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ABSTRACT In this paper, we suggest improving the performance of developed activation function-
based Deep Learning Long Short-Term Memory (DLLSTM) structures by employing robust loss functions
like Mean Absolute Error (MAE) and Sum Squared Error (SSE) to create new classification layers. The
classification layer is the last layer in any DLLSTM neural network structure where the loss function resides.
The LSTM is an improved recurrent neural network that fixes the problem of the vanishing gradient that
goes away and other issues. Fast convergence and optimum performance depend on the loss function. Three
loss functions (default(Crossentropyex), (MAE) and (SSE)) that compute the error between the actual and
desired output for two distinct applications were used to examine the effectiveness of the suggested DLLSTM
classifier. The results show that one of the suggested classifiers’ specific loss functions(SSE)) works better
than other loss functions and does a great job. The suggested functions Softsign, Modified-Elliott, Root-sig,
Bi-tanh1, Bi-tanh2, Sech and wave are more accurate than the tanh function.

INDEX TERMS DNN, DLLSTM, loss function, mean absolute error, sum squared error.

I. INTRODUCTION layers of units [3]. With a deeper knowledge and use of the
In recent years, the machine learning (ML) community has backpropagation algorithm, self-directed learning was made
come to regard the deep learning (DL) computer paradigm as possible [4]. Deep learning neural networks (DLNNs) are

the Gold Standard. It has also steadily become the most pop- used in a variety of industries for three reasons [5]. First, since
ular computational strategy in the field of machine learning. DLNN-based classifiers are data-based, they are more resis-
This is because it does several difficult cognitive tasks as well tant to imperfections in real systems. Second, DLNN-based
as or better than humans’ performance [1]. A Deep Neural classifiers have a minimum of computational complexity,
Network (DNN) is a particular type of neural network rep- requiring only a few simple matrix and vector operations at
resented as a multilayer perceptron (MLP), which is trained various levels. Thirdly, with the fast development of parallel
using algorithms to learn representations from data sets with- processing capability in specialized processors like graphic
out the need for manually designing feature extractors [2]. processing units (GPU) [6]. DLNN-based techniques are

As the name DL suggests, it has more or deeper levels of significantly more efficient because DLNN implementation
processing than a shallow learning model, which has fewer is simple to parallelize on parallel architectures and easy

to implement with low data type accuracy. These benefits
The associate editor coordinating the review of this manuscript and helped DLNNS to look the way they did and do well in many
approving it for publication was Liang-Bi Chen . fields [7].
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RNNs are a widely used and well-known algorithm in
the field of DL. RNN is primarily utilized in contexts
related to speech processing and Natural Language Process-
ing (NLP) [8]. RNN uses sequential data in the network,
as opposed to traditional networks. Since the inherent struc-
ture in the sequence of the data provides essential information
and is necessary for a few different applications, it is impor-
tant to know the context of the sentence in order to determine
the meaning of a specific word. The RNN can therefore be
thought of as a short-term memory unit [9].

Hochreiter and Schmidhuber Long Short-Term Memory
(LSTM) structure has been proven to be efficient for a variety
of learning issues, especially those necessitating large data
sets. The LSTM structure is composed of “‘blocks,” which
are collections of units that are repeatedly connected to one
another. Develop LSTM techniques, structures, and transfer
functions to deal with the issue of disappearing or exploding
gradients. These make the network more accurate as it trains
deeper [10]. One of the best things about DL is how flexible
it is when it comes to architectural design. This means that
there are many ways to put priors over data into the model and
find the best activation functions, learning algorithms, or loss
functions [11].

Frank et al. [12] reviewed some of the recent developments
and efforts that used ML in science and engineering. They
believed that despite its enormous success over recent years,
ML is still in its infancy and will play a significant role
in scientific research and engineering over the upcoming
years. Poulinakis et al. [13] presented a work that shed light
on the limitations of various ML and cubic spline methods
when data is sparse and noisy. As a result, they discov-
ered the true function hidden under the noise, thus making
ML a valuable tool in practical applications. Additionally,
they focused on hypothetical generalized functions with and
without noise. The conclusions from this study are bene-
ficial in guiding further research regarding the splines and
ML modeling.

A critical component of training a deep learning model
is the loss function, one of the hyperparameters that can
be adjusted. They are employed to determine the difference
between the actual and desired outputs’ accuracy and loss.
As a result of the loss, the DL network changes the weights
for the connections between the neurons or classifiers [14].
The performance of the resulting DL model can be affected
by the loss function selection. In fact, the recent works on cus-
tomized loss functions exhibit strong offensive performance
on the selected datasets. It should be noted, nonetheless, that
a loss function that performs well in one offensive context
need not perform similarly in another. In other words, the
number of traces, model architecture, and the initialization
of the weight are just a few of the many factors that affect
both the offensive performance and the loss function [15].

Farzad et al. [16] compared 23 different activation func-
tions in which the three gates (the input, output, and for-
get gate) changed activation functions while the block input
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and block output activation functions were held constant
with the hyperbolic tangent so that the activation functions
of the block could be compared (tanh). The authors have
recommended altering the hyperbolic tangent function on
the block input and block output as a better alternative for
altering the activation functions in the three gates. In addi-
tion, they suggested that additional research should be done
on other components of an LSTM network. Ali et al. [17]
presented qualitative research to improve the performance of
LSTM-based classifiers by developing the internal structure
of LSTM neural networks using 26 state activation functions
as alternatives to the traditional hyperbolic tangent (tanh)
activation function and only using default loss functions
(Crossentropyex).

In this paper, we expand on our preceding research
work [17]. In [17], as an alternative to the conventional (tanh)
activation function, we have created a conceptual framework
for brand-new LSTM-based classifiers that exploit the inter-
nal organization of LSTM networks. The findings demon-
strate that the suggested LSTM classifiers outperformed the
conventional (tanh)-based LSTM classifiers and made some
progress. In this paper, we present qualitative research to
improve the performance of previously developed activa-
tion function-based LSTM structures by using robust loss
functions like (MAE) and (SSE) to build new classification
layers. The classification layer is the last in any LSTM neural
network structure where the loss function resides and use the
best suggested DLLSTM-based classifiers from the preced-
ing research work [17].

More precisely, we systematically compare commonly
used loss functions (Cross-entropy) and proposed loss
functions(MAE), (SSE) in the DLLSTM base-classifiers.
We evaluate the attack performance (Crossentropyex), and
the number of trainable parameters. Different loss functions
on two available datasets are evaluated. The proposed DLL-
STM classifiers will be trained using an adaptive moment
estimation (adam) optimizer and different loss functions to
get the most reliable and accurate performance under the
conditions of the classifiers. To the best of our knowledge,
this is the first time the DLLSTM neural network has been
used to build classifiers for different loss functions. These loss
functions are critical in style transfer because they determine
how much the accuracy has been altered. We will discuss
the limitations of the loss functions already used and propose
different combinations of loss functions for better accuracy.

The contributions of this study are as follows.

1) We started by compiling a multitude of functions that
can be utilized in DLLSTM networks in place of the conven-
tional (tanh) function.

2) Examining how various loss functions, which include
(Crossentropyex), (MAE) and (SSE) affect the way suggested
DLLSTM networks train.

3) Developing “(hard — sigmoid)” gate function-based
DLLSTM classifiers and comparing their performance with
the commonly used (sigmoid) gate function-based DLLSTM
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classifiers in the presence of the suggested state functions and
(adam) optimizer.

4) Employing the recently developed DLLSTM networks
to solve a wide range of real-world classification tasks,
including vowel classification and image classification.

This Paper is organized as follows. The DLLSTM structure
and activation functions are provided in Section II. Providing
the methods is Section III. Section IV presents the simulation
results of the proposed approach. The conclusion is presented
in Section V.

Il. DLLSTM STRUCTURE AND ACTIVATION

FUNCTIONS (AF)

The parts that follow will provide a quick explanation of the
DLLSTM structure and the activation functions used on the
network.

A. DLLSTM STRUCTURE

The LSTM network is a recurrent neural network with the
ability to detect long-term relationships between the time
steps of sequence data [18]. Numerous LSTM-based methods
have been created to fix problems, including handwriting
recognition [19], audio recognition [9], and online translation
using tools like Google neural machine translation [20] and
the Facebook translation system [21]. The simplest DLLSTM
with a single hidden neuron, batch normalization, and output
units is used to classify the data. The DLLSTM structure,
which consists of the input, single hidden neurons, and output
units, is shown in Figure 1. The elements in each cell are
identified using (1) through (6).
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FIGURE 1. LSTM memory cell [22].

Gate function (sigmoid) and state function (tanh), both
found in DLLSTM memory cells as Figure 1, are the two most
prevalent activation mechanisms for the neurons in memory
blocks and the state activation function (tanh) [19].

The variables of the DLLSTM memory cell are specified
by equations (1) to (6).

fi=0Wrx; + Uphi—1 + by) ()
i = o (Wix: + Uihi—1 + b)) )
Or =a(Wox: + Ushi—1 + bo) 3)
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Ct/ = tanh (Wex: + Uchi—1 + be) 4)
o :ft Or—1 +i: © C;/ (5)
hy = O, © tanh(Cy) (©6)

Equations (1) to (3) describe the forget, input, and output
gates for each DLLSTM cell, where i; refers to the input, O;
denotes the output, and f; is the forget gates. C; in (4), the
block input specifies the volume of data that should be saved
in the cell at computing time. C; an update of the state of time
t. Lastly, A, is the output blocks at the appropriate time [23].

B. ACTIVATION FUNCTIONS (AF)

To support the detection of complicated datasets and to
allow the insertion of non-linearity into network without any
of the requirement for coding, AF is introduced to an ANN.
The AF determines what information should be provided to
the following neuron at the end of the process in the cell
model of human brains. Using this cell, the output is collected
from the cell before and changed it into a format that may be
utilized as an input for the cell after [2].

A bad choice of functions can cause the NN’s gradients
to vanish or explode, as well as cause input data to be lost.
The training process, the AF used in NN, and the network
structure between cells are the three main factors that affect
how well networks operate. The effectiveness of the network
is significantly impacted by each of these factors [24]. The
relevance of the learning algorithm has dominated research
on NNs, whereas the activation functions that are used in
these networks have been ignored [25].

In this study, the DLLSTM network is reconstructed by
substituting one of the functions indicated in Table 1 for each
of the (fanh) activation functions found in Equations (4), (5),
and (6). Furthermore, we evaluate the effects of employing
17 various functions in (fanh) gates of a fundamental DLL-
STM cell on network performance. The tanh formula is given
in (7).

sinh(x)

cosh (x)

tanh (x) = @)

The formula of the sigmoid function is given below [26].
1
e —1

We have compiled a comprehensive list of 17 functions,
as shown in Table 1. We experimentally observed that adding
a value of 0.5 to some functions makes them applicable as
activation functions in the network. Changing the range of
the activation functions has been previously observed in other
studies [27].

In Table 1, first column to the left, reported activation
functions are given as follows. Wave function [28], Soft-
sign function [29]. Then, Bi-sigl, Bi-sig2, Bi-tanh-1, and
Bi-tanh-2 functions are suggested by Sodhi and Chandra [30],
Cloglog and Cloglog-m [31], Elliott, Gaussian, Logsigm and
complementary loglog functions [32]. Next, Logsigm and
Log-sigmoid, followed by the Modified-Elliott function [17].

(®)

o(x)=
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After that comes sigmoid functions with roots, also called
Rootsig [33]. Then, And the hyperbolic secant (Sech) [34],
and last function is Gaussian Error Linear Unit (GELU) [35].

TABLE 1. Identification and differentiation of functions.

Label Activation function Derivative function
Wave f) =1 —x2)e™** f'(x) = 2x(x% = 2)e ™"
. X , _ 1
Softsign O =107 e +0.5 fl(x) = RESEE
i(){) 1 f'e) el—x e—x-1
Bi-sigl T2 (1ii— =¥+ _ ey + e 1+ 1)2
e D 2
B e ) e
1-S1g R T = 7t T 2
=G T _+D Z(e D
() '
4 x £1G
Bi-tanhl =3 [tanh tanh (E) sech? (x ; 1) + sech? (%)
x+1 =
+ tanh( )] +05 4
) ,
1 /x = 1) f)
Bi-tanh2 = E[tanh tanh (—2 ) sech? (x-; 1) + sech? (x; 1)
x+1 =
+ tanh( )] +05 2
Cloglog fx)=1-e"°" f(x) = e¥e"
Cloglogm f(x) =1-2¢7%7¢" + 0.5 f'(x) = 7e*707¢" 5
. 0.5x . . 05
Elliott fl) = TM +0.5 flix) = —(1 e
Gaussian fG)=e™ 10 = —2xe~**
Loglog f(x)=e" +05 flx)=e %

. 1 oy 27
Logsigm f6) = (=405 A CEE SV
Log- 1 oy e
sigmoid f@x) = 1+e > F = (e * +1)?
Modified- x 1x) —

= +0.5 fix) =
Elliott e V142 (x%+ 1)%
. X , 1
Rootsig fG) = f7r0S fO = e
2(e*+e™)
- ) = 2~ 7 2
Sech fO = o= f et
S JHE)
=0.5x(1 = 0.5tanh(0.0356x° + 0.797x)
GELU + tanh (,/2/71 (x + (0.0535x3

+ 0.398x)sech?(0.0356x>

+ 0.447x3))) +0.797x) + 0.5

Ill. LOSS FUNCTIONS AND METHODOLOGY
A. LOSS FUNCTIONS
In this paper, supervised learning is implemented using both
LSTMs and RNNSs. The loss, determined by a loss function,
is the difference between the model’s predicted label and the
actual labels that really correspond to the input. The output
of the loss function is used to change the network’s weights
so that the difference between the expected and actual labels
is less [36].

We use three different loss functions in the proposed net-
work, compare how well they work, and look at how each one
works to find out which one gives the best results.
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1) Crossentropyex [37] is commonly used in machine
learning as a loss function and is a measurement of the
difference between two probability distributions for a given
random variable or a set of events. Crossentropyex Loss, also
known as log loss, measures how well a classification model
performs when producing a probability between 0 and 1.
(Crossentropyex) Loss develops as the predicted probability
departs from the label. Targets and outputs are given, and
the (Crossentropyex) function uses additional parameters and
optional performance weights to figure out how well the
network is doing.

The Crossentropy function has the formula is given by:

N c ~
Crossentropyex = — Zizl ijl X;i(k) log (Xi§(K))  (9)

2) Sum Squared Error (SSE) [38] is a measure of accuracy
in which the errors are squared and added. Find the dataset
mean by adding up all the values and dividing them by the
total number of values to determine the sum of squares for
error. The deviation for each value is then determined by
subtracting the mean from each value. Square each value’s
deviance next. A network performance function is SSE.
The sum of squared errors is used to measure performance.
The regularization of the errors and the normalization of the
outputs and targets are controlled by two optional function
arguments in the formula perf = SSE (net, t, y, ew, Name,
Value).

The Sum Squared Error function has the formula is
given by:

SSE = Zil chzl (Xij (k) — Ky(k)’ (10)

3) Mean Absolute Error (MAE) [39] is calculated by tak-
ing the difference between the predictions made by your
model and the actual data, adding the absolute value to that
difference, and then averaging the result across the entire
dataset. MAE is used to measure network performance. A loss
function expression has the formula is given by:

SR |Xi (o) — Xk
- N

where N is the quantity of observations, ¢ is the number of
categories, Xj; is the ith categorized data for the jth ¢ amount
of categories class and )A(,;/)A(,;/ is the output of sample ii for a
category j [40].

Loss functions provide more than just a static illustration of
how well your model is doing; they also act as the foundation
upon which your algorithms fit data. Most machine learning
algorithms have some kind of loss function that is used to find
the best parameters (weights) for your data or to optimize
them [41]. Importantly, the choice of the loss function is
directly related to the activation function used in the output
layer of your neural network. These two design elements are
connected.

MAE

(11
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B. METHODOLOGY

We updated the function (tanh) that is used to choose the cell
input and update the output in order to examine the impacts
of various loss functions on the performance of DLLSTM
classifiers. The suggested DLLSTM classifiers will initially
be trained using the standard function (sigmoid) and then they
will be trained using a (hard — sigmoid) function. In each
combination, two identical gates are used, and they are chosen
from the AF list in Table 1 for each structure to compare the
effects of various loss functions ((Crossentropyex), (MAE)
and (SSE)) on the accuracy of the DLLSTM classifiers.

IV. SIMULATION RESULTS
The proposed DLLSTM classifiers are trained using the
BPTT approach [42] and (adam) optimizer with a variety of
loss functions, such as (Crossentropyex), (MAE), and (SSE).
The classifiers are developed using 100 hidden neurons for
each trial, and the initial parameters are selected at random.
Based on the outcomes of the two datasets, the losses and
efficiency of each DLLSTM-based classifier are determined.
The evaluation requirements for the classifiers includes
accuracy. Accuracy is what determines how much testing
information has been correctly recognized. It matches the
definition given below:

number of true classified samples

Accuracy = x 10 (12)

number of total test samples

A. FIRST SET OF EXPERIMENTS

We used data sets from the Japanese vowels dataset in this
experiment for the initial set of trials. 9 male users speaking
2 consecutive Japanese vowels (ae) in a multivariate time
series made up the initial vowel set from the University of
Southern California. It was done in a variety of ways: a linear
prediction study with a sampling rate of 10 kHz, a frame
length of 25.6 ms, and a shift length of 6.4 ms. In other words,
each time the speaker speaks, a time series between 7 and
29 is created, with a total of 12 features present at each point
in the series (12 coefficients). 640 time series make up the
entire collection, which is a round number [43].

Table 2 lists the structure variables, training possibilities,
various hidden neuron numbers, and loss functions for the
suggested DLLSTM-based classifiers. In order to increase
performance, the batch size has been determined based on
research. For each design, the outcomes of the two tests are
used to report the accuracy and loss. According to Table 3,
suggested loss function (SSE)-based classification layers out-
perform conventional loss functions Crossentropyex and sug-
gested loss function (MAE)-based classification layers at
(sigmoid) functions, enabling DLLSTM classifiers to attain
the maximum efficiency. In addition to the tanh function,
which gets an efficiency of 93.5432%, 11 others suggested
DLLSTM classifiers provide high accuracy with efficiencies
in the ranges of 93-98.2378%. Based on experiments, the
wave-DLLSTM classifier outperformed tanh function with
an efficiency of 98.2378%.
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TABLE 2. Highlights the architecture of the suggested DLLSTM parameter
and training option.

Parameters Values

Input data size 12 inputs
Measurements of hidden neurons 100 neurons

Size of batches 27

Number of Epoch 100

Size of layer connection 9

initially weighted networks Random

Optimizers (adam)

functional loss (Crossentropyex),

(MAE), (SSE)

TABLE 3. Comparing the results of various DLLSTM classifiers using
(sigmoid) function, and different loss functions for japanese vowels
dataset.

Activation Cross MAE SSE Gate Act.
Functions entropyex) Fun.&
optimizer
Default Tanh 93.5432 93.5135 94.3243
Act. Fun. (sigmoid
Propose Gaussian 95.5757 95.1351 96.2162 &
Act Wave  97.5676 972973 982378  (adam)
fu Softsign 95.6757 94.3243 95.9459
GELU 95.4643 32.57 90.9189
Cloglog 91.6216 72.2341 92.7027
Cloglogm 95.4054 91.8216 96.7568
Rootsig 94.5946 87.8378 95.4054
Sech 96.2351 94.0541 96.7568
Loglog 92.4324 70.2973 92.9730
Elliott 88.9189 86.58 91.3514
Bisigl 92.1622 73.2584  94.3243

Bisig2 90.2703 71.8919 90.5

Bitanhl 95.1351 95.1351 97.0270
Bitanh2 95.6757 94.8649  96.4865

Logsigm 95.1351 79.4595  95.6757
Log- 92.4324 78.1081 93.2432
sigmoid

Modified-  95.3243 93.5135  95.6757
Elliott

The performance curves for the suggested wave DLLSTM
classifier, which has the best performance, and the conven-
tional (tanh) DLLSTM classifier are shown in Figures 2 and
Figure 3 at (sigmoid) gate function.

Table 4 shows how well each classifier performed when the
hard —sigmoid function was used in place of the (sigmoid)
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TABLE 4. Comparing the results of various suggested DLLSTM classifiers
using.

Activation (Cross (MAE) (SSE) Gate Act.
Functions entropyex, Fun. &
optimizer
Default Tanh 94.3243 94.0541 94.5946 (hard —
Act. fun sigmoid)
(adam)
Propose Gaussian 94.4054 94.3243 95.4054
Act.
Wave 97.0270 93.5135  98.0162
Fun.
Softsign 95.9459 95.1351 96.4865
GELU 95.541 32,5714 94.3243
Cloglog 95.8649 73.584 86.2162
Cloglogm 94.3243 92.258 96.7568
Rootsig 96.4865 93.2432  96.7568
Sech 95.6757 94.3243  96.2162
Loglog 94.5946 78.1081 95.6757
Elliott 93.2432 90.258 94.9584
Bi-sigl 95.9459 79.4595  95.9459
Bi-sig2 93.7854 90.258 95.5135
Bi-tanhl 95.9457 79.8472  96.5587
Bi-tanh2 96.7568 81.9730 96.8865
Logsigm 96.0270 80 96
Log- 94.8514 90.2581 95.33
sigmoid
Modified- 96.7568 86.1622  96.8872
Elliott

function using the suggested (SSE) classification layer, which
outperformed the default function (Crossentropyex) and sug-
gested function MAE-based classification. In comparison to
the (tanh), which achieves an accuracy of 94,323%. The other
17 suggested DLLSTM classifiers provide high accuracy
with efficiencies in the range of 93- 98.0162%. According
to tabulated results, 15 of the 17 DLLSTM-based classifiers
that have been proposed exceeding the (fanh) function, with
the wave function having the highest efficiency (98.0162%).
The performance curves for the suggested wave DLLSTM
classifier, which has the best performance, and the conven-
tional tanh classifier are displayed in Figure 4 and Figure 5
at (hard — sigmoid) function.

In general, the DLLSTM classifiers using SSE-based
classifications perform better than the loss functions
Crossentropye and MAE-based classification, with a hard —
sigmoid function outperforming the sigmoid function.

Figure 6 and Figure 7 illustrate and analyze more highly
AF DLLSTM classifiers, which use the sigmoid and hard —
sigmoid functions respectively and use a variety of loss func-
tions ((Crossentropyex),(MAE) and (SSE)) for training.

The wave function outperforms the (tanh) function by
achieving a high classification rate of 98.2378%, as compared

49868
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FIGURE 2. The performance curves (accuracy) for the suggested DLLSTM
classifier and (tanh) using different loss functions, (adam) optimizer, and
(sigmoid) function.

to the latter’s 93.4054% when using the (SSE) loss function.
The wave DLLSTM classifier is also the most effective of
the suggested classifiers. It appears to work but performs
substantially worse when using the suggested (MAE) loss
function. The wave function is the most effective among
the suggested classifiers as well. The suggested Modified-
Elliott, Rootsig, Sech, Wave, Bi-tanhl, Bi-tanh2, and Soft-
sign based DLLSTM classifiers often perform better than
tanh function. Additionally, the examined functions that
employ the hard — sigmoid function outperform the standard
function.

B. SECOND SET OF EXPERIMENTS

The second dataset of the experiments will be built upon
the Weather Reports Classification System. The dataset illus-
trates how to use bag-of-words models to develop a simplistic
text classifier using word frequency values. By following the
guidelines below, word frequency count can be used as a
variable in a straightforward classifier. The dataset demon-
strates how to develop a straightforward classifier model to
identify the category of weather reports using the available
text descriptions.

Table 5 lists the structure variables, training possibilities,
various hidden neuron numbers, and loss functions for the
suggested DLLSTM-based classifiers. In order to increase
performance, the batch size has been determined based on
research. For each design, the outcomes of the two tests are
used to report the accuracy and loss.

Table 6 and Table 7 show the efficiency classifier rates for
each DLLSTM classifier used to describe Weather Reports,
utilizing optimizer adam, sigmoid, and hard — sigmoid
functions. And loss functions (Crossentropyex), (MAE) and
(SSE)-based classification layers, respectively at 100 hid-
den neurons. The classifier receives all the dataset in small
batches at each trial, serving as the standard function of the
DLLSTM structure. The observed DLLSTM classification
results serve as a baseline for comparison.
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FIGURE 3. The performance curves (loss) for the suggested DLLSTM
classifier and (tanh) Using different loss functions, (adam) optimizer, and
(sigmoid) function for Japanese vowels dataset.
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FIGURE 4. The performance curves (accuracy) for the suggested DLLSTM
classifier and (tanh) using different loss functions and hard — sigmoid for
Japanese vowels dataset.
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FIGURE 5. The performance curves (loss) for the suggested DLLSTM
classifier and (tanh) using different loss functions hard — sigmoid for
Japanese vowels dataset.

According to Table 6, the suggested loss function
(SSE)-based classification layer outperforms conventional
loss functions Crossentropyex and suggested loss function
(MAE)-based classification layers at (sigmoid) functions,
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FIGURE 6. Comparing the best result of DLLSTM classifiers using various
loss functions ((Crossentropyex), (MAE) and (SSE)) with 100 hidden
neurons using (sigmoid) gate function.
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FIGURE 7. Comparing the best result of DLLSTM classifiers using various
loss functions (Crossentropyex), (MAE) and (SSE)) with 100 hidden
neurons using (hard-sigmoid) gate function.

TABLE 5. Architecture highlights of the suggested DLLSTM parameter and
training option.

Parameters Values

Input data size 1

Measurements of hidden neurons 100 neurons

Size of batches 27

Number of Epoch 10

Threshold of Gradient 1

initially weighted networks Random

Optimizers (adam)

functional loss (Crossentropyex),

(MAE), (SSE)

enabling DLLSTM classifiers to attain the maximum effi-
ciency. In addition to the tanh function, which gets an
efficiency of 86.1%, 14 others given DLLSTM classifiers
provide high accuracy with efficiencies in the ranges of
84-89.503%. According to experimental studies, the Softsign
DLLSTM classifier outperformed the (fanh) function with an
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TABLE 6. Comparative performances of different proposed activation
function-based LSTM classifiers for weather reports dataset, using adam
optimizer and (sigmoid) gate activation function.

activation (Cross (MAE) (SSE) Gate Act.
functions entropyex % Fun. &
optimizer
Default act. Tanh 86.19 36.25 86.5
Fun (sigmoid)
Propose Gaussian 86.4528  32.7581 86.6 &
Act. (adam)
Fun. Wave 84.3214  32.7581 85.87
Softsign 88.0485  32.7581 89.503
GELU 87.4526  32.7581 32.7581
Cloglog 83.0258  32.7581 84.4
Cloglogm 84.3625  32.7581 86.64
Rootsig 87.5281 32.7581 88.28
Sech 86.5241  32.7581 87.35
Loglog 82.3258  32.7581 83.28
Elliott 85.5225  32.7581 86.56
Bi-sigl 85.5238  32.7581 83.8
Bi-sig2 84.6814  32.7581 84.9
Bitanhl 87.7251  32.7581 87.86
Bitanh2 86.5262  32.7581 87.49
Logsigm 86.4257  32.7581 86.95
Logsigmoid ~ 85.2571  32.7581 85.17
Modified- 87.985 32.7581 87.5
Elliott
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FIGURE 8. The performance curves (accuracy) for the suggested DLLSTM
classifier and (tanh) using different loss functions, (adam) optimizer, and
(sigmoid) function for weather reports dataset.

efficiency of 89.503 %. The performance curves for the given
wave DLLSTM classifier, which has the best performance,
and the conventional (fanh) DLLSTM classifier are shown in
Figure 8 and Figure 9 at (sigmoid) gate function.

Table 7 shows how well each classifier performed when the
hard — sigmoid function was used in place of the (sigmoid)
function using the suggested (SSE) classification layer, which
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FIGURE 9. The performance curves (loss) for the suggested DLLSTM
classifier and (tanh) using different loss functions, (adam) optimizer, and
(sigmoid) function for weather reports dataset.
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FIGURE 10. The performance curves (accuracy) for the suggested DLLSTM
classifier and (tanh) Using different loss functions, (adam) optimizer, and
(hard — sigmoid) function for weather reports dataset.
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FIGURE 11. The performance curves (loss) for the suggested DLLSTM
classifier and (tanh) Using different loss functions, (adam) optimizer, and
(hard — sigmoid) function for weather reports dataset.

outperformed the default function (Crossentropyex) and sug-
gested function MAE based classification. In comparison
to the (tanh), which achieves an accuracy of 86.3243%,

VOLUME 11, 2023



M. Abou Houran et al.: Developing Novel Robust Loss Functions-Based Classification Layers

IEEE Access

TABLE 7. Comparing the results of various suggested DLLSTM classifiers
using (hard-sigmoid) function and different loss functions for weather
reports dataset.

activation (Cross (MAE) (SSE)  Gate Act.
functions entropyex Fun. &
optimizer
Default Tanh 86.3 83.2581  86.5587
Act. Fun (hard —
sigmoid)
Propose Gaussian 87.9521 32.7581 84.9
Act (adam)
ct.
Wave 80.6987 32.7581 85.55
Fun.
Sofisign 87.6258 32,7581  88.2515
GELU 86.945 32,7581  32.7581
Cloglog 82.5135 32.7581 84.58
Cloglogm 87.8547 32.7581 86.64
Rootsig 87.9521 32.7581 87.74
Sech 87.9581 32.7581 87.92
Loglog 83.4595 32.7581 85.51
Elliott 83.3247 32.7581 85.4
Bisigl 85.7382 32.7581 843
Bisig?2 85.1478 32.7581 82.7
Bitanhl 87.5527 32.7581 88.86
Bitanh2 87.4523 32.7581 88.34
Logsigm 86.2581 32.7581 86.6
Logsigmoid 87.5847 32.7581 85.3
Modified- 84.1471 32.7581 87.5
Elliott
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FIGURE 12. Comparing the best result of DLLSTM classifiers using various
loss functions (Crossentropyex), (MAE) and (SSE)) with and 100 hidden
neurons using (sigmoid) gate function.

15 others suggested DLLSTM classifiers provide high accu-
racy with efficiencies in the range of 84-88.8%. According
to tabulated results, 10 of the 17 DLLSTM classifiers that
have been suggested exceeding the (fanh) function, with the
Bi — tanhl function having the highest efficiency (88.8%).
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FIGURE 13. Comparing the best result of DLLSTM classifiers using various
loss functions (Crossentropyex), (MAE) and (SSE)) with and 100 hidden
neurons using (hard — sigmoid) gate function.

The performance curves for the suggested Bi —tanh1 DLL-
STM classifier, which has the best performance, and the con-
ventional tanh classifier are shown in Figure 10 and Figure 11
at (hard — sigmoid) function. Overall, the DLLSTM classi-
fiers using SSE-based classification performs better than the
loss functions Crossentropye and MAE-based classification,
with a hard — sigmoid function outperforming the sigmoid
function.

Figures 12 and 13 illustrate and analyze more highly AF
DLLSTM classifiers. And using the sigmoid, hard — sigmoid
functions respectively, and using a variety of loss functions
((Crossentropyex), (MAE) and (SSE)) to train. The Softsign
function clearly outperforms the (tanh) function by achieving
a high classification rate of 89.5% as compared to the latter’s
86.5%, when using the (SSE) loss function. The Softsign
DLLSTM classifier is also the most effective of the sug-
gested classifiers. It appears to work but performs substan-
tially worse when using the suggested (MAE) loss func-
tion. The suggested Modified-Elliott, Root-sig, Sech, Wave,
Bi-tanh1, Bi-tanh2, and (Softsign) based DLLSTM classifiers
often perform better than the (tanh) function. Additionally,
the examined functions that employ the (hard — sigmoid)
function outperform the standard function.

V. CONCLUSION

In this study, a novel robust loss function-based classifi-
cation layer for Deep Learning Long Short-Term Memory
(DLLSTM) has been proposed. The suggested classifiers
are initially trained with sigmoid function and then with
hard — sigmoid function, to visualize the classification
issues. Also, a comparative study was performed using
three distinct loss functions ((Crossentropyex), (MAE) and
(SSE)), and (adam) optimizer. Our tests with different data
sets showed that the suggested (SSE) worked much bet-
ter than the (Crossentropyex), and (MAE) loss functions.
Another recently suggested loss function, called (MAE) loss,
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performed substantially worse and appears to be limited to
certain neural network architectures. The results additionally
indicated that the suggested classifiers that apply hard —
sigmoid function were better than that use dsigmoid. The
analysis indicated that certain less well-liked AFs, including
Modified-Elliott, Root-sig, Sech, Bi-tanhl, Bi-tanh2, wave
and Softsign, exhibited lower rates of losses than the most
well-liked AFs. This means that classifiers that use these less
popular AFs are more likely to get good results than those that
use the tanh function. Finally, the choice of (SSE) loss could
be indeed confirmed as a strong option, which improved the
accuracy of DLLSTM-based classifiers, achieving 98.24 %
wave accuracy in the Japanese Vowels dataset and 89.5%
Softsign accuracy in the Weather Reports dataset.

The following ideas are suggested for future research:

1) Analyzing the effectiveness of the suggested DLLSTM-
based classifiers using a variety of optimization meth-
ods, such as RMSPropSgdm, ADadelte, Adagrad, AMSgrad,
AdaMax, and Nadam.

2) Analyzing the effectiveness of the DLLSTM using
additional loss functions like Huber and Cauchy to provide
more robust loss functions rather than the crossentropyex loss
function, the suggested classifiers will perform better under
the constraints of classification in real systems.
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