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ABSTRACT With the further development of knowledge graphs, many weighted knowledge graphs (WKGs)
have been published and greatly promote various applications. However, current deterministic knowledge
graph embedding algorithms cannot encode weighted knowledge graphs well. This paper gives a promising
framework WeExt that can extend deterministic knowledge graph embedding models to enable them to
learn weighted knowledge graph embeddings. In addtion, we introduce weighted link prediction to evaluate
the weighted knowledge graph embedding models’ performance on completing WKGs. Finally, we give
concrete implementation of WeExt based on two translational distance models and two semantic matching
models. Our experimental results show the proposed framework achieves promising performance in link
prediction, weight prediction, and weighted link prediction.

INDEX TERMS Weighted knowledge graph embedding, weighted link prediction.

I. INTRODUCTION

Knowledge graphs (KG) are thriving and promoting many
downstream tasks, such as academic search [1], social
relationship recognition [2], and drug discovery [3]. Facts
encoded in KG are mostly formalized as triples (h, 7, 1),
in which % denotes the head entity, ¢ denotes the tail entity,
and r denotes the relation between £ and ¢. This formalism is
sometimes referred to as deterministic knowledge graph [4],
[5], [6] since triples are employed to represent facts.

Much recent attention has been paid to weighted knowl-
edge graphs (WKG) such as Probase [7], NELL [8], Con-
ceptNet [9], and the Protein-Protein Interaction Knowledge
Base STRING [10], [11], which generalize deterministic
knowledge graphs by associating a weight w € R to each
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triple. Facts encoded in WKG are mostly formalized as
weighted triples ((h, r, t), w), though the semantics of weight
can be various. For example, it has been used to represent
uncertainty [9], confidence score [8], degree of relations [7],
edge importance [12], and even out-of-band knowledge [10]
in a growing number of scenarios. In real-world usages,
it is obvious that the weighted triples model more precise
knowledge. For example, while both (Honda, competeswith,
Toyota) and (Honda, competeswith, Chrysler) look somewhat
correct, the former fact should have a higher confidence than
the latter one, since Honda and Toyota are both Japanese car
manufacturers and have highly overlapping customer bases.
This modelling can be done if one supposes the semantics
of weights based on the confidence score and associates the
former triple with a higher value.

As for basic elements in deterministic knowledge graphs,
entities and relations are discrete symbols, which are not
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FIGURE 1. Knowledge graph embedding.

easy to be utilized by machine learning and deep learning
models. To address this issue, knowledge graph embedding
(KGE) [13] has been investigated to represent the discrete
symbols in knowledge graphs as a set of vectors in a
specific low-dimensional vector space, and it requires that
the representation should enable to deduce the knowledge
graphs from this set of vectors. Link prediction (LP) is widely
adopted as a task to evaluate the performance of embedding
in deducing the structure of any KG. An illustration of
knowledge graph embedding is shown in Figure 1.

While KGE algorithms focus on representing deterministic
knowledge graphs, they cannot work well when the semantics
of triples are imposed by weights. This problem leads to
an extended study on weighted knowledge graph embedding
(WKGE) aimed to embed entities and relations in a WKG into
a set of vectors in a specific low-dimensional vector space.
The embeddings of WKG are required to be able to not only
deduce the triples in a WKG but also deduce the weight of
the triples, which requires that the embeddings of entities and
relations have encoded the weight information.

To determine the embedding of weighted triples in WKG,
some WKGE algorithms [14], [15] have been proposed to
decompose this main task further into two sub-tasks, namely
link prediction, and weight prediction. An illustration of this
decomposition is shown in Figure 2. However, we observe
that this embedding scheme does not achieve the best
performance on the link prediction task and on the weight
prediction task synchronously. An obvious illustration of the
performance of UKGE [14] in link prediction and weight
prediction on NL27K is shown in Figure 3. It is easy to notice
that while the weight prediction task can perform very well in
the early epoch, the performance of the link prediction does
not converge to the optimum yet.

There exist works that investigate the encoding weight
information in KGE. UKGE [14] and PASSLEAF [15] adopt
a non-linear function to convert triple plausibility scores
to the weight of the corresponding triples, equating the
plausibility of triples with the weight of the triples. But even
though the positive triples may have been attached to different
weights conveying different meanings, the plausibility of all
positive triples should be the same.

To mitigate this issue, we introduce the WeExt framework
that uses an independent weight prediction module to existing
deterministic knowledge graph embedding models, enabling
them to encode the weight information of the triples. The
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FIGURE 3. The performance of UKGE on NL27K. The red line is the mean
reciprocal rank in link prediction. The blue line is the mean square error
in weight prediction.

introduced weight prediction module takes the embeddings
of any head, relation, and tail entity as input, which contain
richer information than the plausibility of the triple. During
training, we jointly optimize the model’s performance in
encoding facts and weights.

We also fill a gap of the WKGE model evaluation task.
We design the weighted link prediction (WLP) task to
comprehensively evaluate the model’s ability in deducing
weighted triplets. WLP adjusts the ranking of positive triples
in all possible triples according to the accuracy of weight
prediction to simultaneously demonstrate the performance of
the model on link prediction and weight prediction.

We conduct extensive experiments with two representative
KGE translational distance models TransE, TransH, and two
KGE representative semantic matching models DistMult,
HolE. The results show that WeExt achieves competitive
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performance over the baseline models on link prediction,
weight prediction, and weighted link prediction.

Il. RELATED WORK

A. DETERMINISTIC KNOWLEDGE GRAPH EMBEDDING
MODELS

Deterministic knowledge graph embedding models [13] are
designed for deterministic knowledge graphs, focusing on
encoding facts in knowledge graphs. According to different
modeling of the interaction between entities and relations,
deterministic knowledge graph embedding models can be
divided into translational distance models and semantic
matching models.

1) TRANSLATIONAL DISTANCE MODELS

The translational distance model, such as TransE [16] and
TransH [17], regards the relation as a translation operation
from the head entity to the tail entity and utilizes a distance-
based scoring function to measure the plausibility of triples.

2) SEMANTIC MATCHING MODELS

The semantic matching models, such as RESCAL [18],
DistMult [19], and HolE [20], are based on the tensor
factorization and model the interaction of entities and
relations by vector-matrix product, obtaining high expressive
power due to the use of a full rank matrix for each relation in
the score functions which are in the form of & W, .

B. WEIGHTED KNOWLEDGE GRAPH EMBEDDING
MODELS

1) UKGE

UKGE [14] is an embedding model for uncertain knowledge
graphs which associate each triple to a confidence score.
The model requires logical rules as additional inputs to
help enforce the global consistency of predicted facts.
UKGE learns the weight of a given triple by squashing the
plausibility score of the triple calculated by DistMult using a
non-linear function, such as

¢ (s() = ey

1+ e~ ws+b)
or

¢ (s (1)) = min (max (w-s()+b,0),1). 2)

where w is a weight, b is a bias and s () is the score of the
triple / given by DistMult. UKGE adopts mean square error
(MSE) to measure the loss on learning the weights. Given a
set of positive relation facts, the loss on the positive triples is

Loos = D 1o (s (1) —w] 3)
leLt

UKGE estimates the weight of negative triples using
probabilistic soft logic [21] and measures the loss on negative
triples by the square of the distance [22]

Loeg = D > |y @O @)

leL~ yel
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where £~ be a set of negative relaions and I" be a set of
grounded rules. v, (¢(1)) denotes the distance to satisfaction
of the rule y in PSL. For any rule y = ypoay — Vhead, the
distance d,, describing the satisfaction of the rule is

d,, = max {07 1 (Vbody) =1 (Vhead)} 5
where I (/) is the soft truth value of the triple /

w,
I l =
() H B(s (1),

But for negative triples not covered by the rule, the loss is
Lueg= D 1o (s (1)) — 0 @)
lel~

which treats the weight of triples not covered by the rules as 0.
Thus, the total loss is

£ = Ep()s + Engg (8)

[ is positive
P ©)

[ is negative

UKGE only optimizes its ability on weight prediction but
does not put attention to its performance on link prediction.

2) PASSLEAF

PASSLEAF [15] extends UKGE to be able to utilize
the scoring functions of translation-based approaches and
semantic matching-based approaches. PASSLEAF also fits
the weight of a given triple using its plausibility and nonlinear
function. PASSLEAF utilizes the model being trained itself
to predict the weights of unseen triples, rather than utilizing
probabilistic soft logic.

Though, as a data augmentation approach, negative sam-
pling can effectively complement the lack of negative triplets
in most knowledge graphs, it takes the potential hazard
to bring in false-negative samples. PASSLEAF introduces
semisupervised samples to ease this issue. The loss function
is

L= Lpus + IV_ (['semi + Eneg) 9
gen
where Lp,; is the loss on positive triples
Lyos = D 1o (s (1) —wl (10)
leLt
Lneg is the loss on negative triples
Leg =D 1 (s(1) — 0 (11)
leL~
Lsemi 18 the loss on negative triples
2
Lomi= D, |¢ () —w| (12)
le [ semi

PASSLEAF introduces a sample pool to maintain semisu-
pervised samples generated at different time steps to retain
experiences accumulated from seeing different randomly
drawn negative samples. The pool-based design can be
regarded as an ensemble of past models, which further
strengthens the effectiveness of semi-supervised samples.
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3) TransHExt
TransHExt [23] adopts a 3-layer feed-forward neural network
to TransH for predicting the weight w), of any triple (&, r, 1)

wp =N ((h — w:—hw,) +r— (t - ertwr))

where N is the 3-layer feed-forward neural network and w, is

the normal vector of the relation-specific hyperplane. h, r, t

are corresponding vectors of the triple (h, r, t), respectively.
The accuracy of weight prediction is measured by

w—|w—wl

acc(wy, w) = ” . wp €[0,2w]

0, otherwise

TransHExt simultaneously optimizes its performance on link
prediction and weight prediction through a joint loss

L= Z Z y+[f(l)+acc(wp,w)] —f(lf)

leLtl—eLl~

C. EVALUATION TASKS FOR KNOWLEDGE GRAPH
EMBEDDING MODELS

1) LINK PREDICTION

Link prediction (LP) is the task of predicting the existence of
a relation between two entities. LP can be adopted to predict
friend relation among users in a social network [24], predict
co-author relation in a citation network [25], and predict
interactions between genes and proteins in a biological
network [26]. Mean rank (MR) [27], mean reciprocal rank
(MRR) [28] and Hits@N [16] are widely used for evaluation
of the models. For each test triple, the head is removed and
replaced by each of the entities of the dictionary in turn.
The scores of those corrupted triples are first computed by
the models and then sorted by ascending order; the rank
of the correct entity is finally stored. This whole procedure
is repeated while removing the tail instead of the head.
MR calculates the mean of those predicted ranks, MRR
calculates the mean of the reciprocal of the ranks, and the
Hits@N calculates the proportion of correct entities ranked
in the top N.

2) WEIGHT PREDICTION

Weight prediction task (WP) [14] is to predict weights of
unseen triples. For each weighted triple ((h, r, ), ?) in the
test set, the task is to predict the missing weight w. The mean
squared error (MSE) and the mean absolute error (MAE)
between the predicted values and the ground truth are adopted
as the evaluation metrics.

lIl. METHODOLOGY

A. WeExt

To embed the WKGs, we introduce a weight prediction
module consisting of preprocessing and a neural weight
predictor (nwp) to predict the weight for a given triple. The
architecture of the proposed framework WeExt is shown in
Figure 4.

48904

For any deterministic KGE model, a head entity, a relation,
and a tail entity interact according to a preset paradigm to
produce an interaction vector. This interaction can be divided
into two steps, the first step is to preprocess the entities and
relations, and the second step is to perform addition operation
(translation distance model) or multiplication operation (two-
line sex model) to get the interaction vector. The plausibility
of the triple is obtained by modulo the interaction vector.
UKGE computes the weight of the triple by squashing the
plausibility of the triple by a non-linear function, while we
argue that the interaction vector of the triple maintains richer
information than the plausibility of the triple, thus it may be
possible to predict the weights with higher accuracy using the
interaction vector.

Based on the above assumption, we design the infer_vec
(ivec) preprocessing. ivec processes the entities and the
relations following the base model but removes the modulo
operation and outputs the interaction vectors directly.

Translational distance models calculate the plausibility of
a triple as the negative modulo of the distance between the
head and the translated tail entity (as shown in Equation 22
and Equation 23). During training, the model optimizes
the distance between the head and the translated tail entity
to become smaller. As a result, well-trained translational
distance models generate interaction vectors that are close to
the zero vector. To mitigate the above problem, we design
another preprocessing that concatenates the processed head
entity, the relation, and the tail entity after the first step of the
interaction of the base model. We call this preprocessing as
concatenating (cat).

We implement WeExt on the basis of four deterministic
knowledge graph embedding models, including two represen-
tative translational distance models TransE and TransH, and
two representative semantic matching models DistMult and
HolE.

Next, we demonstrate the implementation of ivec and
cat and how they function. The scoring functions of the
base models are presented in Equation 22, Equation 23,
Equation 24, and Equation 25, respectively. The inter_vec
preprocessing for the base models are:

e TransE:p=h-+r—t

o TransH: p= (h—w,hw,) + 1 — (t — w, tw,)

e DistMult: p=ro (hot)

e HolE:p=ro(hxt)

The concatenating preprocessings for the base models are:

o TransE: p = car (h, r, —t)

o TransH: p = cat (h — w hw,, r, —(t — w/tw,))

o DistMult: p = cat (h, r, t)

e HolE: p =cat (r, hxt)

We implement the neural weight predictor using a four-
layer feed-forward neural network. The neural weight
predictor predicts the weight based on the output of the
preprocessing component:

wp = nwp(p)

VOLUME 11, 2023
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FIGURE 4. The framework of WeExt. The green components are the components of the base KGC model.

To better illustrate the workflow of WeExt, we take TransH
as an example and explain how WeExt is used to extend the
base model (TransH) in Figure 5.

B. TRAINING PROTOCOL
For a given positive training set

u

S = {((hl, ri, tl) ’ Wi)}i:]’

we generate a corresponding negative set by replacing the
head entity using all other entities and replacing the tail entity
using all other entities:

§'={(n.r.1')}
= {(h. ri. 1)) | b € E\ {hi}}_,
U {(hirict) | 1] € E\ {1}, - (13)

We adopt margin ranking loss [16] to measure the loss on
learning the facts:

Lik= Y. > [r+fr.o—fH.r.t)],

(h,L.)ES (' .1")eS’
(14

We measure the loss of the weight prediction module on
learning the weight of the positive triple using

|W - WP|
Eweight e (15)
The total loss of the model is
L= —0a) Ljnk +a- Lyeight (16)

where combination coefficient « is a hyper-parameter that
balances the model between learning facts and learning
weights.

VOLUME 11, 2023

C. WEIGHTED LINK PREDICTION TASK

1) TASK DESCRIPTION

Weighted link prediction (WLP) aims to simultaneously add

missing relations and the corresponding missing weights to

the incompleted WKGs. We describe WLP as follows:
Given a weighted knowledge graph

WKG = {{((hi, ri. t;) . wi) ),

where h;, t; € E, r; € Rand w; € (0, 1], the E and R are
entity and relation sets, respectively. A corrupted weighted
triple is defined as a weighted triple without the relation and
the weight, i.e., ((h, ?, 1), 7). WLP is to complete the missing
relations and the weights of the corrupted weighted triples in
WKG, making them to completed weighted triples of the form
((h,r,t),w).

2) EVALUATION PROTOCOL

For a test weighted triple ((h;, r;, t;) , w;), w; is omitted. The
head entity £; is replaced by each of the entities of the dic-
tionary in turn to form all possible triples ((h;, ri, #;) , ?) |§z|1"|.
Triple scores are calculated by the scoring function of the base
model and then sorted in ascending order. After sorting, the
ranking of the testing weighted triple rk; is recorded. This
whole procedure is repeated while removing #; instead of 5;.

We measure the accuracy of predicting the weight by

W—‘W—Wp‘

acc(h,r,t,w) = (17)

w
We adjust the ranking of the positive triple rk; using the
accuracy of the weight prediction acc(h;, ri, t;, w;) and a
threshold t:

1k} = rk; -exp (v — acc(hy, ri, ti, w;)) (18)

We adopt mean rank (MR), mean reciprocal rank (MRR),
and Hits@N to measure the performance of the models on

48905



IEEE Access

K. W. Kun et al.: WeExt: A Framework of Extending Deterministic KGE Models for Embedding WKGs

FIGURE 5. An example of the proposed framework based on TransH.

WLP, shown in Equations 19, 20, and 21, respectively.

u
MR = > rkj, (19)
i=1
|
MRR = ; W (20)
u
Hits@N = ZH[rk; <N] (21)

i=1
where the I[expn] is the indicator function, which outputs 1 if
expn is true, and O otherwise.

IV. EXPERIMENTS AND RESULTS

To measure the performance of the proposed WeExt frame-
work, we evaluate the weighted extensions of the base models
on link prediction, weight prediction, and weighted link
prediction.

A. EXPERIMENT SETTING

We conducted experiments on CNI15K, NL27K, and
PPISK [29] datasets. CN15K is a subgraph of ConceptNet [9],
containing 15,000 entities and 229,235 weighted triples in
English. The original scores in ConceptNet vary from 0.1 to
22, while the weights in CN15K are normalized to [0.1,
1.0]. NL27k is extracted from NELL [8], a weighted KG
obtained from webpage reading. NL27k contains 27,221
entities, 405 relations, and 175,412 weighted triples. The
weights in NL27K are normalized to the interval [0.1,
1.0]. PPI5k is a subset of the protein-protein interaction
knowledge base STRING [10] that contains 255,114
weighted triples for 4,999 proteins and 7 interactions.
STRING labels the interactions between proteins with the
probabilities of occurrence. The weights in PPI5k fall in the
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TABLE 1. Statistics of weighted knowledge graphs. #Ent denotes the
number of the entities, #Rel denotes the number of the relations, #Tri
denotes the number of the triples, INR denotes the interval of the
weights, Avg(d) denotes the average of the degree of the entities, and
Med(d) denotes the median of the degree of the entities.

#Ent #Rel #In INR Avg(d) Med(d)

train 15000 36 193274 0.900 25.77 12
CN15K test 10659 34 19166 0.900 3.60 2
val 10158 35 16795 0.900 3.31 2
train 27221 405 149100 0.899 10.95 4
NL27K test 9711 287 14034 0.898 2.89 1
val 9000 279 12278 0.899 2.73 1
train 4999 7 214661 0.847 85.88 21
PPISK test 3703 7 21566 0.847 11.65 4
val 3557 7 18887 0.847 10.62 3

interval [0.15, 1.0]. We drop out duplicated quadruplets in
CN15K and PPI5K. The statistics of the WKGs are shown
in Table 1.

We implemented the proposed framework and the
weighted link prediction task based on the PyKEEN
toolkit [30]. We choose 0.01 as the learning rate A\ for the
stochastic gradient descent and searched the combination
coefficient « for loss function among {0.1, 0.2, 0.01, 0.001,
0.0001}. The margin of the loss function y was set to 1.
The dimension of embeddings was set to 50. We trained the
models for 3000 epochs, evaluated the models per 10 epochs,
and save their best results.

B. BASE MIODELS

We implemented the proposed framework based on two
representative translational distance models: TransE and
TransH, and two representative semantic matching models:
DistMult and HolE.
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the latent semantics. The scoring function of DistMult is PL TE 37825 0.0065 0.005T 0.007T 0.0074 0.0078
DM 1207006557 0500107464 0.8481 70,9386
TransE 10.6  0.1819 0.0001 0.2432 0.3704 0.5636
s=|rohot| (24) . fec T IRA OISO TT0397 003682015635
ot cat 187 OIS0 02425 0367905637
h i< the el . q &~ TransH 495 0.1106 0.0029 0.1274 0.1906 0.3155
where o 1s the element-wise product. BT eS0T TTO 196 001323 031930333
A PUEETL e TTARTTTTOAT99TTTTOTTT0532 7021703283
4) HolE DistMult 241 0459 03427 05175 05763 0.6662
) Ho M ivec T3A6 04302703266 04737005298 0.6186
For a given triple, HolE [20] first composes the head entity Brt cat "T33670.4585 T0.35490.4994 70,5584 0.6495
: . . . . . HolE 6.6 08426 0.7589 00149 09473 09719
and tail entity using the mrcglar correlatlon. Qperatlon [31], - e A 0608 D.OTEE 0847 06708
then matches the relational with the compositional vector of Betcar TT667TT0.85427007762 7709218 70.951 709743

the head entity and tail entity to score the given triple. Since
circular correlation is not commutative, HolE is able to model
asymmetric relations. The scoring function of HolE is

s=r (hxt) (25)

where  is the circular correlation.
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* PL: PASSLEAF, TE: TransE, TH: TransH, DM: DistMult, HE: HolE.

C. RESULTS ON LINK PREDICTION

We describe the link prediction task and its evaluation
protocol in Section II-C1. The results on link prediction are
shown in Table 2. Because MRR is not sensitive to extremely
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((hy, 71, t1),0.4)—> plausibility=0.4  {(hy, 5 t,),0.8)—> plausibility=1.4

FIGURE 7. An illustration of how UKGE infers weights from the
plausibility of triples. Given two triples A = ((hy,ry,t;),0.4) and B =
((hy, ry, 1), 0.8), the non-linear function is sigmoid function:

s(t) = ; I-l . Let a well-trained UKGE model predict the plausibility of
the give;etriples, the plausibility of triple-A will be —0.4 and plausibility
of triple-B will be 1.4.

poor rankings, we mainly focus on the MRR score. After
introducing a weight prediction module for base models,
the extended models have to optimize their performance on
both link prediction and weight prediction simultaneously.
The results show that the introduced additional optimization
term does not cause the model’s performance to decrease on
the link prediction task; there may be a slight improvement
for some models instead, for example, TransE, TransH,
and HolE. DistMultg,, achieves a worse performance than
DistMult on all the datasets. DistMultg,; outperforms UKGE
on CN15K and PPI5SK, but due to the improved performance
of UKGE on NL27K compared to DistMult, the performance
of UKGE on NL27K is much better than DistMultg,;.

Due to the sample pool used in PASSLEAF with
weight estimation of negative samples, PASSLEAF with
DistMult outperforms DistMult, UKGE, and DistMultg,;
on CNI15K, NL27K, and PPI5SK datasets. However, the
performance of PASSLEAF is unstable, i.e., PASSLEAF
with TransE resulted in the worst performance on all three
datasets.

From another perspective, all the extended models outper-
form UKGE on CN15K. DistMultgys and HolEg,; can surpass
UKGE on PPI5K. But as for NL27K, only HolEg,; achieves
better performance than UKGE. We assume the performance
difference on the different datasets is caused by the weight
distribution of the respective datasets, shown in Figure 6, and
the way how UKGE learns the weights. Triples in NL27K
are centralized in high-weight regions, triples in PPISK are
centralized in low-weight regions, and weights in CN15K are
not so polarized as NL27K and PPISK.

UKGE utilizes a non-linear function to squeeze the
plausibility of triples to obtain the weights of the triples,
which makes the triples with a small weight gap to gain a
larger plausibility gap. An illustration is shown in Figure 7.
Thus, UKGE tends to assign stronger plausibility for high-
weight triples and weaker plausibility for low-weight triples,
which is why UKGE’s performance on PPI5K is not as good
as half of the best-performing model. In contrast, on NL27K,
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FIGURE 8. An illustration of the weight distribution of triples correctly
predicted by UKGE and DistMultg,; on NL27K and PPI5K.

where high-weight triples account for a large proportion,
the gap between the performance of UKGE and the best-
performing model is much smaller.

Figure 8 shows the weight distribution of triples correctly
predicted by UKGE and DistMultg,, on NL27K and PPI5K,
we can see that UKGE predicts more triples with high
weights, while DistMultg,; performs more balanced on
different intervals.

Moreover, WeExt with the cat preprocessing outperforms
WeExt with the ivec preprocessing on PPISK, and they
achieve similar performance on CN15K and NL27K.

D. RESULTS ON WEIGHT PREDICTION

For each weighted triple ((h;, i, t;),w;) in the test set,
we predict the weight based on the triple (h;, rj, ;) and
report the mean squared error (MSE) and mean absolute error
(MAE).

The results on weight prediction are shown in Table 3.
Except for HolEg,, that performs worse than UKGE on
NL27K, all the weighted extensions outperform UKGE in
the weight prediction task for all three datasets. Compared
with UKGE and DistMultgy;, PASSLEAF’s performance in
the weight prediction task is poorer on all datasets. It may
be caused by noise introduced during the weight estimation
of negative samples by the model being trained. The result
shows that adopting neural networks to learn weights from
processed embeddings is superior to utilizing non-linear
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TABLE 3. Results on weight prediction.

TABLE 4. Results on weighted link prediction.

— — Model MR  MRR His@l His@3 Hits@5 Hits@10

Model MSE (x107%) MAE (x107%) UKGE 40312 0.0795 0.0266 00736 0.1066 0.1556

UKGE 8.01 19.90 oL TE 105600 00015 0 0.0003 0.0000 0.0019

PL TE 5791 39.10 DM "T4401:8 70,0776 0:0198 " 0.0797 01040 0.1365

DM 41.66 24.28 TE ivec 3602 0.1129 0035 0.1153 0.1639 02295

TransEgy, 'S¢ 4.60 14.66 i EBetcat TAAETE 01154 T0:0342 0417401694 02361

cat 3.83 13.08 Z TH ivec 4907.8 0.0865 0.0393 0.0821 0.1059 0.1398

CNISK i ivec 426 13.89 C TUETt cur TESSTATT0.0868 00381 0.0829 T 0.1085 01438

Bat gt 391 1289 DM ivec 30710 0.0961 0.0365 0.0898 0.1242 0.1749

DistMult ivec 5.10 15.62 Bet cqp TEIAETO083 0,033 00737 0.1025 0 147

Bat ot 3.67 1193 HE ivec 27612 0.0984 0039 0.0924 0.1263 0.1777

ivec 586 17.00 Bot ot T37865770.0997 70,0433 7000886 01201001696

HolE gz cat 559 1631 UKGE 7835 05260 03566 04844 05521 0.637

UKGE 736 6.90 L TE 242462 00046 0 0.0034 0.0071 0.0120

TE 366 5901 DM 34158 05861 70,4265 0.5904 0:3920 016027

PL DM 875 §06 TE ivec 137.1_ 04198 0.1967 04481 05356 0.6491

vec 43 503 M TEBetcar TIA96 04093 0I80T 00442905378 006462

TransE g+ cat 53 S50 N TH fvec 6215 02996 0.156 03044 03547 04258

NL2TK oo 313 51 Z CUEmt o TTE33ETT02042 0145503039 T0.3544 04951

TransHpee s T DM ivec 280.7 04148 02518 04012 0456 0536

¢ T Tt Bat cqr TR UTOATY 0355803996 04581075438

DistMultg,; L o° : 2 HE Tvec 272 0624 04128 058 0.6563  0.746

cat 1.22 5.09 Bat cqr 330106038 0.3941 035790636 007936

HolE s ivec 1.31 5.01 UKGE 343 04212 02131 04193 05073 06518

cat 1.26 5.38 oL TE 84034 0.0047 0.0003 0.0058 0.0070 0.0075

UKGE 0.95 3.79 DM 796702378 70,0366 02603 04376 0.5728

PL TE 40.74 21.14 TE ivec 18.6 0.1996 0 0.2227 03574 0.5631

DM 47353 26.71 M P cat 8300180 020503697 05772

ivec 0.24 277 e vec 474 01336 0 0.1459 02174 03441

TransEpaze o 024 358 & THpat o 45370013630 O4T 081 0,345

PPISK ivec 049 37 DM ivec 345 04782 02835 04641 05263 0.6235

ranst gt cat 047 337 Bat car TR3TTTTOST247T0.3000.4906 0055637006547

- vec 034 789 HE fvec 7.7 09760 0.7241 09096 09457 09722

DistMultgs; o0 0738 550 Bot ot U9567T0.9948 07448 0,914 0947309717
HolE ., ive;c 8.12 }.gg * PL: PASSLEAF, TE: TransE, TH: TransH, DM: DistMult, HE: HolE.

cail . .

* PL: PASSLEAF, TE: TransE, TH: TransH, DM: DistMult, HE: HolE.

functions to learn weights by squeezing the plausibility of the
triple.

Moreover, WeExt with the car preprocessing outperforms
WeExt with the ivec preprocessing, not only for the trans-
lational distance models but also for the semantic matching
models, indicating that after the model is well-trained, the
cascade of entities and relations retains richer information
than the interaction vector.

E. RESULTS ON WEIGHTED LINK PREDICTION

The results on weighted link prediction are shown in Table 4.
All weighted extensions outperform UKGE in weighted link
prediction on CN15K. DistMultg,; and HolEg,; outperform
UKGE on both NL27K and PPISK. Although the link
prediction performance of DistMultg,; on NL27K is worse
than UKGE, DistMultg,; achieves better performance in the
weighted link prediction on NL27K thanks to the better
weight prediction performance.

While PASSLEAF performs well in link prediction tasks,
it falls short of surpassing UKGE and DistMultg,, on
CN15K and PPI5K datasets. On the NL27K dataset, although
PASSLEAF used with DistMult still outperforms UKGE and
HolEE,;, it has been outperformed by HolEgy,. This implies
that using the model being trained to estimate the weights
of negative samples is beneficial for pure link prediction
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tasks, but it may introduce noise for tasks that involve
weights.

Moreover, WeExt with the cat preprocessing outperforms
WeExt with the ivec preprocessing on PPISK, but they
achieve similar performance on CN15K and NL27K. The
performance of the weighted extensions on weighted link
prediction is consistent with the performance trend on link
prediction, but not consistent with the performance of the
model’s weighted prediction. This indicates that under the
current evaluation protocol for weighted link prediction, the
performance of the model on the link prediction task is
dominant, while the performance of the model on the weight
prediction task has been taken into consideration, but only in
a subordinate position.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework called WeExt for
extending deterministic knowledge graphs to be capable
of embedding weighted knowledge graphs. To facilitate
the performance evaluation of our extended WKGE mod-
els, we propose the novel weighted link prediction task.
Compared with the widely-used asynchronous link predic-
tion and weight prediction tasks, weighted link prediction
can synchronously evaluate the performance of weighted
knowledge graph embedding in link prediction and weight
prediction.
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In the next work, we plan to design a new evaluation
protocol to alleviate the impact of extreme data on the score,
so that the score can better reflect the model performance.
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