IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 April 2023, accepted 4 May 2023, date of publication 15 May 2023, date of current version 13 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3276234

== RESEARCH ARTICLE

Recognition of Human Chef’s Intentions for
Incremental Learning of Cookbook by
Robotic Salad Chef

GRZEGORZ SOCHACKI ", ARSEN ABDULALI, (Member, IEEE),
NARGES KHADEM HOSSEINI, (Member, IEEE), AND FUMIYA IIDA", (Senior Member, IEEE)

Bio-Inspired Robotics Laboratory (BIRL), Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, U.K.
Corresponding author: Grzegorz Sochacki (gks33 @cam.ac.uk)

This work was supported by Beko plc and Engineering and Physical Sciences Research Council (EPSRC) Agriforwards CDT Project
EP/S023917/1.

ABSTRACT Robotic chefs are a promising technology that can bring sizeable health and economic benefits
when deployed ubiquitously. This deployment is hindered by the costly process of programming the robots to
cook specific dishes while humans learn from observation or freely available videos. In this paper, we propose
an algorithm that incrementally adds recipes to the robot’s cookbook based on the visual observation of a
human chef, enabling the easier and cheaper deployment of robotic chefs. A new recipe is added only if the
current observation is substantially different than all recipes in the cookbook, which is decided by computing
the similarity between the vectorizations of these two. The algorithm correctly recognizes known recipes
in 93% of the demonstrations and successfully learned new recipes when shown, using off-the-shelf neural
networks for computer vision. We show that videos and demonstrations are viable sources of data for robotic
chef programming when extended to massive publicly available data sources like YouTube.

INDEX TERMS Computer vision, hidden Markov model, learning by demonstration, robotic chef, salad

chef.

I. INTRODUCTION

The availability of high-quality meals is an important indi-
cator of the quality of life. The time spent on cooking cor-
relates with health quality [1], but is falling steadily [2].
The most frequently reported reason for lack of cooking was
lack of time [3]. Therefore, large benefits can come from the
automation of cooking both in homes and hospitality sectors.
Numerous experiments were made to explore the feasibility
of robotic chefs. The trends vary from simple kitchen helpers
like dishwasher packing robot [4], burger flipping robot [5],
or sausage frying robot [6] to attempts at building whole
robotic restaurant [7], [8].

Implementing a robotic chef is a complicated task, that
requires the robot to be competent in many fields of robotics
like manipulation, sensing, feedback, decision-making and
perception. Recent developments in robotic chef manipula-

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu

57006

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tion include peeling lettuce [9], robotic cutting [10], stir-
frying [11], tending to food during cooking [12] and in hand
assessment of fruit ripeness [13], [14]. New ways of sens-
ing were also implemented, including assessing the state of
readiness of a dish [15], using conductance measurement for
closed-loop cooking [16], and running various classification
tasks with taste and smell sensors eg. classifying wine age
[17], detecting mutton adulteration [18], assessing the qual-
ity of roasted coffee beans [19], sensing type of milk used
for cheese production [20] and judging fish freshness [21].
Robotic chefs are becoming smarter and can learn from the
video of human cooking [22], their own attempts at cooking
[16], and can even use active sensing to improve their sensory
ability [23]. Some experiments showed robotic chefs learning
from human feedback on the taste of cooked dishes [24].
Some experiments with transcribing recipes into a set of
actions [25] and robots cooking from recipes were done [26].

Computer vision is also frequently used in robotic cook-
ing setups [4], [5], [6], [9]. Some of these experiments

VOLUME 11, 2023

https://orcid.org/0009-0007-5661-0210
https://orcid.org/0000-0001-9246-7190
https://orcid.org/0000-0003-1620-0560

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

IEEE Access

TABLE 1. Ingredient list of salads used in the experiments.

Broccoli Pieces | Carrot Pieces | Apple Pieces | Banana Pieces | Orange Pieces Num}? er of Salads
repared
Recipe 1 0 1 1 0 0 2
Recipe 2 0 3 1 0 0 2
Recipe 3 0 1 2 0 0 2
Recipe 4 0 0 1 1 1 2
Recipe 5 0 0 1 1 3 2
Recipe 6 1 1 0 0 0 2
Recipe 7 3 1 0 0 0 2
Recipe 8 0 0 0 2 2 2

Object Extraction

Demonstration-Cookbook
Hand-Object Paths Correlation Comparison
Human Demonstration W\ {\ mﬂ ’\'\‘ﬂ Robotic Cooking
» e R
~] W ’ |
Pose Extraction 8 J“] | ‘ w‘
M Uil 8 e o AR,
' ‘ Time v
AN 3 I - Knife-Hand Correlation
a - Apple-Hand Correlation
- Banana-Hand Correlation
d - Orange-Hand Correlation
Adding New
£ Recipe
[| J 1 jJ 0 J 1 J 1]

Demonstration Computer Vision

Ingredient Detection

Incremental Learning Robotic Cooking

FIGURE 1. Schematics of the robot assessing novelty of new demonstration and learning new recipe when required. a) Robot observes the
demonstration with a camera. b) relevant objects like produce and kitchen utensils are detected by using a neural network. c) Pose of the human
chef is extracted using a neural network. d) Actions and objects used are determined by finding high correlations between the right hand and a
specific object. e) Similarity of the demonstration with all the recipes in the robot cookbook is computed. If the similarity is low robot will proceed
to add a new recipe. f) Robot learns new recipes by listing all actions seen in the demonstration and adds them as a new recipe to its cookbook

g) Robot makes a salad according to one of the recipes.

use colour masking and feature extraction, while others use
publicly available neural networks for object detection and
pose extraction. Publicly available networks offering object
detection include YOLO [27], SSD [28], RetinaNet [29] and
YOLOR [30]. Most of them are trained on COCO dataset
[31], which focuses on everyday objects photographed in
everyday situations. Pose detection can also be done by pub-
licly available neural networks eg. OpenPose [32], DCPose
[33], DensePose [34] and HigherHRNet [35].

In this paper, we are implementing a robotic chef that has
a sizable capability for learning new recipes from human
observation. The robotic chef visually observes a human chef
at work and recognizes the sequence of actions performed by
the human, as well as the products they are performed on.
This sequence is vectorized and compared with the current
robot’s cookbook. If a recipe with high similarity is found, the
robot makes a salad according to that recipe. In cases when no
existing recipes seem to match the human’s intention, the list
of ingredients is extracted and added to the robot’s cookbook
as a new recipe. Each of the recipes already in the cookbook
can also run without additional demonstrations.

The system was tested on 16 salads prepared according
to 8 known recipes listed in Table 1. The correct recipe

VOLUME 11, 2023

was recognized successfully in 93% of the demonstrations,
even though only in 83% of the demonstrations all actions
were detected correctly. Some variations of the recipes were
also demonstrated to the robot to show the robustness of the
system to portion size, human mistakes and slight variations
in the recipe. This assures that new recipes are not learned
due to reasonably small variations in the demonstrations. All
8 salad recipes were made using the robot and all of the
ingredients were added successfully across all these salads.
The system also correctly recognized the demonstration of a
new salad, added it to a cookbook and cooked it.

Il. METHODS

A. OVERVIEW

The robot’s operation schematic is shown in Figure 1
and starts with the observation using a camera as shown
in Figure 1 a. Each frame of the resulting video is
analyzed frame by frame using off-the-shelf neural net-
works. Openpose is used to detect the demonstrator’s right
wrist(Figure 1b) and YOLO detects all visible objects’ posi-
tions (Figure 1c). The coordinates of each body part and
each object are saved and form a path when extracted from
multiple frames. Identification of a grasped item is done

57007

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

by analysing Pearson’s correlations between the demon-
strator’s right-hand path and the product/kitchen utensil
path(Figure 1d). A high correlation is an indication of lengthy
handling of an item and therefore is an indication of a certain
action. This way the whole demonstration is translated into
binary states which we filter with Hidden Markov Model to
adaptively filter out observation noise and neural network
mistakes. The demonstration is compared to the existing
recipes by converting both of them into vectors and comput-
ing cosine similarity between the vectors(Figure le). If there
is no similar recipe in the cookbook, the robot makes a new
recipe that includes all ingredients used in the demonstration
(Figure 1f), and proceeds to make the salad(Figure 1g).

B. EXTRACTING THE ACTIONS FROM THE VIDEO

1) SCOPE AND HUMAN CHEF DEMONSTRATION

The project attempts to build and test in the lab condi-
tions a framework for teaching the robotic chef recipes by
demonstration and investigating its feasibility and limita-
tions. Therefore, as many components as possible should be
adopted from other branches of robotics, as redoing any of
these would not contribute to the project. These limitations
make the choice of the dish cooked very important. For
example, trained neural networks for object detection exist,
and training them from scratch does not contribute to the
project, hence we use the available models, trained on large,
already available datasets. In the case of item detection, the
available networks are trained on the COCO dataset. It limits
the system to the classes in COCO dataset. Available classes
cover cutlery: knives, forks and spoons, some containers: bot-
tles, glasses, cups and bowls, kitchen appliances: microwave,
oven, toaster, sink and fridge, as well as 10 food products:
banana, apple, sandwich, orange, broccoli, carrot, hot-dogs,
pizza, doughnut and cake. Under this limitation, we have
decided that a reasonable dish to teach to the robot is a variety
of salads, as they use a larger portion of items from the
listed classes. Moreover, making salads is possible with the
dexterity of the current robots, especially if some hardware
compromises are made in the kitchen.

Furthermore, we need to ensure some structure to the
salads we produce for experimentation. This will be crucial
both for the reproducibility of the results as well as for the
ease of programming the physical setup. Therefore, we limit
the salads to 5 ingredients: broccoli, carrot, apple, banana
and orange. Moreover, we chose to define our recipes by the
number of each fruit/vegetable added. The only exception
is the broccoli where we add a smaller amount of it as a
single unit. We also make sure that the salads produced are
reasonable recipes whenever possible. Inspecting the list of
the recipes used in the experiment shown in Table 1, we can
see that recipes 1 through 3 are a variation of the popular apple
and carrot slaw. Recipes 4, 5 and 8 are variations of a fruit
salad, and recipes 6 ad 7 are variations of vegetable salads.

We choose to perform our work on various salads, as their
production is relatively easy to automate, and relatively many

57008

ingredients are recognizable by the YOLO network. The next
step is preparing a human demonstration, as its quality and
camera angle can make the task significantly harder or easier.
We make the demonstrations in the laboratory while making
the space messy enough to simulate a busy kitchen, that seems
to be utilized with no specific care. In the foreground, we set
up a table with all ingredients used in the salads, a large
number of kitchen utensils, as well as some food products
that are not ingredients used by the robotic chef. We have
the camera filming from the front, slightly from above. The
demonstrator has a chair behind the table, from where he can
prepare the salad. The setup is shown in Figure 2 a.

2) OBJECT AND POSE EXTRACTION

The learning procedure starts with extracting the pose of the
demonstrator as well as the items present in the video. The
pose of the demonstrator is extracted using the OpenPose
neural network. Object detection is done using YOLOv5m
neural network. The whole process of extraction is shown in
Figure 2. Firstly, the video is separated into single frames for
processing. Both neural networks are then applied to each
of these frames. Pose Keypoints and bounding boxes of all
identified items are saved as a JSON file. We also draw the
pose and bounding boxes in each of the frames, as presented
in Figure 2 a, b, and ¢, making sure that each of the networks is
applied to an unaltered frame. As the last step, all the frames
are stitched into a video again, making it easy to assess the
network’s performance and present the results.

3) GRASPED ITEM IDENTIFICATION

We use the pose keypoints and detected objects’ positions
from the previous step to identify which item is currently
grasped and therefore used. This step is necessary to know
which item is being used, as multiple objects are present in the
frame while cooking. The pose keypoints come in the form of
(x,y) coordinates for every major joint and some face features.
Similarly, the YOLO network returns the (x,y) positions and
class labels for each of the detected objects. These positions,
when gathered across multiple frames of a video make up
a trajectory for each of the objects, and the demonstrator’s
joints. Therefore wrist trajectory S can be described with the
following equation:

S e R"™? (1)

and the tracked object trajectory is described with the follow-
ing equation:

0 e R™?)

where n is the total number of frames, the first column is the x
position and the second column is the y position. We can then
use the similarity between the trajectories to find which object
movements are correlated with movements of other objects or
some important demonstrator’s joints.

We aim to calculate this path similarity using Pearson
correlation. The advantages of this technique include ease of

VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

IEEE Access

FIGURE 2. Procedure of recording and processing the human demonstration: a) Setup used to record the demonstration, b) single frame of a
human-chef demonstration, c) the frame with body pose extracted, d) the frame with both body pose and items extracted.

application, in-built scaling, solid theoretical background and
inherent affinity for scoring less noisy movements high. The
in-build scaling is crucial for two reasons. Firstly, we should
not be biased towards actions including large movements over
those including only smaller ones, as for example noticing
moving an ingredient across the table is no more important
than noticing the cutting of it. Secondly, the in-build scaling
allows a maximum correlation between two paths of the same
shape, but different sizes. This is crucial as the path taken by
the wrist is usually a smaller copy of the path of an object
kept in hand. The Pearson correlation takes a value between
—1and 1, and can be computed for short parts of a video,
in our case we used windows of 50 frames - the equivalent of
two seconds.

Pearson correlation is not able to tackle the raw trajectories
as it is a correlation between single-column matrices, while
each trajectory is of shape n by 2. Therefore, the computation
of the final correlation score must be split into a few stages.
We will now follow this process on a wrist trajectory S, but
the process is the same for trajectory O. We start by splitting
the trajectory S (equation 1) into two separate single column
matrices - one for storing x positions Sy and another for y

VOLUME 11, 2023

positions Sy:
S = (8%, Sy) 3)

then we split these arrays into 50 frame windows. In the case
of Sy these windows are specified by the following equation:

s = Sy[1 : 49] C)

for the first window s; and equation below for a window
number t.

sV = 84[50(7 — 1) + 1 : 501] (5)

therefore the x positions in trajectory(Sx) becomes a sequence
of such windows:

Sy ={s70.s3. ...) (©6)

Sy also undergoes the same process, but for the sake of
reducing the number of equations, we will follow only S for
now. The object trajectory is transformed in the same way
and the Oy and Oy also are transformed to the form shown
below:

Oy = {o{”. 0. ..., 0¥} (7)

57009

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

Correlations between Iltems' Paths
(X direction)

Correlations between Items' Paths
(Y direction)

Cu Right Hand Chair Left Hand Cup Right Hand Chair Left Hand
d . - 1.0 b 1.0
g 2
3 3
-0.8 -0.8
= 2
] 1]
T T
5 0.6 .’E” 0.6
¥ I
3 0.4 B 0022 -0.028 : L
(@] (&)
z 0.2 = 0.2
@ [}
e = i
= =
5 3
0.0 0.0
Correlations between ltems' Paths
(multiplied)
C Cup Right Hand Chair Left Hand -
o
=]
&)
-0.8
°
| =4
L)
T
'49:1 0.6
i
= 0.4
L
(@]
g 0.2
I 0.12
=
[+H]
-
0.0

FIGURE 3. Figure showing the correlation between positions of 4 objects - left and right hands, a cup and a chair. The cap was moved around
using the right hand. a) correlation between paths in x coordinate b) correlation between paths in y coordinate c) product of correlations in x

and y coordinate.

where o, denotes m-th window of the object trajectory.
In this case, we will also follow the x direction only for now.
Now we can compute the Pearson correlation p between
any window in the trajectory of an object and the trajectory
of the wrist. For example, the correlation between the first
windows would be expressed with the following formula:

cov(s(lx), 0, Xy

Pt = P 0 = —————— ®)
101 Os(lx)ao(lx)

Notice that this produces a correlation between paths either
in x or y coordinates only, therefore the superscript x is
used. Finally, we arrange the window-wise correlations in
chronological order to build the correlation for the whole
trajectory. This correlation P¥) between an arbitrary joint
and object “x trajectories” Sx and Oy is denoted with the

57010

following equation:

o8))

We have now produced two arrays describing the corre-
lation between wrist and path trajectories - (x) and P(Sy)O
We need to combine them into a single number explammg the
correlation in each window Let’s try to find an element-wise
operation to merge P 0 and PS o- We observe that sim-
ilar paths would result in both ,0(") and p® positive and
significantly larger than zero. Therefore we come up with
the idea of multiplying o™ and p®?, which would give a
high result in the case when both of them are high. The
only edge case to take care of is when the movement of the
object and hand are “reverse” of each other. In this case,
multiplying two large negative numbers give a high positive

Pgo - PSX o, = {p

VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

IEEE Access

number. Therefore, to compute the final correlation we set
every negative correlation and set it to zero, and then take a
product. Therefore for the window number t, the correlation
is computed with the following equation:

pr = (max(p™, 0) % max(p, 0)) (10)
and the final correlation is given with the equation:

Pso = 01,02, 01 (11

This results in a single array containing a correlation
between a joint and an object for each 50-frame window in the
video. This operation can be done on arbitrarily many pairs
of joints/objects.

The best way to show this in operation is by using a matrix
with different objects/joints corresponding to columns/rows.
This is due to the fact that this correlation can be computed
between any pair of joints/objects, therefore every matrix
entry can correspond correlation between the row name and
column name. We use an example video of a cup held in a
hand to show correlations of X coordinates, Y coordinates,
and finally the final correlation score for all possible corre-
lation pairs between the hand, the cup, as well as a chair and
another hand visible on the video. These results are shown in
Fig 3.

4) ACTION IDENTIFICATION WITH HIDDEN MARKOV MODEL
The next step is to identify the actions needed to describe
salad-making and assign each of them to a correlation
between pair of objects/joints described in the previous
section. The minimum necessary number of actions should
be listed in order to minimize the data required for machine
learning. The solution we choose to this problem is to have an
action of adding each of the ingredients, an action of cutting
and an action of “resting”. The “Resting” action covers
everything that is not any of the other actions. Therefore, the
following actions must be extracted from the video: Resting,
Cutting/Chopping, Adding Broccoli, Adding Carrot, Adding
Apple, Adding Banana, Adding Orange.

These actions are to be found based on the correlation score
between a pair of joints/objects discussed before. We assign
adding a specific ingredient to the correlation between the
path of the right wrist and the path of the said ingredient.
This will be high when the movements of this wrist and
that specific product are synchronized. We choose the right
wrist specifically as most people are right-handed, making
it a dominant wrist. This can be easily changed to the left
wrist if needed, or both wrists could be used. We choose to
stay with the use of only the right wrist for this experiment
as we noticed that the non-dominant hand is usually used
for not crucial tasks while the dominant hand is performing
tasks crucial for the recipe. Detection of cutting follows a very
similar procedure, but this time it is a correlation between
the right wrist and a knife. A low score in all of the above
correlations is considered detection of ““resting’’ or no action.

This kind of action detection can result in both false pos-
itive and false negative detections, therefore we intend to

VOLUME 11, 2023

incorporate some sort of smart filtering. We propose to use
the Hidden Markov Model(HMM) for that purpose. We base
this decision on our experience with analyzing preliminary
results, where a human would look at the correlation scores
across the whole length of a video and deduce the most proba-
ble sequence of actions. Finding the most probable sequence
of hidden states is one of three fundamental tasks of HMM
model, making it a great match. Moreover, the relatively
small amount of data necessary to train the model is a great
asset when working with food and producing more data is
labour-intensive and cost-intensive.

Applying the HMM to this problem will require some data
processing. Firstly, we need to change the correlation scores
into action detection. We do compare the correlation scores
to the item/joint pairs discussed before. Each window is then
assigned an action with the highest corresponding correlation
score. We also add a threshold of 0.5, and if the largest corre-
sponding correlation is smaller than this threshold, we set the
action during the window to “resting”. Having strictly one
action assigned to each of the time windows we can proceed
to design the HMM. This application of HMM relies on a
clever yet intuitive interpretation of hidden states and obser-
vations. We treat our action detections as observations, while
the hidden states are the actual true actions happening on the
video. The graph showing the model is shown in Figure 4. The
first step is to estimate the transition matrix T and emission
matrix E. This can be done by simply counting the number of
times a specific transition and dividing it by the total number
of transitions. The same thing can be done for emissions.
The only hurdle is that we need a ground truth sequence of
states to do this learning. Therefore, firstly we create a human
ground truth on what happens in the video. Then we are using
half of the salads produced to train the model. This effectively
produces a transition matrix T and observation matrix E that
can be used to do the other fundamental task of HMM - given
the observation, return the most probable sequence of hidden
states. Viterbi algorithm is used for this task. Looking back
on Figure 4, we run the computer vision discussed before
to get the sequence of observations y, to then calculate the
most probable sequence of human actions x. Running this
task on any new set of observations is effectively a smart
filter to get rid of false detections in a video. In the main
experiment, we train the filer on half of the data and use it to
filter another half. As each of the recipes was done twice, the
training sets are balanced, and we effectively do a two-fold
validation.

After HMM filters out the actions detected we expect to see
a sequence of windows with the same actions detected. The
ingredients added to a given salad can then be easily found
as the salad will be represented there as a sequence of blocks
where each block consists of handling an ingredient and then
cutting it. Of course, there would be multiple points where
“nothing” is detected. These are ignored during the ideal
operation of the program but also can introduce errors in a
situation when they occur during handling a single ingredient,
causing a single portion to be seen as two portions. Ideally,

57011

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

Tixte2p

® ¢ ¢ mEmm———)

Tix(t-2)

Ex(t-1))

Eixity)
@

Tix(e) Tixts1

Exfte1y)

y(t—1)

y(t)

y(t+1)

FIGURE 4. Graph of Hidden Markov Model used. “x” represents a hidden state which is the actual action
performed by the human in the demonstration. These are modelled as a probabilistic transition governed by
transition matrix T. Transition probability depends only on the previous state. “y” represents emissions of the
hidden state, which is what the system detects. It depends only on the current state and emission probabilities

are stored in emission matrix E.

this part of processing scans the feed from the camera or a
video and returns the ingredients used so far.

5) CHOOSING THE INTENDED RECIPE

Finally, we need to compare how similar the already seen part
of the human demonstration is to each of the recipes. To do
this we take inspiration from the vord2vec [36] algorithm
that is commonly used in Natural Language Processing(NLP)
to describe each word by a feature vector. These features
are usually very impressive at capturing the meaning of the
words [37], allowing comparing the similarity of the worlds
[38]. In this paper, we use a simpler vectorization, where the
amount of each ingredient makes up a feature of the feature
vector, but similarly to NLP, we use the cosine similarity to
find the similarity between the vectors, hence the recipes.
The vectorization of a demonstration D is described with the
following equation:

D = [B4, Ca, Aa, Baa, O4] (12)
Similarly, vectorization of a recipe R is given by:
R =[B,, C,,A,, Ba,, O;] (13)

B,C,A, Ba, O are numbers of portions of respectively
broccoli, carrot, apple, banana and orange added. Subscript ,
means that it is the number seen in the recipe, while subscript
4 means that it is the number of ingredients detected in the
human-chef demonstration. Finally, the cosine similarity S,
between them is computed, by definition, with the following
equation:

D-R
|[DI] s ||R]]

The feature vector can be computed both for the
already-seen part of the cooking demonstration and for each

Scos(D, R) := (14)

57012

of the recipes. The cosine similarity can be computed between
any arbitrary pair of these vectors. For finding the most
probable intention we compute the cosine similarity between
the detections in the camera feed and each of the recipes. The
most probable intended recipe is the one with the highest
similarity to the video demonstration. Moreover, using the
vectorization of the salad during the preparation makes the
computed cosine similarities can change frequently, possibly
every 50-frame window. Therefore, the prediction of human
intention can also change, which we hope to see clearly in the
results.

C. INCREMENTAL LEARNING

Incremental learning of the cookbook is implemented in
two stages. Firstly the robot watches the demonstration of a
human making a specific salad and compares its similarity
to all recipes in the cookbook. In the case when at least one
of the similarities is higher than an arbitrary threshold, the
robotic chef proceeds to prepare a salad according to the
recipe with the highest similarity. This condition is expressed
by the following equation:

max(Scos(D,R)) > t,N ={1,2,3,...,L} (15)

where ¢ is an arbitrary threshold, N is a number of a recipe,
L number of recipes in the robot’s cookbook, and the rest of
the symbols have the same meaning as in equations 12, 13
and 14.

If on the other hand, the similarity to all of the demonstra-
tions is below the threshold, the robot adds a new recipe to
the cookbook with a list of ingredients detected in this human
demonstration. Therefore the new L+ 1th recipe vectorization
becomes:

R +1) = [B4, Cq,Ad, Bag, O4] (16)

VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef’s Intentions for Incremental Learning

IEEE Access

g)
PR

= o= —-u"w

FIGURE 5. Robotic chef making salads a) opening the fry cutter b) placing the ingredient inside the cutter c) cutting the ingredients by closing

the fry cutter d) delivering orange straight to the salad bowl.

This new recipe can now be cooked by the robotic chef
without further programming thanks to modular program-
ming of the cooking process.

D. ROBOTIC CHEF IMPLEMENTATION

1) ROBOTIC KITCHEN SETUP

We are now implementing a robotic chef to prepare the
recipe that was determined to be the intended recipe. The
robotic chef will be a robotic arm hanging downwards from
a metal cage around the kitchen. Most of the operation is
based on moving objects between known positions as the
kitchen setup is highly structured and designed with the robot
in mind. The setup consists of a fry cutter, an ingredient
storage area and a bowl for the salad. The fry cutter allows for
cutting all the ingredients easily when using the robotic arm.

VOLUME 11, 2023

Moreover, it improves safety by eliminating the need to use a
knife. Furthermore, the fry cutter provides a force multiplier
for the arm, due to an in-built leaver. This is important as
free-standing robotic arms have a limitation on the maximum
force provided. The storage area keeps the ingredients in pre-
defined positions, from where the robotic arm can pick them
up. Finally, we place a bowl in front of the fry cutter to collect
the salad.

2) MOVEMENT PROGRAMMING

The URS arm was programmed using Python. This allowed
the integration of the robotic arm control and computer vision
into one program. The program was structured in a hierarchi-
cal manner so the most basic moves like going to the home
position, movement at a certain speed and opening/closing

57013

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

the gripper were programmed first. These functions were
then used to program the next layer which consisted of the
following functions:

o Opening fry cutter (Figure 5a).

« Moving ingredients from starting location to the home
positions.

o Moving ingredients from the home position to the fry
cutter (Figure 5b).

o Closing fry cutter (Figure 5c¢).

e Moving (some) ingredients straight to the bowl
(Figure 54d).

The functions were then put together into larger functions that
combine all steps needed to add a single ingredient to the
salad. An example function of this kind consists of opening
the cutter, picking up a piece of carrot, moving it to the home
position, then dropping it inside the fry cutter and cutting it.
Different snapshots of the robot performing this function are
shown in Figure 5. These functions can be easily combined
into recipes, by executing a few of them in a sequence.

Ill. RESULTS

A. CORRELATION COMPUTATION

Correlations are computed based on paths extracted by
YOLO and openpose neural networks. We do not report on
their performance as there is ample literature available on
their performance. Nevertheless, we provide both the raw
human demonstration footage as well as the footage with the
pose and detection boxes drawn on each frame for an inter-
ested reader to investigate. The raw correlations extracted
from a demonstration of a salad cooked with recipe number 1
are shown in Figure 6 a. The human eye can easily notice a
few regions of elevated correlation and identify the story of
what happened. We clearly see a small area, where ‘“‘nothing”’
is going on, followed by an area where correlation to the
apple seems to be highest, then to the knife, followed by a
short break, and then by carrot, knife and again a break. It is
quite intuitive for a human to see that the short deeps in the
correlation scores are probably an error rather than a break
between handling two different apples. This is due to the fact
that each activity takes multiple frames, therefore any change
is quite an unlikely occurrence. In the next section, we will
train a HMM, with the hope that it makes use of this quality.

B. ACTION EXTRACTION MARKOV FILTERING

The initial action extraction is made with the previously
described algorithm and the result can be seen in Figure 6
e, as a red “x” line. As we can see there are a lot of false
detections that make each action segmented, and therefore
potentially considered as multiple actions. Therefore, we are
training the HMM as discussed in the methodology section
- the identified actions will be considered observations and
the human ground truth is considered a hidden state. As each
salad was done twice, we always train the model on one batch
of 8 salads and use it for predictions on the other batch. Below
we show the transition matrix computed from the first batch

57014

of 8 salads:

[0.882 0.016 0.028 0.024 0.016 0.024 0.008]
0 0909 0 0 0 0 0.090
0 0 088 0 0 0 0.111
0 0 0 0888 0 0 0.111
0 0 0 0 0871 0 0.129
0 0 0 0 0 0.877 0.122

| 0.051 0 0 0 0 0 0.948 |

Firstly, we should discuss the meaning of each of the entries
in the transition matrix. Each entry is a probability that
a hidden state will transition from a state represented by
its row to a state represented by its column. The order of
state representation is the same for both rows and columns.
The first row/column represents the state of no action. The
rows/columns 2-6 represent handling ingredients, the order
is the same as their listing in Table 1 - broccoli, carrot, apple,
banana and orange. The last row/column represents cutting.

The first characteristic we can see is that the largest prob-
abilities are strongly concentrated on the diagonal of the
matrix. It means that it is very likely that an action performed
in the current 50-frame window will be performed in the next
window. Another interpretation is that the actions performed
during the cooking are on average done in blocks much longer
than the detection window itself. It means that any short
disruptions in the action detection will likely be filtered by
the HMM, as sequences with such occurrences will look less
probable. Furthermore, we see a lot of non-zero entries in the
top row. These are transitions from a ““nothing” state to one of
handling ingredients or cutting states. These numbers change
how likely the model is to accept such a transition. As these
numbers are quite low, the most likely sequence of states
computed by the model is likely to contain these transitions
only when supported by very strong observations. This is the
method to dismiss false positives. Another observation is a
large non-zero cluster of values in the last column. This is a
chance that from a state designated by the row, we move to
“cutting”’.

The next step is to analyze the emission matrix. The
row/column coding here is the same as in the transition
matrix, but this time rows are hidden states, and the columns
are emissions. The matrix, computed from the first bath of
8 salads, is shown below:

0979 0 0 0 0 0 0.020]
0.6130.386 0 0 0 0 0
0317 0 0682 0 0 0 0
0.1290.018 0 085 O 0 0
0290 O 0 0 0709 0 0
0244 0 0 0 0 0755 O

| 0.286 0 0 0.0020.002 0 0.709 |

Analyzing the matrix we first see that most non-zero entries
are clustered on the diagonal and first column. The diagonal
is the probability of observing a state as the same action
as the one represented by this state. These values are the
probability of our system(before HMM filtering) of correctly

VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

IEEE Access

interpreting the state in the video in a single window. The
higher this number is, the more serious the detections of the
corresponding action will be treated by the HMM when filter-
ing. The second cluster is in the first column and represents
the situation when some state was detected as “‘nothing”.
This shows that it is relatively common for the system to
just miss a detection. This is now considered by HMM and
it is likely to calculate that it is more probable to “‘ignore”
moments where nothing is detected a find a sequence of states
where it is more likely that some action actually continued
and was simply not picked up by the computer vision. The
number is also a lot of zero-entries. This means that in the
training dataset, this observation never happen. This shows
that computer vision together with Pearson correlation is very
good and prevents false detections.

Finally, we can analyze the effects of HMM filtering.
Firstly, we investigate the improvement in action detection
for a single frame by looking at the confusion matrix before
filtering(Figure 6 b) and after filtering(Figure 6 c). The appar-
ent change we can see is a migration from the top row to the
diagonal. It means that the HMM has successfully corrected
many instances when an action was not detected by the
computer vision employed. This is also confirmed by plotting
a human-made ground truth, raw detections of our system and
filtered detections, as we have done in Figure 6 e. We can
make a few interesting observations about the performance
of the filter based on this figure. Firstly, we see that it indeed
ignores short periods when the computer vision failed with
detection. We see examples around windows no. 40, 80 and
150. Furthermore, the model seems to filter out misdetections
around the time when the demonstration switch from han-
dling the ingredient to cutting. It correctly assumes that it is
more probable for the human to instantly start cutting after
he has finished handling the ingredient, rather than have a
random rest between these actions. We see an example of this
around windows no. 25-30.

C. INTENTION RECOGNITION WITH COSINE SIMILARITY
The filtered signal allows now to easily extract the ingredients
added to the salad at any point in time. It is then vectorized in
the same manner as the recipes and cosine similarity between
this vectorized demonstration and vectorized recipes can be
computed. We will now follow the changes of these cosine
similarities in time for different scenarios.

Firstly, we investigate the similarity computation during
observation of a demonstration of recipe no. 2 in Figure 6 d.
All actions were detected successfully. The order of the ingre-
dients added was “‘carrot” and apple three times. Right at
the beginning of the plot we already have some non-zero
correlation value for all the recipes, meaning that the first
ingredient is already added in the first 24 seconds of the video.
As we see recipes 6, 7 and 8 have a zero correlation. This
is because they contain no apple making them orthogonal to
the current demonstration vector containing only the apple
at this point. Other recipes have some similarities to the
demonstration at this point, but their values depend on how

VOLUME 11, 2023

“apple-heavy” the recipes are. The one with the highest score
at the beginning is recipe 3, which has apples as two out of
three ingredients. Then carrot is added three times in a row,
and these additions correspond to the three changes in the
plot. At the first change, we see that recipes 6 and 7 increased
their similarity as they contain some carrots, while recipe 8 is
still at zero as it contains no carrots or an apple. The rest
of the recipes changed their similarity. We will now focus
on recipes 1, 2 and 3 as they have more interesting trends,
even when more of the same ingredient is added. Firstly,
recipe 1 peaks all the way to the similarity of 1 and then
falls with the subsequent additions of carrot. This is because
the demonstration becomes more and more carrot heavy,
while the recipe is calling for an apple-to-carrot ratio of 1.
Recipe 2 is the one that was indeed demonstrated, and we
see a constant trend towards the similarity of 1. Interestingly,
each of the ingredients added that gets closer to the exact copy
shows diminishing returns. Recipe 3 has a very similar path
to recipe 1, but never as close to the similarity of 1, as it is in
reality apple-heavy.

We will now investigate the behaviour of the system in
less optimal conditions. We will use recipe 1 for this test as
a base, as it will make our analysis easier. Three scenarios
will be tested here, and three times more ingredients will be
used than in the recipe itself to allow for more interesting
scenarios. Firstly, in Figure 7 a, we can the evolution of the
demonstration similarity for a demonstration where a portion
of apple and a portion of carrot is added three times in the
alternating pattern. One of the ingredients was not detected
by the computer vision in this demonstration, and this misde-
tection corresponds with the long flat area in the plot. In this
case, we see that adding another pair of ingredients makes
the similarity oscillate. Also, we see that the system has
successfully found the intended recipe. The score for recipe
2 was also very high. That is because the missed ingredient
was an apple, making it a carrot-heavy apple-carrot slaw,
which is what recipe 2 is.

Figure 7b, shows a scenario of adding an error in a form
of a different ingredient. For this ingredient to be an error at
another part of a recipe it needs to be in a relatively lower con-
centration than the ingredients listed in the recipe. Therefore
as this error ingredient, we use a single piece of an orange,
while we use free pieces of apple and three pieces of carrot
for the base recipe. This is triple the number of ingredients
used in a recipe and we added them in the alternating pattern.
The resulting figure of cosine similarities is very interesting.
In the beginning, when the first ingredient was found by the
algorithm already we see that most of the ingredients have
a 0 cosine similarity. This is because most of the recipes do
not contain oranges at all. This is also true about our target
recipe therefore we are likely to see a huge transition when the
remaining ingredients will be added. We can see three major
trends in the plot. Firstly, the recipes that included orange
start with a high cosine similarity which steadily falls down.
Those are recipes that did not contain never cared or an apple
and each addition of any of those ingredients is moving the

57015

lEEEACC@SS G. Sochacki et al.: Recognition of Human Chef’s Intentions for Incremental Learning

Correlations between right hand and objects Handled Object |dentification Confusion Matrix before HMM filtering

2 Ground Truth for Item Handled
a relevant to recipe. b Nothing Broccoli Carrot Apple Banana Orange Knife
Nothing 622
0.8 =
= Broccoli
o I
= 0.6 g
o ! -
£ Carrot
c
g b
=l @
o T Apple
o 0.4 =
= =
5 2
(v) —— Hand to Carrot 5 panana
0.2 1 Hand to Banana
: Hand to Apple
Hand to Orange @ Orange
—— Hand to Broccoli o
0.0 4 —— Hand to Knife Corr
v T v - T ' T T T Knife
0 10 20 30 40 50 60 70 80 I
Window Number
Handled Object Identification Confusion Matrix - HMM filtered
Ground Truth for Item Handled
C Nothing Broccoli Carrot Apple Banana Orange Knife 00
1
Nothing 622
= Broccali -80
=
T
@ Carrot
- m
5 z
lI: Apple m— Recipe 1
g Recipe 2
5 40 Racipa 3
anana — Recipe 4
Recipe 5
2 o
& Orange 20
Knife 0
1 2 3 4 5 6 7 a8] 10
0 Time since begining of preparation[24s steps]
e 7 T] A 1 T T : T [] T T ir Y |
| 1 ! l i !
] | g
& i | ! i | |
; ﬂ l .i | 1
5 [; | i i
g | ! || ‘ i
g 4+ 1 l i '.—---J 1 |
@ I | i i ! !
L i | | -
21 I 1 ! i
| ! —HMM estimation
l F H = Ground Truth
] H % Correlation Detection
1 | L 1 AF - 1 | 1 I 1
0 20 40 G0 80 100 120 140 160 180

Correlation Window

FIGURE 6. Results of robot reacting to a known recipe. a) Raw correlation scores between paths of the right hand and objects relevant to tasks
done when assembling a salad. Correlations are computed in every 50-frame window across the whole human cooking demonstration of

recipe 1. b) Confusion Matrix showing the results of extraction of the handled item before Markov Filtering and c) is the corresponding matrix
after filtering. Both are compiled based on demonstrations of making 16 salads according to 8 recipes. Two-fold validation was used. d)
Evolution of cosine similarity between the human demonstration of making a salad with recipe no. 2 and all 8 recipes present in the starting
cookbook. e) Visualization of Markov filtering. Demonstration of cooking according to recipe no. 2 is used. States 2,3 and 7 correspond to
handling a carrot, handling an apple and cutting. The actions detected by computer vision are marked as red crosses. Ground truth is shown as a
green dashed line and a solid blue line in the sequence after HMM filtering.

vector further away from the vector of those recipes. The apple, therefore, the addition of one of those is increasing
second group are recipes in which science similarity tends their similarity and adding another one is decreasing them.
to oscillate. Those are recipes that contain either carrot or Finally, we see our recipe 1 which starts from a cosine sim-

57016 VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning IEEEACCGSS

Intention Estimation for Recepie 1 with Triple Portion Intention Estimation for Recepie 1 with Triple Portion
a 5 and One Undetected Ingredient b 3 and Orange Added as Mistake
g08 208}
2 a
o]
& [
ol £
= 06 2061
5 3 0.6
2 £
L _ 5
Eo4 el Eo4r
[] m— Racipa 2 w
£ Racipe 3 g
& w— Recipe 4 @
S 02 Recips 5 6 0.2
Recipe 6
— ROCIpE ?I
——Rucipad
0 i o .
o 2 4] 8 10 12 14 16 18 0 5 10 15 20 25
Time since begining of preparation[24s steps] Time since begining of preparation[24s steps]

Intention Estimation for Recepie 1 with Triple Portion

d 1Iﬂtsnﬂon Estimation for the New Recipe before it was Learned

C and All Apples Added before Carrot
1 e
) : -\' 09

ik / o 08
2 &
B : 207
L] [
E £ 06
300 4
f _ %‘ 05
TEE 04 — RECipE 1 -_E- 04 = Recipe 1
it — Racipe 2 f Fsipa.2
H Recipe 3 L03 Recipe 3
El ——Racipe 4 3 = Recipa 4
o2 Recipe 5™ © o2 e RicipE 5

=== Racipe & =====Recipe &

— Rpcip 7 04 — Rpcips 7

— Recipe B — Racipe B

a a . . A ")
0 5 10 15 20 L1} 2 4 & 8 10 12
Time since begining of preparation[24s steps] Time since begining of preparation[24s steps]
Intention Estimation for the New Recipe after it was Learned
- =y g4 - .
e ! T - -
08
!

Lod
=1

=
=

e
m

=
.

Cosine Similarity with Recipes
(= =]
(= w

=
b

0.1

0 2 4 B 8 10 12
Time since begining of preparation24s steps]

FIGURE 7. Robot’s reaction to salad compositions not present in the cookbook. a) demonstration of recipe 1, but with triple the amount of
ingredients added and one ingredient misdetection. The robot classifies it as recipe no. 1. b) again recipe 1 with triple the amount of ingredients
but also a single piece of orange added as a decoy. The robot still classifies it as a recipe. 1 c) again recipe 1 but now all apples are added before
the carrot. Cosine similarity is constant regardless amount of apples added at the beginning, as the robot understands the proportions of
ingredients well. d) New recipe consisting of 2 carrots and 2 oranges is demonstrated and the robot does not find the recipe of high similarity in
the cookbook. e) After the new recipe is added the robot clearly recognizes this recipe in another demonstration of this recipe where ingredient
order was mixed.

ilarity of zero and steadily climbs up in similarity with the adding apple and card in an alternating fashion which means
addition of any of these ingredients. This is because we are that each pair of addition is increasing a component parallel

VOLUME 11, 2023 57017

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

TABLE 2. Experimental results showing the amount of the ingredients extracted from 16 demonstrations of 8 salad recipes, and the number of
ingredients successfully added by the robot replicating that recipe.

Broccoli Pieces Carrot Pieces Apple Pieces Banana Pieces Orange Pieces
(Extraction 1/ (Extraction 1/ (Extraction 1/ (Extraction 1/ (Extraction 1/
Extraction 2/Robot) | Extraction 2/Robot) | Extraction 2/Robot) | Extraction 2/Robot) | Extraction 2/Robot)

Recipe 1 0/0/0 0/1/1 17171 0/0/0 0/0/0
Recipe 2 0/0/0 3/3/3 17171 0/0/0 0/0/0
Recipe 3 0/0/0 17171 2/2/2 0/0/0 0/0/0
Recipe 4 0/0/0 0/0/0 17171 17171 17171
Recipe 5 0/1/0 0/0/0 1/0/1 2/1/1 3/3/3
Recipe 6 17171 17171 0/0/0 0/0/0 0/0/0
Recipe 7 3/3/3 17171 0/0/0 0/0/0 0/0/0
Recipe 8 0/0/0 0/0/0 0/0/0 2/2/2 2/2/2

to the vector of recipe 1, therefore, diminishing more and
more the starting error of adding an orange. In this case, the
system again successfully finds recipe 1 as the most similar
to the demonstration. Recipe 1 starts to win after adding only
three ingredients out of seven. It has some close contenders
because recipes two and three are also carrot-apple slaw, just
with different proportions of ingredients, hence the similarity
between them in the plot.

In Figure 7c, we see another case. In this experiment, all
ingredients were detected correctly but they were added in a
specific sequence. First, all the carrots were added and then
all the apple pieces were added. This has resulted in a very
specific plot where for the first half of the cooking cosine
similarity didn’t change a lot. This is because adding more
portions of the same ingredients only elongated the vector
which does not change the cosine similarity with any other
vector. On the other hand, we see that when we started adding
apples each addition changed the cosine similarity. This is
because each addition now changes the direction of the vector
in the space. We can also see that in the second half of the
demonstration, we get closer and closer to the recipe that
was demonstrated. This is because indeed adding each piece
of apple is slowly moving the vector direction towards the
direction of the vector of recipe number one.

D. LEARNING NEW RECIPES

We now present a scenario of learning a new recipe. For
this purpose, we use a recipe for carrot orange slaw. This
recipe contains 2 pieces of orange and 2 pieces of carrot.
This recipe is significantly different from all recipes in the
initial cookbook. We have made 2 demonstrations for this
recipe with ingredients added in a different order. The first
demonstration was used as a presentation of a novel recipe
that the robot needs to recognize and learn. We can see the
evolution of this demonstration similar to the other recipes
in Figure 7 d. We can clearly see that the demonstration is
not very similar to any of the recipes. Therefore, the system
adds this new recipe to the cookbook, with the number of
ingredients extracted from the video. Then we use the second
demonstration to see the reaction of the robot to this recipe
after it was learned. The evolution of the cosine similarity is

57018

shown in Figure 7 e. We clearly see that this demonstration
was recognized as the new recipe.

E. ROBOTIC SALAD MAKING

Finally, we report on the robot’s cooking performance across
multiple experiments. We used 16 demonstrations, consisting
of two salads of each recipe, where the order of ingredients in
one of them was the reverse of the other one. Markov model
needs to be trained, therefore we split the data into two groups
to do two-fold validation. Each of the demonstrations is run
through computer vision, and the robot cooks a salad accord-
ing to each of the recipes. The results of these experiments
are shown in Table 2, where we report the number of ingre-
dients detected in the recipe for both variants of each recipe
demonstrated, as well as the number of ingredients added by
the robot when assembling the salad. Comparing these results
to the recipe list we can see that we have had a few salads
where the number of ingredients extracted was not correct.
This error happened in one of the demonstrations of recipe
1 where one of the ingredients was not detected. The recipe
that proved especially hard for the detection was recipe 5,
where there were errors in both variations of demonstrations.
Those errors were both double detections of an ingredient
and some ingredients were also missed. Out of those three
demonstrations that contained errors only one was classified
as a wrong recipe. This was the case for recipe one, likely
due to the recipe containing only two ingredients, which
made missing the detection of one of those a relatively big
error. This makes the system recognize all other ingredients
correctly in 83% of demonstrations, and predict the intention
of the human cook in 94% of cases. The salad-making task
proved feasible and we assembled all of the salad success-
fully.

IV. CONCLUSION AND FUTURE WORK

The paper has shown a system that can recognise human
intention and produce food according to it using a mixture
of human demonstration and previous knowledge (recipes).
It can also incrementally learn new recipes from human
demonstration, effectively making its recipe base larger. The
robot has done it on a rather limited scale and with a limited
variety of dishes. These are the bottlenecks that need to
be overcome to make it more useful practically. The major

VOLUME 11, 2023

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

IEEE Access

limiting factor was the number of classes of objects that we
were able to detect. This is mainly due to the nature of the data
set the neural network used was trained on. The COCO data
set was used here, which had over 50 classes, but only 10 of
them were related to food, and an even lower number of them
were potential salad ingredients. In reality, kitchens contain
many more kinds of utensils, and recipes contain many more
types of ingredients. We are sure that this bottleneck could
be overcome with the current technology as we already use
a network that detects many more classes than we use. The
problem was that most of these classes are not relevant to
cooking. We propose that this problem can be solved by
producing data sets specific to the robot cooking applications
and retraining the current neural networks with this data set.
Possibly, parts of pre-existing datasets could be merged to
make such a dataset.

Moreover, we believe that the action identification pipeline
can be further improved. So far we have used a mixture of
hard coding, feature extraction and machine learning to build
the pipeline. While the pipeline was successful in the labo-
ratory environment, we believe that in the future the whole
system should be put into one, single machine-learning model
that is based on end-to-end learning by neural networks. Such
an approach is unfortunately out of the scope of the current
work due to the large amount of data that would need to
be gathered. This could bring a lot of benefits for example
the Pearson correlation used to identify the grasp item could
be replaced by a feature learned by the convolutional neural
network, and those tend to perform better than human-chosen
features. The neural network could also improve the filtering
that we have done with the hidden Markov model as they can
find more complicated patterns and model the influence of a
large number of past states. All of those are again conditioned
by our ability to gather a large robotic cooking-specific data
set. Automatic generation of such data could be one possible
direction to move robotic cooking forward. The large-scale
experimentation approach is one of the possibilities. There-
fore we propose a setup that produces cooking-specific data
automatically as the future direction. We do not yet spec-
ify which information is necessary and most useful for
robotic cooking and we leave that decision to future research.
Few likely candidates are videos both in the visible and
infrared spectrum of the robot cooking, the text of the cook-
books, but also less known information for example taste-like
sensing.

Finally, we would like to add a few words about the
manipulation ability of the setup used and the path to eco-
nomic viability. Robotic control and manipulation were not
the focus of this work and can be further improved if needed.
Future work should make the setup more robust and above all
cheaper. We have used a general-purpose robotic arm, that
was much more capable than needed, but this setup could
be done with cheaper more task-specific robots. In this case,
a big portion of the deployment costs will be coming from the
programming of the robots. This is where incremental learn-
ing from demonstration comes into the picture and makes

VOLUME 11, 2023

programming the setup for a specific task much faster and
easier.

ACKNOWLEDGMENT

For the purpose of open access, the author has applied a
creative commons attribution (CC BY) license to any author
accepted manuscript version arising.

REFERENCES

[1] R. Erlich, A. Yngve, and M. L. Wahlqvist, “Cooking as a healthy
behaviour,” Public Health Nutrition, vol. 15, no. 7, pp. 1139-1140,
Jul. 2012.

[2] L. P. Smith, S. W. Ng, and B. M. Popkin, “Trends in U.S. home food
preparation and consumption: Analysis of national nutrition surveys and
time use studies from 1965-1966 to 2007-2008,” Nutrition J., vol. 12,
no. 1, pp. 1-10, Dec. 2013.

[3] N. I Larson, C. L. Perry, M. Story, and D. Neumark-Sztainer, ‘“Food

preparation by young adults is associated with better diet quality,” J. Amer.

Dietetic Assoc., vol. 106, no. 12, pp. 2001-2007, Dec. 2006.

Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and inter-

pretable robot manipulation with graph neural networks,” IEEE Robot.

Autom. Lett., vol. 7, no. 2, pp. 2740-2747, Apr. 2022.

[5] T. H. Davenport and S. M. Miller, Fast Food Hamburger Outlets:

Flippy— Robotic Assistants for Fast Food Preparation, 2022,

pp. 147-150.

F. Mauch, A. Roennau, G. Heppner, T. Buettner, and R. Dillmann, “Service

robots in the field: The BratWurst bot,” in Proc. 18th Int. Conf. Adv. Robot.

(ICAR), Jul. 2017, pp. 13-19.

[7] M. Barakazi, “The use of robotics in the kitchens of the future: The exam-
ple of Moley robotics,” J. Tourism Gastronomy Stud., vol. 10, pp. 895-905,
Jun. 2022.

[8] F. Fusté-Forné, “Robot chefs in gastronomy tourism: What’s on the
menu?” Tourism Manage. Perspect., vol. 37, Jan. 2021, Art. no. 100774.

[9] J. Hughes, L. Scimeca, I. Ifrim, P. Maiolino, and F. lida, “‘Achieving
robotically peeled lettuce,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 4337-4342, Oct. 2018.

[10] I. Mitsioni, Y. Karayiannidis, and D. Kragic, “Modelling and learning
dynamics for robotic food-cutting,” in Proc. IEEE 17th Int. Conf. Autom.
Sci. Eng. (CASE), Aug. 2021, pp. 1194-1200.

[11] J.Liu, Y. Chen, Z. Dong, S. Wang, S. Calinon, M. Li, and F. Chen, “Robot
cooking with stir-fry: Bimanual non-prehensile manipulation of semi-
fluid objects,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5159-5166,
Apr. 2022.

[12] B. Cobley and D. Boyle, “OnionBot: A system for collaborative computa-
tional cooking,” 2020, arXiv:2011.05039.

[13] E. Almanzor, T. G. Thuruthel, and F. lida, ““Automated fruit quality testing
using an electrical impedance tomography-enabled soft robotic gripper,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 8500-8506.

[14] L. Scimeca, P. Maiolino, D. Cardin-Catalan, A. P. d. Pobil, A. Morales, and
F. Iida, “Non-destructive robotic assessment of mango ripeness via multi-
point soft haptics,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 1821-1826.

[15] G. Sochacki, J. Hughes, and F. lida, “Sensorized compliant robot gripper
for estimating the cooking time of boil-cooked vegetables,” in Proc. Int.
Conf. Intell. Auton. Syst. Cham, Switzerland: Springer, 2022, pp. 227-238.

[16] G. Sochacki, J. Hughes, S. Hauser, and F. lida, “Closed-loop robotic
cooking of scrambled eggs with a salinity-based ‘taste’ sensor,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2021, pp. 594-600.

[17] Q. Ouyang, J. Zhao, Q. Chen, and H. Lin, “Classification of Rice wine
according to different marked ages using a novel artificial olfactory tech-
nique based on colorimetric sensor array,” Food Chem., vol. 138, nos. 2-3,
pp. 1320-1324, Jun. 2013.

[18] X. Tian, J. Wang, Z. Ma, M. Li, and Z. Wei, “Combination of an E-nose
and an E-tongue for adulteration detection of minced mutton mixed with
pork,” J. Food Qual., vol. 2019, pp. 1-10, Apr. 2019.

[19] J. W. Gardner, H. V. Shurmer, and T. T. Tan, “Application of an electronic
nose to the discrimination of coffees,” Sens. Actuators B, Chem., vol. 6,
nos. 1-3, pp. 71-75, Jan. 1992.

[4

[6

—

57019

IEEE Access

G. Sochacki et al.: Recognition of Human Chef's Intentions for Incremental Learning

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

N. Valente, A. Rudnitskaya, J. Oliveira, E. Gaspar, and M. Gomes,
“Cheeses made from raw and pasteurized cow’s milk analysed by an
electronic nose and an electronic tongue,” Sensors, vol. 18, no. 8, p. 2415,
Jul. 2018.

L. Gil, J. M. Barat, E. Garcia-Breijo, J. Ibafiez, R. Martinez-Madiiez, J. Soto,
E. Llobet, J. Brezmes, M.-C. Aristoy, and F. Toldr4, “Fish freshness anal-
ysis using metallic potentiometric electrodes,” Sens. Actuators B, Chem.,
vol. 131, no. 2, pp. 362-370, May 2008.

D. Danno, S. Hauser, and F. Iida, “Robotic cooking through pose extraction
from human natural cooking using openpose,” in Proc. Int. Conf. Intell.
Auton. Syst. Cham, Switzerland: Springer, 2022, pp. 288-298.

G. Sochacki, A. Abdulali, and F. Iida, ‘““Mastication-enhanced taste-based
classification of multi-ingredient dishes for robotic cooking,” Frontiers
Robot. Al, vol. 9, p. 108, May 2022.

K. Junge, J. Hughes, T. G. Thuruthel, and F. Iida, “Improving robotic
cooking using batch Bayesian optimization,” IEEE Robot. Autom. Lett.,
vol. 5, no. 2, pp. 760-765, Apr. 2020.

M. S. Sakib, D. Paulius, and Y. Sun, “Approximate task tree retrieval in a
knowledge network for robotic cooking,” IEEE Robot. Autom. Lett., vol. 7,
no. 4, pp. 11492-11499, Oct. 2022.

M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus, “Interpreting and
executing recipes with a cooking robot,” in Experimental Robotics. Cham,
Switzerland: Springer, 2013, pp. 481-495.

J. Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,”
2018, arXiv:1804.02767.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C.Berg, “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21-37.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense
object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980-2988.

C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You only learn one represen-
tation: Unified network for multiple tasks,” 2021, arXiv:2105.04206.
T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in
Computer Vision ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, Eds. Cham, Switzerland: Springer, 2014, pp. 740-755.

Z.Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “OpenPose: Realtime
multi-person 2D pose estimation using part affinity fields,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172-186, Jan. 2021.

Z. Liu, H. Chen, R. Feng, S. Wu, S. Ji, B. Yang, and X. Wang, “Deep
dual consecutive network for human pose estimation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 525-534.

I. K. R. A. Guler and N. Neverova, “Densepose: Dense human pose
estimation in the wild,” Tech. Rep., 2018.

B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang, “High-
erHRNet: Scale-aware representation learning for bottom-up human pose
estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 5385-5394.

X. Rong, ‘“Word2vec parameter
arXiv:1411.2738.

L. Ma and Y. Zhang, “Using Word2 Vec to process big text data,” in Proc.
IEEE Int. Conf. Big Data (Big Data), Oct. 2015, pp. 2895-2897.

D. Jatnika, M. A. Bijaksana, and A. A. Suryani, “Word2 Vec model
analysis for semantic similarities in english words,” Proc. Comput. Sci.,
vol. 157, pp. 160-167, Jan. 2019.

learning explained,” 2014,

GRZEGORZ SOCHACKI received the bachelor’s
and master’s degrees in electronics and electrical
engineering from The University of Edinburgh,
in 2019, and the master’s degree in robotics from
the University of Lincoln, in 2020. He is currently
pursuing the Ph.D. degree in robotics with the
University of Cambridge.

His research interests include electronic taste,
robotic chefs, machine learning, and signal
processing.

57020

ARSEN ABDULALI (Member, IEEE) received
the B.S. degree in information security from the
Tashkent University of Information Technologies,
Tashkent, Uzbekistan, in 2014, and the Ph.D.
degree from the Department of Computer Science
and Engineering, Kyung Hee University, Seoul,
South Korea. During the Ph.D. degree, he devel-
oped a unified framework that enables haptic
interaction with virtual objects. The framework
considers both surface properties by modeling
vibrotactile feedback induced by the haptic texture and material proper-
ties that they experience through the deformation of an object. In 2021,
he joined the Bio-Inspired Robotics Laboratory, Department of Engineering,
University of Cambridge, as a Research Associate. His research interests
include modeling haptic interaction for the robotics and virtual and aug-
mented realities. In 2022, he was awarded a three-year Marie Skdowska-
Curie Fellowship.

NARGES KHADEM HOSSEINI (Member, IEEE)
received the B.S. degree in electrical engineering
from Technical and Vocational University, Tehran,
Iran, in 2014, and the M.S. degree in control sig-
naling from the Iran University of Science and
Technology, Tehran, in 2016. She is currently
a Researcher in robotics with the Department
of Engineering, University of Cambridge, Cam-
bridge, U.K. Her research interests include opti-
mization techniques and applications and machine
learmng and intelligent systems, such as neural networks and fuzzy systems
applied in control systems.

FUMIYA IIDA (Senior Member, IEEE) received
the bachelor’s and master’s degrees in mechanical
engineering from the Tokyo University of Science,
Japan, in 1999, and the Dr. sc. nat. degree in
informatics from the University of Zurich, in 2006.
He is currently a Professor in robotics with the
Department of Engineering, University of Cam-
bridge. From 2006 to 2009, he was a Postdoc-
toral Associate with the Computer Science and
Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, USA. In 2006, he was awarded the Fellowship for
Prospective Researchers from the Swiss National Science Foundation, and in
2009, he was appointed as a Swiss National Science Foundation Professor for
Bio-Inspired Robotics with ETH Zurich. He has been involved in a number
of research projects related to dynamic legged locomotion, navigation of
autonomous robots, and human—machine interactions. He has published
over 40 publications in major robotics journals and conferences and edited
two books. His research interests include biologically inspired robotics,
embodied artificial intelligence, and biomechanics. Currently, he serves on
the editorial board for the Soft Robotics journal and Frontiers in Robotics
and Al (Bio-Inspired Robotics Section) and a program committee member
for international conferences and workshops. In addition, he has organized
a few seminal meetings, such as the International Conference of Embodied
Intelligence, RoboSoft, and TAROS.

1
1

VOLUME 11, 2023

