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ABSTRACT During the formation of medical images, they are easily disturbed by factors such as acquisition
devices and tissue backgrounds, causing problems such as blurred image backgrounds and difficulty in
differentiation. In this paper, we combine the HarDNet module and the multi-coding attention mechanism
module to optimize the two stages of encoding and decoding to improve the model segmentation perfor-
mance. In the encoding stage, the HarDNet module extracts medical image feature information to improve
the segmentation network operation speed. In the decoding stage, the multi-coding attention module is used
to extract both the position feature information and channel feature information of the image to improve the
model segmentation effect. Finally, to improve the segmentation accuracy of small targets, the use of Cross
Entropy and Dice combination function is proposed as the loss function of this algorithm. The algorithm has
experimented on three different types of medical datasets, Kvasir-SEG, ISIC2018, and COVID-19CT. The
values of JS were 0.7189, 0.7702, 0.9895, ACC were 0.8964, 0.9491, 0.9965, SENS were 0.7634, 0.8204,
0.9976, PRE were 0.9214, 0.9504, 0.9931. The experimental results showed that the model proposed in this
paper achieved excellent segmentation results in all the above evaluation indexes, which can effectively assist
doctors to diagnose related diseases quickly and improve the speed of diagnosis and patients’ quality of life.

INDEX TERMS Attention module, medical images, segmentation, deep learning.

I. INTRODUCTION
The medical image can reflect anatomical structures or func-
tional tissues in the human body. Commonly used imaging
techniques include CT, MRI, X-ray, etc. [1]. The task of
medical image segmentation is mainly to segment medical
images into several regions of similarity or difference by auto-
matic or semi-automatic methods. The segmented images
are provided to doctors for different tasks such as lesion
location determination, symptom determination, tissue and
organ localization, depiction of anatomical structures, and
treatment planning [2]. Doctors often need to use medical
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image segmentation technology to facilitate detailed analysis
of these areas so that the accuracy and reliability of diagnosis
can be effectively improved [3].

Early medical image segmentation algorithms mainly used
manually formulated rules for segmenting medical images.
These methods mainly segment images based on physical
features such as medical images’ shape, angle, and edge
structure.

Manickavasagam and Selvan proposed a gradient-driven
active contour algorithm, which uses normalization and gray
co-occurrencematrix to extract nodule shape, and finally uses
a support vector machine algorithm to detect and classify
pulmonary nodules [4]. Bruntha et al. proposed an image seg-
mentation algorithm with edge-free active contours. By pre-
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processing, segmenting, and detecting lung nodules in the
CT image, the segmentation accuracy reached 91.5% [5].
Kurmi and Chaurasia [6] Proposed a new technique based
on local features for histopathological image segmentation.
Savic et al. divided the image into different partial regions
and then segmented the lung nodule image using the K-means
algorithm [7].

Xie et al. [8] proposed a residual network for the segmenta-
tion of liver images, which uses conditional random fields to
optimize the liver edge five boundaries and remove interfer-
ing pixels to improve segmentation accuracy. Zhang et al. [9]
introduced a feature fusion strategy to obtain multi-scale fea-
ture information on cancer cell location during breast cancer
segmentation.

To sum up, the traditional segmentation method has a fast
segmentation speed. But traditional segmentation method has
great uncertainty for the segmentation results of different
case images. This method of relying on manual methods for
segmentation is costly and time-consuming, and the accuracy
of segmentation markers cannot be guaranteed.

With the widespread use of deep learning techniques in
the field of medical image segmentation, a series of research
results have been achieved. The deep learning algorithm has
been greatly improved in the accuracy of segmentation and
the degree of automation of the algorithm. Convolutional
neural network (CNN) has also been widely used in medical
image segmentation tasks.

Baldeon-Calisto and Lai-Yuen [10] designed a Con-
vUNeXt structure for image segmentation tasks. Bilal
et al. [11] proposed a neural network that automatically opti-
mizes the segmentation network size. Bilal et al. [12] used an
improved gray wolf optimization (IGWO) and CNN for the
diagnosis of diabetic retinopathy. Wang et al. used the DCNN
model to validate and evaluate two publicly available polyp
datasets [13]. Feng et al. [14] proposed a novel contextual
pyramid fusion network where the network can exploit and
fuse rich contextual information.

Brandao et al. [15] proposed FCN networks to recognize
and segment polyp images. Ronneberger et al. [16] pro-
posed a U-Net network with a symmetrical encoding and
decoding structure based on FCN. The network has since
been widely used in the field of medical imaging. Bilal et al.
[17] used the U-Net network to detect and classify dia-
betic retinopathy. Cao et al. [18] proposed the Swin-Unet
segmentation network, which can adequately learn multi-
dimensional information about images. Jiang et al. [19]
combined UNet++, attention mechanism, and jump con-
nection to improve the semantic segmentation accuracy
of medical images. Belh et al. [20] extracted more feature
information from breast tumor images based on the U-Net
network by extending the residual convolution module and
hybrid attention loss function for the image segmentation
aspect.

In recent years, many researchers have added attention
mechanism modules to medical image segmentation net-
works to improve the segmentation effect.

Valanarasu et al. [21] added a control module to the atten-
tion mechanism to improve medical image segmentation.
Shen and Li [22] added an attention mechanism to a semi-
supervised medical segmentation network to complete the
segmentation task successfully. Li et al. [23] proposed an
alternative converter-based segmentation framework, which
compared to existing methods, obtains the highest segmenta-
tion accuracy by incorporating an attention mechanism and
exhibits good generalization across domains.

Researchers have introduced the Transformer module to
the field of medical image processing to improve the segmen-
tation accuracy of medical images.

Zhang et al. [24] proposed a novel parallel branching for
the segmentation network, combining both Transformer and
CNN structures to improve the image segmentation network’s
ability. Gulzar et al. [25] proposed a TransUNet image seg-
mentation network for dermatological image segmentation.
Li et al. [26] applied the Transformer mechanism on the
encoder and decoder respectively, focusing on capturing var-
ious global feature dimensions and long-term dependencies
of the feature maps. Wu et al. [27] integrate an additional
Transformer branch in the encoder, effectively capturing the
remote global contextual information.

The low contrast of disease image edges and insufficient
segmentation accuracy in medical image segmentation can
easily cause missed diagnoses and misdiagnoses. Therefore,
how constructing a larger sensory field for contextual model-
ing to achieve the extraction of feature information without
losing spatial resolution as much as possible has been the
focus of research in image segmentation.

Inspired by the above research, this paper proposes a dual-
path attention network capable of extracting both spatial and
location information of input features to extract rich contex-
tual feature information of medical images. The backbone
network uses the HarDNet68 module, which first extends the
low-dimensional compressed representation of the input to
higher dimensions and uses a multi-scale convolutional layer
to extract the image feature information. The decoding part
fuses the low-level information in HarDNet68 with the high-
level information after the dual-path attention module, and
finally up-samples the feature map to the size of the input
image using the automatic learning capability of transposed
convolution.

The main innovations of this paper are as follows:
(1) To reduce the total number of model parameters and

improve the model running speed, this paper uses the HarD-
Net68 module as the backbone network to extract medi-
cal image feature information. The HarDNet68 module can
improve the operation speed, the segmentation effect, and the
accuracy of medical images.

(2) Extracting the low-level picture features of medical
images, transferring the feature information to the posi-
tion attention and the channel attention mechanism module,
respectively, and finally performing concatenation operations
on the tensor output from the two attention modules to obtain
a feature map containing more information.
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(3) To better constrain and guide the model, we sum and
combine the Cross Entropy loss and Dice loss functions, and
then find the mean value as the final loss to achieve accurate
segmentation of medical images.

II. THE PROPOSED ARCHITECTURE
The general architecture of the medical image segmentation
network proposed in this paper is similar to that of the clas-
sical segmentation U-Net network. The network is designed
with an encoder-decoder structure as the basic architecture.
The encoder uses HarDNet68 as the backbone network to
extract image feature information and introduces a dual-code
attention mechanism module to fuse the image feature infor-
mation. The decoder takes the received image feature infor-
mation, performs operations such as upsampling and image
transposition, and finally obtains the final segmentation result
by the Sigmoid function.

In the coding stage, we use the HarDNet68 network as
the backbone structure for medical image feature information
extraction. The HarDNet68 structure can reduce the model’s
parameters and improve themodel training speed. The feature
information is transmitted to the position attention and the
channel attention mechanism module by extracting the low-
level picture features of medical images through the con-
volution operation. The input image feature information in
the location attention module is generated into an attention
matrix. Vector operations are performed between the atten-
tion matrix and the initial features. Finally, element sum-
mation operations are performed between the result matrix
and the initial features after the above operations. The spatial
location information reflecting the long-range global context
is obtained. The computational principle in the channel atten-
tion module is very similar to the mechanism of the location
attention model, where the channel attention matrix is first
computed in the channel dimension. Finally, the tensor output
from the two attention modules is concatenated to obtain a
feature map containing more information.

In the decoding stage, some of the outputs of the back-
bone’s low-level features are fused with the high-level
features that pass through the two-path attention module.
A series of transpose convolution and up-sampling operations
are applied to make the two types of features capable of con-
catenation operations. The architecture of themodel proposed
in this paper is shown in Fig.1.

A. HARDNET
To achieve the goal of increasing the computational speed of
the network while reducing memory occupancy and power
consumption, in 2019, Chao et al. [28] proposed a Har-
monic DenseNet network structure (HarDNet) based on the
DenseNet network. The HarDNet network structure is widely
used in the fields of target recognition and image segmenta-
tion, as shown in Fig.2.

HarDNet consists of multiple Batch Normalization (BN),
ReLU activation function, and convolutional structure, and
the structure diagram is shown in Fig.2. Where k in the

FIGURE 1. The proposed architecture.

FIGURE 2. HarDNet network structure [28].

FIGURE 3. Dual-code attention mechanism network structure.

network is the initial growth rate of the l layer, the number
of channels in this layer is k • mn, n is the maximum pos-
itive integer that satisfies l is divisible by 2n, m is the low-
dimensional compression factor, and the l layer is connected
to the l - 2n layer, where l is divisible by 2n, l - 2n ⩾ 0, and n
is a non-negative integer.

In this paper, the HarDNet68 network structure is used, and
each model is combined in the Conv, BN, and ReLU order.
At the same time, the global dense connection is removed,
and the max pool is used for down-sampling.

B. ATTENTION MECHANISM
We know that the image pixels at different locations have
different roles for the whole image, so when performing
image segmentation, we assign different weight information
to the input image of the model in terms of both location and
channel. The structure of the integrated attention mechanism
model proposed in this paper is shown in Fig. 3

1) LOCATION ATTENTION
The local feature in the encoding stage of the location atten-
tion part consists of various image pixels, and the pixel rela-
tionships at different locations are connected in a certain way.
Traditional medical image segmentation networks are unable
to obtain and express the relationships between the contexts
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of local features, so the location attention module is proposed
and used to capture the spatial dependence in the feature
map on each other [29]. For some special image regions,
the features of the regions are updated by weighted summa-
tion, and the feature similarity between the corresponding
two-pixel locations determines the weights. Therefore, the
positional relationships between image pixels can contribute
to each other to form the local feature information of the
image and further enrich the feature information extracted
in the coding stage. Suppose the local image features are
represented as A ∈ RC×H×W , and two new local features
B and C are generated by the convolution operation, where
{B,C} ∈ RC×H×W . The newly generated local features B and
C are reshaped as RC×N , where N = H × W , represents the
number of pixel points. The local featuresB andC are input to
the softmax layer after matrix multiplication operation to get
the location attention features, and the computational process
is represented as follows.

Sij =
exp(Bi · Cj)∑N
i=1 exp(Bi · Cj)

(1)

where Sij indicates the influence of position i in a pixel point
on position j. Bi, and Cj denotes the two new feature map-
pings produced by the local features through the convolution
layer. If the features of two-pixel points are similar, it means
that there is a strong connection between the pixel points.

After the convolution operation of the local feature A,
a new feature map D ∈ RC×H×W is generated and then
reshaped as the tensor RC×N . After getting the new tensor,
the position attention feature S and the new feature map D
are transposed operation, matrix multiplication is performed,
and the result of the operation is reshaped as a feature map
RC×H×W , and finally multiplied by the learning parameters
θ1. The obtained position attention map and the original input
image feature map A are summed operations to get the final
output E ∈ RC×H×W , expressed as follows.

Ej = θ1
∑N

i=1

(
Sij·Di

)
+ Aj (2)

The values of θ1 are obtained by random initialization. Aj
is the local feature map of the original input, and Di is the
local feature A input to the convolution layer to generate a
new feature mapping. After the image segmentation network
is continuously trained, more weight data will be gradually
learned. The output feature information E possesses a con-
textual location relationship. During the network operation,
pixels with similar semantic features can be aggregated into
one class, and pixels with different semantic features can
be aggregated into another class according to the contextual
location relationship.

2) CHANNEL ATTENTION
The channel feature module allows mapping the depen-
dencies between different channels for special meaningful
feature representation. Unlike the location attention mod-
ule, using the middlemost feature mapping is not necessary.

It computes the channel attention map directly in the origi-
nal image features and updates the feature mapping of each
channel byweighted summation of each channel featuremap-
ping. It is to compute the channel attention maps X ∈RC×C

directly on the original image features A ∈RC×H×W . Firstly,
the feature map A is transformed by the reshaped operation
as RC×N , followed by matrix multiplication operation after
transposing the feature maps A and A. It is input to the
softmax layer to obtain the location attention feature, which
is represented as follows.

Xij =
exp(Ai · Aj)∑C
i=1 exp(Ai · Aj)

(3)

Xij indicates the influence of the ith layer feature map channel
on the j layer feature map channel. Ai is the local feature map
of the original input.

After transposing the spatial attention feature X and the
original featureA, thematrixmultiplication is performed. The
operation’s result is re-reshaped into a feature map and finally
multiplied by the learning parameters. Finally, the summation
operation of the elements is executed on feature map A. The
result is finally output, and the process is represented as
follows.

Ej = θ2
∑C

i=1

(
Xij·Ai

)
+ Aj (4)

The values of θ2, which are obtained by random initializa-
tion, Aj is the local feature map of the original input. After
continuously training the image segmentation network, it will
gradually learn more weighted data. According to the above
equation, the result E of image local feature output is a
weighted sum operation of channel feature information and
original feature information in each region, kind of making
a long-term semantic dependency between the formation and
image featuremapping on the channel, which can increase the
recognizability in the image feature map and further improve
the image segmentation accuracy and quality.

C. LOSS FUNCTION
The loss function is mainly used to measure the inconsistency
between the predicted and actual values an is used to measure
the performance of the network model. The smaller the loss
function is, the better the performance of the model is indi-
cated. However, the volume occupied by the lesion objects
studied by medical image segmentation processing is small,
and the direct use of the Cross Entropy loss function is not
effective.

Therefore, in this paper, the loss function Cross
Entropy [16] and the Dice [30] loss function are combined as
the loss function of the model. The combined loss function
combines the advantages of the two loss functions to better
achieve the segmentation performance of the network. The
cross-entropy loss function evaluates the loss incurred when
classifying pixel points in the image segmentation process
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and the smaller the value, the better the segmentation model.

LCeloss =
1
N

∑
i=1

−

C∑
c=1

yilg(pi) (5)

where C is the label and yi refers to whether it is category i.
If it is that category, yi = 1; otherwise yi = 0. pi is the result
of the model prediction.
LDiceloss is the loss function of Dice loss, which is often

used in the semantic segmentation of medical images. Dice
loss is mainly used to evaluate the degree of similarity
between two samples, and its larger value means that the two
samples are more similar, and the value range is [0,1]. The
calculation formula is shown in Eq. (6). |X∩Y| denotes the
intersection of the actual medical image pixel points and
the pixel points predicted by the segmentation network, and
|X| and |Y| denote the actual medical image pixel points
and the pixel points predicted by the segmentation network,
respectively.

LDiceloss = 1 −
2 |X ∩ Y |

|X | + |Y |
(6)

LTotal function is a combination of the Cross Entropy loss
and the Dice loss advantages, and the calculation formula is
shown in Eq. (7).

LTotal =
LDiceloss + LCeloss

2
(7)

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASETS AND PREPROCESSING
In this paper, we perform validation and comparative analysis
on ISIC2018, COVID-19 CT, and Kvasir-SEG datasets.

The Kvasir-SEG1 dataset, collected and labeled by
endoscopy specialists at Oslo University Hospital in Norway,
contains 1,000 images of polyps and their corresponding
labels, and we divided the training set, validation set and test
set according to the ratio of 80%, 10%, and 10%. Images
vary in size, from 332∗487 to 1920∗1072 and also the size
of polyps that appear in the images vary in size and shape.
The image size was resized to 256∗256 according to the need
of model input. The training samples include the original
images, as well as corresponding target binary images con-
taining cancer or non-cancer lesions.We used data augmenta-
tion on the training set data to increase the number of samples.
The data enhancement method we adopted mainly consists
of rotate, crop, color transform, flip, and other operations.
Among, the Gaussian blurring kernel size is (4,4), the values
of HSV in color transform are (0.015, 0.7, 0.4), random
rotation is 30 degrees, the center cropping size is (170,170),
Gaussian blurring kernel size is (3,3), and the value of flip is
the left and right flip.

The ISIC20182 dataset is published by International Skin
Imaging Collaboration in 2018, the dataset is mainly about

1Kvasir-SEG: https://datasets.simula.no/kvasir-seg
2ISIC2018: https://www.kaggle.com/datasets/xxc025/isic2018

skin disease feature segmentation, detection, and classifica-
tion and contains 2594 images in total. We divide the training
set, validation set and test set according to the ratio of 80%,
10%, and 10%. The original size of each image is 700∗900,
and the image size is resized to 256∗256 according to the
need ofmodel input. The training samples include the original
images, as well as corresponding target binary images con-
taining cancer or non-cancer lesions.We used data augmenta-
tion on the training set data to increase the number of samples.
The data enhancement method we adopted mainly consists
of rotate, crop, color transform, flip, and other operations.
Among, the Gaussian blurring kernel size is (4,4), the values
of HSV in color transform are (0.015, 0.7, 0.4), random
rotation is 30 degrees, the center cropping size is (170,170),
Gaussian blurring kernel size is (3,3), and the value of flip is
the left and right flip.

The COVID-19 CT3 scans dataset contains CT scans of
20 patients diagnosed with COVID-19 and expert segmen-
tation of the lungs and infections. On average, there are
162 images per category, with image sizes of 630∗630,
512∗512, and 401∗630. The images were resized to 256∗256
according to the needs of the model input. The training sam-
ples include the original images, as well as corresponding
target binary images containing cancer or non-cancer lesions.
We used data augmentation on the training set data to increase
the number of samples. The data enhancement method we
adopted mainly consists of rotate, crop, color transform, flip,
and other operations. Among, the Gaussian blurring kernel
size is (4,4), the values of HSV in color transform are (0.015,
0.7, 0.4), random rotation is 30 degrees, the center cropping
size is (170,170), Gaussian blurring kernel size is (3,3), and
the value of flip is the left and right flip.We divide the training
set, validation set and test set according to the ratio of 80%,
10%, and 10%.

B. TRAINING AND MEASUREMENT METRICS
To facilitate model comparison and analysis, the same run-
time platform is used for all three medical datasets, and the
model training parameters are the same. The system software
is Windows 10 Professional, the deep learning platform is
PyTorch 1.6, and the processor is Intel i5-12400F. The batch
size is set to 6 and the total number of training is 200 dur-
ing the training of the network models. The Loss function
is a combination of the Cross Entropy loss and the Dice
loss advantages. The model optimization algorithm uses the
Adam, and the learning rate is set to 1e-4.

To objectively evaluate the model segmentation effect,
we used several evaluation metrics such as JS, SE, SP, AUC,
F1-Score, ACC, PRE, and PRC, and the formulas of some of
the evaluation metrics are shown below.

JS =
TP

TP+ FP+ FN
(8)

sens =
TP

TP+ FN
(9)

3COVID-19 CT: https://www.kaggle.com/datasets/andrewmvd/covid19-
ct-scans
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TABLE 1. Segmentation results of different network structures on the
Kvasir-SEG.

TABLE 2. Segmentation results of different network structures on the
ISIC2018.

TABLE 3. Segmentation results of different network structures on the
COVID-19 CT.

spe =
TN

TN + FP
(10)

where TP is the image pixel that is correctly segmented,
TN is the image pixel that is incorrectly segmented, FP is the
background pixel that is incorrectly segmented as an image
pixel, and FN is the image pixel that is incorrectly segmented
as a background pixel.

C. ANALYSIS OF EXPERIMENTAL RESULTS
1) COMPARATIVE ANALYSIS OF DIFFERENT ALGORITHM
MODELS
The segmentation model proposed in this paper was validated
on three different types of medical datasets, Kvasir-SEG,
ISIC2018 and COVID-19 CT, and the results were compared
and analyzed with the results of Unet, PraNet, UNet++,
Attention-Unet, PraNet, and UACANet networks. The results
of the analysis are shown in Tab.1 to Tab.3.
From Tab.1, for the Kvasir-SEG dataset, the AUC, PRC,

JS, ACC, SENS, SPE, and PRE of the U-Net network
are 0.8009, 0.7735, 0.6159, 0.8567, 0.6726, 0.8223 and
0.7276 respectively. Compared with U-Net, our model pro-
posed in this paper increased by 4.6%, 8.26%, 10.3%, 3.79%,

FIGURE 4. Model segmentation results in the Kvasir-SEG dataset.

9.08%, 4.33%, and 12.38% on AUC, PRC, JS, ACC, SENS,
SPE and PRE respectively.

From Tab.2, for the ISIC2018 data set, the AUC, PRC,
JS, ACC, SENS, SPE, and PRE of our model are 0.9003,
0.8979, 0.7702, 0.9491, 0.8204, 0.9891 and 0.9504 respec-
tively. Compared with U-Net, our model proposed in this
paper increased by 4.46%, 7.44%, 10.54%, 4.06%, 9.42%,
4.39%, and 13.89% on AUC, PRC, JS, ACC, SENS, SPE and
PRE respectively.

From Tab.3, for the COVID-19 CT data set, the AUC,
PRC, JS, ACC, SENS, SPE, and PRE of the U-Net net-
work are 0.9678, 0.9237, 0.8478, 0.9578, 0.9669, 0.9487 and
0.8574 respectively. Compared with U-Net, our model pro-
posed in this paper increased by 2.76%, 7.36%, 14.17%,
3.87%, 3.07%, 4.76%, and 13.57% on AUC, PRC, JS, ACC,
SENS, SPE, and PRE respectively.

Our model proposed has achieved excellent segmentation
results in several evaluation indexes on the three datasets.

Segmentation of objects of interest from medical images,
such as disease parts from human tissues, and quantitative
measurement and analysis by relevant evaluation metrics to
help doctors with diagnosis and treatment.

The segmentation experiments are carried out on Kvasir-
SEG, ISIC2018, and COVID-19 CT datasets and compared
with the Unet, PraNet, UNet++, Attention-Unet, PraNet,
and UACANet network. The paper runs the six comparison
networks in the same experimental environment, and their
visual effects are shown in Fig.4 to Fig.6.
Fig.4 shows the segmentation effect of various networks

on the Kvasir-SEG dataset. The third and eighth columns are
the resulting diagram of six network segmentations. From
Figure 4, the proposed algorithm can completely distinguish
lesion regions with blurred boundaries, while other algo-
rithms have some omissions for segmentation targets with
blurred boundaries. From the visualization results, it can be
concluded that it can well overcome the problem of simi-
lar color polyps and backgrounds, detect polyp tissue with
different shapes, sizes, and colors, and divide the region
and boundary more clearly and accurately without missing
phenomena.

Fig.5 shows the segmentation effect of various networks
on the ISIC2018 data set. The third and eighth columns are
the resulting diagram of six network segmentations. From
Figure 5, several networks can segment the edge information
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FIGURE 5. Model segmentation results in the ISIC2018 dataset.

FIGURE 6. Model segmentation results in the COVID-19 CT dataset.

of skin cancer images, but our proposed model is better than
other networks in dealing with the edge part. The segmenta-
tion boundary is clearer, the structure is relatively complete,
and it achieved the best segmentation performance.

Fig.6 shows the segmentation effect of various networks
on the COVID-19 CT dataset. The third and eighth columns
are the resulting diagram of six network segmentations. From
Figure 6, the U-Net has learned too many redundant fea-
tures, and there are always obvious noise points; several
other networks also have good segmentation performance on
the segmentation boundary, but it pays too much attention
to the image boundary, thus ignoring the internal features
of the image. However, our model proposed in this paper
retains more image details, and the segmentation results are
consistent with the standard segmented images.

We also compare the accuracy and loss of the different
models on the three datasets, as shown in Fig.7 a to Fig.7 c.
The comparative analysis of the three figures shows that

the model proposed in our paper converges fast on the three
datasets. Finally, the model is almost converged and achieved
a high accuracy rate.

2) ABLATION EXPERIMENTS
To explore the effect of the HarDNet module and Attention
module on segmentation performance in this paper, ablation
experiments were conducted by controlling different modules
on the COVID-19 CT dataset. The experimental results are
shown in Tab. 4.
The experimental results show that both the HarDNet mod-

ule and the Attention module can improve the segmentation
performance to some extent, and the best segmentation results
are obtained by integrating the two modules.

We also compare the proposed method in this paper with
several recently proposed segmentation methods for analysis.

FIGURE 7. a. Accuracy of the Kvasir-SEG dataset, b. Accuracy of the
ISIC2018 dataset, c. Accuracy of the COVID-19 CT dataset.

TABLE 4. Segmentation results of different network structures on the
COVID-19 CT.

Tab.5 shows the performance of different segmentation meth-
ods on Kvasir-SEG and ISIC2018 datasets. On the ISIC2018
dataset, the model proposed in this paper achieves more
satisfactory results on three metrics, ACC, SENS, and SPE.
On the Kvasir-SEG dataset, the model proposed in this paper

VOLUME 11, 2023 47833



T. Shen et al.: HarDNet and Dual-Code Attention Mechanism Based Model for Medical Images Segmentation

TABLE 5. Comparisons against existing approaches on the Kvasir-SEG
and ISIC2018.

failed to achieve better results on three evaluation metrics,
which is an area for future improvement.

IV. DISCUSSION AND LIMITATION
Based on the classical U-Net network structure analysis,
some major modifications have been made in this paper.
Tab.2 to Tab.4 show the evaluation results of network mod-
els such as Unet, PraNet, UNet++, Attention-Unet, and
UACANet on Kvasir-SEG, ISIC2018, and COVID-19CT
datasets, respectively. Fig.4 to Fig.6 are the results of
segmentation experiments on Kvasir-SEG, ISIC2018, and
COVID-19CT datasets by network models such as Unet,
PraNet, UNet++, Attention-Unet, and UACANet, respec-
tively. Analyzing the above results, the proposed network has
higher accuracy and fine segmentation results.

We mainly modify the original U-net network in two
aspects. In the coding stage, we use the HarDNet68 network
as the backbone structure for medical image feature infor-
mation extraction. The HarDNet68 structure can reduce the
model’s parameters and improve the model training speed.
The feature information is transmitted to the position and
channel attention mechanism modules, respectively. In the
decoding stage, some of the outputs of the backbone’s low-
level features are fused with the high-level features that
pass through the dual-path attention mechanism module.
To enable the two types of features to perform concatenation
operations, transpose convolution, and up-sampling opera-
tions are applied to the image feature output information at
different stages to obtain a predicted output consistent with
the input size finally.

The model proposed in this paper has achieved some
performance in medical image segmentation but has some
limitations.

First, numerous free medical image datasets exist on the
Internet, covering various parts of human tissues and organs.
However, we selected only three medical image datasets for
model validation and did not further expand the number
of medical image datasets. Although we tried to select dif-
ferent types of medical datasets for validation, the variety
and number of datasets were small to measure the model’s
generalization ability. Second, we uniformly set the image
size to 256∗256 during the training of the network model and
did not verify the effect of different sizes of images on the

performance of the segmentation network. In future research
work, we will focus on these issues.

V. CONCLUSION
Our model adopts a similar U-Net backbone structure and
includes two parts: encoding and decoding. In the coding
stage, we use HarDNet68network as the backbone structure
and use four null space convolutional pooling pyramids for
medical image feature information extraction. HarDNet68
structure can greatly reduce the model’s parameters and
improve the model training speed. The feature information is
transmitted to the position and channel attention mechanism
modules, respectively. In the decoding stage, some of the out-
puts of the backbone’s low-level features are fused with the
high-level features that pass through the dual-path attention
mechanism module. A series of transpose convolution and
up-sampling operations are applied to enable the two types
of features to perform concatenation operations. The algo-
rithm is compared and analyzed on several medical image
datasets, such as Kvasir-SEG, ISIC2018, and COVID-19CT
datasets. Compared with other improved U-Net segmentation
networks, the proposed network structure improves the eval-
uation metrics of ACC, SENS, and SPE, and achieves better
segmentation results in general. We will further expand the
datasets and extend the method to the 3D medical dataset and
accurate segmentation of other diseases in the future.
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