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ABSTRACT The novel metaheuristic manta ray foraging optimization (MRFO) algorithm is based on
the smart conduct of manta rays. The MRFO algorithm is a newly developed swarm-based metaheuristic
approach that emulates the supportive conduct performed by manta rays in search of food. The MRFO
algorithm efficiently resolves several optimization difficulties in various domains due to its ability to provide
an equilibrium between global and local searches during the search procedure, resulting in nearly optimal
results. Thus, researchers have developed several variants of MRFO since its introduction. This paper
provides an in-depth examination of recentMRFO research. First, the paper introduces the natural inspiration
context ofMRFO and its conceptual optimization framework, and thenMRFOmodifications, hybridizations,
and applications across different domains are discussed. Finally, a meta-analysis of the developments of the
MRFO is presented alongwith the possible future research directions. This study can be useful for researchers
and practitioners in optimization, engineering design, machine learning, scheduling, image processing, and
other fields.

INDEX TERMS Global search, local search, manta ray foraging optimization (MRFO), metaheuristic,
optimization.

I. INTRODUCTION
The application of optimization algorithms to address
numerous complex optimization problems has recently risen.
Before this progress, mathematical procedures, such as
dynamic, linear, and nonlinear programming, were applied
to manage complex optimization problems. These techniques
efficiently obtain optimal solutions but cannot be applied to
a wide range of nondeterministic polynomial-time complete
problems, where the exact solution cannot be obtained
in polynomial time, and the time complexity increases
exponentially with the input. Thus, these techniques are
unsuitable for real-world applications [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

Metaheuristic optimization algorithms, which emerged
from the study and simulation of intelligent conduct and
processes in nature, have been proposed to address these
limitations [3], [4]. These algorithms effectively determine
nearly optimum solutions to complex optimization prob-
lems in polynomial time, especially when managing large-
scale problems. Furthermore, metaheuristic algorithms can
overcome a significant problem of local search algorithms,
the entrapment of solution search agents in local regions
far from the intended global solution region. Avoidance of
entrapment in local optima is the primary design challenge
of metaheuristic algorithms. Global optima are achieved
using intelligent stochastic operators for exploring the entire
search space. Therefore, the entire search performance of
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metaheuristic algorithms relies on an adequate balance
between exploration and exploitation.

Exploration is a randomization strategy that attempts to
drive the algorithm procedure to search the entire search
space diversely, whereas exploitation deals with enhancing
the current solution to the problem by examining the vicinity
of such solutions. Numerous solution areas may be loosely
explored if the exploration is high, resulting in a low
convergence speed. In contrast, if the exploration is low
in the algorithm design, numerous solution areas might be
left unsearched, resulting in nonoptimal solutions due to
entrapment in local optima. Adequate exploitation is achieved
by searching within the vicinity of the acquired solution and
adequately tuning the control parameters of the algorithm to
the convergence rate [5].

Recently, the development of new advanced metaheuristic
algorithms has been on the rise, and they are categorized
based on their working methodologies. These procedures
have been useful in resolving real-world optimization dif-
ficulties arising in various domains, including engineering,
medicine, industrial planning, resource scheduling, computer
science, and transportation, among others.

Based on the operational working of these algorithms,
they are categorized into evolution-based, physics-based,
and swarm intelligence algorithms [6], but most fall under
swarm intelligence, as they are motivated by simulating
intelligent conduct demonstrated by biological agents. Some
of these algorithms include the sailfish optimizer [7], salp
swarm algorithm (SSA) [8], memetic algorithm [9], genetic
algorithm (GA) [10], particle swarm optimization (PSO) [11],
differential evolution (DE) [12], ant colony optimization
(ACO) [13], bat optimization algorithm [14], tunicate swarm
algorithm [15], emperor penguin optimizer [16], symbiotic
organism search [17], marine predator algorithm [18], and
manta ray foraging optimization (MRFO) [19]. The existing
metaheuristic algorithms are distinguished by the balancing
strategy between exploration and exploitation, the solution
update scheme, or phenomena that inspired the algorithm
design. Regardless of their categories, metaheuristic algo-
rithms are primarily placed into two groups based on the lit-
erature: single or population based. In the single-based meth-
ods, the search usually begins with the solution of one can-
didate, which is enhanced during each iteration. In contrast,
the population-based metaheuristic begins the search process
with an initial random population, enhanced during iterations,
effectively exploring the search area. The concept of memetic
algorithms aims to hybridize the strategies of single- and
population-based approaches to provide a decent equilibrium
between the exploration and exploitation of the search
procedure.

The article suggests that surveying the MRFO algorithm
could be a novel approach in several ways. First, it provides a
comprehensive review of the literature on MRFO, highlight-
ing areas for future research. Second, it compares the MRFO
algorithm with other optimization algorithms to identify its
unique features and differences from the others. Third, it

identifies the potential practical applications in various fields,
such as engineering,machine learning, scheduling, and image
processing. Finally, the survey focuses on future directions
for researchers aiming to modify, improve, or apply MRFO
in other fields. Overall, the survey could provide a valuable
contribution to optimization algorithms. Table 1 lists the
abbreviations used in the paper.

II. MANTA RAY FORAGING OPTIMIZATION PROCEDURE
The MRFO algorithm is a new population-based metaheuris-
tic approach presented in [19]. This section discusses and
analyses the MRFO algorithm from various optimization
viewpoints. The motivation behind MRFO is presented,
and the practical stages of the MRFO algorithm are
provided.

A. MOTIVATION BEHIND THE MRFO ALGORITHM
The MRFO algorithm is a newly developed swarm-based
approach that imitates the food-searching behavior of
manta rays. The algorithm uses three strategies manta
rays employ to search for plankton: chain food searching,
cyclone food searching, and somersault food hunting. These
strategies identify the location with the highest plankton
density, which is returned as the best solution to the
optimization problem. This social conduct was imitated
to design the MRFO algorithm to handle global opti-
mization problems, in which the location with the highest
density is returned as the best solution to the considered
problem.

B. PROCEDURAL STAGES OF THE MRFO ALGORITHM
The procedural stages and model of the MRFO algorithm are
discussed and presented. These stages are the chain, cyclone,
and somersault food-searching approaches. The procedural
stages of the MRFO algorithm are presented in Fig. 1.
Moreover, Algorithm 1 provides the pseudocode.

1) CHAIN FOOD-SEARCHING APPROACH
In this approach, every manta ray updates its present location
using the best solution obtained and the position of the one in
front of it, excluding the first one, which updates its location
according to the best solution so far achieved. This approach
is represented by the mathematical system of equations in (1):

pitr+1
k =


pitrk + rn ∗

(
Gbest itr − pitrk

)
+ 2 ∗ rn

∗
√

|log (r)| ∗
(
Gbest itr − pitrk

)
k = 1

pitrk + rn ∗
(
pitrk−1 − pitrk

)
+ 2 ∗ rn

∗
√

|log (r)| ∗
(
Gbest itr − pitrk

)
k = 2, . . . ,N

(1)

where rn denotes a number between [0, 1], N represents the
total number of manta rays (i.e., population size), pitrk is the
location of the k th manta ray in iteration itr , pitr+1

k defines its
new location in the coming iteration, and Gbest depicts the
best global solution achieved.
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TABLE 1. List of abbreviations.

FIGURE 1. Flowchart depicting the manta ray foraging optimization
procedure.

2) CYCLONE FOOD-SEARCHING APPROACH
In this approach, the manta rays walk in the search
domain cyclically. Subsequently, the cyclone approach is

mathematically represented using (2):

pitr+1
k

=



Gbest + rn ∗
(
Gbest itr − pitrk

)
+ 2∗

ern∗
MaxItr−itr+1

MaxItr ∗ sin (2 ∗ π ∗ rn) ∗
(
Gbest itr − pitrk

)
,

k = 1
Gbest + rn ∗

(
pitrk−1 − pitrk

)
+ 2∗

ern∗
MaxItr−itr+1

MaxItr ∗ sin (2 ∗ π ∗ rn) ∗
(
Gbest itr − pitrk

)
,

k = 2, . . . ,N
(2)

where MaxItr indicates the number of iterations to perform
by the algorithm, and rn defines the number in the interval
of [0, 1]. Manta rays make a random walk by updating
their locations based on random positions to enhance
diversification, as mathematically performed in (3):

pitr+1
k =



prn + rn ∗
(
pitrrn − prn

)
+ 2 ∗ ern∗

MaxItr−itr+1
MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
pitrrn − pitrk

)
,

k = 1

prn + rn ∗
(
pitrk−1 − pitrk

)
+ 2 ∗ ern∗

MaxItr−itr+1
MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
pitrrn − pitrk

)
,

k = 2, . . . ,N
(3)

where prn represents a reference point in the search domain
defined in (4):

prn = LowerBound + rn ∗ (UpperBound − LowerBound) .

(4)

VOLUME 11, 2023 53317



A. Mohammed et al.: Manta Ray Foraging Optimization Algorithm: Modifications and Applications

The lower and upper boundaries of the search domain are
defined, respectively, as LowerBound and UpperBound.

3) SOMERSAULT FOOD-SEARCHING APPROACH
Each manta ray adjusts its location in this approach by
performing a somersault walk in the direction of the best
location discovered thus far. The mathematical description of
this strategy is provided in (5):

pitr+1
k = pitrk + Somersault factor ∗ (rn1

∗Gbest − rn2 ∗ pitrk
)

, i = 1, . . . ,N . (5)

The somersault factor is given as 2, and rn1 and rn2 represent
numbers in the interval (0, 1).

III. RECENT VARIANTS OF MRFO
Researchers have proposed improved versions of the MRFO
algorithm to address its limitations and improve its per-
formance. These improved versions use various techniques,
such as adaptive learning rates, hybridization, multistrategy
searches, dynamic parameter adaptation, and dynamic search
space partitioning, to enhance the search capabilities of the
algorithm. These improved versions of the MRFO algorithm
have displayed promising results in solving complex opti-
mization problems. Several versions of the native MRFO
have recently been developed since its introduction to guaran-
tee decent stability between the exploration/exploitation and
boost the ability and power of classical MRFO. In this review,
numerous variations of MRFO are categorized into modified
and hybridized variants, as indicated in Fig. 2.

FIGURE 2. Different manta ray foraging optimization variations.

A. MODIFIED VARIANTS OF MRFO
This section presents the modified versions of MRFO,
categorized as binary, chaotic, opposition-based lines, Levy-
flight mechanisms, crossover/mutation operators, adaptive,
fractional-order calculus (FC), multiobjective (MO), and

Algorithm 1Manta Ray Foraging Optimization Algorithm
Initialize the manta ray (agents) populations k = 1, . . . ,N
while stopping criteria not satisfied do for k =

1, . . . ,N , do if rn < 0.5, then if
( itr
MaxItr

)
<

rnthen, //Cyclone food searching prn = LowerBound +

rn ∗ (UpperBound − LowerBound)

pitr+1
k =



prn + rn ∗
(
pitrrn − prn

)
+ 2 ∗ ern∗

MaxItr−itr+1
MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
pitrrn − pitrk

)
,

k = 1prn + rn ∗
(
pitrk−1 − pitrk

)
+ 2∗

ern∗
MaxItr−itr+1

MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
pitrrn − pitrk

)
,

k = 2, . . . ,N

else

pitr+1
k =



Gbest + rn ∗
(
Gbest itr − pitrk

)
+ 2∗

ern∗
MaxItr−itr+1

MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
Gbest itr − pitrk

)
,

k = 1Gbest + rn ∗
(
pitrk−1 − pitrk

)
+ 2∗

ern∗
MaxItr−itr+1

MaxItr ∗

sin (2 ∗ π ∗ rn) ∗
(
Gbest itr − pitrk

)
,

k = 2, . . . ,N

end if else //Chain food searching

pitr+1
k =


pitrk + rn ∗

(
Gbest itr − pitrk

)
+ 2 ∗ rn ∗

√
|log (r)|

∗
(
Gbest itr − pitrk

)
k = 1pitrk + rn ∗

(
pitrk−1 − pitrk

)
+2 ∗ rn ∗

√
|log (r)|

∗
(
Gbest itr − pitrk

)
k = 2, . . . ,N

end if
// Compute fitness for the kth manta ray f (pitr+1

k )
if f (pitr+1

k ) < f
(
Gbest itr

)
, then Gbest itr = pitr+1

k
end if end for // Somersault food searching for k =

1, . . . ,N , do pitr+1
k = pitrk + somersaultfactor ∗(

rn1 ∗ Gbest − rn2 ∗ pitrk
)
, i = 1, . . . ,N // Compute

fitness for kth manta ray f (pitr+1
k ) if f (pitr+1

k ) <

f
(
Gbest itr

)
, then Gbest itr = pitr+1

k end if end for
end while

other methods. The recently improved forms of MRFO are
summarized in Table 2, and the details are provided below.

1) BINARY MRFO
The binary version of MRFO has been applied to solve
various binary optimization problems, such as binary knap-
sack problems, binary integer programming, and feature
selection problems. One advantage of the binary version of
the MRFO is that it can address problems with numerous
decision variables, making it suitable for high-dimensional
binary optimization problems. For instance, Ghosh et al. [20]
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presented a binary MRFO using the V- and S-shaped transfer
functions for solving attribute extraction problems. Eight
diverse continuous-to-binary conversion functions, four each
from S- and V-shaped functions, were applied in the binary
MRFO to make it suitable for addressing the attribute
extraction problem.

Hassan et al. [21] presented an intrusion detection model
using a new binary MRFO algorithm based on the adaptive
S-shaped transfer function and the random forest (RF)
classifier. The adaptive binary MRFO was proposed to
enhance the performance of the MRFO in identifying the
most critical features in detecting network intrusions. Based
on the selected features, the proposed approach employed the
RF classifier to classify the network intrusions. In summary,
the binary version of MRFO is a robust metaheuristic
algorithm that can efficiently solve a wide range of binary
optimization problems by representing the decision variables
as binary strings and employing binary selection, crossover,
and mutation operators.

2) CHAOTIC MRFO
The chaotic version of the MRFO algorithm introduces chaos
theory concepts to improve its exploration and exploitation
abilities. Chaotic maps generate random numbers to initialize
the population and update the search directions of the manta
rays. One standard chaotic map used in the chaotic version of
the MRFO algorithm is the logistic map, a one-dimensional
(1D) map extensively studied in chaos theory. The chaotic
version of the MRFO algorithm uses the logistic map to
generate random numbers to initialize the population and
update the search directions of the manta rays. The chaotic
version of the MRFO algorithm also uses chaotic local
search techniques to improve the search process. In a chaotic
local search, a chaotic map generates random numbers
that determine the direction and magnitude of the search
movement. The search process is performed in the local
search area around the current solution, and the chaotic map
determines the search movement.

Xu et al. [22] designed a modified MRFO called the
developedMRFO, where two adjustments were introduced to
solve the early convergence problem of the original MRFO.
The first adjustment introduced a self-adaptive weighting
strategy to update the particle locations in somersault
foraging to the random control values. In the second
adjustment, a logistic map was incorporated into the cyclone
and somersault foraging update location equation to replace
the random values and somersault factor to reduce the
problem of trapping in the local optima.

Turgut [23] optimized a real-world design problem using
chaos-improved MRFO. The author applied more than
20 chaotic maps to MRFO to replace various random
numbers required in the update position equations for
MRFO and the ten best-performing methods for validation.
Additionally, the chaotic MRFO variations were employed
to maintain the thermo-economic design optimization of an

air-fin cooler to assess the capacity to overcome challenging
engineering design problems. The proposed chaotic-based
MRFO significantly improved the objective function values
for the thermal design problem.

Ćalasan et al. [24] incorporated a logistic map into MRFO
to find the parameters of a single phase and two new
transformers. Furthermore, the authors proposed a no-load
damage function in the assessment procedure as a fitness
function. The chaotic MRFO parameters were contrasted
with the original MRFO and other approaches from the
literature to measure the efficacy of the presented approach
using the values obtained by the classical test method
suggested by IEEE. The outcomes suggest that the chaotic
MRFO-based predicted factors assist output characteristics,
which agree with the experimental characteristics.

Qiufeng and Genbei [25] proposed an enhancedMRFO for
fiber Bragg grating demodulation, where a tent-chaotic map
was used to enhance the initial population, and various DE
operators were also incorporated to enhance the individual
update location strategy. The experimental outcomes for
the multifiber Bragg grating overlapping spectrum indicate
that the proposed approach can effectively demodulate the
center wavelength of the overlapping spectrum, efficiently
reducing the probability of trapping in the local optimum and
enhancing the reliability and stability of the algorithm.

In summary, the chaotic version of the MRFO algorithm
is a robust metaheuristic algorithm that can efficiently
solve optimization problems by introducing chaos theory
concepts into the search process. The algorithm can improve
the exploration and exploitation abilities of the search
process using chaotic maps to generate random numbers
and incorporating chaotic local search techniques, leading to
better-quality solutions.

3) OPPOSITION-BASED LEARNING MRFO
The opposition-based learning (OBL) MRFO algorithm
combines OBL and MRFO to enhance search efficiency and
accuracy. In OBL-MRFO, each ray in a group is duplicated,
and the duplicate is assigned the opposite position of the
original. The opposite position is obtained by inverting the
values of each dimension of the original position. The fitness
of the original and opposite rays is evaluated, and the best
solution is selected to update the position of the original ray.
This process is repeated for all rays in the group, increasing
the diversity of the population and improving the convergence
speed.

Feng et al. [26] suggested improved MRFO (IMRFO)
with two adjustments. First, a popular approach, the OBL
method, was incorporated to achieve further efficient results
in the algorithm. A self-adaptive technique was applied
for individual size adjustment in the second adjustment.
The IMRFO was applied to reduce energy consumption by
constructing shape optimization.

Furthermore, Ekinci et al. [27] suggested an effec-
tive approach via an IMRFO to regulate magnetic
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object deferment. The IMRFO algorithm combined the
native MRFO, generalized OBL, and Nelder–Mead (NM)
approaches. The enhanced MRFO is the opposition-based
MRFO with NM (Ob-MRFONM). In Ob-MRFONM, the
NM approach was added to boost the algorithm exploration
search capability, whereas generalized OBL provides a better
exploitation search capability.

Houssein et al. [28] presented an IMRFO for resolving
multilevel thresholding using computed tomography (CT)
images of the coronavirus disease 2019 (COVID-19). In this
study, to enhance the population diversity of the native
MRFO, an OBL mechanism was integrated at the initial-
ization stage of MRFO. This improved algorithm is called
MRFO based on OBL. The presented MRFO-OBL was
assessed using Otsu’s technique and was contrasted using
the sine cosine algorithm (SCA), moth-flame optimization
(MFO), equilibrium optimizer, whale optimization algorithm
(WOA), SSA, and the native MRFO algorithm.

Abdul Razak et al. [29] offered a quasi-oppositional
MRFO for proportional-integral-derivative (PID) control of
a pendulum system. The study incorporated a quasi-based
OBL to improve results by considering the opposite agent
fitness positions. Abdul Razak et al. [30] also suggested
an enhanced MRFO using an OBL approach called quasi-
reflected opposition, which was integrated into MRFO to
enhance the ability of MRFO to obtain better result accuracy
and a better convergence rate.

In summary, the OBL-MRFO is a robust optimization
algorithm combining the strengths of opposition-based
learning and MRFO. Its effectiveness has been demonstrated
in various applications, and further research may focus on
reducing its computational cost to extend its application to
larger problems.

4) MRFO WITH LEVY-FLIGHT MECHANISM
In the Levy-flight version of the MRFO algorithm, the manta
rays move randomly in the search space by performing
a combination of the random walk and Levy flight. The
random walk is performed to explore the local search
space, whereas the Levy flight explores the global search
space. The direction and step size of the Levy flight are
determined by a probability distribution function called
the Levy distribution. The combination of the Levy flight
and MRFO algorithm improves the exploration ability
of the search process, enabling the algorithm to escape
from local optima and determine better solutions faster.
Furthermore, the Levy-flight version of the MRFO algo-
rithm is more suitable for high-dimensional optimization
problems because it can explore the search space more
efficiently.

Sheng et al. [31] proposed a modified MRFO called
balanced MRFO to reduce the sum of the squared error
between the simulated and estimated output voltages for
better agreement among them to model and experiment with
the proton-exchange membrane fuel cell. In the suggested

balanced MRFO, a Levy-flight mechanism was incorporated
in the update mechanism of the cyclone foraging to improve
the convergence ratio of MRFO. Moreover, the constant
somersault factor in the original MRFO was replaced with
a sinusoidal chaotic map to prevent entrapment in the local
optima.

Hao and Xianyu [32] presented an enhancedMRFO via the
Levy-flight scheme, enhancing its ability to escape the local
minimum and balance its local and global search ability. The
proposed MRFO was used to adjust the weight and threshold
of the backpropagation neural network (NN), and the Morlet
wavelet technique was applied to predict short-term loads.
The outcomes demonstrate that the forecasting convergence
rate and accuracy of the enhanced model were significantly
enhanced.

An IMRFO was presented by Liao et al. [33], imple-
menting a searching control feature based on the MRFO
week global search capability, which may efficiently upsurge
its global search capability. A Levy-flight scheme with
an adaptive weight coefficient was also used to avoid
premature convergence. Additionally, the mutation space is
flexibly tuned using the Morlet wavelet technique to enhance
the capacity of IMRFO to emerge from sluggishness and
accelerate convergence.

Zhu et al. [34] proposed a k-means-based image segmen-
tation approach using an IMRFO algorithm. The IMRFO
uses a Levy-flight mechanism to enhance the flexibility of
individual manta rays and present a random walk strategy
to stop the algorithm from local optimum entrapment.
Moreover, PSO learning was integrated to enhance the
algorithm convergence correctness. The IMRFO optimizes
the k-means algorithm to avoid sinking into local optima,
improving the stability of the k-means algorithm.

In summary, the Levy-flight version of the MRFO algo-
rithm is a robust metaheuristic algorithm that incorporates
the Levy-flight behavior into the search process to enhance
the exploration ability of the algorithm. Combining the
random walk and Levy flight allows the algorithm to explore
the search space more efficiently, leading to better-quality
solutions. The Levy-flight version of the MRFO algorithm
is particularly useful for high-dimensional optimization
problems.

5) MRFO WITH CROSSOVER/MUTATION OPERATORS
In the MRFO algorithm, crossover and mutation operators
generate new solutions by combining existing solutions
or making minor modifications to existing solutions. The
crossover operator combines two parent solutions to generate
a new offspring solution. The mutation operator makes slight
random modifications to the solution. The crossover and
mutation operators in the MRFO algorithm generate new
solutions and diversify the population. Combining existing
solutions and making slight random modifications allows the
MRFO algorithm to explore the search space more efficiently
and determine better-quality solutions.

53320 VOLUME 11, 2023



A. Mohammed et al.: Manta Ray Foraging Optimization Algorithm: Modifications and Applications

Ahmad et al. [35] incorporated crossover and mutation
mechanisms into MRFO to enhance its divergence and
convergence actions. Several touchstone functions and an
interval Type-2 fuzzy-logic controller of an inverted pendu-
lum model were used to test the proposed modified MRFO.
The outcome reveals that the modified MRFO outperforms
the GA and original MRFO and offers better parameters for
the controller model.

Abdel-Basset et al. [36] incorporated hybrid genetic
operators into MRFO (HMRFO) to manipulate the binary
outcomes it attained to facilitate its local search ability. This
new modified MRFO investigates using the Merkle–Hellman
knapsack cryptosystem (MHKC) in the blockchain to enable
Internet of Things (IoT) models. The simulation results
indicate that, compared to native MRFO and seven other
methods, HMRFO is an excellent alternative to the methods
for attacking the MHKC with knapsack lengths of more than
eight bits to reveal their weak points.

Wu et al. [37] proposed an IMRFO, which hybridizes the
properties of the Cauchy mutation and original MRFO to
improve the exploration capability and speed of MRFO. The
proposed IMRFO was used to determine the best path for
path planning for mobile robots. The experimental results
indicate that IMRFO attains an effective path with superior
efficiency over PSO and MRFO and offers a great tool to
handle problems associated with mobile-robot path planning.

Mohamed et al. [121] presented an integrated variant of
MRFO with the triangular mutation operator and orthogonal
learning strategy. The two approaches are considered to
achieve a robust balance between algorithm cores and provide
a reliable mechanism to guide search agents during opti-
mization. The numerical experiments proved the competitive
performance of the proposed method in solving all tested
CEC optimization and engineering problems.

In summary, the crossover and mutation operators are
essential components of the MRFO algorithm. The MRFO
algorithm can efficiently explore the search space and
determine better-quality solutions using these operators to
generate new solutions and diversify the population. The
specific types of crossover and mutation operators used in the
MRFO algorithm depend on the problem being solved and
the characteristics of the search space.

6) MRFO WITH ADAPTIVE STRATEGIES
Adaptive strategies are used in the MRFO algorithm to adjust
the parameters based on performance in the search process.
The algorithm parameters that can be adjusted adaptively
include the step size, angle of turning, size of the vision field,
and probability of performing manta ray looping behavior.
Tang et al. [38] proposed a modified MRFO for solving
global optimization difficulties to address the shortcomings
associated with the native MRFO, including the weak global
search ability, trapping in the local optima, and decreasing
population diversity. To address these problems, the authors
incorporated three schemes into themodifiedMRFO.An elite

search pool was used to enhance its local search ability.
An adaptive control factor scheme was also integrated
to expand the range of the MRFO exploration capability
in the initial step and improve the exploitation search
capability in the subsequent phase. Moreover, the authors
employed a distribution approximation scheme to fine-
tune the evolutionary path based on the leading population
information to enhance the convergence criteria.

Jena et al. [39] proposed an enhanced MRFO, the
attacking MRFO, which includes an additional attacking
power, updating itself every iteration and offering the
energy needed to prevent early convergence. In addi-
tion, Jusof et al. [40] proposed an adaptive-somersault
MRFO to boost the global and local search ability of
the native MRFO for resolving optimization difficulties.
The suggested approach incorporated an adaptive location
update sine-based approach into the native MRFO to boost
its optimization capabilities. Further, Shaheen et al. [41]
designed and improved MRFO with an adaptive penalty
function to attain the utmost viable and optimum functioning
points for solving cogeneration system economic dispatch
problems.

In summary, the adaptive strategies used in the MRFO
algorithm are critical for adjusting the algorithm parameters
based on performance in the search process. By adjusting
the step size, angle of turning, size of the vision field, and
probability of performing the manta ray looping behavior
adaptively, the MRFO algorithm can efficiently explore the
search space and determine better-quality solutions. The
specific adaptive strategies used in the MRFO algorithm
depend on the problem being solved and the characteristics
of the search space.

7) MRFO WITH FRACTIONAL-ORDER CALCULUS
The use of FC in the MRFO algorithm involves the
replacement of the traditional integer-order derivatives with
fractional-order derivatives. Fractional-order derivatives have
more flexibility in capturing the complex behavior of the
search space. Using FC in the MRFO algorithm can lead
to better exploration and exploitation of the search space,
resulting in improved optimization performance.

Abd Elaziz et al. [42] presented a new variant of MRFO
to handle complicated optimizations and multilevel image
segmentation difficulties. The MRFO was enhanced by
incorporating FC in the local search stage in the presented
approach.

In addition, Yousri et al. [43] suggested a new variation
of MRFO, fractional-order Caputo MRFO, implementing
FC based on the Caputo fractional differential operator to
improve the manta ray movement in the local search stage.
This improvement was made by exploiting the dependency
history of FC to enhance searching for the best results by
sharing the historical experience through the optimization
procedure. Furthermore, the constant somersault factor was
adaptively adjusted to avoid untimely convergence.
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In summary, using FC in the MRFO algorithm is a
promising approach to improve performance in solving
complex optimization problems. By replacing the traditional
integer-order derivatives with fractional-order derivatives, the
algorithm can better capture the complex behavior of the
search space, leading to improved optimization performance.
However, using FC should be carefully balanced with the
computational cost to ensure efficiency.

8) MULTIOBJECTIVE MRFO
The MRFO algorithm is a population-based metaheuristic
algorithm for solving single-objective optimization problems.
However, many real-world problems involve multiple objec-
tives that must be optimized simultaneously. Researchers
have extended the MRFO algorithm to solve MO optimiza-
tion problems to address this problem. The MO MRFO
algorithm is one such extension to solve MO optimization
problems. The MO MRFO algorithm maintains a population
of solutions representing the trade-offs between different
objectives. The algorithm aims to determine a set of optimal
solutions concerning all objectives simultaneously.

Elattar et al. [44] proposed a MO MRFO using external
storage for the nondominated Pareto particles. This approach
adaptively changed the objective function by iteratively
varying the weights. In addition, an approach for order
preference using the similarity to the best results was
employed to mine an appropriate working point between the
Pareto outcome set.

Hemeida et al. [45] developed MRFO to handle MO issues
of distributed generator (DG) units. The proposed approach
optimizes three conflicting objectives: voltage deviation
minimization, active power loss minimization, and voltage
constancy index maximization.

To create combined AC and multiterminal DC (MTDC)
power networks effectively, Shaheen et al. [17] presented a
MO MRFO called MO-MRFA. The suggested MO strategy
intends to reduce environmental radiation, broadcast power
damage, and overall production fuel costs in the AC/MTDC
broadcast schemes. An extra Pareto archive was added to the
MO-MRFA to preserve the findings that are not dominating.
Iteratively altering the form of the active objective function
also engages a dynamic adaptation of the objective feature.
A fuzzy decision-making process chooses the ideal function-
ing point for the AC/MTDC power networks.

Sultan et al. [46] adopted MRFO for the best sizing of
the combined renewable generating scheme comprising fuel
cells, photovoltaics (PVs), and wind turbines under the MO
scenario, reducing the power supply loss probability and
energy cost. Zouache andAbdelaziz [47] extended theMRFO
to handle MO issues. The extended MO MRFO employs
a population storing procedure to store the nondominated
produced results so far from the global search procedure. The
top outcomes are chosen from the population archive to lead
the manta ray population to a favorable area. Furthermore,
to offer decent stability between convergence and diversity

of the acquired possible Pareto set, ε-dominance and distance
crowding strategies were added.

Got et al. [48] developed a novel MO algorithm using
MRFO to address MO engineering problems. The developed
MO MRFO algorithm uses an elitist theory to store the
Pareto outcome set by incorporating external storage in the
original MRFO. This storage is defined as a warehouse
from which an exploration particle is selected based on its
degree of density to govern the diversity and convergence
of manta rays. Haris and Zubair developed a dynamic load-
balancing technique using a hybrid algorithm called the
MRFO improved MO Harris hawks optimization (HHO)
algorithm (MMHHO) [49]. The study used MRFO to modify
the search area of the HHO algorithm by considering
resource utilization, cost, and response time. The MMHHO-
based load-balancing approach effectiveness was analyzed
and compared with MPSO, QMPSO, MRFO, HHO, and
Q-learning for the number of variables. The experimental
output confirmed that the suggested MMHHO approach
outperformed the contrasted algorithms for load balancing in
cloud computing.

Kahraman et al. [50] suggested an approach for finding
the best solutions for MO optimal power flow (MOOPF).
The developed MOOPF was based on a Pareto achieving
technique using distance crowding. The statistical analysis
revealed that the MOOPF produces a good result on diverse
MO problems and can obtain the optimum solution compared
with the OMNI, DN-NSGAII, NSGAII, SPEA2, and MO ant
lion optimization methods. Ramadan et al. [51] employed
the MRFO method to approximate rankings and assignments
of renewable DGs for an MO function that reduces the
total probable cost, overall radiation, and overall model
voltage abnormality, improving the forecasted overall voltage
constancy.

Abdul Razak et al. [52] presented anMO variant of MRFO
using NSGAII, where MRFO is equipped with a nondom-
inated sorting mechanism, such as crowding distance, and
is a sorting procedure established on Pareto’s game. It is
a quick approach to designing a decent distinctive Pareto
front. In contrast, crowding distance is an approach to reserve
decent result sharing along the Pareto front. The suggested
MO is called NSMRFO, which was validated using several
standard functions, and its efficacy was contrasted with
other approaches using a statistical study of hypervolume
metrics.

The MO MRFO algorithm is effective in solving MO
optimization problems. It can determine a diverse set of
Pareto optimal solutions in a reasonable time. However, like
all MO optimization algorithms, the MO MRFO algorithm
requires careful selection of the algorithm parameters and
objective functions to ensure good performance. In summary,
the MO MRFO algorithm is an extension of the MRFO
algorithm to solveMO optimization problems. The algorithm
uses Pareto dominance to compare solutions in the population
and maintains a set of nondominated solutions, known as
the Pareto front. The algorithm uses several techniques to
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improve the convergence and diversity of the Pareto front,
such as the crowding distance and elitist strategy.

9) OTHER IMPROVED MRFO
Hu et al. [53] presented a modified MRFO algorithm,
hybridized with quadratic interpolation, wavelet mutation,
and control parameter fine-tuning schemes, called wavelet
mutation and quadratic interpolation MRFO to improve
its ability to escape the local minimum and enhance the
computation accuracy of the classical method. This method
addresses problems of shape optimization for ball curves.

Shaheen et al. [54] provided a reliable and accurate
technique for managing and controlling static volt–ampere–
reactive instruments and reconfiguring the distribution sys-
tem using MRFO. With numerous scenarios of the 33- and
69-bus distribution test systems, the suggested method is
employed for the dynamic operation of automated distribu-
tion systems, accounting for daily load changes, emission
reduction, and loss minimization.

Poobalan et al. [55] presented an enhanced MRFO based
on incorporating the Taylor series and MRFO, called Taylor-
MRFO. The proposed approach uses diverse objective
functions, including bandwidth, latency, load, and power. The
Taylor-MRFO with the actor critic NN was used for load
distribution and switching of the cloud data center.

Abd Razak et al. [56] suggested an enhanced MRFO,
called spiral-based MRFO (SMRFO), to enhance the PID
control of a supple manipulator. The spiral scheme was
incorporated into the somersault stage of MRFO in the
SMRFO to help agents choose the optimal agent for a spiral-
based trajectory at each iteration. This scheme also provides
a dynamic step-size strategy for all such agents in action.
The effectiveness of the SMRFO was validated on arrays of
standard functions comprising diverse fitness landscapes and
enhanced a PID controller for a flexible manipulator scheme.

B. HYBRIDIZED VERSIONS OF MRFO
Hybrid MRFO (HMRFO): The HMRFO algorithm combines
the MRFO algorithm with other metaheuristic algorithms
to improve its performance. The HMRFO algorithm uses a
hybridization approach combining the search capabilities of
MRFO with the local search capabilities of other algorithms,
such as simulated annealing (SA) or PSO. This hybridization
approach allows the algorithm to explore the search space
more efficiently and determine better solutions. The summary
of reviewed hybrid MRFO algorithms is presented in Table 3.

1) HYBRIDIZATION WITH LOCAL SEARCH
One of the limitations of the MRFO algorithm is its
dependence on the random search process, which can
lead to a slower convergence rate and poor performance
in solving complex optimization problems. Researchers
have proposed hybridizing the MRFO algorithm with local
search techniques to address this limitation and improve its
convergence rate and solution quality. Hybridization of the

MRFO algorithm with local search involves combining the
global search capabilities of MRFO with the local search
capabilities of an algorithm that explores the neighborhood
of the current solution to improve its quality. Local search
algorithms, such as hill-climbing or SA, can improve the
ability of the MRFO algorithm to explore the search space
and refine the solutions it discovers.

For the optimization-damage identification problem of
plate structures, Dinh-Cong et al. [57] presented a hybrid
global-local algorithm that combines MRFO with sequential
quadratic programming (SQP). Moreover, MRFO is used for
the global search procedure, whereas SQP is used for the local
search operation. The results demonstrated that, compared to
artificial ecosystem-based optimization, CS, and MRFO, the
damage discovery method established on the hybrid MRFO-
SQP algorithm and the iterative order reductionmethod could
achieve the highest correctness and lowest computing cost for
damage localization and quantification.

The hybridization of the MRFO algorithm with the local
search improves the performance and solution quality of the
algorithm in various optimization problems. For example, in a
study that applied the hybrid MRFO algorithm to the job
shop scheduling problem, the hybrid algorithm outperformed
other metaheuristic algorithms, including the basic MRFO
algorithm, regarding solution quality and computation time.
In summary, hybridizing the MRFO algorithm with local
search techniques can improve its ability to explore the search
space and refine the solutions it discovers. This approach can
improve the solution quality and convergence rate, making
the hybrid MRFO algorithm a promising method for solving
complex optimization problems.

2) HYBRIDIZATION WITH OTHER
METAHEURISTIC ALGORITHMS
Hybridization is a powerful approach to improving the
performance of optimization algorithms. Hybridization of
the MRFO algorithm with other metaheuristic algorithms
involves combining the search capabilities of MRFO with
those of another metaheuristic algorithm to create a
more effective hybrid algorithm. One popular algorithm to
hybridize with MRFO is the GA. The hybrid algorithm,
MRFO-GA, uses MRFO to generate the initial population
and GA to refine the solutions. In a study that applied the
MRFO-GA hybrid algorithm to the task-scheduling problem,
the hybrid algorithm outperformed MRFO and GA regarding
solution quality and computation time.

Another popular algorithm to hybridize with MRFO is the
PSO algorithm. The hybrid algorithm, MRFO-PSO, involves
using MRFO to generate the initial population and PSO
to refine the solutions. In a study that applied the MRFO-
PSO hybrid algorithm to the economic dispatch problem, the
hybrid algorithm outperformed MRFO and PSO in terms of
solution quality and computation time. Other metaheuristic
algorithms that can be hybridized with MRFO include ACO,
artificial bee colony, and DE. The hybrid algorithms created
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by combining these algorithms with MRFO achieve better
performance than the individual algorithms in solving a range
of optimization problems.

To tune four types of PID controllers for an automatic
voltage regulator optimally, Micev et al. [58] devised a
hybrid metaheuristic approach combiningMFRO and the SA,
called SA-MFRO, for an automatic voltage regulator. A novel
cost function was also introduced for the optimization of
the controller variables. By conducting an evaluation using
the controllers adjusted by the many optimizing liaisons, the
GA, and PSO, the effectiveness of the acquired best PID,
real PID, fractional-order PID, and PID with second-order
derivative controllers is validated. The results of the studies
reveal that the suggested SA-MRFO algorithm outperforms
controllers adjusted by other algorithms for each type of
controller. The findings demonstrate that the primary benefit
of the SA-MRFO is a significant increase in convergence
speed.

Dey et al. [59] suggested a hybrid feature selection method
called the manta ray foraging-based golden ratio optimizer
to choose the more crucial feature set from COVID-19
datasets. Three datasets, including the MOSMED, SARS-
COV-2, and COVID-CT datasets, were used to test the model.
The findings demonstrate that this method is highly effective
compared to the local texture descriptors employed for
COVID-19 detection from chest CT images. Attiya et al. [60]
proposed a hybrid metaheuristic approach using MRFO and
SSA. In the proposed approach, the SSA was integrated
into the MRFO as a local search operator to improve the
convergence capability of MRFO. The MRFO SSA was
applied for task scheduling IoT applications in the cloud.
The MRFO SSA was evaluated using several real-world
and synthetic datasets with different sizes. The outcome
indicates the dominance of MRFO SSA over the HGSWC,
MRFO, SSA, HHO, and artificial ecosystem optimization
SSA concerning the throughput and span.

Duan et al. [61] created a hybrid algorithm known as
MGEHO—manta ray foraging and Gaussian mutation-based
elephant herding optimization. The manta ray somersault
foraging strategy, which adjusts patriarch positions, replaces
the clan updating component of the native elephant herding
optimization algorithm. A dynamic convergence element is
also in place to balance exploitation and exploration. The
Gaussian mutation increases population diversity and helps
MGEHO maintain a robust local search capability.

Ekinci et al. [62] introduced a hybrid optimization
technique called OBL-MRFO-SA to manage the speed of
DC motors using fractional-order PIDs. The hybridization
helps hasten the MRFO convergence ratio. The fractional-
order PID-based speed control system for a DC motor using
the OBL-MRFO-SA algorithm was designed using a time
domain objective function that considers the performance
criteria (steady-state error, maximum overshoot, settling
time, and rising time).

Firouz et al. [63] presented two discrete algorithms,
comprising discrete MRFO and discrete SSA, to handle

controller placement problems. The two discrete algorithms
were designed using a random insert, half-point crossover
operators, and two-point swaps. The succeeding discrete
MRFO and SSA algorithms were effectively merged. The
performance of this approach was validated using six
popular software-defined networks with a diverse number of
controllers.

To resolve problems with economic emission dispatching,
Hassan et al. [64] suggested an optimization approach
combining MRFO with a gradient-based optimizer (GBO).
These issues, related to single and multiple targets, were
handled using the suggested MRFO-GBO. A fuzzy set
theory approach was used to determine the best compromise
between the Pareto optimal outputs to solve theMOeconomic
emission dispatch problem.

Saravanan and Anbalagan [65] proposed a hybrid meta-
heuristic algorithm, merging MFRO and the dragonfly
algorithm for the best generator arrangement of congestion
management in a deregulated control market. The proposed
method is implemented in the adjusted IEEE 30- and
57-bus models, and the efficacy is contrasted with the
native dragonfly algorithm, MRFO, and other metaheuristic
methods from the literature.

Jain et al. [66] developed an effective glaucoma discovery
method combining MRFO, the rider optimization algorithm,
and the generative adversarial network (GAN), called
the rider MRFO-based GAN. In the developed approach,
the fuzzy local information C-means clustering (FLICM
clustering) simulation outcomes indicate that the proposed
glaucoma discovery approach reveals superior effectiveness
using such measures as sensitivity, accuracy, and specificity.
Furthermore, the rider MRFO-based GAN provides an
enhanced outcome with the maximum correctness of 0.96%,
0.94% sensitivity, and 0.89 specificity, in contrast to the
GSO, convolutional NN (CNN), modified U-net CNN, GAN,
MRFO-based GAN, and rider optimization algorithm-based
GAN.

Abdel-Mawgoud et al. [67] presented a modified MRFO
algorithm to improve the MRFO features. In the modified
MRFO, an SA approach was integrated to improve the
local search to explore the feasible region in the search
location effectively. Additionally, the modified MRFO was
exploited to find the optimum dimensions and positions of
PV units in radial distribution systems and multiple wind
turbines.

In addition, Jusof et al. [68] combined MRFO and
PSO. The hybrid approach incorporates the PSO social
contact strategy and elitism into the MRFO plan. The tactic
helps search agents choose a new search direction. The
algorithm was evaluated on various dimensions and fitness
landscapes of CEC 2014 touchstone functions. It optimizes
a proportional-derivative (PD) controller for an inverted
pendulum system to solve a practical engineering problem.

Changting et al. [122] presented a hybrid MO success
history-based parameter adaptive DE (SHADE) with MRFO
for structural design problems, where the updating rules
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of SHADE, a variant of DE with superb performance, are
combined with the operators fromMRFO, which can balance
the exploration and exploitation of the hybrid algorithm
for structural design problems. Furthermore, MO-SHADE-
MRFO uses the external archive to save and update the Pareto
fronts during optimization. According to the experimental
results, MO-SHADE-MRFO can provide the best statistical
values of hypervolume, inverted generational distance, and
spacing-to-extent, in most cases ranking first among the
compared algorithms.

Mohammed et al. [123] proposed a hybridization ofMRFO
and the GA based on a pseudo-parameter, where the GA
can help MRFO escape the local minimum. This hybridized
algorithm is a pseudo-GA with MRFO, which hybridizes
the pseudo-parameter-based GA and MRFO algorithm to
produce a more efficient algorithm that combines the
advantages of both algorithms without becoming trapped in
a local minimum or taking a long time to calculate.

Rizk et al. [124] presented a hybrid metaheuristic algo-
rithm called MRFO-PSO that hybridizes the MRFO and
PSO. In the MRFO-PSO, the concept of the PSO velocity is
incorporated to guide the searching process of the MRFO,
where the velocity is updated by the best and the second-best
solutions. This integration further improved the balancing
problem between the exploration phase and exploitation
ability.

In summary, the hybridization of MRFO with other meta-
heuristic algorithms can improve its search capabilities and
solution quality. The specific hybridization approach depends
on the characteristics of the optimization problem and the
strengths and weaknesses of the combined algorithms.

3) MRFO WITH THE NEURAL NETWORK
The hybridization of the MRFO algorithm with NNs is
a promising approach combining the strengths of both
techniques to solve optimization problems. The idea behind
this hybridization is to use the MRFO algorithm to optimize
the weights and biases of the NN, which is used to solve
the optimization problem. The hybridization of MRFO with
NNs has been applied to various optimization problems,
such as feature selection, image classification, and financial
forecasting. In a study that applied the MRFO-NN hybrid
algorithm to the problem of feature selection in high-
dimensional datasets, the hybrid algorithm outperformed
other state-of-the-art algorithms in terms of feature selection
accuracy and computation time. Similarly, in a study that
used the MRFO-NN hybrid algorithm to solve the image
classification problem, the hybrid algorithm achieved higher
accuracy and lower error rates than other algorithms.

Gokulkumari [69] proposed a brain tumor classification
approach combining MRFO and the deep CNN (MRFO-
based DeepCNN), where MRFO trains the DeepCNN to
classify the brain tumor as an edema, core, malignant,
or benign tumor. The proposed MRFO-based DeepCNN
was validated using accuracy, specificity, and sensitivity

measures. Moreover, in contrast with existing approaches,
theMRFO-based DeepCNN achieved higher accuracy, speci-
ficity, and sensitivity. Kamil and Shaymaa [70] employed
MRFO to obtain the best CNN hyperparameters, including
weights and biases. The efficacy of the enhanced CNN using
MRFO was demonstrated on the Cifar_10 standard dataset.
The outcome proved the superiority of the MRFO-based
CNN over the vanilla CNN.

Elmaadawy et al. [71] hybridized MRFO with the random
vector functional link (RVFL) to forecast the vital efficiency
parameters of a complete water management plant function-
ing with an initiated sludge management procedure. The
MRFO obtains the optimum RVFL variables to enhance
the model prediction efficiency. The MRFO-RVFL approach
was compared with the traditional RVFL based on a dataset
measured for 222 days to discover the significance of MRFO.
The outcomes indicate that the hybrid approach exhibited
greater efficiency and validity for prediction, according to the
root mean squared error (RMSE) and R2.

Nguyena et al. [72] presented a new hybrid technique
of MRFO and a deep NN (DNN) for flood vulnerability
planning for the Quang Ngai region of Vietnam. An ana-
lytical method using geospatial distribution was employed,
comprising 2176 flood area points and 13 influencing
parameters to generate input data. The outcome indicates
that hybridizing the DNN and MRFO enriched the flood
vulnerability forecasting accuracy with an area under the
curve of 0.98 compared to DNN gray wolf optimization
(GWO), DNN-SSO, support vector machine (SVM), and
GBR. The study findings are crucial for helping policymakers
comprehend and identify problems, which helps them
improve their adaptation plans.

Duman et al. [73] presented a combined model comprising
the feedforward NN (FFNN) and MRFO for forecasting
electric energy consumption. The MRFO trains the FFNN.
The trained FFNN model predicts the electric consumption
rate in Burs, Turkey. Experimental trials were performed
to discover the ideal values of weight and bias factors in
diverse network arrangements. The experimental outcomes
were statistically validated and compared with an arith-
metic optimization algorithm, HHO, SSA, improved GWO,
SHO, and hierarchical PSO with time-varying acceleration
coefficients. The results reveal that the FFNN trained with
the MRFO algorithm outperformed models trained with
the compared algorithms in predicting electrical energy
consumption.

Zhang et al. proposed the MRFO-based method for choos-
ing the wavelength of the soil moisture characteristic [74].
In the suggested method, spectral data of various soil
moisture levels that were manually adjusted were obtained
using a high-resolution spectrometer. Afterward, outliers
from the data were purged using the isolation forest technique
(iForest). Finally, the backpropagation NN and MRFO were
employed to choose the characteristic wavelength for soil
moisture. The analysis findings demonstrated that, compared
to the slime mold algorithm, GA, and PSO, MRFO displayed
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the best predictive capability. The findings also demonstrated
that MRFO performed better in identifying the distinctive
spectra of soil moisture.

Ayub et al. [75] presented a theft detection model, com-
bining the CNN and gated recurrent unit (GRU) fined tuned
using MRFO. Furthermore, the proposed study implemented
a preprocessing approach using the local value associated
with missing instances to compute the missing values in
the dataset. In addition, the synthetic minority oversampling
technique was used to balance the classes in the dataset. The
analysis using power consumption data from China National
Grid Co., Ltd. reveals that the proposed CNN-GRU-MRFO
reached 6% higher detection accuracy than the CNN-GRU
alone.

Kamil and Al-Shammari [76] combined MRFO with the
CNN for brain tumor classification, where the MRFO adjusts
the parameters of the CNN for effective classification of
extracted variables from brain magnetic resonance imaging
(MRI) scans. The proposed MRFO-based CNN has an
accuracy of 98.57% and is better than other CNN-based
models optimized with MRFO.

Shinde [77] proposed a hybrid approach, combining
the DeepCNN with enhanced MRFO for lane detection.
The enhanced MRFO was based on the OBL method. The
enhanced MRFO optimized the weights of the DeepCNN.
In comparison with conventional models, the proposed
models displayed superior performance.

Bahgat et al. [78] adapted MRFO to adjust 12 CNN
architecture network hyperparameters for the effective auto-
matic detection of COVID-19 using chest x-ray images.
An experimental study was performed on eight public
datasets to assess the efficacy of this method. The outcomes
indicate that the DenseNet121 optimized network obtained
the optimum performance.

Karuppusamy [79] combined MRFO with the CNN to
identify early-stage brain tumors in MRI scans. The MRFO
extracted relevant attributes from brain tumor MRI images.
The obtained attributes were tested using the CNN and
detected early-stage brain tumors. The simulation outcome
produced by the proposed approach was contrasted with
existing artificial NNs and PSO, obtaining a higher classifi-
cation and detection accuracy.

In conclusion, the hybridization of MRFO with NNs is a
promising approach that can improve the search capabilities
and solution quality of the MRFO algorithm. The specific
design of the NN depends on the characteristics of the
optimization problem, and the hybrid algorithm can be
applied to a wide range of optimization problems in various
fields.

4) MRFO WITH ELM
Hybridizing the MRFO algorithm with an extreme learning
machine (ELM) is a promising approach to solving optimiza-
tion problems efficiently. The ELM is a machine learning
algorithm that has gained attention recently for its fast and

accurate performance in solving various real-world problems.
In the hybrid MRFO-ELM algorithm, the MRFO algorithm
is used to optimize the parameters of the ELM algorithm.

Wang andWang [80] developed a hybrid prediction model,
combining the ELM and MRFO, denoted as MRFO-ELM.
Following this approach, the mean impact value technique
assesses and distinguishes the significance of the 13 best
parameters. Moreover, three setups were established to
forecast transport carbon dioxide emissions in China. The
experiential outcomes specify that the hybrid MRFO-ELM
provides outstanding performance concerning the searching
velocity and forecasting accuracy compared with other
approaches.

Sharma et al. [81] used MRFO to train a bidirectional
ELM. A four-level dual-tree complex wavelet transform is
applied to each training image to generate approximation
coefficients. The intended outputs for bidirectional-ELM
training are the relevant MES values obtained via MRFO
using imperceptibility and robustness as the optimization
criteria, whereas the approximation coefficients serve as input
features.

Panagiotis et al. [125] presented ELM models developed
using MRFO to predict the compressibility of clay for
soft ground improvement. The results demonstrate that the
developed MRFO-ELM model predicts the compressibility
of clay with less than ± 20% deviation of the data for 67%
of the specimens and outperforms the prediction accuracy of
simple or multiple regression correlations and advanced NN
models reported in the literature.

In conclusion, the hybridization of MRFO with ELM is a
promising approach that can improve the search capabilities
and solution quality of the MRFO algorithm. The specific
design of the ELM algorithm depends on the characteristics
of the optimization problem, and the hybrid algorithm can be
applied to a wide range of optimization problems in various
fields. The hybrid MRFO-ELM algorithm is a fast, efficient,
and accurate optimization technique that can solve complex
optimization problems in real-world applications.

5) MRFO WITH FUZZY-LOGIC SYSTEM
The hybridization of the MRFO algorithm with the fuzzy-
logic system (FLS) is a promising approach to solving
optimization problems that involve uncertainty and impre-
cision. Fuzzy logic is a mathematical technique that deals
with vague and imprecise information using linguistic terms
and fuzzy sets. The MRFO-FLS hybrid algorithm combines
the strengths of MRFO and the FLS to solve optimization
problems efficiently.

Mishra and Bhoi [82] hybridized MRFO with the adaptive
neuro-fuzzy inference system (ANFIS) to improve catego-
rizing cancerous and noncancerous cells from a microarray
dataset. In this study, an ensemble Kal-man filter approach
initially preprocessed the microarray dataset. Subsequently,
similar genes were grouped based on the adaptive density-
based spatial clustering with noise method.
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Zounemat-Kermani et al. [83] applied MRFO and PSO
for the parameter optimization of ANFIS to predict the
specific conductance of groundwater effectively. Different
parameters were used to design and evaluate the predictive
model, including water temperature, salinity, and ground-
water level. The ANFIS-based model was compared with a
nonlinear mathematical model to buttress the efficacy of the
machine model. The outcome indicates that, although the
mathematical model provides competitive performance for
the specific conductance prediction, the ANFIS presents a
better prediction. Moreover, the results also indicate that the
MRFO and PSO enhanced the ANFIS model with RMSE
values of 13% and 5%, respectively.

Aly and Rezk [84] combined MRFO and fuzzy-logic
control (FLC) for maximum power point tracking, finding the
best FLC parameters usingMRFO. The choice of variables in
the suggested method was derived frommembership function
gains, and the integral error was the cost function. The results
using the MRFO-based FLC are superior to the hill-climbing
method and native FLC. Themain findings confirm that using
hybrid MRFO and FLC features is a promising remedy for
maximum power point tracking in thermoelectric generator
systems.

Lakshmi and Krishnamurthy [85] proposed an association
rule mining-based fuzzy MRFO approach for frequent item
set generation from social media, where MRFO adjusts the
FLS parameters. In the study, the association rule mining
stage exploits the optimized fuzzy-based MRFO algorithm,
generating association rules from massive item sets, attaining
the least confidence and support value.

In conclusion, the hybridization of MRFO with FLS is a
promising approach that can efficiently solve optimization
problems with uncertainty and imprecision. The MRFO-FLS
hybrid algorithm combines the strengths of MRFO and FLS
to search efficiently for the optimal solution to optimization
problems. The specific design of the FLS depends on the
characteristics of the optimization problem, and the hybrid
algorithm can be applied to a wide range of optimization
problems in various fields. TheMRFO-FLS hybrid algorithm
is a fast, efficient, and accurate optimization technique
that can solve complex optimization problems in real-world
applications.

6) MRFO WITH MACHINE LEARNING ALGORITHMS
The hybridization of the MRFO algorithm with machine
learning algorithms, such as SVM, RF, and extreme gradient
boosting (XGBoost), is a promising approach to solving
complex optimization problems that involve large datasets
and nonlinear relationships between the variables. These
hybrid algorithms can also handle multiple objectives or
constraints in optimization problems. The specific design of
the machine learning model depends on the characteristics
of the optimization problem, and the hybrid algorithm can
be applied to various fields, such as finance, health care, and
engineering.

Houssein et al. [86] suggested a novel combined elec-
trocardiogram classification technique called MRFO with
SVM. In this hybrid approach, the MRFO adjusts the SVM
parameters and determines the most relevant attribute subset
for optimum classification efficiency. The adjusted SVM is
applied for the electrocardiogram classification, and theMIT-
BIH arrhythmia dataset comprises four abnormal and one
abnormal heartbeat to train the SVM. The outcome proves
its dominance with an accuracy of about 98% over other
metaheuristics approaches.

Sumathi and Umasankar [87] suggested combining the
RF classifier and MRFO for power flow administration. The
main goal of the RF MRFO is the optimum operation of
renewable energy sources to reduce the electricity generation
cost by hourly day-ahead real-time scheduling. In this
approach, the RF predicts the load constraint, and MRFO
produces the optimum control signals reliant on the power
difference within the source and load sides.

Datar and Kulkarni [88] presented a hybrid PV-wind solar
energy model using a static synchronous compensator. The
model combines the XGBoost package and MRFO and is
called the XGBoost-MRFO control strategy. The MRFO
algorithm enhances the XGBoost learning procedure using
theminimum error as the objective function. TheXGBOOST-
MRFO is a control algorithm to produce position signals for
the static synchronous compensator.

In summary, hybridizing MRFO with machine learning
algorithms, such as SVM, RF, and XGBoost, is a promising
approach that can efficiently solve complex optimization
problems. The hybrid algorithms combine the strengths of
MRFO and machine learning algorithms to search for the
optimal solution to optimization problems efficiently. The
specific design of the machine learning model depends
on the characteristics of the optimization problem, and
the hybrid algorithm can be applied to a wide range of
optimization problems in various fields. Hybrid algorithms
are fast, efficient, and accurate optimization techniques that
can solve complex optimization problems in real-world
applications.

IV. APPLICATIONS OF THE MRFO ALGORITHM
The MRFO algorithm is a relatively new optimization
technique inspired by the foraging behavior of manta rays.
It has displayed promising results in various applications,
including energy and power, image processing, PID control,
PV parameter optimization, feature selection, scheduling, and
other areas. The applications of the MRFO algorithm and
its variants are summarized in Table 4. The summary of the
applications of the MRFO algorithm in diverse domains is
presented in the subsection below.

A. ENERGY AND POWER
The MRFO algorithm has been used for power system
optimization, economic dispatch, load forecasting, and
energy management in energy and power applications.
Further, MRFO-based algorithms can optimize building
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energy consumption, reduce energy costs, and improve the
efficiency of renewable energy systems.

El-Hameed et al. [3] employed MRFO to determine
the best three-diode equivalent model variables of solar
generating units. The three-diode equivalent model consists
of nine resolution parameters, which can accurately define
the features of the solar generating units when chosen wisely.
The MRFO is applied to determine the resolution parameters
of the three-diode equivalent model using the Kyocera
polycrystalline KC200GT solar component and simulation
setup under diverse altered settings for the Ultra 85-P. The
cost functions for the feature selection for the solar generator
are enhanced successively via MRFO, defined using RSE
and mean absolute error between the measured and projected
data.

Fathy et al. [89] developed a novel global maximum
power point tracking system using MRFO. The developed
tracking systemmines the global maximum power point from
the triple-junction solar-made array under shadow operation
settings.

Hemeida et al. [90] applied MRFO to decrease power
damage by sizing and sharing Type I DGs joined in a radial
distribution network. The presented approach was validated
using IEEE 33, 69, and 85 test models.

Alturki et al. [91] implemented MRFO as a control
approach for adjusting the proportional-integral (PI) con-
trollers of DC/DC and DC/AC converters to incorporate the
PV scheme into the grid. The efficacy of the proposedmethod
was considered under irradiance disparity and compared with
five other metaheuristics algorithms.

Mohamed et al. [92] appliedMRFO to adjust power system
controller factors to determine the best factors of the load
frequency control model and superconducting energy storage
model controllers. The strength of the suggested MRFO-
based controllers was examined over the disparity of the
power system parameters.

Shaheen et al. [93] developed an MRFO to address
economic power heat dispatch in the cogeneration energy
system combined with nonconvex controller point effects.
Test models consisting of five, seven, and ten units were
used to estimate the efficacy of MRFO in handling the stated
problem.

Arya et al. [94] proposed an energy-based routine protocol
using a deep belief network and the MRFO algorithm
for effective data transmission in fifth-generation wireless
sensor network communications. In the proposed technique,
the nodes in the entire network are grouped as clusters
via the reinforcement learning approach. Furthermore, the
MRFO selects the required cluster head for effective data
communication. Then, the data are transmitted to the sink
node through the selected cluster head using the deep belief
network.

Akdag and Yeroglu [95] adapted MRFO to the orga-
nization of directional overcurrent relays combined with
a fitness function to maintain the best relay organization
by maintaining the relay organization margin among the

relay pairs. The successful method was applied to 9- and
15-bus validation models, and the outcome was contrasted
with four other methods. Additionally, this study suggests
an adaptive defense architecture, offering the best orga-
nization of directional overcurrent relays with the MRFO
algorithm according to changing power system conditions.
The adaptive protection architecture was applied to the
virtual system of a cross section of 10-bus distribution
networks, such as wind-powered DGs in the Hatay region of
Turkey.

Ben et al. [96] examined the potential and efficacy of
employing MRFO to evaluate the system parameters of 2D
dike-like magnetic profile inconsistencies. The simulation
data include magnetic anomalies created artificially and
corrupted with noise at 5%, 10%, 15%, and 20% for case
studies from two mining sites in China and Peru.

Hemeida et al. [97] proposed a Monte Carlo simulation-
based diverse metaheuristic algorithm to enhance the posi-
tions of three-DG units under load uncertainties considering
500 situations. In addition, Ramadan and Helmi [98]
considered using MRFO for optimal distribution network
reconfiguration for vulnerable radial smart grids in uncertain
working situations. The performance of the MRFO was
measured in a diverse working environment for IEEE 33- and
85-busmodels, and the results were comparedwith GWO and
PSO.

Elattar et al. [99] used the MRFO approach to create
distribution model controls that minimize lost energy and
provide quantitative and qualitative power amenities to satisfy
customers. The IEEE practical distribution networks of 33-,
69-, and 84-bus were subjected to the MRFO-based approach
at the Taiwan Power Company.

To reduce damage and consider raising the voltage
profile, Vahid et al. [100] offered an ideal distribution
and design of power-generating assets, such as DGs with
scheduling ability in a smart location using MRFO. The DGs
with scheduling ability were distributed using a weighted
coefficient approach, and their configuration was conducted
in a 69-bus distribution network.

Fathy et al. [101] applied MRFO to identify the best
factors of the optimized fractional maximum power point
tracking scheme. The outcomes were contrasted with ten
other metaheuristics algorithms to authenticate the strength
of the MRFO-based approach. Alasali et al. [102] applied
MRFO to discover single-objective and MO issues associ-
ated with optimal power flow (OPF) integrating stochastic
renewable energy sources. TheMRFO algorithm was applied
to resolve OPF issues, improve energy productivity, and
enhance the cost and environmental performance of the power
network.

Eida et al. [103] used the MRFO algorithm for the
optimal distribution of numerous DG units attached to
radial distribution systems. The DG units were improved to
operate with a unity power factor and OPF during 24 hours
of time-varying demand. The single-, two-, and three-DG
units were optimized by the MRFO algorithm. The time-
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varying demand energy loss and savings were calculated,
and the results were compared to the baseline. The MRFO
behavior was compared to the behavior of the PSO and
atom search optimization regarding energy loss and energy-
saving values using the 69-bus radial distribution system
standard.

Tiwari et al. [104] developed a renewable microgrid-based
MRFO. As DG running costs primarily rely on their kind,
the load dispatch was established to evaluate the operating
costs of various DGs within their respective parameters.
The best technique to lower the overall operating costs
was determined using MRFO. A comparison with the PSO,
DE, crow search algorithm, and SHEPO established the
effectiveness of MRFO.

The influence of cost reduction from solar and energy
storage system integration has also been studied for electric
power demand. Abou El-Ela [105] proposed anMRFO-based
solution for resolving the problem of the maximum hosting
capacity of renewable energy resources, such aswind turbines
and PVs in distribution systems. Regarding the conductors’
current carrying capacity and voltage deviation performance
metrics, the results of the proposed technique employing the
IEEE 33-bus benchmark distribution were compared to those
of PSO.

Guvenc et al. [106] appliedMRFO to address the problems
with OPF and consider restricted operating zones. The
success of this method was confirmed using the IEEE
30-bus validation system, and the experimental analysis
results were evaluated compared with those of other widely
used approaches to OPF difficulties. The comparison study
revealed that the MRFO-based strategy guarantees excellent
outcomes for OPF problems.

B. FEATURE SELECTION
The MRFO algorithm can be used to select the most relevant
features in a dataset, improving the accuracy and efficiency
of machine learning algorithms. Chattopadhyay et al. [107]
applied MRFO to attribute selection to enhance speech
recognition. The approach was assessed using the Emo-
DB and SAVEE datasets with the multilayer perceptron
and k-nearest neighbor algorithms concerning accuracy. The
simulation results affirmed the superiority of the method in
contrast to the GA, GWO, and PSO.

Ghimire et al. [108] used MRFO to choose parameters
for daily global solar radiation prediction. The chosen
attributes were input into a 1) deep learning model with a
sequence-to-sequence sequence autoencoder with long short-
term memory and 2) a long short-term memory model for
the final forecasting. The effectiveness of this model was
evaluated using data from six solar power farms and was
compared to RF regression, gradient boosting regression,
much-randomized trees, adaptive boosting regression, and
DNNs.

Sasank and Venkateswarlu [109] used MRFO to choose
the most crucial characteristics for classifying brain tumors.

The chosen characteristics were used to classify the grades
of brain tumors using a hybrid DNN and adaptive rain
optimizer. The accuracy was evaluated and compared to
logistic regression and other methods. The results support
the superiority of the method with reasonable accuracy and
effectiveness.

Norfadzlia et al. [110] developed a swarm-based intel-
ligence attribute extraction approach in a wrapper-based
technique using BMRFO, BWOA, and BPSO metaheuristic
algorithms and the k-nearest neighbor classifier to select
appropriate descriptors for the effective classification of
amphetamine-type stimulus drugs. The effectiveness of the
approaches was assessed and compared using different cri-
teria. The findings revealed that BMRFO was outperformed
by BWOA, with the highest accuracy and fewer feature
dimensions.

Chattopadhyay et al. [111] demonstrated the applicability
of MRFO in speech-emotion recognition tasks. The method
combined MRFO, Mel frequency cepstral coefficients,
and linear predictive coding for feature extraction. The
performance of the approach was validated using the
Emo-DB and SAVEE datasets, reaching a classification
accuracy of 97.49% and 97.68% on the two datasets,
respectively.

C. IMAGE PROCESSING
The MRFO algorithm has been used in image segmentation,
feature extraction, and image classification and can improve
the performance of image processing algorithms by optimiz-
ing the parameters and weights. Karuppusamy [79] combined
MRFO with the CNN to identify early-stage brain tumors in
MRI scans. The MRFO algorithm extracts relevant attributes
from brain tumor MRI images, which are tested using the
CNN to detect early-stage brain tumors. The simulation
produced by this approach was contrasted with existing
artificial NNs and PSO, obtaining a higher classification and
detection accuracy.

Togacar [112] applied an artificial intelligence model
and optimization approaches to classify histopathological
images of lung and colon cancers. In this study, the
image labels were trained using the DarkNet-19 model
to extract image features. The inefficient features were
selected using MRFO, and an equilibrium optimizer from
the DarkNet-19 model extracted features. The remaining
features in the set were separated from the set containing
inefficient features to create an efficient feature set (comple-
mentary rule insets). The SVM combined and categorized
the effective features produced by the two optimization
techniques.

Alkhliwi [113] presented a new encryption technique
and image steganography system for COVID-19 diagnosis.
The method consists of three steps. A multilayer discrete
wavelet was employed for picture decomposition in the initial
step. Then, MRFO identified the best pixels, and a double
logistic chaotic map was used for the encrypted secret image.

VOLUME 11, 2023 53329



A. Mohammed et al.: Manta Ray Foraging Optimization Algorithm: Modifications and Applications

The effectiveness of the performance of the MRFO-based
encryption model was confirmed with a thorough analysis,
and the results were reviewed using evaluation criteria. The
outcome demonstrates that the model surpassed previous
approaches, such as WOA and GWO.

D. SCHEDULING
The MRFO algorithm can optimize the scheduling of tasks
in a system, such as scheduling production processes or
transportation routes. In addition, MRFO can improve the
efficiency and reduce the costs of these processes.

Wang et al. [114] suggested an MRFO-based approach
to solving reactive power optimization scheduling prob-
lems in the power grid system. The simulation results
of the MRFO-based approach were contrasted with those
of four other metaheuristic algorithms. According to the
results, MRFO can generate a practical, steady con-
figuration with strong convergence and high reliability
to solve optimization problems involving reactive power
optimization.

E. PID CONTROLLER AND PV PARAMETER OPTIMIZATION
The MRFO algorithm has been used to optimize the
parameters of the PID controller, commonly used in control
systems. Further, MRFO can also optimize the param-
eters of PV systems to improve their performance and
efficiency.

Houssein et al. [115] applied MRFO to extract the param-
eters of single-, double-, and three-diode PV models. The
simulation analysis revealed that the parameters extracted
by the proposed method provide the best values with the
least difference between the computed and measured data in
contrast to six other metaheuristic approaches.

Ben et al. [116] implemented MRFO to assess model
parameters from prospective field irregularities initiated
from 2D dipping faults. The inversion process was first
tested on magnetic abnormalities from simulated datasets
before contamination. Then, the process was examined using
profiles collected from mining areas in Australia and the
United States. The outcomes demonstrated how admirably
steady and adaptable the design process is, particularly
when working with noisy data. It also solves quantitative
geophysical inverse problems with astonishing efficiency.
Even when compared to background data, the consistency
of the conclusions drawn from the analysis of deep-
seated and shallow field cases is outstanding. In addition,
the novel method exhibits substantial improvements over
existing methods, such as PSO, ACO, and GA, partic-
ularly regarding the convergence rate, cost, and quality
of resolved anomaly parameters. Therefore, the modeling
of other geophysical data, such as resistivity and self-
potential data, and the interpretation of other structures are
advised.

Saleh et al. [117] enhanced the dynamic security of an
islanded microgrid using a frequency control method based

on virtual inertia control. The virtual inertia control loop
was built using a PI controller optimally designed using
the MRFO technique. Different operating scenarios were
considered to compare the performance of the MRFO-
based PI controller with that of the GA and PSO-based
PI controllers. Realistic simulation settings were created
using wind and solar power statistics and random load
changes. The results indicated that the MRFO-based PI
controller outperforms optimizationmethodologies regarding
frequency disturbance reduction and reference frequency
tracking.

To estimate the model parameters of 2D gravity profile
irregularities, including depth and shape over geologic struc-
tures with faultless geometries, Ben et al. [118] employed
MRFO. The simulation dataset includes instances gathered
from mining sites in various regions and artificially created
gravity anomalies that were then tainted with 5%, 10%, and
15% white Gaussian noise. The results demonstrate the con-
sistency and stability of the algorithm regarding its capacity
to determine the best solution globally for each geophysical
inverse problem. Additionally, the algorithm efficiency was
superior to that of PSO and DE when confronted with
constrained multiparameter nonlinear inversion challenges,
and it displayed impressive strength even in the presence of
noise.

Amr et al. [126] applied MRFO to control the virtual
inertia of islanded microgrids, including renewable energy
sources. The control in the virtual inertia control loop was
based on a PI controller optimally designed using the MRFO
algorithm. The performance of theMRFO-based PI controller
was investigated under various operating conditions and was
compared with other evolutionary optimization algorithm-
based PI controllers. The results demonstrate that theMRFO-
based PI controller performs better in frequency disturbance
alleviation and reference frequency tracking than the other
considered optimization techniques.

F. OTHER APPLICATIONS
The MRFO algorithm has also been used in other areas, such
as clustering, classification, optimization of NNs, and swarm
robotics. Singh et al. [119] presented a cooperative spectrum-
detecting method using MRFO, where MRFO adjusts the
weighting vector at the fusion center, and the spectrum
distribution is achieved using the ideal weight vector for
secondary users. This MRFO method was contrasted with
the PSO, dragonfly algorithm, and GA, and the outcomes
indicate that MRFO can be applied effectively for spectrum
allocation by cognitive radios.

Gölcük and Ozsoydan [120] suggested a recommendation
architecture based on Q-learning and hyperheuristic methods
to aid decision-makers in selecting the best bio-inspired
approach for a given problem. Four low-level optimizers,
including WOA, SSA, artificial bee colony, and MRFO,
were used for Q-learning and hyperheuristics to select the
optimizer in each optimization procedure automatically.

53330 VOLUME 11, 2023



A. Mohammed et al.: Manta Ray Foraging Optimization Algorithm: Modifications and Applications

The method was applied in dynamically multidimensional
knapsack problems. The effectiveness of the solo bio-
inspired algorithm and recommender was evaluated using
a thorough simulation analysis. The MRFO and Q-learning
algorithm recommender successfully managed the dynamic
multidimensional knapsack problem.

V. STUDY OF MRFO ALGORITHM GROWTH
A. RATE OF MRFO GROWTH
The number of publications of the MRFO algorithm per
year from 2020 to 2022 was analyzed, and the outcome is
presented graphically in Fig. 3 and by percentage in Fig. 4.
The outcome indicates that research on MRFO has been
growing since its development. The analysis indicates that
the highest number of publications of MRFO and its variants
was in 2021 at 59 (57%), followed by 2020 at 26 (25%) and
2022 at 19 (18%).

FIGURE 3. Number of published papers by year.

B. DEVELOPMENT OF MRFO
The distribution of published study papers in terms of models
of MRFO algorithms comprises classical, modified, and
hybridMRFO. The total number in each category is presented
in Fig. 5, and the percentage is in Fig. 6. The analysis reveals
that modified MRFO has the most publications at 38 (36%),
followed by original MRFO at 34 (33%), and hybridized
MRFO at 32 (31%).

FIGURE 4. Percentage of publications by year.

FIGURE 5. Distributions of manta ray foraging optimization (MRFO)
studies.

FIGURE 6. Percentage distribution of manta ray foraging optimization
(MRFO) studies.

C. ANALYSIS OF MRFO APPLICATIONS
The study areas exploring MRFO are listed in Fig. 7, and the
percentage is provided in Fig. 8. This study indicates that
MRFO has been frequently explored in the fields of engi-
neering and function optimization, power and energy, feature
selection, PID controllers and PV parameter optimization,
image processing, and other applications. The analysis results
in these figures indicate that energy and power have the high-
est MRFO algorithm applications at 41 (39%), followed by
function and engineering optimization at 14 (13%), function
optimization at 13 (12%), image processing at 12 (12%),
other applications at 12 (12%), feature selection at 11 (11%),
parameter optimization at nine (9%), and scheduling at
four (3%).

D. META-ANALYSIS OF MRFO
The number of publications of MRFO algorithms was
reviewed in valid databases, including Elsevier, IEEE,
Springer, Wiley Online Library, MDPI, Taylor and Francis,
and others. The number and percentage of MRFO algorithm
publications in each database are depicted in Figs. 9 and 10,
respectively. The analysis results in these figures indicate
that Elsevier has the highest number of MRFO algorithm
publications at 32 (31%), followed by Springer at 18 (17%),
IEEE at 17 (16%), other publishers at 17 (16%), Wiley at
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FIGURE 7. Number of applications by field.

FIGURE 8. Percentage of studies by application.

FIGURE 9. Number of published studies by publisher.

nine (9%), MDPI at eight (8%), and Taylor and Francis at
three (3%).

FIGURE 10. Percentage of published studies by publisher.

VI. CONCLUSION AND FUTURE DIRECTIONS
This study offers a review of theMRFO algorithm, presenting
a discussion of the inspiration, mathematical model, and

analysis of MRFO. Then, the performance of MRFO is dis-
cussed concerning its exploration and exploitation. After the
presentation of the MRFO framework, various modifications
of MRFO in terms of new operators, encoding schemes,
parameter turning, hybridization, and binary optimization
were reviewed and analyzed. Application areas of MRFO
were reviewed, such as power and energy optimization,
economic load dispatch, clustering, feature selection, training
NNs, image processing, medical and health applications, and
scheduling. Summaries of the review of MRFO studies are
provided in Tables 2, 3, and 4.

This study considers MRFO research published by various
publishers, such as Elsevier, IEEE, SpringerLink, Wiley,
MDPI, and others. Most publications on MRFO studies
were published through Elsevier, IEEE, and SpringerLink.
The power optimization and engineering field explored
more applications of the MRFO algorithm. Moreover,
when compiling this review, 2021 had the most pub-
lished MRFO studies. Overall, the survey provides a
valuable resource for researchers and practitioners inter-
ested in using or further developing MRFO and demon-
strates the algorithm’s potential as a powerful optimization
tool.

The MRFO algorithm has garnered the attention of
researchers in solving various optimization problems since
its introduction. However, numerous aspects of MRFO must
be studied further, such as its development and applica-
tions. The following are some potential future research
directions:

◦ The ability of the MRFO algorithm to solve large-scale
optimization problems can be explored, especially its
ability to cope with solution diversity and escape from
entrapment in local optima when dealing with an ample
search space.

◦ The hybridization of the MRFO algorithm with the local
search or other metaheuristic algorithms can be designed
to improve the convergence rate. Various operators
from other techniques can be employed to improve
the exploration and exploitation capacity of the MRFO
algorithm.

◦ Subpopulation mechanisms for initialization can be
studied to improve the performance of the MRFO
algorithm when handling challenging optimization
problems.

◦ The design of the MRFO algorithm for solving dynamic
optimization problems can be assessed. The MRFO
algorithm must be modified using operators, such as
multiswarm, to cope with the dynamic search space due
to changes in the global optimum over time.

◦ The design of an efficient MO MRFO algorithm,
especially for dynamic MO optimization problems, can
be evaluated. More modifications of MO MRFO are
needed to efficiently update the nondominated solutions
and generate a dynamic Pareto optimal front.

◦ The proposed MO MRFO in the literature used an
archive mechanism to solve MO problems. However,
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TABLE 2. Summary of various manta ray foraging optimization (MRFO) modifications.
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TABLE 2. (Continued.) Summary of various manta ray foraging optimization (MRFO) modifications.
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TABLE 2. (Continued.) Summary of various manta ray foraging optimization (MRFO) modifications.

other operators, such as nondominated sorting, aggrega-
tion, and niching, should be studied.

◦ The investigation and integration of various transfer
functions should be explored to solve binary and
combinatorial optimization problems, investigating var-
ious S-shaped, V-shaped, tapper, and other transfer
functions.

◦ New and emerging forms of data will influence the
future development of the MRFO algorithm. The
MRFO algorithm must be adapted to handle extensive,
unstructured, real-time, and multimodal data to solve
complex optimization problems in various domains
effectively [130]. For instance, with the explosion
of big data, algorithms that can efficiently process
and analyze numerous data have become increasingly
important. The foraging behavior in MRFO can guide

the search process in large datasets, facilitating optimal
solutions in a shorter time. However, the scalabil-
ity of MRFO with large datasets and the ability
to handle complex data structures has yet to be
explored.

◦ Finally, no work has provided a theoretical analysis of
the MRFO framework. A theoretical analysis would
provide an in-depth understanding of MRFO and can
be studied in terms of population structure, fitness
landscape, and parameters.

The mentioned future work on the MRFO algorithm make
it a good prospective optimization algorithm for solving
optimization problems.Moreover, this review paper can serve
as a guide for researchers in the optimization community
interested in applying MRFO algorithm to solve various
optimization problems.
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TABLE 3. Summary of various hybridizations of mata ray foraging optimization (MRFO).
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TABLE 3. (Continued.) Summary of various hybridizations of mata ray foraging optimization (MRFO).
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TABLE 4. Summary of applications of manta ray foraging optimization (MRFO).
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TABLE 4. (Continued.) Summary of applications of manta ray foraging optimization (MRFO).
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