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ABSTRACT Activation functions are essential components in any neural network model; they play a crucial
role in determining the network’s expressive power through their introduced non-linearity. Rectified Linear
Unit (ReLU) has been the famous and default choice for most deep neural network models because of its
simplicity and ability to tackle the vanishing gradient problem that faces backpropagation optimization.
However, ReLU introduces other challenges that hinder its performance; bias shift and dying neurons in the
negative region. To address these problems, this paper presents a novel composite monotonic, zero-centered,
semi-saturated activation function called Hyperbolic cosine Linearized SquasHing function (HcLSH) with
partial gradient-based sparsity HcLSH owns many desirable properties, such as considering the contribution
of the negative values of neurons while having a smooth output landscape to enhance the gradient flow during
training. Furthermore, the regularization effect resulting from the self-gating property of the positive region
of HcLSH reduces the risk of model overfitting and ensures learning more robust expressive representations.
An extensive set of experiments and comparisons is conducted that includes four popular image classification
datasets, seven deep network architectures, and ten state-of-the-art activation functions. HcLSH exhibited
the Top-1 and Top-3 testing accuracy results in 20 and 25 out of 28 conducted experiments, respectively,
suppressing the widely used ReLU that achieved 2 and 5, and the reputable Mish that achieved 0 and 5 Top-
1 and Top-3 testing accuracy results, respectively. HcLSH attained improvements over ReLU, ranging from
0.2% to 96.4% in different models and datasets. Statistical results demonstrate the significance of the
enhanced performance achieved by our proposed HcLSH activation function compared to the competitive
activation functions in various datasets and models regarding the testing loss Furthermore, the ablation study
further verifies the proposed activation function’s robustness, stability, and adaptability for the different
model parameter.

INDEX TERMS Activation function, convergence, deep learning, image classification accuracy, monotonic-
ity, saturation.

I. INTRODUCTION
Since the breakthrough in 2006 [1], deep learning has dom-
inated the tremendous successes in the machine learning
field. Deep learning uses multi-layered deep neural net-
works to analyze, understand, learn and solve complex and
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complicated real-world tasks [2], [3], [4]. For instance, Con-
volutional Neural Networks (CNNs) [5] achieve remarkable
recognition accuracies comparable to the human level in the
computer vision field. The reasons for this revolution include
the significant improvements in the computation power, the
invention of new powerful models, and the development of
new training methods and regularization techniques that can
handle the increasing model depth. Finally, the introduction
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of new activation functions that can handle the high number
of layers.

Activation functions (AF) are point-wise functions respon-
sible for creating a higher level of abstraction between layers
by performing space folding; the input space of the neuron
is mapped to a different space in the output, which adds
a non-linear effect to that output. The activation functions
determine whether the neurons should be activated or not
based on their input [6].

The two main probability-inspired saturated activation
functions that were intensively and traditionally used in
early neural networks are the Sigmoid and Hyperbolic Tan-
gent (Tanh) functions [7]. However, currently, the non-
saturated counterparts, such as the rectified linear units-based
functions become more dominant and more relevant by intro-
ducing an abrupt paradigm shift to overcome the suffered
problems as the depth of the model increases [8] and to expe-
dite the convergence speed and increase the generalizability
of the model.

As can be depicted, the choice of the non-linearity provided
by the activation function has a significant and imperative
influence on the speed and the behavior of the neural net-
work’s learning process [9] and, consequently, on the strength
of its expressive power. Therefore, the activation functions
are the key players of the neural network, either the shallow
or the deep ones, through their non-linearities that chain up
the layers and transform a linear model into a model that can
represent complex functions [10], [11].

At each neuron in the model, two operations are performed
at each epoch in the forward direction: (1) The summation
of the Hadamard product of the inputs and their associated
weights. (2) The transformation of the resultingweighted sum
and the bias according to a specific non-linearity. The role
of the activation function, in general, can be mathematically
realized as in (1). Where wi is the weight of the inputs xi
to that neuron, b is the neuron bias, f (z) is the activation
function, z is the linear combination of neuron’s weights,
inputs and bias (z =

∑
i
wixi + b), and y is the neuron output.

y = f (z) = f

(∑
i

wixi + b

)
(1)

The different designs for the activation functions in the lit-
erature are described by various properties and characteristics
[7], [12] that often show diverse behavior across the tested
task, the dataset, and the network configuration.
Monotonicity: The monotonic function follows a single

rhythm in a given interval, either increasing or decreasing.
In other words, if the function has different signs on that
interval, it is said to be non-monotonic. The function is mono-
tonically increasing on a particular interval if the function
value increases as its independent variables increase, i.e., that
is, if x1 > x2, then f(x1) > f(x2). On the other hand, the
function is monotonically decreasing if the value decreases
as the independent variables increase on an interval, i.e., that
is, if x1 > x2, then f(x1) < f(x2).

Zero-Centered: The zero-centered function guarantees that
its mean activation value is around zero. This characteristic
is helpful if no effort is put into choosing the initial random
weights of themodel or processing the input data to normalize
it [13], [14]. If the function is not zero-centered, i.e., if the
data coming into a neuron is always positive, the weight
gradient will have the same sign during the backpropagation
training. This feature causes a bias shift in the successive
layers, positive bias since the values do not cancel each other.
The deeper the network, the larger the bias, which produces
undesirable zigzagging dynamics in the weight update.
Saturation: The saturated function is a bounded function

with finite upper and lower limits; therefore, it is called a
squashing function. This characteristic directly affects the
function gradients as they eventually get smaller and level out
over time. In other words, the gradient vanishes, which leads
to a weaker training process. On the other hand, training using
a bounded function will be more stable than an unbounded
function since the unbounded will affect most of the weights,
while limitedweights will be affected in the case of a bounded
function.

However, the research on designing well-performing acti-
vation functions does not halt since the current ones still suf-
fer from some problems. The most famous challenge facing
activation functions is vanishing or exploding gradients. This
problem is first introduced in [9]; such a problem can cause
slow convergence and even cause the trained neural network
to converge and get stuck in a poor local minimum [15].
This problem occurs when the activation function saturates
at either of its tails. There are two possible cases: (1) if the
function derivatives are less than 1, multiplying them many
times during the gradient flow update will make the resulting
value smaller and smaller until the gradient tends toward zero
in the lower distant layers. Such a case makes them useless in
representation learning, called the vanishing gradient. (2) If
the values are larger than 1, the resulting value becomes
bigger until they reach infinity and the gradients explode.
The second problem is the dying neurons [16]; if not all the
neurons are activated at each iteration in the training process,
then some of the expressive power of the network is lost since
these unattended neurons do not contribute to the learning.

Driven by the significance and the contribution of the
effects of the different properties of the current activation
functions; this paper introduces the design of a novel and
effective monotonic composite piecewise activation func-
tion called Hyperbolic cosine Linearized SquasHing function
(HcLSH). The aim is to accelerate and boost the learning pro-
cess in deep learning-based models. The main contributions
of this paper are:

1) Constructing the HcLSH activation function that blends
different solutions to address multiple issues mentioned
above. For instance, considering the importance of negative
representation while providing partial gradient sparsity to
include a portion of negative values in the feature learning
without exhausting the model by incorporating all the nega-
tive values in the weights update process during training. This
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unsymmetrical and separate treatment of positive and nega-
tive values solved the dying neuron problem while enhancing
the gradient flow by introducing diversity in the expressive-
ness of the extracted features necessary to provide noise
robustness in the learning process while preventing potential
stuck in local solution. Furthermore, having sound regular-
ization effects while being monotonic helped prevent the
model equipped with HcLSH from overfitting the training
data. On the other hand, the semi-saturated property due to
being bounded below and unbounded above and the saturated
first derivative of HcLSH efficiently addressed the exploding
and vanishing gradient problem and allowed the model to
learn more representative input features required to boost the
performance.

2) Analyzing and discussing the properties of the proposed
HcLSH that play a role in its good performance and suc-
cess in deep network training, such as parameter-free nature,
monotonicity, landscape smoothness, zero-centering, and
semi-saturation.

3) Conducting an extensive experimental analysis to evalu-
ate, validate and compare the performance of HcLSH against
the popular existing activation functions using various image
classification datasets. This shows that the proposed HcLSH
improves classification accuracy and minimizes the loss of
broad network architectures with different characteristics.

4) Conducting non-parametric statistical tests, such as the
Wilcoxon signed rank test for pair-wise comparison and
the Friedman ranking test for overall relative comparison,
to prove the performance improvements achieved by HcLSH
statistically.

5) Conducting an ablation study to observe the effects of
hyperparameter finetuning on the performance of the deep
model operated with HcLSH.

6) Verifying the compatibility of HcLSH with batch nor-
malization to make the associated deep network less sensitive
to parameter initialization.

The rest of the paper is organized as follows. An overview
of the well-known state-of-the-art activation functions is
presented in Section II. The proposed activation func-
tion (HcLSH) is introduced, and its derivatives and properties
are discussed in detail in Section III. The experimental results
of the proposed HcLSH activation function, including an
evaluation of the average test accuracy and loss, a compar-
ison against ten state-of-the-art activation functions, and an
ablation study, are given in Section IV. Discussion of the
finding is presented in Section V. The limitations of the
proposed HcLSH are reported in Section VI. Finally, themain
conclusions of the work are devoted in Section VII.

II. RELATED WORK
Designing new activation functions has been an active area
in the literature. This section describes some of the famous
and powerful activation functions. The equations, the deriva-
tives’ equations, and the different properties that describe the
reviewed activation functions are listed in Table 1. Catego-
rizing of the activation functions based on their properties

is presented in Figure 1. Furthermore, the graphs of these
activation functions are visualized in Figure 2, grouped into
three categories for better illustration and clarity.

The sigmoid function, AKA the logistic function, is a
continuous, non-linear saturated s-shaped function that takes
an input and squashes it between 0 and 1. It is considered
a direct probabilistic interpretation of the output. It was
considered the popular choice for training shallow neural
networks. However, it proved its unsuitability for training
the deep networks [8] with random initialization for multiple
reasons; toward its two ends, the sigmoid saturates; therefore,
it suffers from the vanishing gradient problem, especially as
the layers become deeper, which restricts the performance.
Moreover, the sigmoid function is not zero-centered; con-
sequently, it may introduce important singular values in the
Hessian [14], which leads to a slower convergence of the
network and thus finds a poorer local minimum.

On the other hand, to overcome the limitation of the sig-
moid, the hyperbolic tangent (tanh) function squashed the
input to the range [-1, 1] and produced a zero-centered output.
However, it still suffers from the vanishing gradient problem
because of its bounded limits. The tanh activation function
is preferable over the sigmoid function [14] since its perfor-
mance is more stable, especially since the derivatives of tanh
are steeper than those of sigmoid functions. The penalized
tanh [17] is an activation function that tackles another crucial
issue for the training process: the nature of the slope of the
activation function near the origin. It does improve the perfor-
mance of tanh by penalizing it in the negative region, which
enhances the saturation. The penalization aims to rescale the
logistic sigmoid as follows

FIGURE 1. Categorization of different AFs based on the monotonicity,
saturation, and bounding properties.
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TABLE 1. Activation functions and derivative equations with classification according to their properties.
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(scaled sigmoid(x) = 4 ∗ sigmoid(x) – 2) to have twice
larger the activation value of the tanh.

TheRectified Linear Unit (ReLU) [18] is a piecewise linear
function that is considered one of the success factors and
milestones of the breakthrough in training the deep learning
neural network [19]. It became the popular default choice
for training the deep neural network because of its superior
performance, thanks to its simplicity, effectiveness, and the
appealing advantage of enablement the computational cal-
culation because of its non-sigmoidal nature. The negative
part of ReLU is clipped to zero, while the identity function is
used in its positive part. Therefore, the overall function is not
linear, but it can be said that it is one-sided linear. However,
ReLU is non-differentiable at zero [8]; it has a derivative of
one for the positive inputs and zero otherwise; this raises
both an advantage and a disadvantage at the same time. The
zero derivatives at the negative side make the network sparse,
which helps in reducing the representation dimensionality
and decreasing the computational effort. However, these inac-
tivated nodes will not improve learning since there will be
no information flow; in other words, these neurons will not
get adjusted during the gradient descent optimization. This
results in a problem called dying ReLU, leading the model to
underperform.

Moreover, ReLU is not zero-centered; it is lower-bounded
at zero but has an unbounded upper, i.e., positive infinity,
which may blow up the activation. ReLU alleviates the van-
ishing gradient problem because of the identity mapping and
the one derivative on the positive side; it can preserve the
magnitude of the error. Thus, it speeds up the learning and
leads to a quicker convergence. To solve the dying ReLU
problem, LeakyReLU (L-ReLU) [16] introduced a linear
function with a small slope, controlled using a predefined
constant (alpha), in the negative part of the ReLU. Conse-
quently, this results in a small, non-zero, constant gradient
that allows a small amount of information to flow in the neg-
ative part by re-activating some de-activated neurons. How-
ever, L-ReLU reduces the sparsity provided by ReLU. Since
then, many AFs had been introduced in the literature with
these functions’ novelties represented in how they modeled
their negative values differently.

As a result of using automated search techniques in [20],
an activation function called Swish is proposed. Swish is
unbounded above and bounded below as the ReLU. However,
in contrast to ReLU, Swish is smooth and non-monotonic.
The linear part in the Swish function helps avoid the van-
ishing gradient problem, while the sigmoid parts improve
the information flow or propagation. This is achieved by
introducing the ‘‘self-gating’’ property, in which a function
is multiplied with its own input. The Beta parameter (β)
can be either constant (usually 1) or a trainable that shapes
the non-monotonic bump of the Swish. Building on that
success, a piece-wise activation function called Exponen-
tial Linear Sigmoid SquasHing (ELiSH) function [21] used
Swish in its positive part. In contrast, the negative part is the
product of exponential and sigmoidal components. Another

non-monotonic activation function but, at the same time, non-
exponential is called Power Function Linear Unit (PFLU)
[22], which is based on power functions. Inspired by Swish’s
self-gating property, Mish [23] is a self-regularized, non-
monotonic activation function. Mish is unsaturated in the
positive part and soft-saturated towards the negative infinity.
A monotonic modification of Mish is introduced in [24],
called Smish, replacing the exponential term with a sig-
moid function. Another similarly behaved function that is
non-monotonic and also utilizes the self-gating property is
the Tanh Exponential activation function (TanhExp) [25].
However, it exhibited a steeper and bigger gradient near zero
resulting in an acceleration of the parameters’ updates in the
network.

An activation function that behaved differently in three
different regions is RSigELU [26] which exhibited an attitude
that reflects a composition of ReLU and sigmoid functions,
a linear function, and an ELU activation function [27] in its
three activation regions: positive, linear and negative regions,
respectively, as shown in Figure 2(b). On the other hand,
an oscillatory activation function with an amplitude directly
proportional to the input values is called the Growing Cosine
Unit (GCU) [28]. GCU aimed to enhance the gradient flow
by granting the neurons the ability to reverse their output
sign inside the interior of neuronal hyperplane positive and
negative half-spaces.

Although these new AFs introduce great success and
advancements in the performance of deep learning models,
the research does not halt due to rapid changes in the deep
architectures, datasets, and tasks. The performance results
remain unsatisfactory and need continuous improvements.
Therefore, this paper aims to design a novel activation func-
tion that integrates multiple desirable characteristics to com-
pete efficiently and provide generalizability and robustness
across many models and datasets by addressing the chal-
lenges hindering the activation function performance.

III. THE PROPOSED HcLSH ACTIVATION FUNCTION
Inspired by the observations and insights from studying dif-
ferent activation functions’ characteristics, properties, and
performance, we propose HcLSH, a zero-centered, mono-
tonic, and semi-saturated activation function. Thus, in this
section, we present and analyze our Activation Func-
tion (HcLSH) and describe its properties.

A. GRAPH AND DERIVATIVES OF HCLSH
HcLSH, as visualized in Figure 3 (a) and (b) (the solid
line), is a monotonic composite activation function. HcLSH
is bounded below and unbounded above; HcLSH also extends
below zero at the negative part. Therefore, HcLSH is unsat-
urated in the positive part and saturated in the negative
part. Consequently, it is considered a semi-saturated function.
HcLSH can bemathematically defined as in Eq.2. HcLSH has
a range of [−0.6931, +∞), the minimum value of HcLSH is
approximately −0.6931 (-ln2) with the corresponding input
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FIGURE 2. Plots of the different activation functions divided into three
groups for better illustrations. (a) Group 1: Sigmoid, Tanh, GCU and
Penalized Tanh, (b) Group 2: ReLU, L-ReLU, and RSigELU, and (c) Group 3:
Swish, Mish, ELiSH, TanhExp, and PFLU.

values of (-∞,-4.15). The first derivative of HcLSH with
respect to the input can be calculated according to Eq.3. The
visual representations of the first and second derivatives are
shown in Figure 3 (a) and (b) (the dashed and dotted lines,
respectively):

f (x) =

{
ln(coshx + x cos

x
2
), x ≥ 0

ln(coshx) + x, x < 0
(2)

f́ (x) =


sinh x −

x
2 sin

x
2 + cos x2

cosh x + x cos x2
x ≥ 0

tanh x + 1 x < 0
(3)

Here, x represents the input to the activation function.

One appealing property of HcLSH is its parameter-free
nature. No hyper-parameter is introduced in its definition,
as can be seen in Eq.2. Thus, no undesirable consequences
are encountered, such as searching for the optimal value
suitable for the task at hand or increasing the complexity
and capacity of the integrated model in case if this parameter
being trainable.

FIGURE 3. The proposed HcLSH activation function graph. (a) a wider
view, (b) closer view. The solid red line represents the activation function
graph, the blue dashed line represents the first derivative graph, and the
green dotted line represents the second derivative graph of the function.

B. PROPERTIES OF HCLSH
1) UNBOUNDED AND UNSATURATED POSITIVE PART
In order to overcome the vanishing gradient problem caused
by saturation that results in slow training, HcLSH is
unbounded above and unsaturated in the positive part. Moti-
vated by the self-gating property of Swish, in the positive
part, the non-modulated input is multiplied by the output of a
cosine trigonometric function of half the input.

The intuition for using the self-gating property is to allow
the network to keep the initial input distribution which gives
stronger regularized effects represented by giving the func-
tion a linear-like behavior. Afterward, the contribution of
the input’s Hyperbolic Cosine function (cosh ()) is added to
reduce the range of values and provide more stability. Finally,
all this composition is suppressed with the natural logarithm
(ln()). The choice of using the logarithmic operation for the
positive inputs is to squash the input and reduce its numerical
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FIGURE 4. The output landscapes of the different competitive activation functions on a 5-layer randomly initialized neural network,
in addition to the proposed HcLSH activation function (a).

range making the curve smoother and flatter. As the input
goes towards zero, a small fluctuation can be seen in the
positive part, proving the non-linearity of HcLSH.

2) BOUNDED AND SATURATED NEGATIVE PART
In order to address the dying neurons phenomenon with-
out completely scarifying the sparsity in the negative part,
HcLSH is bounded below and saturated in the negative part.
A combination of Hyperbolic Cosine function and natu-
ral logarithmic operation are used to boost the smoothness
and provide efficient range reduction. Furthermore, to force
HcLSH to be zero-centered, the effect of non-modulated
input is also added in the negative part. This zero-centered
property is preferable to speed up learning [27].

The negative information is allowed to contribute to the
learned representation of HcLSH, instead of zeroing it out as
done in ReLU, to increase the expressive power and enhance
the information flow. However, HcLSH also ensures a partial
sparsity in its first derivative (gradients during backpropaga-
tion), as the value of the gradients tends to approach zero as
the input decreases more toward negative infinity, but with a
less de-activating probability rate than exists in ReLU. This
partial sparsity, caused by being bounded below, and the
resulting de-activated neurons, in which their role in learning
is halted, enhance the regularization in the network in the
negative part by introducing a similar behavior of the Dropout
[29], [30].

Additionally, the proposed HcLSH activation function also
guarantees negative activation values for negative inputs.

3) SMOOTH LANDSCAPE, DIFFERENTIABILITY, AND
MONOTONICITY
Although that HcLSH is a monotonically increasing function,
its first derivative is non-monotonic in the positive part.More-
over, HcLSH’s first and second derivatives are continuously
differentiable, as shown in Figure 3, a property that is prefer-
able because it avoids singularities and, therefore, undesired

side effects when performing the parameter updating during
training using gradient-based backpropagation optimization.

Visualizing the output landscape of a 5-layer fully con-
nected randomly initialized neural network with different
activation functions, including HcLSH, ReLU, Penalized
Tanh, Swish, ELiSH, Mish, PFLU, TanhExp, RSigELU, and
GCU, is shown in Figure 4. As can be observed, the choice
of the activation function plays an essential role in forming
the output landscape smoothness. As demonstrated, HcLSH,
Mish, and TanhExp activation functions have smooth pro-
files, which consequently indicate good gradient flow and
thus learn more valuable information, obtaining smooth loss
landscapes [31], and easing the optimization process. On the
other hand, ReLU, Penalized Tanh, ELiSH, and GCU have
rough profiles with sharp transitions, with GCU being the
most disturbed and chaotic.

C. COMPARATIVE WITH OTHER ACTIVATION FUNCTIONS
In this section, we chose the most popular activation func-
tions: Swish and Mish, to compare the attitude of the pro-
posed HcLSH function within the negative and positive
regions. For example, in the positive part, HcLSH initially
obtains bigger values than Swish for the inputs that are less
than x=1.533, which corresponds to the output value of
1.261, and bigger values than Mish for the inputs that are
less than x=1.061 corresponds to the output value of 0.9292,
after that, HcLSH obtains lower values than them. On the
other hand, in the negative part, HcLSH obtains larger values
and thus achieves steeper gradient values compared with
Swish and Mish. Furthermore, HcLSH is monotonic in the
negative region, unlike in Swish and Mish. Swish and Mish
approach zero as the inputs decrease towards the negative
infinity, while HcLSH saturates around x= -0.6931. Further-
more, the first derivatives of HcLSH, Swish, and Mish acti-
vation functions all reach 0 towards negative infinity, but the
derivative of HcLSH reaches it faster at x=-4.15, while the
derivative of Swish at x=-12.333 and the derivative of Mish
at x=-9.8.
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IV. EXPERIMENTAL ANALYSIS
In the following parts of this section, the benchmark datasets
used in the study are introduced, information is given about
the convolutional neural networks and the activation func-
tions used in the study, and then the experimental results are
presented, and the results are discussed. Finally, an ablation
study is conducted to test the effects of different choices of the
model’s hyperparameters on the performance of the proposed
activation function. The performance of the proposed HcLSH
function relative to other activation functions is evaluated
with four open datasets in the image classification task in
computer vision using several popular deep learning models.
Notably, our evaluation is based on test samples rather than
training samples. The labels and examples of the classes in
the used datasets are presented in Table 2, while the datasets
descriptions are given next.

A. BENCHMARK DATASETS
1) FASHION MNIST DATASET
The Fashion Modified National Institute of Standards and
Technology database (Fashion MNIST)1 [32] is an image
classification dataset that consists of 28 × 28 grey-scale
images with ten different classes from real-world clothing
and fashion items from Zalando’s article images: T-shirts,
trousers, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot. The dataset is divided into 60k training and 10k
testing images.

2) SVHN DATASET
The Street View House Numbers (SVHN)2 [33] dataset is
an image classification and object recognition dataset that
contains real-world numerical numbers (0. . . 9) of houses
obtained from Google Street View images. The dataset con-
sists of 32×32 colored images with a single digit in the center
and some distractions on the sides. It is divided into 73,257
and 26,032 training and testing images.

3) CIFAR10 AND CIFAR100 DATASETS
The Canadian Institute for Advanced Research (CIFAR)3

[34] dataset is an image classification dataset that consists of
32×32 colored images that are divided into 50k training and
10k testing images. CIFAR has two versions according to the
number of classes; the CIFAR10 dataset with 10 classes and
the CIFAR100 dataset with 100 classes.

B. EXPERIMENTAL SETUP
All the conducted experiments of all models performed on
all datasets are trained with ADAM optimizer [35] for gra-
dient backpropagation with default parameters of β1 = 0.9,

1Download link: https://github.com/zalandoresearch/fashion-mnist,
Access Date: 6th March 6, 2023

2Download link: http://ufldl.stanford.edu/housenumbers, Access Date:
6th March 6, 2023

3Download link: https://www.cs.toronto.edu/∼kriz/cifar.html, Access
Date: 6th March 6, 2023

β2 = 0.999, ϵ = 10−7, fixed learning rate of 10−4, and batch
size of 128. These values were chosen without any search for
optimal results or bias to favor any activation function, even
the proposed one. The pixel values of the input images are
normalized by scaling by 255. The categorical cross-entropy
function is used as the loss function with SoftMax classifi-
cation. No data augmentation is applied in any form in the
experimental evaluation in all the experiments in this paper
since the aim is to test the efficiency level of the different
activation functions fairly. Also, the goal is not to achieve the
optimal results and most advanced performance in the used
datasets. Unless otherwise stated, these configuration values
are used in all the experiments in this section to have a fair
base for comparison.
For all experiments in this section, we only replaced all

the activation functions in the architecture, except for the
final SoftMax function, with the corresponding test activation
function. All other training settings and architectures are
kept unchanged at the same time. The performance evalu-
ation experiments were implemented based on TensorFlow
[36] backend with Keras Library and Google Colab compu-
tational resource platform. The number of training epochs
for the Fashion MNIST, SVHN, CIFAR10, and CIFAR100
benchmark datasets is set to 20, 50, 50, and 100 epochs,
respectively. Three runs of each experiment are performed to
handle the uncertainty caused by the different weight initial-
ization seeds.
The following deep learning models and architectures

are used in the performance comparison in the following
subsections: LeNet [37], MobileNetV1 [38], KerasNet [39],
SqueezeNet [40], InceptionNetV4 [41], ResNetV2-20 [42],
and ShuffleNetV2 [43]. These models vary in their param-
eters’ number, layers’ number, and connection types. They
were used to test the effects of HcLSH against models with
different depths of layers (shallow vs. deep), different connec-
tions (plain vs. residual vs. inception), different convolutions
(regular vs. dilated vs. depthwise), and a different number of
trainable parameters (light vs. heavy).
The comparative analysis is conducted against ten popular

and state-of-the-art activation functions:
• ReLU [18]: Since it has been chosen as the default

activation function in the deep learning community, this
study treats ReLU as the baseline activation function
for performance comparison purposes.

• Leaky ReLU (L-ReLU) [16]: The value of the parame-
ter α is set to 0.1.

• Penalized Tanh [17]: denoted as (PenTanh).
• Swish [20]: The value of the parameter β is set to 1.
• ELiSH [21].
• Mish [23].
• PFLU [22].
• TanhExp [25].
• RSigELU [26]: The value of the parameter α is set to

0.45.
• GCU [28].
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TABLE 2. Labels and examples from the Fashion MNIST, SVHN, and CIFAR 10 datasets.

C. EXPERIMENTAL RESULTS AND DISCUSSION
Ten popular and recent activation functions, ReLU [18],
L-ReLU [16], PenTanh [17], Swish [20], ELiSH [21], Mish
[23], RSigELU [26], TanhExp [25], PFLU [22], and GCU
[28], are considered to compare the performance and validate
the efficiency of HcLSH on four datasets: Fashion MNIST,
SVHN, CIFAR10, and CIFAR100, and seven deep learn-
ing models on the image classification task: LeNet [37],
MobileNetV1 [38], KerasNet [39], SqueezeNet [40], Incep-
tionNetV4 [41], ResNetV2-20 [42], and ShuffleNetV2 [43].

1) AVERAGE TEST ACCURACY AND LOSS
Since the ReLU [18] activation function is the most widely
used and preferable in deep learning models, it is consid-
ered the main baseline, and all average test accuracy results
presented for all the comparative activation functions were
normalized with respect to the accuracy obtained by the
ReLU activation. Thus, a new metric called normalized accu-
racy (relative ratio in percentage) is also investigated. The
performance was evaluated based on two metrics: average
test classification accuracy and average test loss. The results,
including average test loss and accuracy values with their
standard deviations and the normalized accuracy ratio, that
describe the performance and behaviors of different activa-
tion functions are demonstrated in Table 3 to Table 9.

In the simple 8-layer LeNet [37] model, as can be observed
in Table 3, the performance of HcLSH in the SVHN and
CIFAR100 datasets was better than in CIFAR10 and Fashion
MNIST datasets, where it achieved the first, first, fourth,
and third rank, respectively, in normalized accuracy, i.e., the
accuracy ratio with respect to ReLU’s accuracy. GCU out-
performed the proposed HcLSH by 1.2% in test accuracy in
the Fashion MNIST dataset. However, HcLSH ranked sec-
ond and outperformed the third-ranking TanhExp by 0.41%
and the rest of the activation functions by a good margin.
In SVHN, HcLSH suppressed the testing accuracy of the
second and third runners (ELiSH, ReLU, and PenTanh).

In CIFAR10, the ReLU activation function achieved the top
place by achieving an accuracy of 56.89%, followed by Tan-
hExp, while Penalized Tanh (PenTanh) and GCU achieved
the third rank in terms of testing accuracy. In CIFAR100, our
proposed HcLSH was able to outperform all other activation
functions; it enhanced the average accuracy by 0.25% and
0.27% compared to TanhExp, which achieved the second rank
and penalized Tanh (PenTanh) that achieved the third rank,
respectively. The enhancements introduced by the models
with tested activation functions in the CIFAR100 dataset are
minimal due to the dataset’s complexity and the network’s
simplicity. The lowest test loss in the Fashion MNIST dataset
of LeNet-based models was found to belong to GCU and
was equal to 0.3465, followed by the loss value obtained by
HcLSH, which was equal to 0.3876. On the other hand, ReLU
achieved the smallest loss value in CIFAR10, followed by
penalized Tanh (PenTanh), TanhExp, L-ReLU, and HcLSH.
In SVHN, the lowest test loss values were 0.5382 and 0.5444,
obtained by ELiSH and HcLSH, respectively. In contrast,
HcLSH achieved the lowest test loss value in CIFAR100
dataset by obtaining a loss value of 2.9963.

The model complexity increased with the examined model
being MobileNetV1 [38]. As can be observed from Table 4,
the performance of the proposed HcLSH becomes more effi-
cient by attaining the maximum normalized accuracy among
all the compared activation functions. It enhanced the aver-
age accuracy by 0.74%, 0.3%, 0.83%, and 0.29% compared
to the activation functions that achieved the second-best
results, i.e., RSigELU, ELiSH/ L-ReLU, GCU, and GCU in
Fashion MNIST, SVHN, CIFAR10, and CIFAR100 datasets,
respectively. On the other hand, it is noticeable from Table 4
that replacing ReLU with our proposed HcLSH caused a
significant boost of 3.5%, 2.1%, 9.5%, and 14.8% in the
testing accuracy of Fashion MNIST, SVHN, CIFAR10, and
CIFAR100 datasets, respectively. The MobileNetV1 mod-
els based on Swish and PFLU were the weakest in the
four datasets under the adopted unified experiment settings.
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Regarding the average test loss metric, the lowest values were
found as 0.4307, 0.4394, 1.0822, and 2.8096 for the models
based on MobileNetV1 across the four datasets, respectively,
and they were achieved by the proposed HcLSH activation
function.

With KerasNet architecture [39], our proposed HcLSH
obtained the highest average test accuracy in CIFAR10
and CIFAR100 datasets outperforming the rest, as noted in
Table 5. In SVHN, HcLSH obtained second place after ReLU
and ELiSH. However, unfortunately, it fell behind ELiSH,
GCU, and TanhExp activation functions by achieving an
accuracy of 91.10% in the Fashion MNIST dataset. These
functions turn out to have better performance of 91.65%,
91.47%, and 91.32%, respectively. However, as can be seen in
Table 5, the proposed HcLSH outperformed other functions
in terms of average test loss in KerasNet-based models by
obtaining the lowest values of 0.6430 and 2.0248 in CIFAR10
and CIFAR100 datasets with enhancements of 0.005 and
0.1149 relative to the loss of the baseline ReLU, although that
the improvements are not impressive, but HcLSH succeed by
suppressing the test loss values obtained by the rest of the acti-
vation functions. In Fashion MNIST,, HcLSH obtained the
second highest test loss value, after Swish, with a difference
equal to -0.0012 compared to ReLU and -0.0157 compared
to the ELiSH activation function, which has the lowest loss.
Unfortunately, in SVHN, the test loss of HcLSH was sup-
pressed by the values obtained by ReLU, L-ReLU, ELiSH
and GCU.

When using SqueezeNet [40], as the testbed for the exper-
iments summarized in Table 6, the models with the pro-
posed HcLSH obtained the top results in Fashion MNIST,
CIFAR10 and CIFAR100 datasets, as can be noted, with the
most impressive performance belonging to the CIFAR100
dataset. HcLSH achieved the second rank in testing accu-
racy in the SVHN dataset. In the Fashion MNIST dataset,
HcLSH was the only activation function that outperformed
the ReLU baseline by increasing the accuracy by 0.6%,
while ELiSH performed equally to ReLU. Furthermore, the
enhancements introduced by HcLSH were massive in the
CIFAR100 dataset compared with the ReLU baseline by its
ability to achieve almost double the obtained test classifica-
tion accuracy. RSigELU, TanhExp, ELiSH, and Mish acti-
vation functions performed relatively well with their ability
to outperform ReLU accuracy but with a lower rate com-
pared to HcLSH. In other words, HcLSH improves TanhExp
accuracy in CIFAR100 by 2.26%, RSigELU accuracy by
4.12%, ELiSH accuracy by 4.48%, and Mish accuracy by
4.26%. Moreover, the improvement of the test loss in the
Fashion MNIST dataset was significant by obtaining a value
of 0.3566 with an enhancement of 0.0164 over ReLU. How-
ever, in the CIFAR10 dataset, the penalized Tanh (PenTanh)
activation outperformed HcLSH in terms of loss value and
obtained a value of 1.1192 with 0.1559 enhancement. On the
other hand, the best test loss value in SVHN belongs to
TanhExp, with a value of 0.4327, while HcLSH achieved a
loss value of 0.5202. In the CIFAR100 dataset, Mish obtained

the best loss value of 2.9348, followed directly by HcLSH,
obtaining a loss of 3.0313.

In the InceptionNetV4 [41], Table 7, HcLSH yielded
the best test accuracy results in CIFAR10 and CIFAR100
datasets, and the second best result in SVHN dataset. How-
ever, it was outperformed in the Fashion MNIST dataset,
which gives an indication that HcLSH is more suitable for
learning the representation of complex datasets. GCU per-
formance was observed to be very poor with this network
architecture by falling back with a large margin compared to
the set of all compared activation functions. All the activation
functions in all Fashion MNIST, CIFAR10 and CIFAR100
datasets, except for GCU and L-ReLU in Fashion MNIST,
performed better on average test accuracy than the ReLU
baseline with varying rates. On the other hand, the test accu-
racy results in SVHN of different AFs were similar and close.
The activation functions with the lowest loss value belong
to PFLU, with a 0.2213 loss value in the Fashion MNIST
dataset, HcLSHwith a 0.1796 loss value in the SVHNdataset,
HcLSH with a 0.4835 loss value in the CIFAR10 dataset, and
HcLSH with a 1.4817 loss value in the CIFAR100 dataset.
The poor performance of the GCU activation function under
this model regarding the loss metric is also observed.

As can be depicted from Table 8, accuracy improvements
of 0.35%, 2.14%, and 3.65% were reported for ResNetV2-
20 [42] with HcLSH for the Fashion MNIST, CIFAR10,
and CIFAR100 datasets, respectively, over the second-best
model in eachwith RSigELU, Swish and RSigELU activation
functions. In the SVHN dataset, the residual model with
Swish achieved the top testing accuracy by obtaining 102.3%
normalized accuracy, followed directly by HcLSH and PFLU
based models with normalized accuracy of 102.2%.Also, the
ResNetV2-20 models based on GCU were underperforming,
achieving the poorest results but with better performance than
InceptionNet-based models. The proposed HcLSH demon-
strates significant performance by achieving 2.2%, 2.2%,
16.4%, and 30.2% higher classification accuracy against
ReLU accuracy in Fashion MNIST, SVHN, CIFAR10, and
CIFAR100 datasets. The performance of HcLSH in terms
of average test loss value for the residual-based models
varies across the four different datasets, but with being able
to outperform baseline ReLU in all of them. For exam-
ple, the Fashion MNIST dataset, L-ReLU, ELiSH, Mish,
and PFLU activation functions were able to obtain 0.0212,
0.0163, 0.001, and 0.0023 improvements in loss value com-
pared to HcLSH, respectively. In SVHN, HcLSH obtained
the second-best test loss value of 0.4441, suppressed by the
loss value of PenTanh of 0.4351. However, in CIFAR10,
HcLSH exhibited the lowest loss value with an enhance-
ment of 0.0382 over the second-best loss that belongs to
GCU. In the CIFAR100 dataset, HcLSH was outperformed
by GCU with a 0.2562 difference, while HcLSH outper-
formed RSigELU, which obtained the third-best loss value,
with a loss difference of 0.5526. With its opposite achieved
results in the test loss and accuracy, GCU showed volatile
performance.
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TABLE 3. The mean (± standard deviation) of the test loss and test accuracy (%) for the LeNet [37] model obtained using different activation functions
tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the green
denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

Regarding the models based on ShuffleNetV2 [43],
as reported in Table 9, HcLSH also shows clear improve-
ments by obtaining the best results with 3.9%, 11.7%, 23.5%,
and 39.8% enhancement in average test accuracy compared
with ReLU baseline in Fashion MNIST, SVHN, CIFAR10,
and CIFAR100 datasets, respectively. Furthermore, HcLSH
enhanced the test accuracy of RSigELU, the second-best acti-
vation function in terms of average test accuracy in the four
datasets, by 0.73% in the Fashion MNIST dataset, by 2.05%
in the SVHN dataset, by 4.54% in the CIFAR10 dataset,
and by 3% in the CIFAR100 dataset. HcLSH achieved the
best loss value in Fashion MNIST and SVHN datasets by
suppressing the performance of the rest of the competing
activation functions. In the CIFAR10 dataset, despite having
the poorest accuracy value, GCU obtained the best loss value
of 2.2417, followed by HcLSH with a loss value of 2.9582,
then L-ReLU with a loss value of 3.1699. On the other hand,
HcLSH obtained the third rank in terms of the test loss value
in the CIFAR100 dataset, suppressed by GCU and RSigELU
activation functions.

2) STATISTICAL ANALYSIS
Table 10 summarizes the detailed analysis of the performance
of the proposed HcLSH and the other ten baseline activation
functions in Table 3 to Table 9 concerning the normalized
test accuracy value. The analysis tracks how well, equal,

and bad is the performance of HcLSH compared to each
baseline activation function individually in the 28 test sce-
narios, i.e., the experiments were conducted on four datasets
with seven different deep neural architectures for each tested
activation function. The terms ‘‘> Baseline’’, ‘‘= Base-
line’’, and ‘‘< Baseline’’ are indicatives of better average
test classification accuracy, equal accuracy, and worse accu-
racy, respectively. Overall, as observed, HcLSH consistently
improves the classification accuracy over the different base-
line functions by outperforming them in most cases. HcLSH
consistently outperformed L-ReLU and Mish in 27 exper-
iments, outperformed ReLU, Swish, PFLU, and RSigELU
activation functions in 26 experiments, outperformed GCU
in 25 experiments and finally outperformed penalized tanh,
TanhExp, and ELiSH in 24 experiments.

Furthermore, Figure 5 offers another aggregation of
the previously reported detailed results by counting the
Top-1 (the best), and the Top-3 (the best three) results
obtained by different activation functions applied to var-
ious models across multiple datasets. The superiority of
the proposed HcLSH is witnessed compared to the other
competing activation functions by acquiring 20 best results
and 25 Top-3 results in the set of conducted experiments,
whereas RSigELU is the second runner-up by succeeding to
offer 14 Top-3 results; however, it fails to achieve any Top-1
result.
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TABLE 4. The mean (± standard deviation) of the test loss and test accuracy (%) for the MobileNetV1 [38] model obtained using different activation
functions tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the
green denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

Apart from evaluating the performance based on the test
accuracy, as shown in Table 10 and Figure 5, a non-parametric
statistical analysis is also performed according to the metric,
i.e., average test loss metric, since it is also a contribut-
ing factor in model performance. Two non-parametric tests
were adopted; pair-wise comparison between the proposed
HcLSH and each other activation function in the comparative
set independently using the Wilcoxon signed rank test [44]
and overall relative comparison using the Friedman ranking
test [44].

Table 11 shows the average Friedman ranking of all the
activation functions; it is distributed as a Chi-square distri-
bution with 10 degrees of freedom, with statistics equal to
73.681818 and a p-value of 5.4006022E-11. HcLSH has the
best performance as it has the best rank, with a rank equal
to 9.25. This fact is supported by the Wilcoxon results in
Table 12. To show that HcLSH is performing better than the
other functions, the markers R+ and R- are used. Note that
the higher the difference in these scores, the more consistent
in performance. As demonstrated in Tables 11 and 12, the
performance differences were strong enough that Friedman
and Wilcoxon tests could detect the significance and rejected
their null hypothesis, which claimed that there is no dif-
ference between our proposed HcLSH activation function
and the compared one by obtaining p-values less than the
significant level (0.05). Thus, the reported enhancements and

improvements of HcLSH are statistically significant. The top
activation functions with respect to loss metric, according to
Table 11, are HcLSH, RSigELU, penalized tanh, ELiSH, and
L-ReLU.

The concluding results and analysis in Table 3 to Table 12
demonstrate that the proposed HcLSH performance is stable,
consistent, robust, and effective on various datasets and mod-
els. The proposed HcLSH generally guarantees performance
improvements, i.e., an increase in accuracy and a decrease in
loss, in the tested models for image classification. Moreover,
the results obtained from the various architectures with differ-
ent depths and capacities indicate the good modeling ability
and adaptation of the proposed HcLSH to the scalability
requirement.

3) THE CONVERGENCE CURVE
The convergence characteristics of the two investigated met-
rics in the experiments are shown in Figure 6 and Figure 7,
in which the learning behaviors of four top-performing acti-
vation functions: Mish, ELiSH, TanhExp, and RSigELU,
in addition to HcLSH, are reported for the InceptionNetV4
[41] and MobileNetV1 [38] models trained on the CIFAR10
dataset. Regarding InceptionNetV4 model Mish, TanhExp,
and ELiSH achieved better validation accuracy than HcLSH
in the first half of training epochs, as observed in Figure 6(a).
Then, the performance of Mish and ELiSH started to
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TABLE 5. The mean (± standard deviation) of the test loss and test accuracy (%) for the KerasNet [39] model obtained using different activation functions
tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the green
denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

FIGURE 5. The number of models in which each activation function achieved the best result (Top-1) and the three best results (Top-3).

alternate. On the other hand, HcLSH reached the best final
accuracy at the end of the training process in a stable grad-
ual growth trend. Also, HcLSH was faster than RSigELU.
Regarding the validation loss convergence curve, Figure 6(b),
Mish was the fastest activation function that obtained the best
loss values in the initial training epochs. However, after epoch
42, it seems that it encountered an overfitting issue because
of the sharp increase in loss values in its following epochs.
Meanwhile, HcLSH decreased the loss in steady steps with

the increase in training epochs without any fluctuations or
sudden changes in the loss values and obtained the lowest loss
at the end of the training epochs.

On the other hand, the superiority of the performance of
the MobileNetV1 model equipped with the proposed HcLSH
function is more obvious, as noted in Figure 7, in terms of
validation loss and accuracy, followed with a decent gap by
the models that utilized ELiSH, TanhExp, RSigELU, and
Mish.
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TABLE 6. The mean (± standard deviation) of the test loss and test accuracy (%) for the SqueezeNet [40] model obtained using different activation
functions tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the
green denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

4) TIME COMPLEXITY
The computational impact of the different activation func-
tions on the integrated model is tested by recording the
time (in seconds) required to complete one training epoch.
This subsection investigates the epoch time of the Incep-
tionNetV4 [41] model tested on the CIFAR10 image clas-
sification dataset under different AFs. The average training
time of the first three epochs of each experiment is reported
in Table 13. The activation function’s training time depends
on the implementation and hardware optimization for speed
enhancement. Thus, all the AFs were implemented following
the same procedure, except for ReLU and L-ReLU functions,
to provide a fair comparison.

As can be observed, the models with ReLU and L-ReLU
were the fastest, with the least runtime to complete an epoch
due to their simplicity. However, the challenges mentioned
earlier that face the rectified functions family cause degra-
dation in the obtained performance, as demonstrated in the
previous subsections. On the other hand, despite the impres-
sive and noteworthy performance of HcLSH on most of the
conducted experiments, it is more computationally intensive
than Swish, TanhExp, GCU, and RSigELU, while utilizing
similar computational costs as PenTanh and Mish. HcLSH
is less demanding than ELiSH and PFLU. In summary, the
computational complexity of these AFs is roughly sorted in
ascending order as in Table 13, according to the conducted
experiments based on per epoch training time.

D. ABLATION STUDY
This section focuses on the performance of the proposed
HcLSH activation function by adjusting several hyperparam-
eters. These parameters include the depth of the network
represented by the number of layers, the weight initialization
methods, the use of value normalization, and the optimizers.
To better reflect the performance of the activation function,
the InceptionNetV4 model [41] is employed as our network
model for the experiments in this section trained and eval-
uated on the CIFAR10 dataset. Different choices of these
parameters were manipulated one at a time to observe their
effects and roles on the performance. Except for the examined
parameter in each subsection, all other parameters’ values
were kept constant, the same as in section IV-B. To better
visualize the results, we chose four activation functions from
the top-performing ones: RSigELU, TanhExp, Mish, and
ELiSH, to conduct the experiments in the following subsec-
tions. GCU was excluded in evaluations of this section since
it encountered bad performance under this particular choice
of network architecture.

1) ANALYSIS OF THE NUMBER OF LAYERS
Layer-wise test accuracy of various layers is carried out to
confirm that HcLSH remains stable as the number of model
layers increases. The experiments were carried out on amodel
consisting of a 2D convolution layer with 20 filters with a size
of 5×5, then another 2D convolution layer with 50 filters with
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TABLE 7. The mean (± standard deviation) of the test loss and test accuracy (%) for the InceptionNetV4 [41] model obtained using different activation
functions tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the
green denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

a size of 5×5, followed byMaxPooling2D and Flatten layers,
then a loop with fully connected layers with 500 neurons with
the number of layers gradually increased from 8 to 30. Each
layer in the model is followed by batch normalization and the
tested activation function. The models were trained for ten
epochs with a batch size of 128 and a learning rate of 10−3

with categorical cross-entropy loss optimized using ADAM
optimizer. The results are visualized in Figure 8.

The superiority of HcLSH is clearly shown by obtain-
ing an accuracy curve that outperformed the other tested
activation functions with a good margin. Then RSigELU
followed, while Mish and TanhExp obtained mixed perfor-
mance. The worst accuracy belonged to the ELiSH acti-
vation function. In summary, HcLSH obtained an accuracy
of ∼42.5%, RSigELU obtained ∼27%, Mish and TanhExp
obtained ∼21%, and ELiSH obtained ∼11%. As seen in
Figure 8, the testing accuracies tend to generally decrease
as the number of layers increases, which is expected since
the complexity of the model and the number of trainable
parameters increased, and the optimization process became
harder. However, the significant decline in test accuracy in
the model trained with the ELiSH activation function sug-
gested that it suffered from an overfitting issue as the model
became deeper; on the other hand, HcLSH maintained more
stability in the decrease of accuracy as the number of layers
increases.

2) ANALYSIS OF WEIGHT INITIALIZATION METHODS
The initialization of the parameter weights at the begin-
ning of the training process is a contributing factor in
model performance. The effects of applying different param-
eter initialization in the examined model with HcLSH are
investigated. Four different initialization methods are tested:
Glorot-normal initialization (AKAXavier initialization) [45],
Glorot-uniform initialization [45], He-uniform initialization
[46], and Lecun-normal initialization [47].

As can be observed from Figure 9, the performance of
different weight initialization methods varies among differ-
ent activation functions but with insignificant margins. The
Lecun-normal method generally produces better results in all
five tested activation functions. In contrast, the He-uniform
method has the poorest performance among the different
initialization methods. HcLSH produced the best results with
whatever the initial method used. For instance, it obtained
an average test accuracy in the Glorot-uniform method of
84.08%, in the Glorot-normal method of 83.87%, in the He-
uniform method of 82.81%, and in the Lecun-normal method
of 84.43%. This illustrates that HcLSH is adaptive to different
initial values and thus reduces the sensitivity to initialization.
As shown in Figure 9, the performance of TanhExp followed
the performance achieved by HcLSH in three initialization
methods (Glorot-uniform, He-uniform, and Lecun-normal
methods), whereas Mish was the second-ranking activation

47808 VOLUME 11, 2023



H.-A. Nabi et al.: HcLSH: A Novel Non-Linear Monotonic Activation Function for Deep Learning Methods

TABLE 8. The mean (± standard deviation) of the test loss and test accuracy (%) for the ResNetV2-20 [42] model obtained using different activation
functions tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the
green denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

function in the Glorot-normal method. The initialization
method that produced more stable results (indicated with a
small standard deviation of three runs) belongs to He-uniform
and Lecun-normal methods. On the other hand, high variance
is noticed in the Glorot-normal method.

3) ANALYSIS OF NORMALIZATIONS
Four potential cases were tested for the five activation func-
tions to analyze the effects of normalization on the training
and the evaluation of deep neural networks.

Case 1: no normalization is performed for the model input
and without using batch normalization [48] between the
model layers.

Case 2: normalization is performed for the model input
without batch normalization.

Case 3: no normalization is performed for the model input
with batch normalization.

Case 4: normalization is performed for the model input
with batch normalization.

All the tested activation functions: HcLSH, RSigELU,
Mish, TanhExp, and ELiSH, failed to converge and pro-
duced (NAN) results when no normalization is done to the
input in the preprocessing and no batch normalization (BN)
is used in the model (case 1). This indicates the importance
of value normalization to any deep model. The results in
Figure 10 prove the effectiveness of BN in enhancing the

quality of the evaluation of the test results since the two cases
using batch normalization (case 3 and 4) are better than those
without. BN depends on the statistics of a specific portion
of the input contained in the minibatch to normalize the
activation values and reduce their reliance on initialization.
The network with normalized inputs and no BN (case 2)
succeeded in obtaining relatively good results without failing
to converge, unlike the case with no value normalizations
at all (case 1). However, the results were worse than with
including batch normalization in the network. As expected,
the case of normalizing the input and using batch normaliza-
tion (case 4) obtained the best results when testing HcLSH.
However, without performing input normalization but with
batch normalization (case 3), the results were better for the
rest of the activation functions; nevertheless, HcLSH also
obtained the best among them.

4) ANALYSIS OF DIFFERENT OPTIMIZERS
In deep learning, many possible optimizer choices exist
that have different characteristics and methods of parameter
adjustments during the optimization process. Thus, choosing
the appropriate optimizer is vital in network training. In the
current study, ADAM [35], RMSprop [49], and SGD [50]
optimizers are selected to test their effects. As shown in
Figure 11, all five tested activation functions exhibited the
best accuracy with ADAM optimizer, except for Mish, which
performed better in RMSprop optimizer.
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TABLE 9. The mean (± standard deviation) of the test loss and test accuracy (%) for the ShuffleNetV2 [43] model obtained using different activation
functions tested on the datasets: Fashion-MNIST, CIFAR 10, CIFAR 100, and SVHN. The red values denote the best result in the normalized accuracy, the
green denotes the second-best result, and the blue denotes the third-best result. The underlined values denote the activation function with the poorest
performance. Best viewed in color.

TABLE 10. The number of models on which HcLSH outperforms, equally
performs, or underperforms each baseline activation function during the
conducted experiments with respect to the normalized test accuracy
value.

However, RMSprop optimizer seems to produce good
results with slight differences compared with ADAM opti-
mizer, -0.28%, -0.09%, -0.35%, and -0.35% for HcLSH,
ELiSH, RSigELU, and TanhExp, and it also outperformed
Mish with ADAM optimizer with 1.09% in terms of testing
accuracy.

On the other hand, SGD optimizer was the worst-
performing optimizer among the three. The possible reason
behind this performance is the low learning rate used (10−4)
compared with the recommended value for that optimizer in

TABLE 11. Ranking of different competitive activation functions on the
different architectures, achieved by the Friedman test at 0.05 significance
value based on average test loss values. The higher the value of the rank,
the better performing the algorithm.

the Keras library (10−2). The performance of HcLSH is better
in all three optimizers.

V. DISCUSSION
Because of their different characteristics, no activation func-
tion works best on every architecture and dataset. Under
the same experimental setting, it can be depicted that the
test accuracy of the Fashion MNIST dataset is the highest
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TABLE 12. The results of the Wilcoxon signed-rank test for the different
competitive activation functions against the proposed HcLSH activation
function based on average test loss values. The significance value is 0.05.

FIGURE 6. Plot of validation Accuracy (top part) and validation loss
(bottom part) of different activation functions against HcLSH in the
InceptionNetV4 on the CIFAR10 dataset. Best viewed in color.

among the four tested and used benchmark datasets across
different models and architectures, followed by the SVHN
and CIFAR10 datasets, while the CIFAR100 dataset was the
most complex and challenging. This is observed by the poor
accuracy obtained by the different models when operated
under the same conditions in the CIFAR100 dataset.

FIGURE 7. Plot of validation Accuracy (top part) and validation loss
(bottom part) of different activation functions against HcLSH in the
MobileNetV1 on the CIFAR10 dataset. Best viewed in color.

TABLE 13. The comparison between computational training epoch time
(in seconds) of different activation function measured using
InceptionNetV4 [41] model.

As can be observed from the past reported results, the
general performance of some AFs, that are injected into the
different classification models varies across the datasets. For
instance, ELiSH, RSigELU, TanhExp, and Mish performed
well in the FASHION MNIST dataset; PenTanh, ELiSH,
PFLU, RSigELU, ReLU, and HcLSH performed well in
the SVHN dataset; HcLSH, RSigELU, Swish, and TanhExp
performed well in CIFAR10 dataset; and finally, HcLSH,
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FIGURE 8. The testing accuracy vs. the number of layers on the CIFAR10 dataset using HcLSH, RSigELU, Mish, ELiSH, and TanhExp
activation functions.

FIGURE 9. The effects of different weight initialization methods on average testing accuracy using
InceptionNetV4 on the CIFAR10 dataset using HcLSH, RSigELU, Mish, ELiSH, and TanhExp activation functions.
The error bars indicate the standard deviation.

RSigELU, Mish, and TanhExp performed well in CIFAR100
dataset. On the other hand, Swish’s general performance is
bad in FASHION MNIST, SVHN, and CIFAR10 datasets.
PFLU and ReLU usually achieved relatively low results in
the CIFAR100 dataset. On the contrary, GCU performed
exceptionally poorly with specific deep architectures in all
four datasets.

Regarding the effects with respect to the used classification
model, ReLU, PenTanh, TanhExp, and GCU usually obtained
better results in the LeNetmodel. At the same time, PFLU and
Swish were poor performers. ForMobileNetV1, SqueezeNet,
and KerasNet models, HcLSH, GCU, RSigELU, ELiSH, and

TanhExp achieved the highest results, while Swish and PFLU
achieved the lowest. HcLSH, RSigELU, and Swish were the
top performers in the ShuffleNetV2 model, while GCU was
the poorest. Regarding InceptionNetV4 and ResNetV2-20
models, HcLSH, PenTanh, Swish, and RSigELU obtained the
best results. In contrast, GCU fails in both models with a big
gap, possibly due to its unsaturated oscillated nature that is
easily trapped in local optima.

The proposed activation function (HcLSH) accomplished
good performance in various datasets and models due to
its characteristics and properties, discussed in Section III,
introduced in the development of HcLSH to address the
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FIGURE 10. The effects of values normalization on average testing accuracy using InceptionNetV4 on the
CIFAR10 dataset using HcLSH, RSigELU, Mish, ELiSH, and TanhExp activation functions. The error bars indicate
the standard deviation.

FIGURE 11. The effects of different optimizers on average testing accuracy using InceptionNetV4 on the
CIFAR10 dataset using HcLSH, RSigELU, Mish, ELiSH, and TanhExp activation functions. The error bars indicate
the standard deviation.

different issues and mimic the appealing advantages of the
currently existing activation functions. The result of the
proposed HcLSH seems less promising in the simple Fashion
MNIST and SVHN datasets because they are considered
easy to classify with low complexity, which enabled many
models and activation functions to perform relatively well
on them. Thus, the improvements achieved by HcLSH in
these datasets were less impressive than that of CIFAR10
and CIFAR100. In general, the performance of the proposed
activation function in the CIFAR100 dataset was the best.
It can be concluded that HcLSH consistently outperformed
the other ten activation functions in any investigated model
on that dataset.

VI. LIMITATIONS OF HcLSH
Due to the existence of multiple mathematical functions in
the definition of the proposed activation function, the learned
complex nonlinearities might not be suited for small net-
works and datasets. Therefore, the correlation between the
dataset complexity and the efficiency of the performance of
HcLSH can be observed from the experiments conducted
in Section IV-C, such that the more complex the dataset is
and the heavier the deep architecture is, the more signifi-
cant the improvement we can attain by using the proposed
HcLSH activation function. This was proved by the achieved
results in CIFAR 100 dataset and ResNet and InceptionNet
models.
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However, the proposed HcLSH’s good performance comes
at the cost of an increased computational overhead compared
with ReLU, which introduced a tradeoff between the perfor-
mance and the execution speed, which limits the applicabil-
ity of the proposed HcLSH, in its current implementation,
in light real-time applications.

VII. CONCLUSION
This paper proposed a new monotonic piecewise semi-
saturated activation function called Hyperbolic cosine
Linearized SquasHing function (HcLSH) for training deep
neural networks. Its performance has been extensively eval-
uated using four image classification benchmark datasets:
Fashion MNIST, SVHN, CIFAR10, and CIFAR100. Seven
deep architectures with varying characteristics were selected
as the experiments’ testbeds. Two metrics were tracked
and measured during performance evaluation: average test
accuracy and average test loss. Ten popular state-of-the-art
activation functions participated in the comparison exper-
iments. HcLSH showed superior performance and note-
worthy improvements and outperformed other activation
functions with regard to different datasets and models,
especially with more complex architectures and datasets.
HcLSH achieved the Top-1 and Top-3 results in 20 and
25 conducted experiments, respectively. In addition, the
results of the proposed HcLSH were statistically significant,
as proved by the applied non-parametric tests. Furthermore,
the ablation study emphasized the robustness and stabil-
ity of HcLSH performance against possible hyperparameter
choices.

Further enhancements will be conducted in a future work
from four perspectives to provide an overall assessment of the
proposed activation function.

1) Different tasks in different fields, such as language
processing, object detection, or image segmentation.

2) Different deep architectures, such as AutoEncoders,
EfficientNets, or generative-based models.

3) Different datasets, such as COCO [51] and ImageNet
[52] datasets.

4) Propose an efficient hardware-optimized implementa-
tion of HcLSH to speed up the training time.
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