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ABSTRACT The malware spreading in Wireless Sensor Network (WSN) has lately attracted the attention
of many researchers as a hot problem in nonlinear systems. WSN is a collection of sensor nodes that
communicate with each other wirelessly. These nodes are linked in a decentralised and distributed structure,
allowing for efficient data collection and communication. Due to their decentralised architecture and limited
resources, WSN is vulnerable to security risks, including malware attacks. Malware can attack sensor nodes,
causing them to malfunction and consume more energy. These attacks can spread from one infected node to
others in the network, making it essential to protect WSN against malware attacks. In this paper, we focus
on the analysis of a novel fractional epidemiology model, specifically the fractional order SEIVR epidemic
model in the sense of Caputo’s fractional derivative of order 0< α≤1 with the goal of examining the efficacy
of vaccination strategies and the heterogeneity of a scale-free network on epidemic spreading. First, using
the next-generation technique and obtain the basic reproduction number of the proposed epidemic model,
which is essential for determining both the locally asymptotically stable equilibrium point of the worm-
free system and the unique existence of the endemic equilibrium point. To numerically solve the model,
the Adam-Bashforth-Moulton predictor-corrector (ABM) method is applied. The fractional calculus enables
us to deal directly with the ‘‘memory effect’’ of numerous phenomena, taking into account the system’s
dependence on previous stages. This method provides the results of a complex system. Additionally, research
demonstrates that vaccine treatments are quite effective at preventing the spread of malware. The outcome of
the study reveals that the applied ABM predictor-corrector method is computationally strong and effective
to analyse fractional order dynamical systems in the SEIVR epidemic model for malware propagation in
WSN. The results show that the order of the fractional derivative has a significant effect on the dynamic
process. Also, from the result, it is obvious that the memory effect is zero for α = 1. When the fractional
order α is decreased from 1, the memory effect appears, and its dynamics vary according to the time. This
memory effect points out the difference between derivatives of fractional and integer orders. The theorems
and their proofs are presented to validate the validity of the proposed model. To validate the proposed model,
extensive theoretical study and computational analysis have also been applied.
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I. INTRODUCTION
Wireless Sensor Network (WSN) is a type of network where
a large number of small sensor nodes are deployed in a
specific area to collect environmental data and transmit it to a
central node or sink. The applications of WSN are very wide
including defense, agriculture, healthcare, defense, mobility,
commerce, industry, personal use and more [1], [2]. One of
the major challenges faced by WSN is the limited resources
available to sensor nodes, including processing power, energy
source, memory, and coverage area. As a result, WSN needs
to be designed in a way that optimizes these resources and
maximizes the network’s lifetime.

Another challenge faced by WSNs is security. The sensor
nodes are vulnerable to malware attacks, and the data trans-
mitted by the nodes can be intercepted or manipulated. This
can lead to a range of problems, including privacy breaches,
data tampering, and disruption of network operations.

To address these challenges, researchers have developed
various techniques and protocols for optimizing resource
usage, improving network security, and extending the lifetime
of WSN. These include energy-efficient routing algorithms,
data aggregation techniques, and secure communication
protocols.

WSNs also have a role to play in the emerging fields
of Internet of Things (IoT) and the Internet of Vehicles
(IoV) [3], where sensor nodes can be used to collect data from
a wide range of sources [4], [5], including vehicles, wearable
devices, and smart home appliances. However, the challenges
faced by WSNs in these contexts are even greater, as the
scale of the networks is much larger, and the data collected
is more diverse and complex. Overall, WSNs have enormous
potential in a range of applications, but their success depends
on addressing the operational challenges faced by these net-
works such as limited energy, security especially malware
attack, and the placement of nodes [6], [7] etc.

One of the most important issues is the malware attacks
on WSN. Malware that is created purposely and deliber-
ately installed does not normally enter into a network with-
out human interaction, malware may spread across WSNs
since it can be autonomously activated and do so by self-
transmission [8]. Wireless device-targeting malicious mal-
ware has already been discovered. Cabir is a such type of virus
that can spread via the air interface, and is seriously damage
the wireless devices.

Researchers have developed various security mechanisms
to protect WSNs against malware attacks [9], [10], [11], [12],
[13], [14].These include secure routing protocols, intrusion
detection systems, and data encryption techniques. However,
the nature of WSNs makes it challenging to implement these
security mechanisms effectively, given the limited resources
available to the sensor nodes.

To address this challenge, researchers have turned to math-
ematical modelling to better understand the dynamics of mal-
ware propagation in WSNs. Epidemiological models, which

are commonly used to study the spread of diseases in pop-
ulations, can be adapted to study the spread of malware in
WSNs. By developing mathematical models of propagation,
researchers can better understand and monitor the patterns of
malware transfer from one node to the next. The analysis of
disease dynamics continues to be a hot topic among scien-
tists [15], [16], [17]. The transmission of malware in WSN is
similar to the spread of disease in populations. In both cases,
the spread of the contagion depends on various factors such
as the network topology, connectivity, and transmission rates.
The various epidemiological models have been proposed by
researchers to investigate that stability and performance of
WSN [18], [19], [20], [21], [22], [23].

The ordinary differential equation (ODE) is used to
describe the various physical phenomena of the model. The
ODE helps in the formulation of the models and analyses the
dynamics of malware spreading in the WSN. But classical
calculus is not able to describe the exact complex phenomena
of the system. To describe the exact complex phenomena of
the system, use fractional calculus (FC). Fractional calculus
extends the concepts of differentiation and integration to non-
integer orders. Fractional differential equations (FDEs) have
been shown to model many physical phenomena more accu-
rately thanODEs, particularly in systems that exhibit memory
effects, or long-range dependence. One of the key advantages
of FDEs is that they provide a more accurate description
of the behaviour of complex systems than ODEs, which
assume instantaneous and proportional responses. FDEs can
capture the dynamics of systems that have a complex history
or memory, where past events can influence the system’s
behaviour [24].

To replicate practical problems, fractional derivatives like
Caputo, Grünwald Letnikov, Riemann-Liouville, Jumarie
etc. have gained popularity among scholars. These deriva-
tives’ theoretical underpinnings have advanced greatly over
time [25], [26]. Some applications of the FC have been
explained by the researchers [27], [28], [29].

In the case of dynamical systems, the incorporation
of the fractional derivative is significant since the defi-
nition includes integration, and as a result, the function
stores information regarding the past memory. The study by
Bolton et al. [30] shown the superiority of fractional-order
models versus integer-order models in terms of their applica-
bility to a given data set for analysis. Many researchers [31],
[32], [33], [34] use applications of these derivatives in their
work to comprehend many phenomena in mathematical biol-
ogy and their multidisciplinary disciplines. In this context,
different researchers have also begun investigating the clas-
sical order epidemiological epidemic models by integrating a
wide variety of fractional derivatives [35], [36], [37].

In spite of all above said applications, both the derivative in
the Riemann-Liouville sense and the derivative in the Caputo
sense have some drawbacks, as has been noted. (1) There
was no nonlocality in the kernel. (2) The integral associate
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is the average of the function and its integral, not a fractional
operator. Some academics draw the conclusion that the oper-
ator was a fractional parameter filter and not a derivative with
fractional order. Consequently, the fractional parameter may
be seen as a filter regulator. The fact that their kernels are soli-
tary, although being nonlocal, poses a significant challenge
for the well-known Caputo and Riemann-Liouville orders.
When simulating situations in the actual world, this flaw has
an impact

Recently, new forms of nonlocal fractional derivatives
have been proposed in the literature to handle the power-
law reduction of derivative operators. The Caputo-Fabrizio
derivative with fractional order was the new operator pre-
sented by Caputo and Fabrizio [38]. Numerous researchers
successfully used their derivative in a small number of real-
world issues as a result of the originality of their findings
[39], [40]. Their operator is new in that the derivative, which
has applicability in several groundwater and thermal science
issues, lacks a single kernel. In addition to the innovative
idea’s real-world implementations, several theoretical papers
were also presented.

Atangana and Baleanu proposed a novel operator based on
the Mittag-Leffler function with fractional order to address
the aforementioned issues [41]. In addition to using a nonlo-
cal kernel, its operators have all the advantages of Caputo and
Fabrizio. All the advantages of the Riemann-Liouville and
Caputo operators are present in the operators, and the kernel
is non-singular. It’s interesting to note that their fractional
integral is the fractional average of the supplied function’s
Riemann-Liouville fractional integral and the function itself.
Along with the aforementioned advantages, the derivative
was discovered to be quite helpful in thermal science and
material sciences [41], [42]. These novel derivatives with
fractional orders are both fractional derivatives and filters.
The Atangana–Baleanu–Caputo (ABC) fractional derivative
provides an accurate description of the memory [43]. The
important applications of the ABC operator can be found in
[44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],
[55], [56], [57], and [58]. Recently, it has been observed that
fractional differential equations can be employed to model-
ing phenomena of worldwide more accurately. The global
problem of the spread of the disease attracted the attention of
researchers from various fields, which led to the emergence
of a number of proposals to analyze and anticipate the devel-
opment of the epidemic [53].

To understand the attacking and spreading dynamics of
malware inWSN,Author [59] proposed a compartmental epi-
demic model to examined the projected non-linear structure
of themodel by using generalizedAdams-Bashforth-Moultan
method.

The Adams-Bashforth has been recognized as a great
and powerful numerical method able to provide a numerical
solution closer to the exact solution [60]. The correct ver-
sion of the fractional Adams-Bashforth [61] methods which
take into account the nonlinearity of the kernels including

Mittag-Leffler law for the Atangana-Baleanu Differential
operator, which is used here to model WSN.

The vaccination technique is not entirely effective because
vaccinations may only provide partial protection from infec-
tion after a particular period of time. To address this problem,
we propose a fractional epidemic (SEIRV) model with a
factor ρ ∈ [0, 1] in the contact rate of vaccinated nodes,
where ρ = 0 means perfect efficacy of vaccination and
ρ = 1 means complete inefficacy of vaccination. The FDEs
will help in the exact analysis of vaccination effect on WSN.

The key goal of proposed models is to develop method to
control the malware transmission as well as to enhance WSN
lifetime. The model describes the transmission of malware
dynamics in WSN, the contributions of proposed model are:

1. The proposed model studies the transmission dynam-
ics of worms in WSN. The model suggests the mechanism
against malware attack.

2. For deterrence of malware transmission and consump-
tion of sensor node’s energy in WSN, utilize the concept of
Exposed state.

3. To include the idea of a vaccination strategy in the
epidemic model. This idea is used for the maintenance of net-
work operations. The vaccination method is used to increase
network lifetime, suppress malicious activity, and improve
WSN security.

4. To analyses the system’s response to a malware assault
and look into quick WSN recovery techniques under steady
state conditions.

5. To investigate the stability of the system under various
conditions and to validate the analytical analysis through the
results of simulations.

The following order determines how the remaining portion
of the paper is structured. Numerical analysis and graphical
outcome of the study is presented in the section of results and
discussion. In Section II presented related work. Section III
presents basic definitions and results. Section IV provides
details on the description of the proposed model and the anal-
ysis’s assumptions. The presence of non-negative solutions
and their uniqueness are covered in Section V. Section VI
focuses on equilibrium points and their stability analysis.
The numerical solution and its analysis are employed in
Section VII. Section VIII contains the findings and a discus-
sion of the simulation results for the proposed models. The
conclusion and future research are discussed in section IX.

II. RELATED WORK
This section presents a comprehensive review of wireless
sensor networks. The number of researchers who have studies
spreading of malware in WSN apply the concept of epidemic
modeling.

Wu et al. [62] considered a STSIR model to analyse the
virus spread among the devices with consideration of variable
number of devices. They applied the idea of game theory to
curb the virus spread among the devices. Zhang et al. [63]
proposed a epidemic theory based model to supress the
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spreading of malware in WSNs. They consider heterogeneity
in the sensor network as sensor nodes as well as sink nodes.
They analysed the effect of malware attack on different types
of topologies. They suggest the mechanism of the design,
distribution, and maintenance of the sensor network. Fur-
ther, Ye et al. [64] proposed a SIR1R2 model that discussed
about the mechanism of secondary immunity. To analyse the
spreading behaviour of virus in WSN computed the value of
basic reproduction number (R0) and found that if R0 < 1 the
malware will no longer survive in WSN, whereas if R0 > 1
malware will spread in the entire WSN. They studied the
impact of secondary immunity on propagation of malware
in WSN.

Shen et al. [65] proposedVCQPSmodel that uses to defend
theWSN against the attack of malware. They considered both
heterogeneous types of sensor nodes and mobile nodes in
the investigation of malware propagation in WSN. To study
the dynamics of malware propagation in WSN the differen-
tial equations is derived. The changes among the transition
states presented by the differential equations. The existence
of stationary points of the model is discussed. They compare
the proposed model with the traditional models based on epi-
demic theory and suggest the method to defend WSN against
malware attack. Zhou et al. [66] used game theory to analyse
the propagation dynamics of malware in WSN. The Nash
equilibrium strategy is applied to investigate the propagation
behaviour of malware in WSN. The relationship established
between ratio of infection steady-state with parameters of
the game and discussed the existence of malwares in WSN.
They also used cellular automaton and simulate the process
of malwares’ propagation in WSN and verify the theoretical
model correctness with simulation results.

Zhang et al. [67] proposed a MDBCA model which
describes the diffusion of malware through use of cellular
automata. The set of differential equation deduced which
explains the dynamics of various states of the model. The
points of equilibria of the model are obtained which deter-
mine the threshold value whether malware will diffuse or die
out in WSN. They also compute the value of basic reproduc-
tion number and investigate the equilibrium points’ stability
through use of next-generation matrix. The simulation has
been performed to validate the effectiveness of the model.
A SNIRD model is suggested by Shen et al. [68] to supress
spreading of malware in WSN. The suggested model consid-
ered the connectivity with heterogeneity of sensor nodes. The
model also discussed the hiding characteristics of malware
and dysfunctional types of sensor nodes. The existence of
equilibrium for the suggested model has been verified, and
the threshold value is computed which determines the status
of malware in the network, the computed value determine
that whether malware will fade out or spread. The SNIRD
model compared with the conventional SIS and SIR and
demonstrates the effectiveness over SIS and SIRmodels. Fur-
ther, for Heterogeneous wireless sensor networks (HWSNs)
a HSIRD model is proposed by Shen et al. [69] to analyse

the malware propagation dynamics. The model categorise the
sensor nodes are of different types. They considered that the
sensor nodes may be damage due to attack of malware or
physical attack and in both cases sensor nodes will loss the
functionality. The connectivity and heterogeneity are consid-
ered in the analysis of the malware spread in the system.
The points of existence of equilibria of the HSIRD model
is discussed. The value of the basic reproduction number is
computed which govern the equilibrium points stability. The
condition of malware or die out or diffuse is obtained. The
model is validated through simulation results. The HSIRD
model compared with the traditional SIR and SIS models and
showed efficiency over them.

However, there are still some WSN malware spreading
issues need to be addressed. The SEIVRmodel and fractional
calculus approach can be used to address the challenges of
malware propagation in WSNs.

III. BASIC DEFINITION AND RESULTS
First of all, we recall some basic definitions and results of the
fractional calculus.
Definition 1: Let f be a function defined on [a, b] and

α > 0. The Riemann – Liouville fractional integral of order
α > 0 for the function f is defined by

RL
aD

−α
x f (x) =

1
0(α)

x∫
a

(x − s)α−1f (s)ds, x ∈ [a, b] .

Provided the right – hand side is point wise defined
on [a, b]. where 0( .) is the gamma function. For α = 0, we get
aD0

x = I , the identity operator.
Definition 2: Let α ≥ 0 , n ∈ N and f ∈ Cn [a, b]. The

Caputo fractional derivatives of order α for the function f is
defined by

C
aD

α
t f (t) =

1
0(1 − α)

t∫
a

f ′(s)
(t − s)α

ds,

t ∈ [a, b], 0 < α≤1

Definition 3: Let α > 0 , the function Eα defined by

Eα(z) =

∞∑
n=0

zn

0(nα + 1)
, α > 0, z∈ C

is called the Mittage – Leffler function of order α. The
function Eα(z) is entire function. For the special cases when
α = 1, E1(z) = ez and when α = 2, E2(z)= cosh (

√
z). It’s

general form

Eα,β (z) =

∞∑
n=0

zn

0(nα + β)
, α, β ∈ C,

z∈ C and R (α) > 0, R (β) > 0
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Definition 4: Caputo-Fabrizio fractional order derivative

CF
aD

α
t f (t) =

B(α)
1 − α

t∫
a

f ′(x) exp
(

−
α(t − x)
1 − α

)
dx,

t ∈ [a, b], 0 < α≤1

where B(α) is the normalization function such that
B(1) = B(0) = 1.
Definition 5: Atangana–Baleanu fractional derivative in

Caputo sense:

ABC
aD

α
t f (t) =

B(α)
1 − α

t∫
a

f ′(x) Eα

(
−
α(t − x)α

1 − α

)
dx,

t ∈ [a, b], 0 < α≤1

Lemma 1: . If f is continuous and α≥0 then c
aD

α
t aD

−α
t

f (t) = f (t).
Lemma 2: If α ≥ 0, r > 0, θ ∈ [−π, π] ≥ 0,

r > 0, θ ∈ [−π, π] and

lim
t→∞

Eα
(
−λtα

)
= 0 for |θ | <

απ

2
λ = re−iθ

Now, some result related to the stability of the fractional
order systems. Let D be an open subset of Rn. For α ∈ (0, 1],
we consider the initial value problem (IVP) consisting of an
autonomous fractional – order system.

c
aD

α
t u(t) = h(u), u (t0) = u0 (2.1)

where h : D → Rn is locally Lipschitz continuous in t.
Definition 6: . A point u∗ is called an equilibrium of the

system (2.1) if h (u∗) = 0.
Lemma 3: [36], [49] Let J (u∗) denote the cobian matrix

of the system evaluated at an equilibrium point u∗, and let
λj, j = 1, 2, 3, . . . . . . , n be the eigen values of J (u∗). Then
u∗ is locally asymptotically stable if and only if

∣∣argλj∣∣ >
απ
2 , j = 1, 2, 3, . . . . . . , n.
To prove stability result, we have following lemma:
Lemma 4: Assume that α ∈ (0, 1] and g ∈

C([a, ∞) , R+). For any ≥ a, we have
c
aD

α
t g

2(t)≤g(t)caD
α
t g(t) [ [50], Lemma 1]

c
aD

α
t [g(t) − g∗

− g∗ ln
g(t)
g∗

]≤(1 −
g∗

g(t)
)caD

α
t g(t),

where g∗
∈ R+.

Let H ∈ C1(D, R) and α ∈ (0, 1], the αth order Caputo
derivatives of H(u) along the solution u(t) of the system
c
aD

α
t u(t) = h(u), t ∈ [a,∞) is given by [65]

c
aD

α
t H (u(t)) = aD

−(1−α)
t (

dH
du

du
dt

)

Now, next is, fractional version of the well-known
LaSalle’s invariance Principle:
Lemma 5: [37] Assume that A is a bounded closed set

in Rn and that every solution of caD
α
t u(t) = h(u), t ∈ [a,∞),

FIGURE 1. Transition state diagram of the model.

starting from a point in A, remains in A for all time t. Assume,
further, that H ∈ C ′(A, R) such that caD

α
t H (u(t))≤0, where

u(t) is any solution of the system c
aD

α
t u(t) = h(u). Let

E =
{
u ∈ A :

c
aD

α
t H = 0

}
, and let S be the largest invariant

subset of E. Then every solution u(t) of caD
α
t u(t) = h(u), t ∈

[a,∞); originating in A tends to S as t → ∞. In particular,
if S = {0}, u(t) → 0 as t → ∞.
Theorem 1 [60], [61]: Let f be a continuous function on

[a, b]. then, the following inequality is satisfied on a closed
interval [a, b]:

∥∥∥ABC0Dαt [f (t)]∥∥∥ < M (α)
1 − α

B, ∥g(t)∥ = max
a≤t≤b

|g(t)|

Theorem 2 [61]: The Atangana-Baleanu fractional deriva-
tive in Caputo sense satisfy the Lipschitz condition, for the
given functions f and g, the following inequalities can be
obtained:

∥∥∥ABC0Dαt [f (t)] −
ABC

0D
α
t [g(t)]

∥∥∥ < H ∥f (t) − g(t)∥

Theorem 3 ( [61] Condition for Stability): Let u(t) be a
solution of ABC0D

α
t u(t) = f (t, u(t)) with f being continuous

and bounded;
if f satisfies a Lipschit condition, then the required condi-

tion for Adams – Bashforth method when applied to approxi-
mate the Atangana – Baleanu derivative of fractional order in
Caputo sense is achieved if

∥f (tn, un)− f (tn−1, un−1)∥∞ → 0 as n → ∞.

IV. MODEL DESCRIPTION AND ASSUMPTIONS
MADE IN ITS ANALYSIS
The defense mechanism is required for protection of WSN
against worm attack. For this purpose, fractional epidemic
model SEIVR (Susceptible-Exposed-Infectious-Vaccinated-
Recovered) is proposed. The model helps in the study of
worm propagation dynamics in WSN, which formulation is
described in Fig. 1. There are two types of infectious state of
the sensor nodes are considered in the model. These states
are: Exposed state sensor node and Infectious state sensor
node. Worms transmit in WSN with useful data through the
neighboring active mode sensor nodes.

The different states of the proposed models:
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Susceptible State(S): The nodes that are not infected but
are vulnerable to worms are referred to as susceptible states.

Exposed State(E):The exposed sate contains the infected
but non-infectious nodes. This type of nodes does not spread
infection to other nodes.

Infectious State(I):Infected nodes are those that have the
potential to infect other nodes; these nodes belong to the
infected state.

Recovered State(R):When a node that was previously
infected is now free of infection, it is considered to be in a
state of recovery.

Vaccinated State(V):Those nodes that are vaccinated are
considered to be part of the vaccinated state.

For formulation of model the following assumptions has
been made:

• Initially sensor nodes are of Susceptible state (S) and
they are vulnerable against malware attack. When malware
installs in susceptible sensor node then susceptible sensor
node becomes exposed node. Malware executed partially in
exposed node. The rate of conversion of susceptible node
into exposed node is β. Due to normal operation some of
susceptible sensor nodes become dead with rate δ1.

• The abnormal behavior exhibitsby the exposed state
(E) of sensor node in WSN. In exposed node malware has
installed successfully but not executed completely. Therefore,
to stop the further transmission of malware in WSN apply
a corrective measure on exposed state of nodes in time.
Otherwise, these nodes become infectious with rate µ. Some
of the exposed class of sensor nodes become dead with rate
δ2 because of malware attack.

• Sensor node of WSN gets compromise with malware
and begin to malicious activity in the network. Infected nodes
start to spread malware with surrounding nodes and increase
their own energy dissipation. At the same time, malicious
programs may decide not to continue attacking the infected
node, and these infected nodes are only infectious and not
destructive. The corrective measure applies in time and install
anti-malware successfully manner, the node will be safely
converted to the recovered state at the rate η. As the degree
of damage from malicious programs increases, the node will
die faster. Some of the infectious sensor nodes become dead
with rate δ3 because of attack of worms.

• Recovered state of nodes in WSN not only immune to
malware attack but they have also level of high-energy. Sen-
sor nodes of the network turn into recovered state infectious
state. Some of the recovered class of sensor nodes become
dead with rate δ5 .

• Susceptible sensor nodes are adding in the in the system
is at the rate of b.

Total number of sensor nodes in WSN at any time t is
divided into five states. The N(t) number of nodes in the
system these names are as Susceptible State S(t); Vaccinated
V (t); Exposed State E(t)); Infectious State I(t); Recovered
State R(t).

Therefore, mathematically satisfy the following equation
N (t) = S(t)+ E(t)+ I (t)+ V (t)+ R(t), for any time t ⩾ 0.

TABLE 1. Description of used parameter.

To analyses the transmission dynamics of malware and state
of change of sensor node presented by the set of differential
equation. The state transition equations are written as:

dS
dt

= b− βSI − (δ1 + γ ) S

dE
dt

= βSI + ρβVI − (δ2 + µ)E

dI
dt

= µE − (δ3 + η) I

dV
dt

= γ S − ρβVI − δ4V

dR
dt

= ηI − δ5R (3.1)

To model a dimensionally consistent model, we assume
that the initial value of the five compartments satisfy the
initial conditions (ICs):

S(0) = S0, E(0) = E0, I (0) = I0,

V (0) = V0, R(0) = R0, (3.2)

where S0, E0, I0,V0 and R0 are nonnegative real numbers.
In corporate of memory effect, we wish to convert the

above model (3.1) into fractional order problem. To achieve
this, equivalent integral form of (3.1) are given by

S(t) = S0 +

t∫
0

[b− βS(p)I (p) − (δ1 + γ ) S(p)] dp

E(t) = E0 +

t∫
0

[βS(p)I (p) + ρβV (p)I (p)

− (δ2 + µ)E(p) ]dp

I (t) = I0 +

t∫
0

[µE(p) − (δ3 + η) I (p) ]dp
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V (t) = V0 +

t∫
0

[γ S(p) − ρβV (p)I (p) − δ4V (p)] dp

R(t) = R0 +

t∫
0

[ηI (p) − δ5R(p)] dp (3.3a)

In order to include the influence of memory effect [66],
we re-write (3.3a) in terms of time dependent integrals:

S(t) = S0 +

t∫
0

ϕ (t, p) [b− βS(p)I (p) − (δ1 + γ ) S(p)] dp

E(t) = E0 +

t∫
0

ϕ (t, p) [βS(p)I (p) + ρβV (p)I (p)

− (δ2 + µ)E(p) ]dp

I (t) = I0 +

t∫
0

ϕ (t, p) [µE(p) − (δ3 + η) I (p) ]dp

V (t) = V0 +

t∫
0

ϕ (t, p) [γ S(p) − ρβV (p)I (p) − δ4V (p)] dp

R(t) = R0 +

t∫
0

ϕ (t, p) [ηI (p) − δ5R(p)] dp (3.3b)

where ϕ (t, p) plays the role of a time – dependent memory
kernel as a delta function δ (t, p) in the classical Markov
process. The proper choice of ϕ (t, p) can be a power –
law correlation function, to incorporate long – term memory
effect, which contributes to the evolution of the system. Thus,
we can assume the non-local and nonsingular kernel as:

ϕ (t, p) =
B(α)
1 − α

Eα

(
−
α(t − x)α−1

1 − α

)
, α ∈ (0, 1].

Putting this choice of ϕ (t, p) into equation (3.3b) and using
definition 2.1, we get:

S(t) − S0 =
ABC

0D
−α
t [b− βSI − (δ1 + γ ) S]

E(t) − E0 =
ABC

0D
−α
t [βSI + ρβVI − (δ2 + µ)E]

I (t) − I0 =
ABC

0D
−α
t [µE − (δ3 + η) I ]

V (t) − V0 =
ABC

0D
−α
t [γ S − ρβVI − δ4V ]

R(t) − R0 =
ABC

0D
−α
t [ηI − δ5R] (3.4)

Now, applying the Atangana–Baleanu fractional derivative
of order α in Caputo sense on both sides of each equation in
(3.4) and Lemma1, our fractional order epidemic model is
given by

ABC
0D

α
t S(t) = b− βSI − (δ1 + γ ) S

ABC
0D

α
t E(t) = βSI + ρβVI − (δ2 + µ)E

ABC
0D

α
t I (t) = µE − (δ3 + η) I

ABC
0D

α
t V (t) = γ S − ρβVI − δ4V

ABC
0D

α
t R(t) = ηI − δ5R (3.5)

Both sides of the equations in (3.5) are assuming to be same
in dimensions. Now, from here our full attention will be on
this model (3.5) only. Fractional derivatives are very effective
to describe memory effect in the modelling of dynamics of
malware propagation inWSNs. The decay rate of thememory
kernel ϕ (t, p) depends on the value of α. A smaller value
of α corresponds to more slowly decaying time – correlation
functions. The fractional order α can be denoted as an index
of memory of the given system, for detail concern [73].

V. EXISTENCE OF NON-NEGATIVE SOLUTION
AND ITS UNIQUENESS
To discuss the existence and uniqueness of our model (3.5),
we need to proof the following Theorem:
Theorem 4: The model (3.5) with the initial condi-

tions (ICs) (3.2), has a unique positive solution for every
(S0, E0, I0,V0,R0) ∈ R5

+. Moreover, the compact set
Y =

{
(S,E, I,V,R) ∈ R5

+ : 0≤S + E + I + V + R ≤
b
δ

}
. . .

(4.1) is a positively invariant set and having all solu-
tions of the model (3.5) initiating in R5

+. Where δ =

Max{δ1, δ2, δ3, δ4, δ5}
Proof:
Let

X (t) =


S(t)
E(t)
I (t)
V (t)
R(t)

 ; X (0) = X0 =


S(0)
E(0)
I (0)
V (0)
R(0)

 =


S0
E0
I0
V0
R0

W (X (t))

=


W1 (X (t))
W2 (X (t))
W3 (X (t))
W4 (X (t))
W5 (X (t))

 =


b− βSI − (δ1 + γ ) S

βSI + ρβVI − (δ2 + µ)E
µE − (δ3 + η) I
γ S − ρβVI − δ4V

ηI − δ5R


Therefore, the model (3.5) with the ICs (3.2), can be written
in matrix form as:

ABC
0D

α
t X (t) = W (X)with X (0) = X0.

The Jacobian matrix J =
∂W
∂X =

∂(W1,W2,W3, W4, W5)
∂(S,E,I,V,R) of W

is continuous on R5
+ by [70], Remark 1.2.1] W is locally

Lipschitz on R5
+ by [71], Remark 3.8], the model (3.5) with

I.C. (3.2) has a unique solution for every (S0,E0, I0,V0,
R0) ∈ R5

+.
Now, We have to show that, for every (S0,E0, I0,V0,

R0) ∈ R5
+, the unique solution ((S,E, I ,V ,R) ∈ R5

+ of
model (3.5) with the ICs (3.2), is nonnegative. We deny this
and discuss distinguish thirty cases.

Case 1: There exist tS , tE , tI , tV , tR ∈ (0,∞) such that

1.1.S (tS) < 0 and S(t)≥0 for all t ∈ [0, ts) (4.2)
1.2.E (tE ) < 0 and E(t)≥0 for all t ∈ [0, tE ) (4.3)
1.3.I (tI ) < 0 and I (t)≥0 for all t ∈ [0, tI ) (4.4)

1.4. V (tV ) < 0 and V (t)≥0 for all t ∈ [0, tV ) (4.5)
1.5.R (tR) < 0 and R(t)≥0 for all t ∈ [0, tR) (4.6)

Case 2: S(t) is non-negative on R+ and 4.3, 4.4, 4.5 and
4.6 holds (and other similar possible cases too)
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Case 3: S(t), V (t) are non-negative on R+ and 4.3, 4.4,
and 4.6 holds (and other similar possible cases too)

Case 4: S(t), E(t), I (t) are non-negative on R+ 4.5 and
4.6 holds (and other similar possible cases too)

Case 5: S(t), E(t), I (t),V (t) are non-negative on R+ and
and 4.6 holds (and other similar possible cases too)

Using contradiction approach, we will prove that none of
the above all possible combination of cases can occur.

If case 1 hold, then there are five possibilities arises, which
is discussed below:

Subcase 1.1.For tS= min {tS , tE , tI , tV , tR}, from the
first equation in (3.5), we have ABC

0D
α
t S(t)≥ − βSI −

(δ1 + γ ) S≥ − k1S where, k1 = βαmaxt∈[0,ts]I (t) + δ1 +

γ > 0; thus, after solving, ABC
0D

α
t S(t)≥ − k1S we get,

S(t)≥S(0)Eα(−k1tα) for all t ∈ [0, ts]. Hence, S(ts)≥0.
Which is against our assumption, S (ts) < 0.
Subcase 1.2. For tE = min {tS , tE , tI , tV , tR} from the sec-

ond equation in (3.5), we have ABC0D
α
t E(t)≥−(δ2 + µ)E ≥−

k2E where, k2 = (δ2 + µ) > 0; thus, after solving,
ABC

0D
α
t E(t)≥−k2E we get, E(t) ≥ E(0)Eα(−k2tα) for all t ∈

[0, tE ]. Hence, E(tE )≥0. Which is against our assumption,
E (tE ) < 0.
Subcase 1.3. For tI = min {tS , tE , tI , tV , tR}, from the

third equation in (3.5), we have ABC0D
α
t I (t)≥−(δ3 + η) I≥−

k3I where, k3 = (δ3 + η) > 0; thus, after solving
ABC

0D
α
t I (t)≥ − k3I , we get, I (t)≥I (0)Eα(−k3tα) for all t ∈

[0, tI ]. Hence, I (tI )≥0. This is again against our assumption,
I (tI ) < 0.

Subcase 1.4. For tV = min {tS , tE , tI , tV , tR}, from
the fourth equation in (3.5), we have ABC

0D
α
t V (t)≥ −

(ρβI + δ4)V≥ − k4V where, k4 = (ρβmaxt∈[0,tV ]I (t) +

δ4) > 0; thus, after solving ABC
0D

α
t V (t)≥ − k4V , we get,

V (t)≥V (0)Eα(−k4tα) for all t ∈ [0, tV ]. Hence, V (tV )≥0.
This is also against our assumption, V (t4) < 0.
Subcase 1.5. For tR = min {tS , tE , tI , tV , tR}, from the

fifth equation in (3.5), we have ABC0D
α
t R(t) ≥ ηI−δ5R≥−k5R

where, k5 = (η maxt∈[0,tV ]I (t) + δ5) > 0; thus, after solving
ABC

0D
α
t R(t)≥−k5R, we get, R(t)≥R(0)Eα(−k54 and 5 (4.5) (tα)

for all t ∈ [0, tR]. Hence, R(tR)≥0. This is also against our
assumption, R(tR) < 0.
Hence, combining all the subcases (1.1) – (1.5) we reach

the conclusion that case (1) does not possible. Now assuming
case (2) holds. Proceeding in the similar way as in case we
can also shows that case (2) cannot occur. Similar arguments
can be used to show that none of the cases occur i.e. case
(2) to case (5) and other all possible combinations of cases
cannot occur. On the basis of the above analysis, we reached
on the conclusion that the unique solution (S,E, I ,V ,R) is
non-negative. This conclusion establishes the non-negativity
of our solution. Now, we have to prove that set Y defined
by (4.1) is positively invariant. Adding the equations in (3.5),
we get:

ABC
0D

α
t (S + E + I + V + R)

= b− δ1S − δ2E − δ3I − δ4V − δ5R

Let δ = Max {δ1, δ2, δ3, δ4, δ5} and also assume that δ =

δ1 = δ2 = δ3 = δ4 = δ5 for the sake of our conveniencei.e.
ABC

0D
α
t M = b−δM (where,M = S+E+ I+R+V solving

above equation [24], remark 7.1]), we get:

M (t) = M (0)Eα
(
−δtα

)
+ b

t∫
0

pα−1E ′
α

(
−δpα

)
dp

=

(
−
b
δ

+M (0)
)
Eα
(
−δtα

)
+
b
δ

Hence, we note that Eα (−δtα)≥0. If M (0) ≤
b
δ
, we have

S+E+I+V+R = M (t)≤ b
δ
, Hence, Y is positively invariant.

In the end, we successfully reached the conclusion that Y
contains all solutions of the model (3.5) initially in R5

+ as
lim
t→∞

Eα (−δαtα) = 0 (by Lemma 2.) we get lim
t→∞

M (t) =
b
δ

This completes the proof.

VI. EQUILIBRIUM AND STABILITY ANALYSIS
OF THE MODEL
A. STABILITY ANALYSIS OF MALWARE – FREE
EQUILIBRIUM
It is obvious that model (3.5) has a unique malware free
equilibrium W0 =

(
b

δ1+γ
, 0, 0, γ b

δ4(δ1+γ )
, 0
)

∴ Jacobian
associated with the model (3.5) is:

J

=


−Iβ − γ − δ1 0 −βS 0 0

βI −µ− δ2 βS + βρV βIρ 0
0 µ −η − δ3 0 0
γ 0 −Vβρ −βIρ − δ4 0
0 0 η 0 −δ5


At W0, the Jacobian

J (W0) =


−γ − δ1 0 −βb

δ1+γ
0 0

0 −µ− δ2
βb
δ1+γ

+
γ bβρ

δ4(δ1+γ )
0 0

0 µ −η − δ3 0 0
γ 0 −βργ b

δ4(δ1+γ )
−δ4 0

0 0 η 0 −δ5


Its eigen values are λ1 = − (γ + δ1) , λ2 = −δ4,

λ3 = −δ5 ,

λ4 =
1

2(γ + δ1)δ4
(−γ ηδ4 − γµδ4

− ηδ1δ4 − µδ1δ4 − γ δ2δ4

− δ1δ2δ4

− γ δ3δ4 − δ1δ3δ4

−
√
γ + δ1

√
δ4

√
(4bβγµρ + γ η2δ4 + 4bβµδ4

− 2γ ηµδ4 + γµ2δ4 + η2δ1δ4

− 2ηµδ1δ4 + µ2δ1δ4 − 2γ ηδ2δ4 + 2γµδ2δ4
− 2ηδ1δ2δ4 + 2µδ1δ2δ4 + γ δ22δ4
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+ δ1δ
2
2δ4 + 2γ ηδ3δ4 − 2γµδ3δ4

+ 2ηδ1δ3δ4 − 2µδ1δ3δ4 − 2γ δ2δ3δ4 − 2δ1δ2δ3δ4
+ γ δ23δ4 + δ1δ

2
3δ4))

λ5 =
1

2(γ + δ1)δ4
(−γ ηδ4 − γµδ4

− ηδ1δ4 − µδ1δ4 − γ δ2δ4 − δ1δ2δ4

− γ δ3δ4 − δ1δ3δ4 +
√
γ+δ1

√
δ4

√
(4bβγµρ + γ η2δ4

+ 4bβµδ4 − 2γ ηµδ4 + γµ2δ4 + η2δ1δ4 − 2ηµδ1δ4
+ µ2δ1δ4 − 2γ ηδ2δ4 + 2γµδ2δ4 − 2ηδ1δ2δ4
+ 2µδ1δ2δ4 + γ δ22δ4

+ δ1δ
2
2δ4 + 2γ ηδ3δ4 − 2γµδ3δ4

+ 2ηδ1δ3δ4 − 2µδ1δ3δ4
− 2γ δ2δ3δ4 − 2δ1δ2δ3δ4 + γ δ23δ4 + δ1δ

2
3δ4))

The first four eigen values are obviously negative and last
one will be negative if and only if (−γ ηδ4 − γµδ4 −

ηδ1δ4 − µδ1δ4 − γ δ2δ4 − δ1δ2δ4 − γ δ3δ4 − δ1δ3δ4 +
√
γ + δ1

√
δ4

√
(4bβγµρ + γ η2δ4 + 4bβµδ4 − 2γ ηµδ4 +

γµ2δ4+η2δ1δ4−2ηµδ1δ4+µ2δ1δ4−2γ ηδ2δ4+2γµδ2δ4−

2ηδ1δ2δ4+2µδ1δ2δ4+γ δ22δ4+δ1δ
2
2δ4+2γ ηδ3δ4−2γµδ3δ4+

2ηδ1δ3δ4 − 2µδ1δ3δ4 − 2γ δ2δ3δ4 − 2δ1δ2δ3δ4 + γ δ23δ4 +

δ1δ
2
3δ4)) < 0 or Rth0 =

δ4bβµ+bβγρµ
(δ1+γ )(µ+δ2)(η+δ3)δ4

< 1, where Rth0 is
a dimensionless basic reproduction number.

Using Lemma 3 and above analysis, the following result is
immediate:
Theorem 5.1: The malware free equilibrium W0 is locally

asymptotically stable if Rth0 < 1 and unstable if Rth0 > 1.
FromAbove said theorem it is clear that if the initial values

(S0, E0, I0,V0, R0) ∈ R5
+ are sufficiently close to W0, the

unique solution of the model (3.5) with Initial Conditions
(3.2), i.e. converges to W0. But, here we cannot depict the
region of attraction, for that we discuss the next result:
Theorem 5.2: Consider Rth0 < 1. The compact set

Y =
{
(S,E, I,V,R) ∈ R5

+ : 0≤S + E + I + V + R ≤
b
δ

}
,

is the region of attraction of the user-free equilibriumW0.
Proof:We have to show that, for every ((S0, E0, I0,V0,

R0) ∈ Y, the unique solution (S,E, I,V,R) of model (3.5)
with the Initial Conditions (ICs) (3.2) converges to W0. Let
consider the Lyapunovfunction

L(t) =
1
2
I2 +

1
2

(
s−

b
δ

+ E + I + V + R
)2

(5.3)

By theorem 5.1,ϒ is nonnegative invariant. Since, (S0,E0, I0,
V, R0) ∈ ϒ , we have s ≤

b
δ1+γ

Therefore, Lemma 4. and model (3.5), we get:

ABC
0D

α
t L ≤ I (ABC0D

α
t I (t))

+

(
S −

b
δ

+ E + I + V + R
)

×
ABC

0D
α
t

(
S −

b
δ

+ E + I + V + R
)

= I (µE − (δ3 + η) I )

+

(
S −

b
δ

+ E + I + V + R
)

× (b− δ1S − δ2E − δ3I − δ4V − δ5R)

≤ I (µE − (δ3 + η) I )

+

(
S −

b
δ

+ I + V + R
)
(b− δ(S + E + I + V + R))

(as δ = max {δ1, δ2, δ3, δ4, δ5})

≤ I (µE − (δ3 + η) I )−δ
(
S −

b
δ

+ E + I + V + R
)2

(∴ S ≤
b

δ1+γ
)

ABC
0D

α
t L≤0 if and only if I (µE − (δ3 + η) I )

− δ

(
S −

b
δ

+ E + I + V + R
)2

≤ 0

or I (µE − (δ3 + η) I ) ≤δ
(
S −

b
δ

+ E + I + V + R
)2

Moreover, ABC0D
α
t L≤0 if and only if S+E+I+V+R =

b
δ

and I = 0.
i.e. W =

{
(S,E, I ,V ,R) ; ABC0D

α
t L = 0

}
= {(S,E, I ,

V ,R); S + E + I + V + R =
b
δ
}

By Lemma 5., every solution of model (3.5) initiating in Y
tend to the largest invariant set in W. Thus, lim

t→∞
I (t) = 0. for

I = 0, from (3.5) we get

ABC
0D

α
t S(t) = b− (δ1 + γ ) S

ABC
0D

α
t E(t) = − (δ2 + µ)E

ABC
0D

α
t V (t) = γ S − δ4V

ABC
0D

α
t R(t) = −δ5R (5.4)

In similar manner to obtaining (3.5), we can find the solution
of (5.4), also thus, after solving, we get, (similar to (3.5))

S(t) =

(
−

b
(δ1 + γ )

+ S(0)
)
Eα
(
−((δ1 + γ ))tα

)
+

b
(δ1 + γ )

E(t) = E(0)Eα
(
−(δ2 + µ)tα

)
V (t) =

(
−
γ S(0)
δ4

+ V (0)
)
Eα
(
−δ4tα

)
+
γ

δ4

b
(δ1 + γ )

R(t) = r(0)Eα
(
−δ5tα

)
(5.5)

By Lemma 2.

lim
t→∞

S(t) =
b

(δ1 + γ )
, lim
t→∞

E(t) = 0, lim
t→∞

V(t)

=
γ

δ4

b
(δ1 + γ )

and lim
t→∞

R(t) = 0

Thus, (S,E, I ,V ,R) → W0 as t → ∞. This Thus,
(S,E, I ,V ,R) → W0 as t → ∞.

This completes the proof of the theorem.
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B. STABILITY ANALYSIS OF ENDEMIC EQUILIBRIUM
If Rth0 > 1, Firstly, we show the existence of a unique
endemic equilibrium of the model (3.5).
Theorem 5.3: If Rth0 > 1. The model (3.5) has a unique

endemic equilibrium W ∗
= (S∗,E∗, I∗,V ∗,R∗), where

S∗
=

b
βI∗+(δ1+γ )

, E∗
=

R∗δ5(δ3+η)
µη

, I∗ =
δ5R∗

η
, V ∗

=
γ S∗

ρβI∗+δ4
and R∗ is the unique positive solution of the cubic equation
in R.

Proof.
From Definition 2.3, an endemic equilibrium point of the

model (3.5) satisfies the equations

0 = b− βS∗I∗ − (δ1 + γ ) S∗

0 = βS∗I∗ + ρβV ∗I∗ − (δ2 + µ)E∗

0 = µE∗
− (δ3 + η) I∗

0 = γ S∗
− ρβV ∗I∗ − δ4V ∗

0 = ηI∗ − δ5R∗ (5.6)

After straight forward calculation, endemic equilibrium
points are given by

S∗
=

ηb
(βδ5R∗ + (δ1 + γ ) η)

,E∗
=
(δ3 + η) δ5R∗

ηµ
,

I∗ =
δ5R∗

η
, V ∗

=
γ S∗

(ρβδ5R∗ + δ4η)
,

where R∗ is given by the equation

βbη
βδ5R∗ + η (δ1 + γ )

δ5R∗

η
−

R∗δ5 (δ3 + η)

µη
−
δ3δ5R∗

η

+
γ bη

βδ5R∗ + η (δ1 + γ )

−
δ4γ b (η)2

[ρβR∗δ5 + δ4η] [βδ5R∗ + η (δ1 + γ )]
− δ5R∗

= 0

(5.7)

From equation (5.7) it is clear that R∗ have non-negative
value if Rth0 =

δ4bβµ+bβγρµ
(δ1+γ )(µ+δ2)(η+δ3)δ4

> 1. which proves the
theorem (5.3).
Theorem 5.4: The endemic equilibrium W ∗

=

(S∗,E∗, I∗,V ∗,R∗) is globally asymptotically stable.
Proof: Let ψ(x) = x − x∗

− x∗ ln x
x∗

Define the LyapunovfunctionL 1(t) by

L1(t) = a1ψ1 (S(t))+ a2ψ2 (E(t))+ a3ψ3 (I (t))

+ a4ψ4 (V (t))+ a5ψ5(R(t)),

where aj > 0, j = 1, 2, 3, 4, 5

L1(t) = a1

(
S − S∗

− s∗ ln
S
S∗

)
+ a2

(
E − E∗

− E∗ ln
E
E∗

)
+ a3(I − I∗ − I∗ ln

I
I∗

) + a4(V − V ∗
− V ∗ ln

V
V ∗

)

+ a5(R− R∗
− R∗ ln

R
R∗

) (5.8)

Now, we calculate the α – order Caputo derivatives ofψj, j =
1, 2, 3, 4, 5 by Lemma 4. From the first Equation of (5.6),
we have

b = βS∗I∗ + (δ1 + γ ) S∗

Using this and the first equation of (3.5), we obtain

ABC
0D

α
t ψ1(S) ≤

S − S∗

S
ABC

0D
α
t S(t)

= −
(S − S∗)2

S

(
βI∗ + (δ1 + γ )

)
+ β (S − S∗)

(
I∗ − I

)
(5.9)

From second equation of (5.6)

βS∗I∗ + ρβV ∗I∗ = (δ2 + µ)E∗

Using this and the second equation in (3.5), we obtain

ABC
0D

α
t ψ2 (E(t)) ≤

(E − E∗)

E
ABC

0D
α
t E(t)

=
(E − E∗)

E
[β
(SIE∗

− I∗S∗E)
E∗

+ ρβ
(VIE∗

− I∗V ∗E)
E∗

] (5.10)

Now, from third equation of (5.6), we get

0 = µE∗
− (δ3 + η) I∗

Using this and from third equation of (3.5), we get

ABC
0D

α
t ψ3(I ) ≤

(I − I∗)
I

ABC
0D

α
t I (t)

=
(I − I∗)

I

[
µ(E − E∗) −

µE∗

I∗
(I − I∗)

]
(5.11)

From fourth equation of (5.6), we get

γ S∗
= ρβV ∗I∗ + δ4V ∗

Using this and from fourth equation of (3.5), we get
ABC

0D
α
t ψ4(V )

≤
(V − V ∗)

V
ABC

0D
α
t V (t)

=
(V − V ∗)

R

(
S
ρβV ∗I∗ + δ4V ∗

S∗
− ρβVI − δ4V

)
(5.12)

From fifth equation of (5.6), we get

ηI∗ = δ5R∗

Using this and from fifth equation of (3.5), we get

ABC
0D

α
t ψ5(R) ≤

(R− R∗)
R

ABC
0D

α
t R(t)

=
(R− R∗)

R
(
δ5R∗I − δ5RI∗

I∗
) (5.13)

From equation (5.3) to (5.13), it follows that ABC0D
α
t L1(t) ≤

0 and ABC
0D

α
t L1(t) = 0 if and only if S = S∗, E =

E∗, I = I∗, V = V ∗ and R = R∗, Hence, the largest
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invariant set
{
(S,E, I ,V ,R) ; ABC0D

α
t L = 0

}
is the singleton

set W ∗. From Theorem 4.1, we found that the set Y attracts
all solutions of the model (3.5) initiating inR5

+. By Lemma 5,
W ∗ is global asymptotically stable. This proofs the theorem.

VII. NUMERICAL SOLUTION AND ITS ANALYSIS
Here, we find the numerical solutions of the considered
model (3.1). Then the numerical results are gained through
the proposed scheme. To achieve this purpose, we apply the
fractional Adams Bashforth method [60] to approximate the
AB fractional integral.

The equation (3.1) can be converted to a fractional integral
equation by applying the fundamental theorem of fractional
calculus [ [24], [42], [47]] as follows:

:Sn(t) = Sn(0) +
(1 − α)
B (α)

{b− βSnIn − (δ1 + γ ) Sn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1

× {b− βSnIn − (δ1 + γ ) Sn} dl

En(t) = En(0) +
(1 − α)
B (α)

{βSnIn + ρβVnIn − µEn − δEn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1

× {βSnIn + ρβVnIn − µEn − δ2En} dl

In(t) = In(0) +
(1 − α)
B (α)

{µEn − (δ3 + η) In}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1
{µEn − (δ3 + η) In} dl

Vn(t) = Vn(0) +
(1 − α)
B (α)

{γ Sn − ρβVnIn − δ4Vn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1

× {γ Sn − ρβVnIn − δ4Vn} dl

Rn(t) = Rn(0) +
(1 − α)
B (α)

{ηIn − δ5Rn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1
{ηIn − δ5Rn} dl

(6.1)

For the sake of convenience, let us assume

Hn,1(t) = b− βSn(t)In(t) − (δ1 + γ ) Sn(t),

Hn,2(t) = βSn(t)In(t) + ρβVn(t)In(t) − µEn(t) − δEn(t),

Hn,3(t) = µEn(t) − (δ3 + η) In(t),

Hn,4(t) = γ Sn − ρβVn(t)In(t) − δ4Vn(t),

Hn,5(t) = ηIn(t) − δ5Rn(t) (6.2)

The expressions Hn,1(t), Hn,2(t), Hn,3(t), Hn,4(t), and
Hn,5(t) are said to satisfy the Lipschitz condition if and only if
Sn(t), En(t), In(t),Vn(t) and Rn(t) have an upper bound. Let
Sn(t) and Sm(t) be two functions, then we get∥∥Hn,1(t) − Hm,1(t)

∥∥
= ∥−β(Sn − Sm) In − (δ1 + γ ) (Sn − Sm)∥

= ∥−(βIn + (δ1 + γ ))(Sn − Sm)∥

≤ ∥−(βIn + (δ1 + γ ))∥ ∥(Sn − Sm)∥

≤ ε1 ∥(Sn − Sm)∥ (6.3)

Where ε1 =
∥∥−(βmaxt∈[0,tS ]In(t) + (δ1 + γ ))

∥∥ .
Hence, we have∥∥Hn,1(t) − Hm,1(t)

∥∥ ≤ε1 ∥(Sn − Sm)∥ (6.4)

Similarly, we can obtain∥∥Hn,2(t) − Hm,2(t)
∥∥ ≤ ε2 ∥(En − Em)∥∥∥Hn,3(t) − Hm,3(t)
∥∥ ≤ ε3 ∥(In − Im)∥∥∥Hn,4(t) − Hm,4(t)
∥∥ ≤ ε4 ∥(Vn − Vm)∥∥∥Hn,5(t) − Hm,5(t)
∥∥ ≤ ε5 ∥(Rn − Rm)∥ (6.5)

Thus, the Lipschitz condition is satisfied for all the five
functions Hn,1(t), Hn,2(t), Hn,3(t), Hn,4(t), and Hn,5(t)
where ε1, ε2, ε3, ε4 and ε5 are the corresponding Lipschitz
constant
Now, using equation (6.2) in equation (6.1) we get:

Sn(t) = Sn(0) +
(1 − α)
B (α)

{b− βSnIn − (δ1 + γ ) Sn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1Hn,1(l)dl

En(t) = En(0) +
(1 − α)
B (α)

{βSnIn + ρβVnIn − µEn − δEn}

×
α

B (α) 0(α)

t∫
0

(t − l)α−1Hn,2(l)dl

In(t) = In(0) +
(1 − α)
B (α)

{µEn − (δ3 + η) In}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1Hn,3(l)dl

Vn(t) = Vn(0) +
(1 − α)
B (α)

{γ Sn − ρβVnIn − δ4Vn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1Hn,4(l)dl

Rn(t) = Rn(0) +
(1 − α)
B (α)

{ηIn − δ5Rn}

+
α

B (α) 0(α)

t∫
0

(t − l)α−1Hn,5(l)dl (6.6)
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To start an iterative scheme, at given point t = tk+1, for k =

0, 1, 2, . . . . . . the above equation is reformulated as:

Sn (tk+1) = Sn(0) +
(1 − α)
B (α)

Hn,1 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

tj+1∫
tj

(tk+1 − l)α−1Hn,1(l)dl

En (tk+1) = En(0) +
(1 − α)
B (α)

Hn,2 (tk)

+
α

B (α) 0(α)

j=k∑
j=0

tj+1∫
tj

(tk+1 − l)α−1Hn,2(l)dl

In (tk+1) = In(0)

+
(1 − α)
B (α)

Hn,3 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

tj+1∫
tj

(tk+1 − l)α−1Hn,3(l)dl

Vn (tk+1) = Vn(0) +
(1 − α)
B (α)

Hn,4 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

tj+1∫
tj

(tk+1 − l)α−1Hn,4(l)dl

Rn (tk+1) = Rn(0) +
(1 − α)
B (α)

Hn,5 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

tj+1∫
tj

(tk+1 − l)α−1Hn,5(l)dl

(6.7)

Within the interval [tj, tj+1], we can utilize the two points
interpolation for approximate the functions Hn,1(l), Hn,2(l),
Hn,3(l),Hn,4(l)and Hn,5(l) inside the above integral.

Hn,1(l) ∼=
Hn,1

(
tj
)

h

(
l − tj−1

)
−
Hn,1

(
tj−1

)
h

(
l − tj

)
Hn,2(l) ∼=

Hn,2
(
tj
)

h

(
l − tj−1

)
−
Hn,2

(
tj−1

)
h

(
l − tj

)
Hn,3(l) ∼=

Hn,3
(
tj
)

h

(
l − tj−1

)
−
Hn,3

(
tj−1

)
h

(
l − tj

)
Hn,4(l) ∼=

Hn,4
(
tj
)

h

(
l − tj−1

)
−
Hn,4

(
tj−1

)
h

(
l − tj

)
Hn,5(l) ∼=

Hn,5
(
tj
)

h

(
l − tj−1

)
−
Hn,5

(
tj−1

)
h

(
l − tj

)
(6.8)

Using equation (6.4) and (6.5) in (6.3) and on simplification
we get:

Sn (tk+1)

= Sn(0) +
(1 − α)
B (α)

Hn,1 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

(
Hn,1

(
tj
)

h
Iαj−1 −

Hn,1
(
tj−1

)
h

Iαj

)

En (tk+1)

= En(0) +
(1 − α)
B (α)

Hn,2 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

(
Hn,2

(
tj
)

h
Iαj−1 −

Hn,2
(
tj−1

)
h

Iαj

)
(6.9)

In (tk+1)

= In(0) +
(1 − α)
B (α)

Hn,3 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

(
Hn,3

(
tj
)

h
Iαj−1 −

Hn,3
(
tj−1

)
h

Iαj

)
Vn (tk+1)

= Vn(0) +
(1 − α)
B (α)

Hn,4 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

(
Hn,4

(
tj
)

h
Iαj−1 −

Hn,4
(
tj−1

)
h

Iαj

)
Rn (tk+1)

= Rn(0) +
(1 − α)
B (α)

Hn,5 (tk)

+
α

B (α) 0(α)

∑j=k

j=0

(
Hn,5

(
tj
)

h
Iαj−1 −

Hn,5
(
tj−1

)
h

Iαj

)
where,

Iαj−1 =

tj+1∫
tj

(
l − tj−1

)
(tk+1 − l)α−1dl

Iαj =

tj+1∫
tj

(
l − tj

)
(tk+1 − l)α−1dl

On further simplification of the integrals Iαj−1 and I
α
j , and

assuming, tj = jh, we can easily find that

Iαj−1 =
hα+1

α (α + 1)

[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]

(6.10)

Iαj =
hα+1

α (α + 1)

[
(k + 1 − j)α+1

−(k − j)α(k − j+ 1 + α)
]

(6.11)

Using values from equations (6.10) and (6.11) in equation
(6.9) and after simplification, we get

Sn (tk+1)

= Sn(0) +
(1 − α)
B (α)

Hn,1 (tk)+
α

B (α)

∑j=k

j=0

×

(
Hn,1

(
tj
)

0(α + 2)
hα
[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]
−
Hn,1

(
tj−1

)
0(α + 2)

hα
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[
(k + 1 − j)α+1

− (k − j)α(k − j+ 1 + α)
])

(6.12)
En (tk+1)

= En(0) +
(1 − α)
B (α)

Hn,2 (tk)+
α

B (α)

∑j=k

j=0

×

(
Hn,2

(
tj
)

0(α + 2)
hα
[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]
−
Hn,2

(
tj−1

)
0(α + 2)

hα[
(k + 1 − j)α+1

− (k − j)α(k − j+ 1 + α)
])

(6.13)
In (tk+1)

= In(0) +
(1 − α)
B (α)

Hn,3 (tk)+
α

B (α)

∑j=k

j=0

×

(
Hn,3

(
tj
)

0(α + 2)
hα
[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]
−
Hn,3

(
tj−1

)
0(α + 2)

hα[
(k + 1 − j)α+1

− (k − j)α(k − j+ 1 + α)
])

(6.14)
Vn (tk+1)

= Vn(0) +
(1 − α)
B (α)

Hn,4 (tk)+
α

B (α)

∑j=k

j=0

×

(
Hn,4

(
tj
)

0(α + 2)
hα
[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]
−
Hn,4

(
tj−1

)
0(α + 2)

hα[
(k + 1 − j)α+1

− (k − j)α(k − j+ 1 + α)
])

(6.15)
Rn (tk+1)

= Rn(0) +
(1 − α)
B (α)

Hn,5 (tk)+
α

B (α)

∑j=k

j=0

×

(
Hn,5

(
tj
)

0(α + 2)
hα
[
(k + 1 − j)α (k − j+ 2 + α)

−(k − j)α(k − j+ 2 + 2α)
]
−
Hn,5

(
tj−1

)
0(α + 2)

hα

×

[
(k + 1 − j)α+1

− (k − j)α(k − j+ 1 + α)
])

(6.16)

A. FOR THE STABILITY OF THE NUMERICAL SOLUTION
OBTAINED ABM METHOD
This is clear from (6.4) and (6.5) that the functions
Hn,1(t), Hn,2(t), Hn,3(t), Hn,4(t), and Hn,5(t) Satisfies the
Lipschitz condition,

Now,∥∥Hn,1 (tk)− Hn,1 (tk−1)
∥∥

∞

= ∥−βSn (tk) In (tk)− (δ1 + γ ) Sn (tk)

+βSn (tk−1) In (tk−1)+ (δ1 + γ ) Sn (tk−1)∥∞ (6.17)

using (6.12) and (6.13) in (6.17) and from ref. (60)

FIGURE 2. Basic Reproduction number less than one (Rth0 = 0.316235 ).

FIGURE 3. Basic Reproduction number greater than one (Rth0 = 1.192941).

FIGURE 4. Analyse the effect of fractional derivative (α) on infectious
nodes.

for k → ∞ as
∥∥Hn,1 (tk)− Hn,1 (tk−1)

∥∥
∞

→ 0, there-
fore, from Theorem 3.3, the solution Sn (tk) is stable.

Similarly, we can obtain the stability condition for solu-
tions En (tk) , In (tk) ,Vn (tk) and Rn (tk).

VIII. RESULTS AND DISCUSSION
Conduct a series of numerical simulation experiments to
study the impact of different factors on the spread of malware
in WSN.
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FIGURE 5. Analyse the effect of fractional derivative (α) on exposed
nodes.

FIGURE 6. Analyse the effect of fractional derivative (α) on vaccinated
nodes.

FIGURE 7. Analyse the effect of fractional derivative (α) on recovered
nodes.

The proposed work is simulated using MATLAB on a
3-GHzIntel Xeon system running UBUNTU 19.2 LTS with
16-GBRAM. The results of simulation are illustrated in
Figure 2 to Figure 7, for susceptible (S), Exposed(E), infec-
tious (I), vaccinated and recovered (R) class with respect
to time (t).The values of the various parameters considered
for simulation are b = 1, β = .02, ϒ = .2, ρ = .004,
η = .07, δ1 = δ2 = δ3 = δ4 = δ5 = .1 and taking
the fractional derivative value α = .7 In this analysis, it is

ascertainedthat initially infected nodes increase with time and
achievethe maximum value. After that, it begins to disappear
with timeand become zero. This shows that the system is
asymptoticallystable in these conditions. The basic reproduc-
tion number incise 1 depicted in Figure1, is0.316235 which
is less than one, so malware disappears from the wireless
sensor network. This result validates Theorems 5.1 and 5.2.
When change some parametric value such as β = .07, ρ =

.007, µ = .6, and and other remain same. Then the value
of Rth0 = 1.192941. Fig. 2 demonstrates that malware per-
sists in the system continuously and in this case, the value
of basic reproduction number (1.192941) is greater than 1.
In this situation, malware will spreading the wireless sensor
network., so malware continuously persist in the wireless
sensor network. This result validates Theorems 5.3 and (5.4).

The impact of fractional derivative (α) on infectious nodes
and exposed nodes are shown in Figure 3 and Figure 4. Shows
that relationship between time and infectious nodes and
exposed class nodes. It is evident from graph that when ini-
tially infectious class nodes and exposed class nodes achieve
its maximum value for different value of α and after some
time decline. For higher value of α the number of infectious
nodes and exposed class nodes is less and for lower value of
α the number of infectious nodes and exposed class nodes is
more as compared to higher value of α.

Figure 5 shows the dynamic relationship between time and
vaccinated class nodes for different value of α. It is clear from
figure that when α=.095 vaccination is very fast as compared
to lesser value of α but after some time there is no impact of
α on the vaccination. The link between time and recovered
class nodes is shown in Figure 7, and it can be seen that as
rises, recovery becomes quicker.

IX. CONCLUSION AND FUTURE WORK
The fractional-order derivatives are normally well suited for
modelling since the determination about the derivative order
offers one more degree of freedom, which results in a better
fit to the real-time data with less inaccuracy than the integer-
order model. Therefore, for controlling malware propagation
and extending the lifespan of WSN, a fractional order SEIVR
epidemic model is proposed. The proposed model offers a
technique to quickly identify sensor node transitions from
susceptible to infected state. Such detection provides a chance
to further incorporate techniques for maintaining the sensor
nodes and stabilizingWSN under various circumstances. The
drawbacks of the earlier discussed model are overcome by
an amended SEIRV model through the mechanism of vac-
cination. The computation of the basic reproduction number
is one of the critical parameters that plays an important role
in controlling malware transmission in the WSN. This value
is computed. Additionally, it is found that endemic equilib-
rium and malware free equilibrium are locally and globally
asymptotically stable, if the values of Rth0 >1 and Rth0 <1,
respectively and this is supported by simulation results. These
results are presented in Figure 2 and 3. Additionally, MAT-
LAB(R2018a) simulations were run to test the validity of
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the proposed model. Numerical solutions for the system have
been found using the Adam-Bashforth-Moulton predictor-
corrector method. The impact of various factors on mal-
ware propagation in WSN under various circumstances has
been extensively analysed. Numerous results show that the
proposed model offers a better defence mechanism against
malware attacks. Further, fractional derivative models can
be used to develop more effective control strategies for epi-
demics, including quarantine measures, and social distancing
like policies depends on the type of network. There is a need
for more research on how to use these models to optimize
control strategies and minimize the impact of epidemics on
WSN as well as online social network. In upcoming research
work, we proposed our research in the field of variable order
fractional derivative model through artificial intelligence-
based approach.
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