circular correlation is not commutative, HolE is able to model
asymmetric relations. The scoring function of HolE is

s = r⊤(h ⋆ t) (25)

where ⋆ is the circular correlation.

TABLE 2. Results on link prediction.

C. RESULTS ON LINK PREDICTION
We describe the link prediction task and its evaluation
protocol in Section II-C1. The results on link prediction are
shown in Table 2. Because MRR is not sensitive to extremely
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FIGURE 7. An illustration of how UKGE infers weights from the
plausibility of triples. Given two triples A = ⟨

(
h1, r1, t1

)
, 0.4⟩ and B =

⟨
(
h2, r2, t2

)
, 0.8⟩, the non-linear function is sigmoid function:

s(t) =
1

1+e−1 . Let a well-trained UKGE model predict the plausibility of
the given triples, the plausibility of triple-A will be −0.4 and plausibility
of triple-B will be 1.4.

poor rankings, we mainly focus on the MRR score. After
introducing a weight prediction module for base models,
the extended models have to optimize their performance on
both link prediction and weight prediction simultaneously.
The results show that the introduced additional optimization
term does not cause the model’s performance to decrease on
the link prediction task; there may be a slight improvement
for some models instead, for example, TransE, TransH,
and HolE. DistMultExt achieves a worse performance than
DistMult on all the datasets. DistMultExt outperforms UKGE
on CN15K and PPI5K, but due to the improved performance
of UKGE on NL27K compared to DistMult, the performance
of UKGE on NL27K is much better than DistMultExt .
Due to the sample pool used in PASSLEAF with

weight estimation of negative samples, PASSLEAF with
DistMult outperforms DistMult, UKGE, and DistMultExt
on CN15K, NL27K, and PPI5K datasets. However, the
performance of PASSLEAF is unstable, i.e., PASSLEAF
with TransE resulted in the worst performance on all three
datasets.

From another perspective, all the extended models outper-
formUKGEonCN15K.DistMultExt andHolEExt can surpass
UKGE on PPI5K. But as for NL27K, only HolEExt achieves
better performance than UKGE. We assume the performance
difference on the different datasets is caused by the weight
distribution of the respective datasets, shown in Figure 6, and
the way how UKGE learns the weights. Triples in NL27K
are centralized in high-weight regions, triples in PPI5K are
centralized in low-weight regions, and weights in CN15K are
not so polarized as NL27K and PPI5K.

UKGE utilizes a non-linear function to squeeze the
plausibility of triples to obtain the weights of the triples,
which makes the triples with a small weight gap to gain a
larger plausibility gap. An illustration is shown in Figure 7.
Thus, UKGE tends to assign stronger plausibility for high-
weight triples and weaker plausibility for low-weight triples,
which is why UKGE’s performance on PPI5K is not as good
as half of the best-performing model. In contrast, on NL27K,

FIGURE 8. An illustration of the weight distribution of triples correctly
predicted by UKGE and DistMultExt on NL27K and PPI5K.

where high-weight triples account for a large proportion,
the gap between the performance of UKGE and the best-
performing model is much smaller.

Figure 8 shows the weight distribution of triples correctly
predicted by UKGE and DistMultExt on NL27K and PPI5K,
we can see that UKGE predicts more triples with high
weights, while DistMultExt performs more balanced on
different intervals.

Moreover, WeExt with the cat preprocessing outperforms
WeExt with the ivec preprocessing on PPI5K, and they
achieve similar performance on CN15K and NL27K.

D. RESULTS ON WEIGHT PREDICTION
For each weighted triple ⟨(hi, ri, ti) ,wi⟩ in the test set,
we predict the weight based on the triple (hi, ri, ti) and
report the mean squared error (MSE) and mean absolute error
(MAE).

The results on weight prediction are shown in Table 3.
Except for HolEExt that performs worse than UKGE on
NL27K, all the weighted extensions outperform UKGE in
the weight prediction task for all three datasets. Compared
with UKGE and DistMultExt , PASSLEAF’s performance in
the weight prediction task is poorer on all datasets. It may
be caused by noise introduced during the weight estimation
of negative samples by the model being trained. The result
shows that adopting neural networks to learn weights from
processed embeddings is superior to utilizing non-linear
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TABLE 3. Results on weight prediction.

functions to learn weights by squeezing the plausibility of the
triple.

Moreover, WeExt with the cat preprocessing outperforms
WeExt with the ivec preprocessing, not only for the trans-
lational distance models but also for the semantic matching
models, indicating that after the model is well-trained, the
cascade of entities and relations retains richer information
than the interaction vector.

E. RESULTS ON WEIGHTED LINK PREDICTION
The results on weighted link prediction are shown in Table 4.
All weighted extensions outperform UKGE in weighted link
prediction on CN15K. DistMultExt and HolEExt outperform
UKGE on both NL27K and PPI5K. Although the link
prediction performance of DistMultExt on NL27K is worse
than UKGE, DistMultExt achieves better performance in the
weighted link prediction on NL27K thanks to the better
weight prediction performance.

While PASSLEAF performs well in link prediction tasks,
it falls short of surpassing UKGE and DistMultExt on
CN15K and PPI5K datasets. On the NL27K dataset, although
PASSLEAF used with DistMult still outperforms UKGE and
HolEExt , it has been outperformed by HolEExt . This implies
that using the model being trained to estimate the weights
of negative samples is beneficial for pure link prediction

TABLE 4. Results on weighted link prediction.

tasks, but it may introduce noise for tasks that involve
weights.

Moreover, WeExt with the cat preprocessing outperforms
WeExt with the ivec preprocessing on PPI5K, but they
achieve similar performance on CN15K and NL27K. The
performance of the weighted extensions on weighted link
prediction is consistent with the performance trend on link
prediction, but not consistent with the performance of the
model’s weighted prediction. This indicates that under the
current evaluation protocol for weighted link prediction, the
performance of the model on the link prediction task is
dominant, while the performance of the model on the weight
prediction task has been taken into consideration, but only in
a subordinate position.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a framework called WeExt for
extending deterministic knowledge graphs to be capable
of embedding weighted knowledge graphs. To facilitate
the performance evaluation of our extended WKGE mod-
els, we propose the novel weighted link prediction task.
Compared with the widely-used asynchronous link predic-
tion and weight prediction tasks, weighted link prediction
can synchronously evaluate the performance of weighted
knowledge graph embedding in link prediction and weight
prediction.
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In the next work, we plan to design a new evaluation
protocol to alleviate the impact of extreme data on the score,
so that the score can better reflect the model performance.
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