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ABSTRACT Despite the great promise of service robots in everyday tasks, many roboethics issues remain
to be addressed before these robots can physically work in human environments. Robot safety is one of
the essential concerns for roboethics which is not just a design-time issue. It is also crucial to devise the
required onboard monitoring and control strategies to enable robots to be aware of and react to anomalies
(i.e., unexpected deviations from intended outcomes) that arise during their operations in the real world. The
detection and identification of these anomalies is an essential first step toward fulfilling these requirements.
Although several architectures have been proposed for anomaly detection; identification has not yet been
thoroughly investigated. This task is challenging since indicators may appear long before anomalies are
detected. In this paper, we propose a ConvoLUtional threE-stream Anomaly Identification (CLUE-AI)
framework to address this problem. The framework fuses visual, auditory and proprioceptive data streams
to identify everyday object manipulation anomalies. A stream of 2D images gathered through an RGB-D
camera placed on the head of the robot is processed within a self-attention-enabled visual stage to capture
visual anomaly indicators. The auditory modality provided by the microphone placed on the robot’s lower
torso is processed within a designed convolutional neural network (CNN) in the auditory stage. Last, the
force applied by the gripper and the gripper state is processed within a CNN to obtain proprioceptive
features. These outputs are then combined with a late fusion scheme. Our novel three-stream framework
design is analyzed on everyday object manipulation tasks with a Baxter humanoid robot in a semi-structured
setting. The results indicate that CLUE-AI achieves an f-score of 94%, outperforming the other baselines in
classifying anomalies.

INDEX TERMS Cognitive robots, robot manipulation, robot safety, anomaly identification, robot learning.

I. INTRODUCTION
Safety is of great importance when robots work in human
environments [1], [2]. They must operate without any poten-
tial damage to humans and their surroundings in such set-
tings [3]. Even though robots are designed by applying safety
engineering methods [4], various sources of uncertainty may
lead to unexpected outcomes, i.e., anomalies, in the real
world, which must be detected and identified for robust
execution. This work addresses the anomaly identification
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problem, which asks for classifying a detected anomaly to
enhance the situation awareness capabilities of robots.

Detecting and identifying anomalies is essential, and diag-
nostic procedures are needed to recognize anomalies and
recover from them [5], [6], [7]. The first phase of a diagnostic
procedure is to indicate an anomaly, called anomaly detec-
tion. The classification of the anomaly type follows anomaly
detection. This procedure is called anomaly identification.
After identifying the anomaly, the robot should apply recov-
ery actions to return to the nominal state and achieve the task.
This is called recovery. Our main motivation in this research
is the anomaly identification task, where the robot classifies
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FIGURE 1. An anomalous execution from the viewpoint of a robot with a
parallel gripper hand. The task is to place the plastic pear into the
container. The action fails since the container is full of other objects.

anomaly cases after they are detected. Such a task is vital,
as being aware of the occurred anomaly type enables the
robots to come upwith effective recovery plans by associating
anomaly contexts with upcoming plans [8].

In this study, we consider robot manipulation anomalies as
deviations from rules, specifications, or expectations. Based
on this definition, unexpected situations caused by nature,
human interventions, or the robot during manipulation are
considered anomalies. Anomaly definition also includes vio-
lations of expected operational outcomes, particularly fail-
ures encountered due to improper computation of grasp,
push, place placements, or unsafe executions. Moreover,
some anomaly cases may appear, although the robot operates
safely in a normal situation. A sample case is illustrated in
Figure 1 from the view of the robot. In the illustrated case,
the robot stands behind a table on which some objects to be
manipulated are located. The robot is tasked with placing an
object (a plastic pear) into a container full of other plastic
objects (Figure 1a). First, the robot reaches the pear by its arm
(Figure 1b), picks it up, and tries to place it into the container
(Figure 1c). However, since the container is almost full of
objects (which is not an anomalous situation at that particular
time frame), the plastic pear bounces back and falls onto the
table during a safe place-in-container operation (Figure 1d).
Following this step, the robot should detect this anomaly for
further inference about the case. The underlying reason for
this anomaly is that the robot cannot assess the depth of
the container and predict that the placement operation will
fail. At this point, the anomaly identification procedure is
expected to ensure that the robot is aware of the fact that a
place action is failed due to the situation of the container. This
is the key to taking the necessary precautions for handling
future place-in-container tasks on the same container or in a
similar case.

Incorporating sensory readings is the key to an effective
anomaly identification procedure. Indeed, a single sensor
modality may not be sufficient to accurately identify dif-
ferent cases. The use of multiple sensory sources may be
complementary to an effective identification process [9]. Yet
this information should be combined and fused effectively to
identify the occurred anomaly type during task execution.

In this paper, we propose a convolutional three-stream
anomaly identification (CLUE-AI) framework that processes
multimodal data within distinct stages to classify anomaly
cases. In our previous work [7], we presented a symbol-
based anomaly identification framework that adopts an early
fusion scheme of multimodal data to identify anomalies.
Different from the earlier work [7], the CLUE-AI framework
does not require any hand-crafted features, domain symbols,
or task-related features, and it adopts a late fusion mecha-
nism to fuse attention-enabled visual, auditory and propri-
oceptive streams that are processed within distinct stages.
The CLUE-AI framework takes into account visual, auditory
and proprioceptive sensor modalities to reveal anomaly types
during execution. The visual data stream is processed, taking
into account the contribution of each image, by enabling a
self-attention mechanism. Auditory and proprioceptive data
streams are also processed within distinct CNN designs to
extract anomaly-related features. A late fusion scheme com-
bines the outputs of these stages to capture anomaly indica-
tors obtained in distinct sensor modality stages. The CLUE-
AI framework is evaluated on real-world scenarios performed
by a Baxter robot. A comparison of the framework with other
baselines is presented, and the performance of the frame-
work is analyzed for different feature extraction techniques.
An ablation study is also presented to analyze the contribution
of each sensory modality and the attention mechanism in
classifying the anomaly type.

The main contributions of this study are threefold:

• We propose a novel convolutional three-stream anomaly
identification framework, namely CLUE-AI, that incor-
porates visual modality together with auditory and pro-
prioceptive modalities to capture anomaly indicators for
object-related perceptions. These multimodal data are
processed in different stages to identify everyday object
manipulation task anomalies.

• We deal with cases where anomaly indicators appear
long before [7] an anomaly is detected with a self-
attention-enabled framework design.

• We address the identification of anomaly cases that arise
during object manipulation episodes in semi-structured
environments. In such environments, task specifications
and/or object placements are not fixed or stable, unlike
in the case of engineered settings.

This paper is organized as follows: First, the literature
on anomaly identification is summarized. This section is
followed by the proposed CLUE-AI framework. Later on,
the evaluation of the framework is presented, which includes
an ablation study and an experimental evaluation of the
presented framework. Finally, the paper is concluded with
potential future directions.

II. LITERATURE REVIEW
Anomaly detection and identification have beenwidely inves-
tigated in the literature [10], [11], [12], [13] and several tax-
onomies of failures that could occur in task environments are
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presented [14], [15], [16]. This section presents a summary
of the related work on the anomaly identification literature.

Anomaly identification can be achieved by using
hypothesis-based methods by either maintaining cost-
attached hypotheses in a hypothesis pool and analyzing
inconsistencies among them [17] or comparing the differ-
ences between the theory and the model of the world [18].
A cooperative diagnostic method may also be presented for
a multi-robot domain to diagnose failures where robots help
each other to do so [19].

Clustering-based methods are also investigated to identify
failure cases. In one study [20], a multi-level sensor fusion
method is investigated to detect and identify abnormal cases
by clustering the outputs of the sensors. In another clustering-
based method, a global fuzzy c-means clustering algorithm
is used to maintain clusters to identify failures [21]. Com-
bining unsupervised learning with supervised learning is also
studied in the literature. In a clustering-based method [22],
outliers in the data are first detected with unsupervised learn-
ing techniques, which are followed by differentiating between
special modes and anomalies with supervised techniques.

In the literature, particle filter-based (PF) [23], Kalman
filter-based [24] and hidden Markov model-based (HMM)
[9], [25], [26], [27] methods are widely used for handling
anomalies. Various types of HMMs are used for detecting and
identifying failures that occur during assistance tasks [28].
In one study [29], HMMs are studied with gradient analysis
to identify anomaly cases. Bayesian filters are also studied
to analyze failures [30]. A hierarchy for HMMs and PFs is
proposed to isolate failure cases in amobile robot setting [25],
[26], [31]. In another work [32], a probabilistic method is
proposed to predict failure cases for humanoid robots in
hazardous environments by associating risks with related
actions. Another study uses Hierarchical Dirichlet Process
HMMs [33] to identify and classify anomalies that arise
during collaborative kitting tasks. Yet another work presents
a tensor voting-based method combined with support vector
machines (SVMs) for classifying surface anomalies using 3D
point cloud data [34].

Deep learning-based methods are also applied to handle
anomaly cases. An autoencoder-based method that uses a
stacked denoising autoencoder (SDA) is proposed [35] to
identify the health state of rotary machines. Transfer learning
(TL) is also studied to diagnose industrial failures. A deep
transfer learning (DTL) method is proposed to handle motor
bearing failures [36]. Themodel of task execution can be con-
structed with convolutional neural networks (CNNs) to iden-
tify anomalies [37]. In another work [38], recurrent neural
networks (RNNs) are used to detect anomalies that arise in the
Internet of Things (IoT) networks. In another work, anoma-
lies are detected with a multimodal sensor fusion-based
deep neural network design [6]. Another autoencoder-based
method adopts a variational long short-termmemory (LSTM)
autoencoder to detect anomalies in robot-assisted feeding
tasks [39]. In yet another study, multilayer perceptrons

(MLPs) combine the temporal dependencies in multimodal
data captured by HMMs, and the convolutional features are
extracted from visual data by VGG16 to classify anomaly
types in the domain of human-robot interaction in human
feeding scenarios [40]. Different from this study, we address
everyday object manipulation anomalies that arise due to
uncertainties in perception and/or execution failures. More-
over, instead of extracting temporal features with HMMs
and temporal pyramid pooling [41] to capture unexpected
trends in hand-engineered features (i.e., sound energy, spoon-
mouth distance, desired spoon displacement, force, etc.),
we employ specific CNN-based designs for each distinct
multimodal sensory data type to associate anomaly indica-
tors with anomaly types without any preprocessing efforts.
Furthermore, in our work, we temporally process a sequence
of images collected during execution with an attention mech-
anism as we deal with anomaly cases whose indicators may
appear long before their occurrences (i.e., unstable sub-tower
structure causing a collapse at later time steps or pouring
objects into an almost full container, etc.) rather than instant
anomalies.

In our previous work [7], we present a symbolic-level
anomaly identification method that processes the outputs of
a visual scene modeling system [42], proprioceptive sensors
and auditory data to identify anomalies with preprocessed
hand-crafted features. In this study, we extend it by presenting
a three-stream anomaly identification framework that extracts
low-level features from 2D images directly without consid-
ering high-level symbolic domain symbols, which does not
require any hand-crafted feature engineering effort. Further-
more, we deal with a more extensive set of anomaly cases for
a service robot performing everyday tabletop scenarios.

III. CONVOLUTIONAL THREE-STREAM ANOMALY
IDENTIFICATION (CLUE-AI) FRAMEWORK
The CLUE-AI framework consists of three steps of pro-
cessing three different sensory streams. The visual data (2D
images) collected from an RGB-D camera (ASUS Xtion
RDB-D Camera) mounted on the robot’s head is processed
in the first stage. The second stage analyzes auditory data
obtained by a microphone (PSEye microphone) mounted on
the Baxter robot’s lower torso. The final stage deals with
gripper-related data (i.e., the position of the gripper (the
distance between the gripper tips) and the force applied by
the gripper to the object at hand). The following subsections
elaborate on the procedures that take place in these aforemen-
tioned streams.

A. VISUAL STREAM
Sequential RGB frames are retrieved from videos obtained
from the head camera in this research, and these frames are
sampled at a fixed frequency of 0.125 Hz. Using the times-
tamps of the frames, this sampling method provides a frame
sequence that is sorted in ascending order. To capture tem-
poral dependencies among anomaly indicators, convolutional
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FIGURE 2. The architecture for processing visual stream.

visual features are extracted from each sampled image, and
the sequences of these features are fed into the LSTM lay-
ers while retaining the order of the sampled frames. These
attributes are retrieved from the consecutive 2D images col-
lected by the RGB-D camera mounted on the robot’s head
using a pre-trained convolutional neural network (CNN)
structure. Images are cropped and scaled (R224×224) before
the feature extraction procedure. The altered images are sent
into a pre-trained CNN structure after this transformation
phase to detect the crucial parts of them. The following CNN
architectures are utilized to extract features from consecutive
2D images in order to achieve this goal:

• Residual Net (ResNet) [43]: ResNets are neural net-
works that make training deeper neural networks easier.
For deeper networks, they are not only easier to opti-
mize, but they also provide high accuracy. The basic
principle underlying this architecture is that instead of
learning functions without references, the layers are
treated as residual functions that reference the layer
inputs.

• AlexNet [44]: AlexNet is a CNN architecture with five
convolutional layers and three fully-connected layers.
A max pooling operation is performed after the first,
second, and fifth convolution layers. On the ImageNet
dataset [45], the design performs with high accuracy.

• VGG [46]: The principle behind this structure is to use
architecture with small (3 × 3) convolution filters to
evaluate networks with increasing depths. It typically
has 16 to 19 layers. The VGG variation with 16 layers
(VGG16) is used in this research. VGG16 has thirteen
convolutional layers and three fully connected layers.
Each convolution layer is followed by ReLU, and after
the second, fourth, seventh, tenth, and thirteenth convo-
lution layers, a max pooling operation is performed.

In this research, pre-trained implementations of these
vision models on ImageNet [47] are used. These models
are trained on a variety of images, including a variety of
objects. The final layers of these pre-trained CNNs, which
contain fully-connected layers, are not employed as we use
these models for feature extraction. f vt is the symbol for each
feature vector at time t . Following the extraction of relevant
visual features (f v) related to anomaly indicators, a dropout
function with a probability of 0.4 is used. The generated
features are then fed into LSTM cells, which are used to
learn anomaly patterns. The LSTM result is then sent into

an attention layer to assess the importance of the images in
the sequence that contribute to the anomaly decision. The
LSTM layers in this work adopt scaled dot-product self-
attention [48] to come up with attention values associated
with the images in the sequence. After calculating self-
attention scores, they are fed into a dense layer. The output
vector is then created, which includes the concatenation of the
attention output with the LSTM outputs (rv ∈ R1024) and is
fused with the auditory and proprioceptive modality outputs.

The steps of the proposed CLUE-AI framework while
processing visual modality are depicted in Figure 2. To handle
sequential RGB images, the proposed visual processing tech-
nique involves two phases: extraction of features and learning
of these extracted features. Inputs are accepted in the form of
sequential 2D RGB images.

The feature extraction stage includes convolutional and
pooling layers. The convolution layers are labeled with the
kernel sizes and channels that correspond to them. Without
its classification layers, which contain fully connected layers,
these sequential layers form the VGG network. A dropout
layer follows this structure, which is followed by LSTM
layers that learn the visual anomaly indicators. The LSTM
outputs are then passed into an attention layer, which gen-
erates attention values based on the image positions in the
sequence. Note that after each convolution layer, a rectified
linear unit (ReLU) is utilized as an activation function; these
are omitted in the figure for brevity.

B. AUDITORY STREAM
The audio data collected by the microphone mounted on the
robot’s torso is processed in two steps. The initial phase
involves extracting features from the collected audio data.
Mel-frequency Cepstral Coefficients (MFCC) features are
used to do so. For this purpose, the library Librosa [49] is
utilized. f at represents the extracted auditory features of an
observation collected at time step t . In the second phase, these
extracted MFCC features (f a) are sent into a CNN block.
The block is made up of four convolution layers that are
stacked one on top of the other. As an activation function,
each convolution layer is followed by a ReLU unit. Max-
pooling is applied after these procedures, and the resulting
vector is fed into a dense layer, which outputs the resulting
auditory feature vector (ra ∈ R64).

The contents of the proposed framework’s auditory stage,
which analyses audio data, are shown in Figure 3. The audio
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FIGURE 3. The architecture for processing auditory stream.

FIGURE 4. The architecture for processing proprioceptive stream.

data is processed in two steps, as shown in the figure. The
audio data’s MFCC features are extracted first, and then
they’re processed in convolution layers. The convolution lay-
ers’ outputs are fed into a dense layer, which creates a vector
that includes processed audio features.

C. PROPRIOCEPTIVE STREAM
The gripper on the robot’s arm is used tomanipulate objects in
the environment. With the gripper, continuous proprioceptive
observations are gathered. The position of the gripper and
the force applied by the gripper to the object in hand are
considered features (f p) in this study. Figure 4 depicts how
these features are processed within a tiny CNN. This CNN’s
output is fed into a max pooling layer, which is then followed
by a dense and dropout layer. As a result, the final vector for
the gripper data is generated (rp ∈ R64).

D. LATE FUSION
The explained feature vectors make up the aforementioned
visual, auditory, and proprioceptive streams. These collected
visual, auditory, and proprioceptive features are concatenated
to a single fused vector (r fused ∈ R1152) using a late fusion
technique. Following that, the fusion’s resultant vector is fed
into a dense layer, which is then followed by a dropout layer
with a probability of 0.4. The resulting vector is then passed
into another dense layer and a softmax function, where the
result is mapped into seven classes (six anomaly classes and
the success class). Based on these findings, the most likely
anomaly type is picked for the anomaly’s identification. Note
that our representation handles the described problem as a
sequence-to-one model. The late fusion method is depicted
in Figure 5.

IV. EXPERIMENTAL ANALYSIS
The CLUE-AI framework is evaluated in real-world exper-
iments using the Baxter robot, which performs everyday
object manipulation scenarios. This section presents the
experimental setup and the results.

FIGURE 5. The late fusion scheme of the CLUE-AI framework.

FIGURE 6. Baxter robot and the objects that are used in the experiments.

A. EXPERIMENTAL SETUP
In this section, the CLUE-AI framework is evaluated in real-
world experiments using the Baxter robot performing every-
day object manipulation scenarios. Experiments based on
anomaly situations are carried out with an RGB-D camera
attached to Baxter’s head and a microphone mounted on its
body (Figure 6). The robot interacts with objects to perform
tasks by executing its actions in everyday object manipulation
tasks. We use a variety of objects in terms of color and shape
that are placed in random poses in the environment. In this
study, we investigate the following types of everyday object
manipulation anomalies:

1) LOCATION CHANGE ANOMALY (LOC)
This anomaly type refers to situations in which object states
(particularly their locations) are changed without the robot’s
knowledge, yet the objects remain in the scene. Another robot
or a human may perform this change.

2) OBJECT DISAPPEARANCE ANOMALY (DIS)
This anomaly type refers to situations where one or more
objects with which the robot interacts are taken out of the
environment or from the robot’s field of view. Another robot
or human in the environment may be responsible for this
disappearance.

3) EARLIER UNSTABLE ACTION ANOMALY (EUA)
This anomaly occurs when the robot is assigned the task of
constructing a tower out of a collection of objects. The tower,
however, collapses during construction as a result of an earlier
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unstable action that results in a misplaced or inappropriately
placed sub-tower.

4) OVERTURNING ANOMALY (OTA)
To avoid encountering anomaly cases, a robot should select
the appropriate push point whenever it needs to push an
object. Otherwise, the object may collapse, fall, or shift its
orientation. This anomaly type corresponds to such cases.

5) SPILLED OBJECT ANOMALY (SPC)
When the robot is tasked to pour objects or liquids into a
container, the destination container may be empty or partially
full. However, the robot may not recognize the destination
container’s fullness, causing the destination container to over-
flow and spill the contents of the first container onto the table.

6) FULL CONTAINER ANOMALY (FCA)
Unlike the previously described anomaly type (SPC), this
anomaly type refers to situations in which an object is placed
or stacked into an already full container. As a result, the object
falls as a result of the robot’s placement of the object in the
container.

The robot can perform five actions in this study. To move
its arm to an object location, the robot executes move-to-
object. To locate its arm to a destination point, it executes
move-to-location. pick is used to grab a target object with the
gripper, and place is used to place the object to its destination.
It can also use the push action to move a target object along
a specified dimension and distance with its gripper.

Experiments on seven distinct classes involving six
anomaly cases and the safe cases are conducted to evaluate
the presented framework. Safe scenarios (SAFE) are also
included in the evaluation to identify and deal with any
potential false alarms that may arise during the anomaly
detection procedure. Experiments are carried out on a server
with the following specs: Intel Core i7-7700K 4.20GHz
CPU, 32 GB RAM, and an NVIDIA Quadro P6000 GPU
with 24 GB memory. The proposed framework is evaluated
using 249 real-world anomaly scenarios collected by the
Baxter robot (68 SAFE, 22 LOC, 41 DIS, 33 EUA, 18 OTA,
43 SPC, 24 FCA), and the average duration of the conducted
scenarios is 81.58 seconds. When updating the network,
an adaptive weighting approach is used to deal with the data
set’s class imbalance problem, where anomaly classes with
the lowest total number of instances are valued more. For
each class, the data set is randomly partitioned into the train
(80%) and test (20%) sets. The following parameters are set:
For each training epoch, the Adam algorithm [50] is used as
an optimizer, and cross-entropy loss to calculate the loss. The
models are trained for 40 epochs, which are set empirically
considering the average number of iterations that is sufficient
with a learning rate of 10−4 (η). The hidden size is 512, and
the LSTM structure is made up of one layer. The results are
reported based on the average scores on the test set for ten
random seeds.

FIGURE 7. Change on the train and test loss for η = 10−4 for the
VGG16-based setting.

TABLE 1. Number of epochs that each model is trained and the number
of parameters (in millions, w/o the dense layers) that each vision model
includes.

We conduct an analysis to find the number of epochs
needed to train CLUE-AI. An analysis of the loss values with
regard to the number of epochs is shown in Figure 7. The
epoch number is shown on the x-axis, while the loss is shown
on the y-axis. As observed in the plot, the training process is
better to be ended around the fortieth epoch.

In order to determine the number of epochs required for
training for each used pre-trained visual model for feature
extraction, an experiment is conducted where ten different
random seeds are used. The average number of epochs for
each pre-trained vision model in the visual stage of CLUE-AI
are shown in Table 1 along with the number of parameters of
the corresponding visionmodel excluding the fully connected
layers.

B. EXPERIMENTAL EVALUATION
We present the evaluation of the presented CLUE-AI frame-
work from various aspects. First, we perform a feature extrac-
tion analysis to show how different vision models perform in
extracting visual features from images for the anomaly iden-
tification task. Second, we show the effectiveness of CLUE-
AI in identifying object manipulation anomalies compared
to the other methods in the literature. Third, we perform an
ablation study on how different sensory modalities contribute
to identifying anomalies. Fourth, we show the robustness of
CLUE-AI to noisy data. Last, we perform an analysis to
show how the kernel shape affects the anomaly identification
performance when processing the auditory data stream.

1) FEATURE EXTRACTION ANALYSIS
The CLUE-AI framework is tested with four different feature
extraction settings, employing the following CNNs to jus-
tify our design choices: ResNet18, ResNet101, AlexNet, and
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VGG16. It’s important to note that ResNet18 and ResNet101
are two ResNet variants with different numbers of lay-
ers in the corresponding CNN structure. As we formulate
anomaly identification as a multi-class classification prob-
lem, we present confusion matrices to provide insights into
the performance of CLUE-AI for each anomaly class. More-
over, we present precision, recall and f-score scores as overall
performance metrics to provide further insights into the per-
formance as we deal with an imbalanced dataset.

The normalized confusionmatrices for different CNNs that
extract visual features are shown in Figures 8a-8d. Given the
results in Figure 8a, one might conclude that ResNet18 is
unable to extract visual features for some classes. The average
pooling (AP) layers of ResNets (with a square kernel size
of seven) that are placed before the excluded dense layers
are the main cause of this situation. As a result, the size of
the extracted features shrinks. In this study, only the dense
layers of thesemodels are excluded. Since anomaly indicators
cannot be distinguished in such a situation, ambiguity in
anomaly classes arises. For example, in a ResNet18-based
setting, SAFE and LOC are frequently confused classes. LOC
(the anomaly cases where an object’s location is changed by
an external agent) is confusedwithDIS, as shown in Figure 8a
(the anomaly cases where an object is taken out of the scene
by a human). That is, the object’s change of location is mis-
taken for its disappearance. The ResNet101-based setting and
the ResNet18-based setting produce similar results. For the
anomaly identification task, however, AlexNet and VGG16-
based settings provide more accurate classification results
(Figures 8c-8d).
The minimum classification score for the AlexNet struc-

ture as the feature extractor belongs to class SAFE among
the classes with a value of 0.85. When VGG16 is used to
extract relevant information about anomaly symptoms, the
SAFE class has a minimum score of 0.85, indicating that no
anomaly has occurred. The interpretation of this situation is
that a small number of chickpeas may be spilled on the table,
being occluded by the container on some occasions.

The performance analysis of the presented feature extrac-
tion methods in terms of precision, recall, and f-score metrics
are summarized in Table 2. Both variations of the ResNet
settings, with and without average pooling (AP) layers placed
last, are taken into account in this analysis. In comparison
to the setting with AP layers, the ResNet18 setting with-
out AP layers produces better results. The AP layers (with
a square kernel size of seven) of ResNets that are placed
before the excluded dense layers are the main cause of this
situation. As a result of the usage of these AP layers, the
size of the extracted features reduces. Despite the fact that
the ResNet-based feature extraction method provides better
performances without AP layers, the AlexNet-based feature
extraction technique has an f-score of 93.88%. As shown
in the table, 5GG16 is capable of extracting relevant visual
features, outperforming the other ResNet-based settings and
slightly outperforming the AlexNet-based setting with an
f-score of 94.34%. As can be seen from the presented results,

TABLE 2. Performance evaluation of different feature extraction methods.

TABLE 3. Time elapsed (sec) during training and testing with different
feature extraction techniques.

the performance of CLUE-AI also depends on the vision
model used to extract visual features. The pre-trained mod-
els contribute to extracting relevant parts of images for the
anomaly identification task, where VGGs provide the highest
scores in our case.

The elapsed time for training the anomaly models with
features extracted by different CNNs is shown in Table 3.
Each column corresponds to the elapsed times for training
and testing in seconds (sec), and each row contains the results
of a different feature extraction method. The average execu-
tion times are reported for ten executions. As can be seen from
the results, AlexNet takes the least amount of time to train and
test models. The most time (approximately 0.095 seconds)
is required to train for a single instance using a ResNet101
without average pooling layers and feeding the extracted
features into LSTMs.

2) OVERALL PERFORMANCE ANALYSIS
In this experimental analysis, the proposed CLUE-AI frame-
work is compared to various methods for the anomaly identi-
fication task. These methods include hidden Markov models
(HMMs) and recurrent neural networks (RNNs). We choose
HMMs for comparison as they are commonly used in the
literature to address the anomaly identification problem [9],
[25], [27], [28], [40]. For the RNN-based method, LSTMs are
replaced with the corresponding structures in the CLUE-AI
framework. To extract relevant features from the input images
for the HMM-based method, incremental principal compo-
nent analysis (IPCA) is used. These features are then fed
into HMMs to classify the anomaly type. For each anomaly
type, an HMM model with binary latent states (safe and
the corresponding anomaly type) is trained. The observation
history, including images, is fed into each trainedmodel in the
event of an anomaly. As a result, the scores for each anomaly
model that corresponds to the likelihood of that anomaly
model are generated. The anomaly type is then determined by
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FIGURE 8. Normalized confusion matrices of different feature extraction techniques for the visual stream.

TABLE 4. Comparative performance analysis of different methods.

combining these likelihoods with the results of the auditory
stage. The weighted average scores are reported in Table 4
after each method is run ten times with different seeds.

In terms of all criteria, VGG16 as the feature extractor
with LSTMs (CLUE-AI w/ VGG16-LSTM) outperforms the
other deep learning-based methods and HMMs with IPCA as
the feature extractor (IPCA-HMM). VGG16 performs at an
f-score of 92.34% when the extracted features are processed
with RNNs. When VGG16 and LSTMs are combined in the
CLUE-AI framework, they outperform the other methods
with an f-score of 94.34% in classifying anomaly types.

When compared to the results obtained with the anomaly
identification algorithm in [7] that uses symbols as visual
features, it can be concluded that the CLUE-AI framework
with VGG16-LSTM outperforms the symbol-based anomaly
identification algorithm with an f-score of 94%. In compar-
ison to the symbol-based anomaly identification algorithm,
the CLUE-AI framework is evaluated on a more extensive
set of anomaly scenarios (i.e., a higher number of anomaly

classes). Moreover, a challenging set of scenarios for a scene
interpretation system is included in this extended set of
anomaly scenarios (i.e., cluttered environments or containers
full of objects).

3) ABLATION STUDY OF CLUE-AI
The CLUE-AI framework proposed in this paper processes
data from various sensory modalities using LSTMs with
a dot-product self-attention mechanism. To identify the
anomaly types, a multimodality analysis is used to examine
the contribution of each processed sensory modality and the
dot-product self-attention mechanism.

The precision, recall, and f-score metrics for different
sensory modality settings of the CLUE-AI framework using
LSTMs with a dot-product self-attention mechanism are pre-
sented in Table 5. Furthermore, one column in the table is
set aside to indicate whether the dot-product self-attention
mechanism is used in the given situation. Each column in the
table represents the scores for the corresponding metric, and
each row corresponds to a different setting. When only the
visual modality with dot-product self-attention is considered
for classification, this setting yields an f-score of 88.70%.
When the gripper-related data is combined with the visual
modality, the f-score improves slightly (88.72%).

Combining visual and auditory modalities with dot-
product self-attention leads to improved performance with
an f-score of 93.51%. Incorporating the auditory modality
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TABLE 5. Sensory modality and attention analysis.

allows the robot to more effectively distinguish anomaly
cases in which sound is a discriminating indicator (for exam-
ple, when an object falls down as it is pushed, the robot
perceives the sound as an observation; on the other hand,
it does not perceive sound when an external agent changes
the object’s location).

In our CLUE-AI design, we integrate an attention mech-
anism to maximize the contribution of relevant visual clues
or indicators obtained from previous gatherings to the overall
decision. As seen in the table’s last two rows, while incor-
porating all sensory modalities provides better scores, the
dot-product self-attention-enabled CLUE-AI design provides
improved scores as the best results, as a 2% increase in the
overall f-score.

The audio modality is used as complementary data in this
study. Nonetheless, in the majority of disappearance cases,
no auditory perception is gathered. Furthermore, the sounds
that occur when an object hits the table, or the container inter-
mingle in SPC (the anomaly cases where objects are spilled in
a pouring task due to overflowing) and SAFE scenarios. As a
result, it may not be an essential indicator for these anomaly
types.

A class activation map representation of an FCA case
is shown in Figure 9. Representations based on gradient-
weighted class activation mapping (Grad-CAM) [51] are pre-
sented in this study. Class activation maps (CAMs) reveal
which segments of the input impact the final decision. The
contribution of red regions to the final decision is high, while
the contribution of blue regions is low. The left image repre-
sents the images perceived through the robot’s camera, while
the right image represents the corresponding CAM.An object
falls out of the container on the table in this anomaly type
(FCA). The framework appears to be focused more on the
region where the object that falls out of the container lands
than on the container itself.

4) PERFORMANCE ON NOISY DATA
We have conducted an experiment to analyze the robustness
of CLUE-AI to noise by blurring the perceived visual obser-
vations. Figure 10 shows the f-score performance of CLUE-
AI with respect to varying kernel sizes with bar graphs.
We use a Gaussian blur filter to blur the perceived visual
observations with varying kernel sizes. We adaptively set the
standard deviation (σ ) of the Gaussian filter as follows, where

FIGURE 9. (a) The scene from the RGB-D camera of the robot. (b) CAM of
the corresponding FCA case.

FIGURE 10. Performance analysis of the CLUE-AI framework on blurred
observations.

k is the kernel size:

σ = (k − 1)/4 (1)

In the figure, the y-axis corresponds to the f-score value
achieved by that setting, and the x-axis corresponds to a
distinct kernel size setting. The first bar represents the case
where no blurring is applied to the input. As can be seen
from the results, blurring the input images with a kernel size
of 11 provides approximately an f-score of 90%, which is a
slightly degraded performance compared to the setting where
no blurring takes place. When the images are blurred more
(kernels from 21 up to size 31), approximately an f-score of
78% is achieved. As the kernel size increases from 41 to 101,
the lower and comparable performance (approximately an
f-score of 66%) becomes, as expected, as the images are
highly blurred in these settings.

5) ANALYSIS OF AUDIO PROCESSING
The CLUE-AI framework treats the auditory stream as 2D
data ([time, features]) and convolution layers with 2D kernels
are used in the framework. The processing of auditory data
with various shaped kernels is evaluated in this study. Rectan-
gular kernels (i.e., (16,4) and (16,5) with strides of the same
size) are introduced to the CLUE-AI framework’s auditory
stage to accomplish this.

The scores achieved by different shaped kernels for audi-
tory stream processing are shown in Figure 11. The x-axis
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FIGURE 11. Performance analysis of the CLUE-AI framework with
different kernels.

shows the metrics for each setting, while the y-axis shows
the scores. For each metric, the first bars (light gray bars)
represent the setting with rectangular kernels, while the sec-
ond bars (dark gray bars) represent the setting with square
kernels. As can be seen from the graph, the CNN structure
with square kernels on the auditory stream improves each
metric, particularly the f-score, which improves by 4%.

V. DISCUSSION AND CONCLUSION
In this paper, we present CLUE-AI for cognitive robots to
identify anomaly cases that may be encountered during task
execution. CLUE-AI takes into account three distinct sen-
sory streams, visual, auditory and proprioceptive modalities,
to handle anomaly cases that may arise during everyday
object manipulation tasks. In the first stream, convolutional
visual features are extracted by VGG16 and fed into self-
attention-enabled LSTM cells to capture anomaly indica-
tors. In the second one, MFCC features are extracted from
the auditory modality, and a CNN block is employed. Last,
gripper-related data is processed with a designated CNN
layer. These sensory data are combined with a late fusion
methodology. The framework is evaluated on real-world
scenarios with a Baxter robot performing everyday object
manipulation tasks. The feature extraction analysis on the
visual stream shows that VGG16 provides better scores in
identifying anomalies. Class activation maps are analyzed to
investigate the contribution of input images’ regions to the
identification results. Different kernel shapes are analyzed for
processing the auditory stream, and the performance on noisy
data is presented. The comparative analysis indicates that the
framework has the ability to identify anomaly cases, scoring
an f-score of 94%, outperforming the other methods.

There are some potential future directions for this work.
Given that the CLUE-AI framework proposed in this study
can only identify the modeled anomaly cases, one would
expect that it would classify an unknown anomaly type con-
sidering the indicators of the most similar anomaly type.

One future direction is to add predictive uncertainty mea-
sures into the framework to provide confidence estimates
on the resulting anomaly classes. Another potential research
direction would be processing the anomaly identification
results in a reinforcement learning-based approach to select
corresponding recovery actions. In such awork, segmentation
techniques such as peripheral vision could be integrated,
where models inspired by human eyes’ peripheral ability are
constructed [52].
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