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ABSTRACT Multiuser communication systems or multiple access scheme systems favor sequences pos-
sessing the ideal periodic cross-correlation function (PCCF) property. In comparison, channel estimation,
equalization, and synchronization applications favor sequences possessing the ideal periodic auto-correlation
function (PACF) property. However, there is no set of sequences possessing both the ideal PCCF and PACF
properties simultaneously, where auto-correlation and cross-correlation balance each other. In this work,
sequences possessing the ideal PACF property are used as the base sequences. Then, a modulation technique
is applied upon these base sequences to construct a set of zero circular convolution (ZCC) sequences within
which an arbitrary pair of two sequences possesses the ideal PCCF property. Compared with least squares
(LS) and minimum mean squared error (MMSE) algorithm, the simulation results show that the channel
estimation performance of ZCC is better than MMSE and LS algorithms, and the computational complexity
of the algorithm is the same as LS algorithm, but far lower than MMSE algorithm. This is the first study on
ZCC sequences reported in the literature, in which their fundamental theorems, properties, construction, and
applications are investigated. The advantage of possessing the desired PACF and the ideal PCCF properties
allows the ZCC sequences to be used in a broader range of applications than other sets of sequences.

INDEX TERMS FSC, PACF, PCCF, PGIS, TSC, ZCC sequences.

I. INTRODUCTION
The theoretical correlation limit of sequences was addressed
in [1], [2], [3], and [4]. Among them, Sarwate [1], [2] derived
limits on periodic auto-correlation and cross-correlation and
provided a tradeoff between the periodic auto-correlation and
cross-correlation property. In this paper, it is demonstrated
that no set of sequences possessing both the ideal peri-
odic cross-correlation function (PCCF) and periodic auto-
correlation function (PACF) property simultaneously exists.
On one hand, sequences with impulse-like auto-correlation
functions can be applied to various applications such as linear
system parameter identification [4], real-time channel estima-
tion [4], [5], [6], [7], equalization [8], synchronization [9],
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[10], [11], [12], and peak-to-average power ratio (PAPR)
reduction in orthogonal frequency division multiplexing
(OFDM) systems [13], [14]. On the other hand, various
multiple-access schemes, such as Code Division Multiple
Access [15], [16], [17], [18] and Orthogonal Frequency Divi-
sion Multiplexing Access, require a desired cross-correlation
property [19].

In recent years, construction and application of zero corre-
lation or low correlation sequences have attracted numerous
research interests. Lung-Sheng Tsai et al. presented a trans-
form domain approach for generating families of sequences
whose periodic AC functions have nonzero values at some
subperiodic delays andwhose periodic CC functions are iden-
tically zero in [20], and derived the theoretical bounds on the
AC and CC for OFDM sequences with constraints of spectral
nulls [21]. By taking the advantage of theKronecker sequence
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property and a waveform set which satisfies spectrum hole
constraint, Su Hu et al. presented a novel family of quasi-
ZCZ CR sequences which possess zero cross-correlation
and near-zero auto-correlation zone property [22]. Zilong
Liu et al. investigate spectrally-constrained sequences(SCSs),
and these sequences are applicable to the communication
and radar systems operating over non-contiguous carriers or
frequency slots [23].

The perfect Zadoff-Chu (ZC) sequences have been
employed as random access preambles, primary synchro-
nization sequences for cell search, and reference sequences
for channel estimation in 3GPP LTE [11], [12], [24]. For
both CDMA and OFDMA multiple schemes, the synchro-
nization procedure is a crucial step for the communication
devices to proceed with further operations such as detection
and communication. Normal detection involves correlating
the received signal with known reference sequences and
comparing them with a detection threshold to extract the
corresponding peaks and hence, the synchronization signal
symbol location. The performance metrics for detecting the
peaks are the detection probability (hit-rate) and false alarm
rate, whose ZC sequences possessing the ideal PACF prop-
erty render them the ideal option. Additionally, although
the ZC sequences bear the same PAPR-property concept as
the m-sequences and Gold sequences, the undesired cross-
correlation property of the ZC sequences and the complexity
of implementation, which results from their irrational coeffi-
cients, prevent them from being selected as pseudo noise (PN)
codes for channelization in a CDMA scheme.

Given that the implementation of a system with irrational-
valued parameters is more complex than a system based on
integer parameters, the construction of a perfect Gaussian
integer sequence (PGIS) has increasingly become an impor-
tant research topic [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35]. A general form of even-length PGIS
was proposed in [25], in which PGIS was constructed by
linearly combining four sequences or their cyclic shift equiva-
lents using Gaussian integer coefficients of equal magnitude.
At the same time, an odd prime length PGIS was built using
the order-2 and order-4 cyclotomic classes with respect to
GF(p), where p is an odd prime [26]. The first odd composite
length PGIS construction appeared in [27], in which Ma
et al. used Whiteman’s generalized order-2 cyclotomy Zpq
to construct the PGIS of length pq, where p and q are twin
primes. In [28], Chang et al. initialized the degree concept
of a sequence and constructed degree-2 and degree-3 PGISs
of prime length p, which were then upsampled by anm factor
and filled with new coefficients to build degree-3 and degree-
4 PGISs of arbitrary composite lengthN = pm. Lee et al. [29]
focused on the construction of a degree-2 PGIS of lengthN =

2m−1. Algorithms capable of generating a PGIS of arbitrary
length were also developed by Pei et al. [30]. Such algorithms
are considered a breakthrough in successfully constructing
degree-5 PGIS of prime length by adapting the generalized
Legendre sequences (GLS) instead of using the cyclotomic
order-4 class. A systematic method for constructing sparse

PGISs, in which most of the elements are zero, appeared
in [31]. Lee et al. constructed the families of PGISs with high-
energy efficiency. A short PGIS was used together with the
polynomial or trace computation over an extension field to
construct a family of long PGISs [32], [33]. PGISs of period
pk with degrees equal to or less than k+1 and those of period
qp with degrees equal to or larger than four were proposed
in [34] and [35].

From the above-mentioned PGIS examples, it can be said
that the construction of PGIS has gradually been well devel-
oped. The next step should be exploring the PGIS applica-
tions. Currently there are four PGIS applications can be traced
in the literature [13], [14], [18], [36]. In [13], a PGIS was
applied to OFDM systems for PAPR reduction. Subsequently,
the PGIS was used to construct the transform matrix for the
associated precodedOFDMsystems to achieve full frequency
diversity and obtain optimal bit-error rate [14]. A CDMA
scheme based on PGISs, called PGIS-CDMA system, was
developed by Chang [18], where a set of PGISs can func-
tion as the PN codes (e.g., m-sequences, Gold sequences,
Kasami sequences, and bent sequences) in a direct sequence
(DS) CDMA system. In [36], a hybrid public/private key
cryptography scheme based on PGIS of period N = pq is
proposed. This hybrid cryptosystem can take the advantages
of public and private-key systems, and is with implementation
simplicity for easy adaptation to an IoT platform.

The applications of sequences are critically determined
by the inherent desired auto-correlation or cross-correlation
function property these sequences must possess. However,
no set of sequences possessing both the ideal auto- and cross-
correlation property exists to meet the different requirements
of a communication system from all aspects. In this paper,
we aim at constructing a set of sequences, in which an
arbitrary pair of two sequences possesses the ZCC property
among sequences within the same set. The ZCC sequences
can be constructed by selecting the sequences possessing the
desired auto-correlation function property (e.g., PN codes,
PSs, or PGISs) as the base sequences for repeating or upsam-
pling to generate a new set of sequences. Subsequently,
a modulation technique is applied so that this new set of
sequences possesses the ZCC property. In this way, the advan-
tage of possessing the ideal PCCF and the desired PACF
properties allows ZCC sequences to be used in a broader
range of applications than the original set of base sequences,
especially in multiuser communication systems.

This study aims at two contributions, which are summa-
rized below:

1) To the best of the authors’ knowledge, this is the first
study reported in the literature regarding the appli-
cation of a modulation technique to construct ZCC
sequences, in which the property, theorem, sequence
size, construction, and applications of ZCC sequences
are investigated.

2) The best binary-sequence set of period N that can
be achieved in terms of correlation properties is
the set of sequences with the following correlation
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properties [4]:

Rr [τ ] =

{
N , τ = 0
0, τ ̸= 0,

(1)

Rr,s[τ ] =
√
N , ∀τ, r ̸= s. (2)

The correlation properties of the ZCC sequence set of period
mN , which is constructed based on the base sequences of
period N with a sequence energy E , can be further improved
to

Rr [τ ] =

{
mE ·e

j2πnN
mN , τ =nN , n=0, 1, . . . ,m−1

0, otherwise,
(3)

Rr,s[τ ] = 0, ∀τ, r ̸= s. (4)

In (1) and (3), Rr [τ ] = N and |Rr [τ ]| = mE , respectively;
however, in (2) Rr,s[τ ] =

√
N ̸= 0, but Rr,s[τ ] = 0 in

(4). Here the cost of achieving the ideal PCCF property,
Rr,s[τ ] = 0, is the additional m − 1 nonzero terms appeared
in Rr [τ ] = mE · e

j2πnN
mN , τ = nN , n = 0, 1, . . . ,m− 1. These

additional m− 1 nonzero terms deviate the ideal PACF prop-
erty definition. However, the ZCC sequences can compete
the performance of the sequences possessing the ideal PACF
property, which is demonstrated in the Sections IV and V.
As defined in (3), the ZCC sequences possess the desired
PACF property.

This paper is organized as follows. The notations and defi-
nitions are presented in Section II. The properties and related
theorems of ZCC sequences are presented in Section III,
where parts of these results have appeared in the confer-
ence version of this paper ICECCME (2022) [37]. Based
on these theorems, four different construction types of such
ZCC sequences are presented in Section IV. The applica-
tions of ZCC sequences to frequency-selective channel (FSC)
and time-selective channel (TSC) estimation are presented in
Sections V and VI, respectively. The simulation results are
presented in Section VII. Finally, the conclusions are drawn
in Section VIII.

II. NOTATIONS AND DEFINITIONS
A. NOTATIONS
The boldface character s denotes either a vector of size
N × 1 or a sequence of period N , which is expressed as
s = {s[n]}N−1

n=0 . s
∗
− = {s∗[(−n)N ]}

N−1
n=0 is defined, where

the superscript ∗ and (·)N stand for complex conjugate and
modulo N operation, respectively. δN denotes the Kronecker
delta function of period N . Let s(−m) = {s[(n + m)N ]}

N−1
n=0

and s(m) = {s[(n − m)N ]}
N−1
n=0 represent the circular shift

of s to the left and right, respectively, by m places, where
0 ≤ m ≤ N − 1. A set of N different sequences or vec-
tors is expressed as {sm}

N−1
m=0 . The capital boldface character

S denotes the discrete Fourier transform (DFT) of s. Italic
notations represent scalars, ordinary bold notations represent
vectors or matrices. ĤLS denotes channel estimation of least-
squares. For other notations in the text, see Appendix (A).

B. DEFINITIONS
1) DEGREE
The degree of a sequence is defined as the number of distinct
nonzero elements within one period of the sequence [28].

2) CIRCULAR CONVOLUTION
Let s1 = {s1[n]}

N−1
n=0 and s2 = {s2[n]}

N−1
n=0 denote two

sequences of lengthN , respectively. The circular convolution
of s1 and s2 is represented by s1 ⊗c s2={s1,2[n]}

N−1
n=0 , where

⊗c denotes the circular convolution operation and

s1,2[n] =

N−1∑
τ=0

s1[τ ]s2[(n− τ )N ].

3) ZCC SEQUENCES
A set of sequences {sm}

N−1
m=0 is called ZCC sequences set with

cardinality N if and only if sm ⊗c sn = 0, ∀m, n, 0 ≤ m, n ≤

N − 1,m ̸= n.

4) BASE SEQUENCES
A set of sequences, which are applied for constructing a set
of ZCC sequences, is defined as base sequences set.

5) PACF
Rs = s ⊗c s∗− = {Rs[τ ]}

N−1
τ=0 denotes the PACF of s, i.e.,

Rs[τ ] =

N−1∑
n=0

s[n]s∗[(n− τ )N ].

The sequence s is called perfect if and only if Rs = E · δN ,
where E =

∑N−1
n=0 |s[n]|2 is the energy of s. S is denoted

to be the discrete Fourier transform (DFT) of s. The DFT of
Rs = s ⊗c s∗− is S ◦ S∗

={|S[n]|2}N−1
n=0 , where S ◦ S∗ is the

component-wise product of S and S∗, and | · | denotes the
absolute value of the argument. The DFT pair of E · δN and
{|S[n]|2}N−1

n=0 = {E}
N−1
n=0 demonstrates that the sequence s is

perfect if and only if it satisfies the flat magnitude spectrum
property, which is given by |S[n]| =

√
E , ∀n.

6) PCCF
The PCCF of s1 = {s1[τ ]}

N−1
τ=0 and s2 = {s2[τ ]}

N−1
τ=0 , which

is denoted by s1 ⊗c s∗−2 = {Rs1,s2 [τ ]}
N−1
τ=0 , is defined as

Rs1,s2 [τ ] =

N−1∑
n=0

s1[n]s∗2[(n− τ )N ].

The sequences s1 and s2 have an ideal PCCF property if and
only if

Rs1,s2 [τ ] = 0, ∀τ.

The DFT of s1 ⊗c s∗−2 is S1 ◦ S∗

2={S1[n]S∗

2 [n]}
N−1
n=0 . When

the sequences s1 and s2 have an ideal PCCF property, it is
evident that {S1[n]S∗

2 [n]}
N−1
n=0 is an N -tuple zero vector. Con-

versely, if {S1[n]S∗

2 [n]}
N−1
n=0 is an N -tuple zero vector, then

Rs1,s2 [τ ] = 0, ∀τ.
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7) ORTHOGONALITY
Two sequences s1 and s2 are orthogonal to each other if the
inner product s1 · sH2 = 0, where (·)H denotes the transpose
and conjugate operation of the argument, i.e.,

N−1∑
n=0

s1[n]s∗2[n] = 0.

It is noted that the ideal PCCF property maintains orthog-
onality between two sequences regardless of the number of
circular shifts relative to each other.

III. PROPERTIES OF ZCC SEQUENCES
Let s1 = {s1[τ ]}

N−1
τ=0 and s2 = {s2[τ ]}

N−1
τ=0 be two sequences

of period N , and the associative DFTs are given by S1 =

{S1[n]}
N−1
n=0 and S2 = {S2[n]}

N−1
n=0 , respectively.

Theorem 1: Sequences s1 and s2 have the ZCC property in
the time domain, that is, s1⊗cs2 = 0 if and only if S1◦S2 = 0.

Proof: The DFT of s1 ⊗c s2 is S1◦S2={S1[n]
S2[n]}

N−1
n=0 . When sequences s1 and s2 possess the ZCC

property in the time domain, s1 ⊗c s2 = 0⇒ S1 ◦

S2={S1[n]S2[n]}
N−1
n=0 = 0 which is an N -tuple zero vector.

Conversely, if S1◦S2 = 0 is an N -tuple zero vector, the IDFT
derives that s1 ⊗c s2 = 0 in the time domain.
Theorem 2: Sequences s1 and s2 have the ZCC property

in the frequency domain, that is, S1 ⊗c S2 = 0 if and only if
s1 ◦ s2 = 0.

Proof: The DFT of s1 ◦s2 is S1⊗cS2. When s1 ◦s2 = 0,
the DFT of an N -tuple zero vector is also a zero vector, which
is expressed as S1 ⊗c S2 = 0. Conversely, if S1 ⊗c S2 is an
N -tuple zero vector, its IDFT demonstrates that s1 ◦ s2 is a
zero vector as well.
Theorem 1 and Theorem 2 present the time and frequency
duality property with respect to Fourier transformation the-
ory, respectively. For a sequence of period N , it might not
be necessary to make distinction whether these N coeffi-
cients are the time or frequency parameters. However, to gain
insights on the ZCC properties and to address different appli-
cations of ZCC sequences, we would define and distinguish
ZCC sequences that possess the ZCC property either in time
or frequency domain.
Corollary 1: Sequences s1 and s2 of period N have the

ZCC property in the time domain, and s3 and s4 are two arbi-
trary nonzero sequences of the same period. The following
pairs of two sequences possess the ZCC property in the time
domain as well:

1) a · s1 and b · s2,
2) s∗1 and s

∗

2,
3) s1 and s∗−2,
4) {s1[(n− m)N ]} and {s2[(n− k)N ]},
5) {s1[(−n)N ]} and {s2[(−n)N ]}, and
6) s1 ⊗c s3 and s2 ⊗c s4,

where a and b are the two nonzero scalars, and m and k are
integers.

Proof: Given that s1 and s2 have the ZCC property in
the time domain, there exist no overlapping nonzero elements

between S1 and S2 based on Theorem 1. When these two
sequences are processed by multiplying with a scalar, tak-
ing complex conjugate, circular shift or reflection operation,
as well as circular convolution with other sequences, the
relative locations of the non-zero elements of the associative
DFTs do not change. Hence, these six pairs of two sequences
still possess the ZCC property in the time domain as well.
Corollary 2: Sequences s1 and s2 of period N have the

ZCC property in the frequency domain, and s3 and s4 are
two arbitrary nonzero sequences with DFTs S3 and S4. The
following pairs of two sequences possess the ZCC property
in the frequency domain:

1) a · S1 and b · S2,
2) S∗

1 and S
∗

2,
3) S1 and S∗

2,
4) {S1[n]ej2πmn/N } and {S2[n]ej2πkn/N },
5) {S1[(−n)N ]} and {S2[(−n)N ]}, and
6) S1 ◦ S3 and S2 ◦ S4,

where a and b are nonzero scalars, and m and k are integers.
Proof: Given that s1 and s2 have the ZCC property in

the frequency domain, there exist no overlapping nonzero
elements between s1 and s2 by Theorem 2. These pairs of two
sequences, which are modified from s1 and s2, respectively,
make the changes only to the amplitude rather than the rela-
tive locations of nonzero elements to both s1 and s2. All six
pairs of two sequences still bear the requirement of having
no overlapping nonzero elements between each other so as to
possess the ZCC property in the frequency domain.
Theorem 3: There exists no pair of two perfect sequences

that possesses the ZCC property.
Proof: The spectrum of a perfect sequence is magnitude

flat, and the component-wise product between two spectrum
with magnitude flat results in also a magnitude flat spec-
trum. This derives that the circular convolution of two per-
fect sequences also generates a perfect sequence. However,
according to Theorem 1 and Corollary 1, the DFT of the
circular convolution of the two sequences should be a zero
vector for these two sequences to possess the ZCC property.
Hence, there exists no pair of two perfect sequences that can
possess the ZCC property.

Let {sn}m−1
n=0 be a set of sequences of period N , where sn =

{sn[k]}
N−1
k=0 . Let

{
sun

}m−1
n=0 be a set obtained from upsampling

{sn}m−1
n=0 , which s

u
n = {sun[k]}

N−1
k=0 is given by

sun [k] =

{
sn

[ k
m

]
, k = 0,m, . . . , (N − 1)m

0, otherwise.
(5)

Theorem 4: Let {sn}m−1
n=0 be a set of ZCC sequences with

cardinality m. The upsampled set of sequences
{
sun

}m−1
n=0 is

also a set of ZCC sequences with the same cardinality.
Proof: Let Sn denote the DFT of sn. The DFT of sun is

given by

Sun = (Sn,Sn, . . . ,Sn︸ ︷︷ ︸
m times

). (6)
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Because {sn}m−1
n=0 is a set of ZCC sequences, nonzero elements

of all Sn will be disjoint. From (6), Sun is obtained from repeat-
ing Sn m times such that the locations of nonzero elements of
all Sun will be disjoint as well. By Theorem 1

{
sun

}m−1
n=0 is a set

of ZCC sequences with the same cardinality.
A set of sequences {tn}m−1

n=0 of period mN is obtained from
{sn}m−1

n=0 by repeating each sequence m times, that is,

tn = (sn, sn, . . . , sn︸ ︷︷ ︸
m times

). (7)

Theorem 5: Let {sn}m−1
n=0 be a set of ZCC sequences. The

set of sequences {tn}m−1
n=0 constructed based on {sn}m−1

n=0 is also
a set of ZCC sequences with the same cardinality.

Proof: Let Sn = {Sn[τ ]}
N−1
τ=0 be the DFT of sn. The DFT

of tn is given by

Tn = m(Sn[0], 0, · · · , 0︸ ︷︷ ︸
m

, · · · , Sn[N − 1], 0, · · · , 0︸ ︷︷ ︸
m

). (8)

From (8), the number of nonzero elements of Tn is the same
as that of Sn, and the locations of these nonzero elements Sn
are not overlapped. This implies that {tn}m−1

n=0 is a set of ZCC
sequences with the same cardinality.

When the ZCC sequences are applied, the cardinality of
a set of ZCC sequences determines the maximum number
of users and the capacity of a communication system. In the
following subsection, the cardinality issue is addressed.

Consider an N -tuple vector space CN over the field C
of complex number. The standard basis of CN is a set of
Kronecker delta function of period N and its circular shifts
{δN , δ

(1)
N , . . . , δ

(N−1)
N }. Let cn = {ej

2πnk
N }

N−1
k=0 denote the DFT

of δ
(n)
N . The set {

c0
N , c1

N , . . . ,
cN−1
N }, which is isomorphic to

{δN , δ
(1)
N , . . . , δ

(N−1)
N }, can also serve as a basis for vector

space CN . Clearly, we can see that cn ⊗c cm = 0, for all
0 ≤ n,m ≤ N − 1. This implies that {

c0
N , c1

N , . . . ,
cN−1
N } is

also a set of ZCC sequences.
Lemma 1: Two sequences possess the ZCC property in the

time domain if and only if there are no overlapping nonzero
elements between the coordinate vectors of these two
sequences relative to the ordered basis {c0, c1, . . . , cN−1}.

Proof: As can be clearly seen, the coordinate vector of
a sequence relative to the ordered basis {c0, c1, . . . , cN−1} is
theDFT of this sequence. Given that these two sequences pos-
sess the ZCC property, the locations of nonzero elements of
their associative DFTs are disjoint, thus proving this lemma.

For demonstration, the coordinate vectors of sequences
sn = (1, ej2πn/N , ej2π (2n)/N , . . . , ej2π(N−1)n/N ) and sk =

(1, ej2πk/N , ej2π (2k)/N , . . . , ej2π (N−1)k/N ) of period N rela-
tive to the ordered basis {c0, c1, . . . , cN−1} are δ

(n)
N and

δ
(k)
N , respectively. Given that δ

(n)
N ◦ δ

(k)
N = 0, this infers

that sn ⊗c sk = 0. Meanwhile, the coordinate vector of
sequence s1 = (0, 1, 0, . . . , 0) relative to the ordered basis
{c0, c1, . . . , cN−1} is [1 ej2π/N ej2π (2)/N · · · ej2π (N−1)/N ]T .
As all entries of this N -tuple coordinate vector are filled in

with nonzero elements, there exists no sequence of period N
that can achieve the ZCC property in the time domain.
Lemma 2: A set of ZCC sequences is a set of independent

sequences.
Proof: As can be clearly seen, the coordinate vector of

a sequence relative to the ordered basis {c0, c1, . . . , cN−1} is
the DFT of this sequence. Given that these two sequences
possess the ZCC property, the locations of the nonzero ele-
ments of their associated DFTs are disjoint, thus proving this
lemma.

The result of Lemma 2 can be further developed to derive
Lemma 3.
Lemma 3: Let {sn}K−1

n=0 be a set of distinct K sequences of
period N , where K ≥ N . {sn}K−1

n=0 cannot be a set of ZCC
sequences.

Let VB(s) denote the coordinate vector of sequence s of
period N relative to base matrix B = {c0, c1, . . . , cN−1}.
Define Dim(VB(s)) as the number of nonzero elements of
coordinate vector VB(s). The cardinality of a set of ZCC
sequences is determined and described in Theorem 6.
Theorem 6: Let {sn} be a set of ZCC sequences of period

N . The set of coordinate vectors relative to base matrix B is
denoted by {VB(sn)}. The cardinality m ≥ 2 of a set of ZCC
sequences {sn}m−1

n=0 is constrained by equation given by

Dim(VB(s0)) + Dim(VB(s1)) + · · ·+

Dim(VB(sm−1)) = N .

Proof: First, given that the coordinate vector is an
N -tuple vector, the maximum number of nonzero elements
is N . Based on Lemma 1 the nonzero elements of {VB(sn)}
cannot overlap, and Lemma 2 indicates that {sn} is a set of
independent sequences. These two properties show that the
above constraint equation is true.
Example 1: Let s = (1, 0, 1, 0). The coordinate vector of s

relative to B = {c0, c1, c2, c3} is VB(s)=[ 12 0 1
2 0]T , where

Dim(VB(s)) = 2. Given that s is fixed, there exist two sets of
ZCC sequences, A1 and A2, with cardinality |A1| = 2 and
|A2| = 3, respectively.

A1 = {s, (1, 0, −1, 0)},

A2 = {s, (1, j, −1, −j), (1, −j, −1, j)}.

When including s as an element, the other sets of ZCC
sequences with cardinalities 2 and 3 are isomorphic
to A1 and A2.

IV. CONSTRUCTION OF ZCC SEQUENCES
A. TIME DOMAIN ZCC SEQUENCES
We can apply Theorem 1 to construct a set of ZCC sequences
presenting the ZCC property in the time domain by adjust-
ing these sequences’ DFTs, which do not have the over-
lapped nonzero elements between each other throughout all
sequences within the same set. Two kinds of construction are
introduced.
Construction I: Time domain ZCC sequences based on

single base sequence
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Let st be a base sequence of period N , and the associa-
tive DFT is denoted by St , where st and St are expressed
respectively as

st = (st [0], st [1], . . . , st [N − 1]), (9)

St = (St [0], St [1], . . . , St [N − 1]). (10)

A sequence z0 of period mN is constructed by repeating and
cascading sequence st m times, which is

z0 = (st , st , . . . , st )

= (st [0], . . . , st [N−1]︸ ︷︷ ︸
N

, . . . , st [0], . . . , st [N−1]︸ ︷︷ ︸
(m−1)N

). (11)

The DFT of z0, denoted by Z0, is expressed as follows

Z0 = m(St [0], 0, · · · , 0︸ ︷︷ ︸
m

, · · · , St [N − 1], 0, · · · , 0︸ ︷︷ ︸
m

). (12)

TheZ0 in (12) is anmN -tuple sparse vector withN nonzero
elements St [k], k = 0, 1, . . . ,N − 1, located at the entries
of 0,m, . . . , (N − 1)m, respectively. The number of zero
elements between two adjacent St [k] is m− 1, thus, it has m
distinct circular shifts ofZ0, denoted by {Z(k)

0 }
m−1
k=0 , which can

match the requirement of no overlapping nonzero elements
among the whole set of m vectors.
Theorem 7: Let zk denote the IDFT of Z(k)

0 , k =

0, 1, . . . ,m−1. {z0, z1, . . . , zm−1} is a set of ZCC sequences
with cardinality m.

Proof: There exists no overlapping nonzero elements
to all vectors in set {Z(k)

0 }
m−1
k=0 ; hence, the component-wise

product between arbitrary two different vectors from this set
generates a zero vector. This implies that zk ⊗c zn = 0,
0 ≤ k, n ≤ m− 1 is true, where k ̸= n.
Let ck = {ck [n]}

mN−1
n=0 ∈ CmN be an mN -tuple vector. With

elements ck [n] = ej
2πnk
mN , k = 0, 1, . . . ,m − 1, {ck}m−1

k=0 is a
set of m digital carriers.
Corollary 3: The set of ZCC sequences {z0, z1, . . . , zm−1}

can be generated by modulation with digital carrier zk = z0 ◦

ck , k = 0, 1, . . . ,m− 1, respectively.
Proof: δ

(k)
mN denotes the circular shift of a Kronecker

delta function of periodmN to the right by k places. The DFT
of δ

(k)
mN is given by ck = {ck [n]}

mN−1
n=0 . As zk is the IDFT of

Z(k)
0 , where Z(k)

0 = Z0 ⊗c δ
(k)
mN , this implies that zk = z0 ◦ ck ,

k = 0, 1, . . . ,m− 1.
Theorem 8: Let {z0, z1, . . . , zm−1} be a set of ZCC

sequences. R0 = {R0[τ ]}
mN−1
τ=0 denotes the PACF of z0,

then the PACFs of the rest of other zk are given by Rk =

{R0[τ ]ej2πτk/mN
}
mN−1
τ=0 , k = 1, . . . ,m− 1, respectively.

Proof: Let zk = {zk [n]}
mN−1
n=0 . Given that zk = z0 ◦ ck ,

it has zk [n] = z0[n]ej2πnk/mN . We have

Rk [τ ] =

mN−1∑
n=0

zk [n]z∗k [(n− τ )mN ]

=

mN−1∑
n=0

z0[n]e
j2πnk
mN z∗0[(n− τ )mN ]e

−j2π(n−τ )k
mN

= ej2πτk/mN
mN−1∑
n=0

z0[n]z∗0[(n− τ )mN ]

= R0[τ ]ej2πτk/mN .

Let Rt = {Rt [τ ]}
N−1
τ=0 denote the PACF of base sequence

st , where Rt [τ ] =

N−1∑
n=0

st [n]s∗t [(n − τ )N ]. The relationship

between R0[τ ] and Rt [τ ] is described in Corollary 4 below.
Corollary 4: R0[τ + lN ] = R0[τ ] = m · rt [τ ], where 0 ≤

τ ≤ N − 1 and 0 ≤ l ≤ m− 1.
Proof: First, since z0[τ + lN ] = st [τ ], 0 ≤ τ ≤ N − 1

and 0 ≤ l ≤ m− 1, it has

R0[τ ] =

mN−1∑
n=0

z0[n]z∗0[(n− τ )mN ]

=

m−1∑
l=0

N−1∑
n=0

z0[n+ lN ]z∗0[(n+ lN − τ )mN ]

= m ·

N−1∑
n=0

st [n]s∗t [(n− τ )N ]

= m · Rt [τ ].

Second, because z0[τ + lN ] = z0[τ ], it is straightfor-
ward to show that R0[τ + lN ] = R0[τ ] is true, where
0 ≤ l ≤ m− 1.
Note that when the base sequence st is a PS or PGIS with

energy EN =
∑N−1

n=0 |st [n]|2, then the PACF of st is Rt =

EN δN and the absolute auto-correlation values of all other
PACFsRk = {R0[τ ]ej2πτk/mN

}
mN−1
τ=0 are the same, which can

be expressed as |R0[τ ]ej2πτk/mN
| = mEN .

Let us present the extreme case st = 1 for demonstration.
By coping and cascading st = 1 m times, we obtain a
sequence z0 = (1, 1, . . . , 1) of period m. By Corollary 3,
the sequences in set {z0, z1, . . . , zm−1} are presented in
Example2.
Example 2:

zk = (1, ej
2πk
m , ej

2π2k
m , . . . , ej

2πk(m−1)
m ), k = 0, 1, . . . ,m− 1.

The set of sequences in Example2 is a set of ZCC sequences,
where zk ⊗c zn = 0, 0 ≤ k, n ≤ m− 1, k ̸= n.
Construction II: Time domain ZCC sequences based on a

set of base sequences
Let {sn}m−1

n=0 be a set of base sequences of period N . All of
these sequences are repeatedm times as in the case of a single-
base sequence inConstruction type I. This process results in
a set ofm sequences of periodmN denoted as {s′n}

m−1
n=0 , where

s′n = (sn, sn, . . . , sn︸ ︷︷ ︸
m times

), n = 0, 1, . . . ,m− 1.

The sequences s′n are then used to modulate a set of digital
carriers {ck}m−1

k=0 , and generate a set of ZCC sequences.
The set of two ZCC sequences A1 = {s, s1} =

{(1, 0, 1, 0), (1, 0, −1, 0)} of period N = 4 can be applied

VOLUME 11, 2023 48281



D. Xuan et al.: Novel Zero Circular Convolution Sequences for Detection and Channel Estimations

as the base sequences to construct a set of ZCC sequences
of period 2N = 8 with cardinality 4. This is shown in
Example 3. Let c1 = {ej2πn/8}7n=0. It has

s′0 = (s, s) = (1, 0, 1, 0, 1, 0, 1, 0),

s′1 = (s1, s1) = (1, 0, −1, 0, 1, 0, −1, 0),

s′2 = s′0 ◦ c1 = (1, 0, j, 0, −1, 0, −j, 0),

s′3 = s′1 ◦ c1 = (1, 0, −j, 0, −1, 0, j, 0).

Example 3: A′
1 = {s′0, s′1, s′2, s′3} is a set of ZCC

sequences with cardinality 4, where Dim(VB(s′n)) = 2,n =

0, 1, 2, 3, and
∑3

n=0Dim(VB(s′n)) = 8.

B. FREQUENCY DOMAIN ZCC SEQUENCES
Construction III: Frequency domain ZCC sequences based
on single base sequence

The frequency domain ZCC sequences construction is
based on Theorem 2. The base sequence st in (9) is first
upsampled by a factor of m to generate a sequence of period
mN , denoted by s0. Sequence s0 and its DFT S0 are expressed
as follows:

s0 = (st [0], 0, . . . , 0︸ ︷︷ ︸
m

, st [1], 0, . . . , st [N − 1], 0, . . . , 0︸ ︷︷ ︸
(N−1)m

),

(13)

S0 = (St [0], . . . , St [N − 1]︸ ︷︷ ︸
N

, . . . , St [0], . . . , St [N − 1]︸ ︷︷ ︸
(m−1)N

).

(14)

In (13), the number of zero elements between two adjacent
st [k] is m − 1, thus it has m distinct circular shifts of st ,
denoted by {s(k)0 }

m−1
k=0 , which can match the requirement of no

overlapping nonzero elements among themselves in this set
to make {Sk}m−1

k=0 be ZCC sequences with cardinality m.
Theorem 9: Let Sk denote the DFT of s(k)0 , k =

0, 1, . . . ,m−1. {S0,S1, . . . ,Sm−1} is a set of ZCC sequences
in the frequency domain with cardinality m.

Proof: As the arbitrary pair of two different sequences in
the set {S0,S1, . . . ,Sm−1} possesses the ZCC property, that
is, Sk ⊗c Sn = 0, 0 ≤ k, n ≤ m − 1, k ̸= n. This gives the
proof of Theorem 9.
Example 4: Let sk = δ

(k)
m , k = 0, 1, . . . ,m− 1.

Sk= (1, ej
2πk
m , . . . , ej

2πk(m−1)
m ), k=0, 1, . . . ,m− 1,

where Sk⊗cSn = 0, 0 ≤ k, n ≤ m−1, k ̸= n.Example4 is the
time-frequency duality example of that shown in Example2.
Construction IV: Frequency domain ZCC sequences based

on a set of base sequences
Let {sn}m−1

n=0 be a set of base sequences of period N . These
m sequences are first upsampled by a factor of m to generate
a set of m sequences {sun}

m−1
n=0 of period mN . Let su(n)n be the

circular shift of sun to the right by n places. The DFTs of set of
sequences {su(n)n }

m−1
n=0 , denoted by {Sun}

m−1
n=0 , possess the ZCC

property in the frequency domain, that is, Sun ⊗c Suk = 0,
k ̸= n.

For comparison with Example 3, A1 = {s, (1, 0, −1, 0)}
from Example 1 is applied to construct ZCC sequences. It has
su0 = (1, 0, 0, 0, 1, 0, 0, 0), su(1)1 = (0, 1, 0, 0, 0, −1, 0, 0),
su(2)2 = (0, 0, 1, 0, 0, 0, 1, 0) and su(3)3 = (0, 0, 0, 1, 0, 0,
0, −1). The associativeDFTs areSu0 = 2(1, 0, 1, 0, 1, 0, 1, 0),
Su1 =

√
2(0, 1 − j, 0, −1 − j, 0, −1 + j, 0, 1 + j), Su2 =

2(1, 0, −1, 0, 1, 0, −1, 0), and Su3 =
√
2(0, −1 − j, 0, 1 −

j, 0, 1 + j, 0, −1 + j), respectively.
Example 5: A′

2 = {Su0,S
u
1,S

u
2,S

u
3} is a set of ZCC

sequences, where Dim(VB(Sun)) = 2, n = 0, 1, 2, 3.
A set of ZCC sequences A′

1 from Example 3 and A′
2 are

isomorphic to each other.

V. APPLICATION OF ZCC SEQUENCES TO FSC
ESTIMATION
A. FSC MODEL
Let us consider a single-input single-output (SISO) FSC with
bandwidth W0. The baseband sampled (at Ts = 1/W0 inter-
vals) channel impulse response is represented by h[l](l =

0, 1, 2, . . . ,N − 1). The response y = {y[n]} of this channel
to an input sequence z = {z[n]} is given by

y[n] =

N−1∑
k=0

h[k]z[n− k] + v[n],

where the sequence {v[n]} represents the additive noise and
interference. It is convenient to model the noise v[n] as a zero
mean, complex-valued, circularly symmetric stationary white
Gaussian process with variance E[|v[n]|2] = N0W0 = σ 2,
where W0 is the underlying system bandwidth.

B. APPLICATION OF ZCC SEQUENCES TO FSC ESTIMATION
The combination of the ZCC sequences and cyclic prefix (CP)
technique is used to estimate the channel parameters {h[l]}.
The CP comprises the last N − 1 elements of z0, denoted as
zc0. Given that the input is a vector of size ((m+1)N−1)×1,
z = [zc0 z0]((m+1)N−1)×1, where z0 can be calculated from
(11), the response of FSC in vector form can be written as
follows:

y = h0 ⊗l z + v = Hyz + v. (15)

In (15), ⊗l denotes linear convolution, h0 = [h[0] h[1] · · ·

h[N − 1]]T , the channel matrix Hy, and associated elements
H0,H1,H2,H3 and H4 are given in (17)-(22), respectively.
In this scheme, the base sequence st in (9) is a PS or
PGIS with energy EN =

∑N−1
n=0 |st [n]|2. The PACF of z0 is

expressed as

z0 ⊗c z∗

−0

= mEN (1, 0, · · · , 0︸ ︷︷ ︸
N

, 1, 0, . . . , 0 . . . , 1, 0, . . . , 0︸ ︷︷ ︸
(m−1)N

). (16)
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Hy =



H0 0 · · · 0 0

H1 H2
. . .

... 0

0 H3
. . . 0

...
...

. . .
. . . H2 0

0 0 · · · H3 H2
0 0 · · · 0 H4


((m+2)N−2)×
((m+1)N−1)

(17)

H0 =



h[0] 0 · · · 0 0

h[1] h[0]
. . .

... 0
...

. . .
. . . 0

...

h[N − 3] h[N − 4] · · · h[0] 0
h[N − 2] h[N − 3] · · · h[1] h[0]


(N−1)×(N−1)

(18)

H1 =



h[N − 1] h[N − 2] · · · h[1]
0 h[N − 1] · · · h[2]
...

. . .
. . .

...

0
. . . h[N − 1] h[N − 2]

0 · · · 0 h[N − 1]
0 · · · 0 0


N×(N−1)

(19)

H2 =



h[0] 0 · · · 0 0

h[1] h[0]
. . .

... 0
...

...
. . . 0

...

h[N − 2] h[N − 3] · · · h[0] 0
h[N − 1] h[N − 2] · · · h[1] h[0]


N×N

(20)

H3 =



0 h[N − 1] h[N − 2] · · · h[1]

0 0 h[N − 1]
. . . h[2]

...
...

. . .
. . .

...

0 0
. . . h[N − 1] h[N − 2]

0 0 · · · 0 h[N − 1]
0 0 · · · 0 0


N×N

(21)

H4 =



0 h[N − 1] h[N − 2] · · · h[1]

0 0 h[N − 1]
. . . h[2]

...
...

. . .
. . .

...

0 0
. . . h[N − 1] h[N − 2]

0 0 · · · 0 h[N − 1]


(N−1)
×N

(22)

Hy′ =



H2 0 · · · 0 H3

H3 H2
. . .

... 0

0 H3
. . . 0

...
...

...
. . . H2 0

0 0 · · · H3 H2


mN×mN

(23)

The receiver receives a vector y = {y[n]}(m+1)N−2
n=−(N−1) of

length (m + 2)N − 2, where the number of these elements
is calculated from z of length (m+ 1)N − 1 convoluted with
the channel h0 of lengthN . To process the channel estimation,
the receiver removes the first N − 1 and collects the next mN
samples from the received signal y to obtain a data vector
y′

= [y[0]y[1] · · · y[mN−1]]T of sizemN×1. By performing
circular convolution with z∗

−0, the data vector y
′ can be used

to estimate the channel vector h = [hT0 hT0 · · · hT0 ]
T of size

mN×1, where h0 = [h[0] h[1] · · · h[N−1]]. The estimation
of h is given as follows:

ĥZCC−E = y′
⊗c z∗

−0

= [y′ y′(1)
· · · y′(mN−1)]z∗

−0

= Hy′ [z0 z
(1)
0 · · · z(mN−1)

0 ]z∗

−0 + v′

= Hy′ (z0 ⊗c z∗

−0) + v′

= Hy′ [mEN 0 · · · 0︸ ︷︷ ︸
N

mEN 0 · · · 0 · · ·mEN 0 · · · 0︸ ︷︷ ︸
(m−1)N

]T + v′

= mENh + v′, (24)

where the channel matrix Hy′ is given in (23), and v′
=

[v[0] v[1] · · · v[mN − 1]]T ⊗c z∗

−0 is the estimation error
vector. The component of v′

= {v′[n]}mN−1
n=0 is given as

follows:

v′[n] =

mN−1∑
i=0

v[i]z∗[(i− n)mN ]. (25)

The estimation error has zero mean, which means

E(
mN−1∑
i=0

v[i]z∗[(i − n)mN ])=
mN−1∑
i=0

E(v[i])z∗[(i − n)mN ] = 0,

and the power (variance) of the estimation error is derived as

var(v′[n]) = E(
mN−1∑
i=0

v[i]z∗[(i− n)mN ])2

= E(
mN−1∑
k=0

v[(n+ k)mN ]z∗[k])2

=

mN−1∑
k=0

E(|v[(n+ k)mN ]|2)|z[k]|2

= σ 2mEN . (26)

The signal to noise ratio (SNR) gain, which can be achieved
by applying ZCC to the estimation of each channel parameter
{h[l]} is mEN . This is given as follows:

SNR =
(mEN )2|h[l]|2

σ 2mEN
= mEN

|h[l]|2

σ 2 .

C. OPTIMAL JOINT SYMBOL DETECTION AND FSC
ESTIMATION
Orthogonality between the symbol stream and the train-
ing sequence is the requirement for optimal joint symbol
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detection and channel estimation. Before applying the ZCC
sequences to achieve this goal, three related theorems are
addressed, which are Lemma 2 and 5, and Theorem 10.
The set of mN independent vectors {ci}mN−1

i=0 , where ci =

{ej2π in/mN }
mN−1
n=0 , can serve as a basis for the ordered

mN -tuples of complex numbers CmN . A base matrix B′
=

[c0 c1 · · · cmN−1]mN×mN , is defined, and the coordinate
vector of the sequence z based on B′ is expressed as VB′ (z).
Lemma 4: Based on the base matrix B′, the spanning set

of sequence z0 in (11), denoted by span(z0), can be written as
span(z0) = {c0, cm, . . . , cm(N−1)} = {cnm}

N−1
n=0 .

Proof: The DFT of z0 is given in (12), in which Z0 =

m(St [0], 0, . . . , 0︸ ︷︷ ︸
m

, St [1], 0, . . . , 0︸ ︷︷ ︸
m

, . . . , St [N − 1], . . . , 0︸ ︷︷ ︸
m

).

When applying the IDFT operation upon Z0, a new expres-
sion of z0, which is different from that shown in (11),

i.e., z0 =
1
N (

N−1∑
n=0

St [n]cnm) = B′VB′ (z0), can be derived.

Here VB′ (z0) =
1
mN Z0 is the coordinate vector of z0 with

respect to the base matrix B′. Since z0 can be represented
by the linear combination of vectors in the subset of vec-
tors {cnm}

N−1
n=0 of the base matrix B′, it can be derived that

span(z0) = {cnm}
N−1
n=0 .

First, let us define a Toeplitz matrix T using the sequence
z0, which is defined in (11). Given that the dimension of
span(z0) is N , the nullity of T is (m − 1)N . From this
perspective, a joint symbol detection and channel estima-
tion scheme can be applied when using z0 as the training
sequence, whichwas analyzed in SectionV-B. In this scheme,
the maximum number of symbols in the data stream {d[n]}
which can be transmitted simultaneously with the training
sequence z0 of period mN is (m − 1)N . This scheme can
be operated by first grouping the data stream into a set of
m− 1 data sequences of length N . These data sequences are
di = {d[n]}iN−1

n=(i−1)N , i = 1, 2, . . . ,m − 1, and are then used
to form a set of m − 1 sequences of length mN denoted as
Di = {Di[n]}

mN−1
n=0 , respectively, by coping and cascading di

m times.
Second, to meet the requirement of orthogonality between

the data stream and training sequence for optimal joint sym-
bol detection and channel estimation performance, all trans-
mitted symbol sequences, which are denoted as {xi}, should
belong to the null space of the Toeplitz matrix T, which is
generated using z0. Construction type II can be applied
to achieve this goal, which is described in Lemma 5 and
Theorem 10 shown below.
Lemma 5: Given that xi = {Di[n]ej2πni/mN }

mN−1
n=0 , i =

1, 2, . . . ,m − 1, the spanning set of xi is span(xi) =

{cnm+i}
N−1
n=0 and xi = xi ⊗c ( 1

mN

N−1∑
n=0

cnm+i), i = 1, 2, . . . ,

m− 1.
Proof: The proof of span(xi) = {cnm+i}

N−1
n=0 is similar to

the proof of Lemma 4. Hence, for brevity, it is omitted here.
Given that span(xi) = {cnm+i}

N−1
n=0 , xi is a linear combination

of {cnm+i}
N−1
n=0 , i.e., xi =

N−1∑
n=0

ancnm+i. Since cn ⊗c ck = 0

FIGURE 1. ZCC-based joint symbol detection and channel estimation.

and cn ⊗c cn = mN · cn, it can be derived that xi ⊗c ( 1
mN

N−1∑
k=0

ckm+i) = (
N−1∑
n=0

ancnm+i) ⊗c ( 1
mN

N−1∑
k=0

ckm+i) =

N−1∑
n=0

ancnm+i = xi.
Theorem 10: {z0, x1, . . . , xm−1} is a set of ZCC sequences.
Proof: Since B′

= {ci}mN−1
i=0 is an orthogonal basis for

CmN and B′
= span(z0) ⊕ span(x1) ⊕ span(x2) ⊕ · · · ⊕

span(xm−1), where ⊕ denotes the directsum operation, the
DFTs of any two different transmitted symbols xi and xk con-
tain no overlapping elements between each other for which
xi ⊗c xk = 0, for 1 ≤ i, k ≤ m − 1. It is also true that
xi ⊗c z0 = 0, i = 1, 2, . . . ,m − 1. It can be concluded that
{z0, x1, . . . , xm−1} is a set of m ZCC sequences.

Since the channel has N taps, the last N − 1 elements of
all data sequences xi denoted as xci = {xi[n]}

mN−1
n=(m−1)N+1,

should be inserted into the associated xi as the CP part,
i = 1, 2, . . . ,m − 1. The final transmitted symbol
sequences are denoted as {X1,X2, . . . ,Xm−1} where Xi =

[xci xi]((m+1)N−1)×1. The purpose of inserting xci as CPs is
to transform the linear convolution operation encountered at
the FSC channel into a circular convolution operation at the
receiver end for easy symbol detection processing. The FSC
response in vector form is expressed as follows:

y = h ⊗l (z +

m−1∑
i=1

Xi) + v

= h ⊗l x + v, (27)

The structure of this ZCC-based joint symbol detection
and channel estimation scheme is presented in Fig. 1. In this
figure m branches are used to process both the channel
estimate ĥ and symbol detection d̂i = {d̂[n]}iN−1

n=(i−1)N , i =

1, 2, . . . ,m − 1, respectively. At the receiver end, the CP is
first removed from y to obtain y′

= {y[n]}mN−1
n=0 . Assuming

orthogonality between the training sequence z0 and xi, the
channel parameter estimation can be easily obtained from the
top branch of Fig. 1 by performing circular convolution of the
y′ and z∗

−0. Next, the derived ĥ can be substituted into the rest
of the m− 1 branches to serve as the unknown h for circular
deconvolution operation to derive d̂i, i = 1, 2, . . . ,m − 1,
respectively. The process of deriving the unknown d̂i at the
ith branch is analyzed below. When the data vector y′ is
circularly convoluted with all sequences cnm+i ∈ span(xi),
the interference from other undesired data streams xn, for
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∀n ̸= i, will not appear at the output of this branch. Let us

define Ci =

N−1∑
n=0

cnm+i. This implies that

y′
⊗c Ci

= [y′ y′(1)
· · · y′(mN−1)]Ci + v′

⊗c Ci

= Hy′ [x′ x′(1)
· · · x′(mN−1)]Ci + v′

⊗c Ci

= Hy′ (x ⊗c Ci) + v′
⊗c Ci

= Hy′ (xi ⊗c Ci) + v′
⊗c Ci

= mN · Hy′xi + v′
⊗c Ci. (28)

The detection of xi and di using (28) can be derived from
the following two equations:

x̂i = Ĥ−1
y′ (y′

⊗c Ci)

= mN · xi + Ĥ−1
y′ (v′

⊗c Ci), (29)

d̂i = x̂i ◦ c∗
i , (30)

where Ĥy′ is obtained from Hy′ by substituting h with ĥ
in (24).

When the N − 1 CP bits do not count, the total number of
transmitted symbols ismN , which consists ofN training sym-
bols and (m−1)N data sequences {d[n]}. Then, the bandwidth
efficiency can be calculated from (m−1)N

mN =
(m−1)
m . When the

CP part counts, the efficiency becomes (m−1)N
(m+1)N−1 ≈

m−1
m+1 .

The efficiency approaches a high value, when m is large in
which limm→∝

m−1
m → 1 and limm→∝

m−1
m+1 → 1.

D. APPLICATION OF ZCC SEQUENCES TO MULTIUSER FSC
ESTIMATION
The number of independent ZCC sequences in the set
{z0, z1, . . . , zm−1} ism. These ZCC sequences can be applied
to estimate m different FSCs simultaneously in a multiuser
scenario or a MISO system, where the unknown channel
impulse responses are denoted as hi[l](l = 0, 1, 2, . . . ,
N − 1), i = 0, 1, . . . ,m − 1. The similar CP technique
addressed in Section 5.2 can still be applied where the last
number of the N − 1 bits from the zi is inserted into the
training ZCC sequence zi of the i user. The overall received
signal becomes as follows:

y =

m−1∑
k=0

hk ⊗l zk ′ + v, (31)

where zk ′ = [sTc′ z
T
k ′ ]T , in which sTc′ is the associated CP of the

k th user zk ′ . First, the receiver removes the CP to obtain y′ as
a single user does. Then, this y′ is circularly convoluted with
z∗
−i ◦ c∗

k at m different branches, and the individual channel
estimate ĥi, i = 0, 1, . . . ,m − 1, is obtained. Let us present
only the processing of the ith user as follows. First, it can be
derived that

y′
⊗c z∗

−i =

m−1∑
k=0

(hk ⊗l zk ′ ) ⊗c z∗
−i + v′

=

m−1∑
k=0

Hky′ [zk z
(1)
k · · · z(mN−1)

k ]z∗
−i + v′

=

m−1∑
k=0

Hky′ (zk ⊗c z∗
−i) + v′

= Hiy′ (zi ⊗c z∗
−i) + v′, (32)

where Hiy′ = [hi h(1)i · · · h(mN−1)
i ] and v′

=

[v[0] v[1] · · · v[mN − 1]] ⊗c z∗
−i. Second, from Theorem 8

it can be derived

zi ⊗c z∗
−i = mEN [1 0 · · · 0︸ ︷︷ ︸

N

e
j2π iN
mN 0 · · · 0 · · · e

j2π (m−1)N
mN 0 · · · 0︸ ︷︷ ︸

(m−1)N

]T . (33)

Thus, the estimate of hi, denoted as ĥi, is given as follows:

ĥi = (y′
⊗c z∗

−i) ◦ c∗
k

= mENhi + v′
◦ c∗

k , (34)

where v′
◦ c∗

k is the estimation vector, which has also zero
mean and the same variance as that shown in (26).

VI. APPLICATION OF ZCC SEQUENCES TO TSC
ESTIMATION
A. TSC MODEL
Since the environmental medium between the transmitter and
receiver varies, especially in wireless mobile communica-
tions, the channel response varies with time, giving rise to
a TSC with the (normalized) Doppler-spread of the channel
limited to the interval [−fmax , fmax]. Let us select the time
instants n = 0,Ts, 2Ts, . . . , (N − 1)Ts, where Ts is the
sampling period, as an observation window and collect all
the channel gains ht [n] within this window in the vector
ht = [ht [0] ht [1] · · · ht [N − 1]]T . The response y = {y[n]}
of the TSC to the input sequences s = {s[n]}N−1

n=0 is given by
y[n] = s[n] · ht [n] + ν[n], n = 0, 1, . . . ,N − 1, which in
vector form can be expressed as follows:

y = ht ◦ s + ν. (35)

Equation (35) indicates that the number of channel gains
ht [n], which can be unknown and might not be estimated
in advance due to the time variation of the channel, is the
same as the available number of measurements y[n]. A joint
symbol detection and channel estimation scheme, in which
the input sequences {s[n]} are constructed by multiplexing
both training and data symbols in the time domain, is of
practical importance. However, channel coefficient identifi-
cation in this scheme is challenging because this is considered
as an underdetermined problem. This problem can be over-
come by applying the parsimonious basis expansion models
(BEMs) to approximate ht [n] during any time interval of the
observation window. Examples of such BEMs are the com-
plex exponential BEM (CE-BEM) [38], [39], the polynomial
BEM (P-BEM) [40], the discrete prolate spheroidal BEM
(DPS-BEM) [41], and so on. By selecting a proper scale
Q(= 2⌈fmaxNTs⌉ ≪ N ), where ⌈·⌉ is the integer ceiling and
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Q + 1 is the number of bases for the BEM, the TSC estima-
tion of the unknown channel gains {ht [n]}

N−1
n=0 is reduced to

estimate theQ+1 BEM coefficients. From these coefficients,
the true channel gains ht [n] for symbol detection within the
same observation window can be approximately built. The
ht [n] model based on the complex DFT bases (CE-BEM) is
given as [38], [39]

ht [n] =

Q∑
q=0

λqej2π(q−Q/2)n/N
+ ε[n], (36)

where 0 ≤ n ≤ N − 1, ε[n] is the model error, and λq’s are
the CE-BEM coefficients, which remain invariant within the
observation window but change in the next interval.

B. JOINT SYMBOL DETECTION AND TSC ESTIMATION
In this paper, frequency domain ZCC sequences are used
as the training sequences, which are interleaved with the
transmitted information symbols, for estimating the channel
gains ht [n] directly rather than the CE-BEM coefficients of
(36), as described in the sequel.

Let sp be a PGIS of period p, which is upsampled by a
factorm to generate a PGIS of period N = mp, denoted as su.
The set of vectors {s(k)u }

m−1
k=0 represents the m distinct circular

shifts of su, which these vectors are also PGISs. In this
scheme, the training sequence consists of st =

∑
k∈Dt s

(k)
u ,

where Dt = {l mn }
n−1
l=0 and m

n = k ≥ 2 is an integer. The
information symbols {ss[n]}k∈Ds are inserted into the rest of
the entries of an N -tuple vector indexed by the set Ds, where
Ds and Dt are disjoint and Ds

⋃
Dt = {0, 1, . . . ,N − 1}.

Therefore, the transmitted sequence is s = st + ss, in which
there is no overlap between the nonzero elements of the st and
ss. Given that the nonzero elements of the training symbols in
st = {st [n]}n∈Dt are known at the receiver end, the channel
gains {ht [n]}n∈Dt can be estimated from the received symbols
{y[n]}n∈Dt by evaluating ĥt [n] =

y[n]
st [n]

, n ∈ Dt . The rest
of the unknowns {ht [n]}n∈Ds , which carry the information
symbols {ss[n] · ht [n]}n∈Ds , can be obtained from the derived
ĥt [n] using interpolation technique. The characteristics of this
scheme are summarized below.
1) The element-wise non-overlapping between st and ss

results in two sequences possessing the ZCC property
in the frequency domain. Thus, an optimal performance
of symbol detection can be obtained, achieving the opti-
mal MMSE performance, when the training symbols are
equi-powered and equi-spaced over the observation win-
dow [39].

2) Both the computing loads for evaluating {ht [n]}n∈Dt =
y[n]
st [n]

and deriving {ht [n]}n∈Ds using interpolation from
{ht [n]}n∈Dt are not as heavy as that for evaluating the
CE-BEM coefficients λq using a projection technique or
iteration algorithms [41], [42], [43].

VII. SIMULATION
Yong Soo Cho et al. simulated the channel estimation of
LS and MMSE in the OFDM transmission environment

in Reference [44], and obtained performance comparisons
of MSE and BER, as well as the approximate comparison
between the estimated channel and the true channel in db
value. Based on this simulation, we added ZCC sequence
as the training sequence and the cyclic prefix CP to the
time domain signal, and compared the above performance
indicators, reflecting that ZCC channel estimation is superior
to LS and MMSE. In addition, we discuss the computational
complexity of the three algorithms to illustrate the value of
ZCC channel estimation in practical applications. Finally,
we use the same group of three ZCC sequence to represent
three users. Identify different users and channel parameters
based on the two properties of ZCC sequence.

In addition to OFDM system, ZCC sequence is also appli-
cable to other wireless transmission systems. This simulation
only reflects the basic effects of the two important properties
of the ZCC sequence.

A. SIMULATION MODEL
This simulation model is based on the channel estima-
tion of LS and MMSE by Soo et al. in the reference
[44]. For model parameter settings, the subcarrier, pilot
interval, pilot number, and cyclic prefix are Nfft=512,
Nps=32, Np=16, and CP=Nfft/8 respectively. SNR ranges
from 1 to 20. The channel h was modelled as 4-tap chan-
nel with each the real and imaginary part of each tap
being an independent Gaussian random variable. The two
ZCC sequences are sZCC−4=[1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]
and sZCC−5 =[1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0], which
length andmEN of the sequences are 16 and 20,mEN = 4 and
mEN = 5. The simulation model is as follows:

1) Generate random binary sequence and perform
16-QAM modulation.

2) Generate pilot position and insert pilot.
3) Perform ifft conversion on the data.
4) Add ZCC sequence and cyclic prefix to the data.
5) Perform channel and signal convolution.
6) Perform the training sequence of the received signal

and the ZCC circular convolution to obtain the channel
estimation of ZCC.

7) Remove the cyclic prefix and ZCC training sequence
from the received signal.

8) Extract the pilot to calculate the channel estimates of
LS and MMSE and the MSE of the three algorithms.

9) Demodulate 16-QAM and calculate the bit error rate.

B. COMPARISON BETWEEN ESTIMATED CHANNEL AND
TRUE CHANNEL
For the conventional LS and MMSE channel estimations in
OFDM systems, firstly, we insert pilot into the frequency
domain in the data. Secondly, the received pilot signal is
processed by the corresponding algorithm, so that we can
obtain the part of the channel estimation parameters. Since
the pilot is only a part of the OFDM symbol, in order to
obtain complete channel estimation parameters, interpolation
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processing is required. Here, We discuss three algorithms and
show the effect of the three channel estimation algorithms by
comparingwhich power of channel estimation is closer to that
of the true channel.

The LS channel estimation ĤLS [44] is obtained by mini-
mizing the cost function ||Y − XĤ||

2, which gives the solu-
tion to the LS channel estimation as

ĤLS = X−1Y. (37)

Let us denote each component of the LS channel estimation
ĤLS by ĤLS [k], k = 0, 1, 2, . . . ,N − 1. Since X is assumed
to be diagonal due to the ICI-free condition, the LS channel
estimate ĤLS can be written for each subcarrier as

ĤLS = {ĤLS [k]}
N−1
k=0 = {

Y [k]
X [k]

}
N−1
k=0 . (38)

We define Ĥ ≜ WĤLS , where W is weight matrix. Simi-
larly, the minimum value of the cost function E{||H−Ĥ||

2
} is

used to obtain the channel estimation of MMSE. The orthog-
onality principle states that the estimation error vector H−Ĥ
is orthogonal to ĤLS , such that E{(H − Ĥ)ĤH

LS} = 0, and
Solving Equation for W, we can get W = RHĤLS

R−1
ĤLS ĤLS

,

where RĤLS ĤLS
is the auto-correlation matrix of ĤLS

given asRHH+
σ 2
z

σ 2
x
I, andRHĤLS

is the cross-correlationmatrix
between the true channel vector and temporary channel esti-
mate vector in the frequency domain. Therefore, the channel
estimation of MMSE follows as [44]

ĤMMSE = WĤLS

= RHĤLS
(RHH +

σ 2
z

σ 2
x
I)−1ĤLS . (39)

It can be seen from (24) that ĥZCC−E is the channel estima-
tion of periodic auto-correlation operation of ZCC sequences,
and the result of the periodic auto-correlation operation of
ZCC sequences is its energy mEN which gave in (16), so its
channel estimation is multiplied by mEN times. Therefore,
in order to obtain the channel estimation of ZCC, we need to
divide it by mEN , and the channel estimation of ZCC can be
expressed as

ĥZCC =
y′

⊗c z∗

−0

mEN
= h +

v′

mEN
. (40)

According to (38) and (39), the ĤLS and ĤMMSE [44] are
channel estimations of 512 subcarriers in frequency domain.
The true channel h of this simulation is a complex parameter
in the time domain. In order to compare LS and MMSE
channel estimations with true channel estimation, we use
the formula 10log10(abs(Ĥ ◦ Ĥ∗)) to convert the component
values of LS and MMSE into dB values. The true channel
needs to perform the Nfft transform of n-points first, and then
use the same conversion formula to convert to dB value for
comparison. Similarly, the channel estimation of ZCC needs
to be operated in the same way. As shown in Fig. 2, the
channel estimation of ZCC is closer to true channel than LS
and MMSE channel estimations.

FIGURE 2. Comparison between channel estimation and true channel of
LS, MMSE and ZCC-mEN = 4.

C. COMPLEXITY ANALYSIS
In this part, we show the analysis of computational complex-
ity of our proposed method and compare it with that of the
conventional LS and MMSE estimations in Table 1.

According to (38), the computational complexity of LS
channel estimation comes from the calculation of Y [k]
divided by X [k], and k is the pilot number. Therefore, its
main computational complexity is 16 times division, and the
complexity of LS channel estimation is O(n).

From (39), the most complex part of conventional MMSE
estimation comes from getting inverse of matrix (RHH +
σ 2
z

σ 2
x
I), the dimension of the matrix is the pilot number,

so its main calculation amount is to calculate the inverse
of 16 * 16 matrix, and the complexity of MMSE channel
estimation is O(n3).
For the proposed method, we can see from (40) that the

computational complexity of ZCC channel estimation comes
from the circular convolution of ZCC sequence. Because the
length of ZCC sequence in this simulation is 16, its main
calculation amount is 16 times multiplication, and the com-
plexity of ZCC channel estimation is O(n).

Through the comparison of the computational complex-
ity of the three channel estimates, it can be seen that ZCC
algorithm has lower computational complexity, which ismore
conducive to the realization of the terminal.

D. MSE PERFORMANCE
The MSE performance curves of the three algorithms are
shown in Fig. 3. The MSE of LS channel estimation is given
as [44]

MSELS = E{(H − ĤLS )H (H − ĤLS )} =
σ 2
z

σ 2
x

. (41)

The MSE of MMSE channel estimation is given as [45]

MSEMMSE

= E{(H − ĤMMSE )H (H − ĤMMSE )}

= σ 2
z tr{RHH(σ 2

x RHH + σ 2
z I)

−1
}. (42)
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TABLE 1. Complexity Comparison of LS, MMSE and ZCC Algorithms.

FIGURE 3. MSE performance of LS, MMSE, ZCC-mEN =4 and ZCC-mEN =5.

From (40), we can see that the estimation error of ZCC
algorithm is affected by noise. ĥZCC−E and var(v′[n]) are
given in (24) and (26) andMSE of channel estimation of ZCC
in time domain is expressed as

MSEZCC = E[|ĥ(i) − h(i)|2]

= E[|
mENh(i) + v′(i)

mEN
− h(i)|2]

=
E[|v′(i)|2]
(mEN )2

=
σ 2
z mEN

(mEN )2

=
σ 2
z

mEN
. (43)

The mean square error estimate obtained in this paper

is σ 2
z

mEN
. The parameter mEN can be changed. Only the

ZCC sequence with larger mEN to be selected as the train-
ing sequence, which can reduce the mean square error and
achieve the performance that the error is less than MMSE
channel estimation method, but the cost increases.

E. BER PERFORMANCE
As shown in Fig. 4, BER curves are the result of equalization
of three channel estimation algorithms and true channel. The
calculation method of BER is that the received data is equal-
ized by the channel estimation parameter Ĥ, and then demod-
ulated by 16-QAM. The demodulated data is compared with
the data before transmission, and the accumulated error data

is used to calculate the bit error rate. The equation used for
channel equalization is given as

Yest = {
Y [k]

Ĥ [k]
}
N−1
k=0 . (44)

Because the hZCC and true channel h are time-domain
parameters, the two channel parameters need to be processed
by Nfft point FFT before they can be used for equalization.

We compare the BER of the true channel and the four
channel estimations, where the four channel estimations
are LS, MMSE, ZCC-mEN=4, ZCC-mEN=5. The curves
in Fig. 4 show that the order of error rate is as follows:
BERTrue channel < BERZCC−mEN=5 < BERZCC−mEN=4 <

BERMMSE < BERLS . The BER of equalization through true
channel parameters is the lowest.The bit error rate of zcc
algorithm is lower than that of MMSE and LS algorithms.
From the comparison of MSE performance in Fig. 3, the
performance of MSE is consistent with that of BER. Differ-
ent calculation methods have consistent performance results,
which also verifies the correctness of simulation results.

F. MULTIUSER CHANNEL ESTIMATION
According to (3), (4), (24) and Corollary 1, we can get
two important properties of ZCC sequences. The first
property is that the absolute value of the periodic auto-
correlation function of the ZCC sequences is |RZCC [τ ]| =

mEN . The second property is that the value of the cross-
correlation function of the same set of ZCC sequences
is RZCC1,ZCC2[τ ] = 0. We use these two properties to
perform multiuser channel estimation. Assuming that three
ZCC sequences of the same group are selected as train-
ing sequences of three users, which are given as sZCC1=
[1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0], sZCC2=[1,0,0,0,−1,0,0,0,1,
0,0,0,−1,0,0,0], sZCC3=[1,0,0,0,−j,0,0,0,−1,0,0,0,j,0,0,0].
Each user passes through different channels h1, h2 and h3,
and the three channels are 4-tap channels which follow the
Rayleigh distribution. According to the property that the
value of the periodic cross-correlation function of the same
group of ZCC sequences is zero, there will be sZCC1 ⊗c
sZCC2∗

− = sZCC1 ⊗c sZCC3∗
− = 0. But in fact, as shown in

Fig. 5, due to the influence of additive Gaussian noise, the
result of periodic cross-correlation calculation is not zero,
that is, RyZCC1sig,sZCC2 = yZCC1sig ⊗c sZCC2∗

− ̸= 0. However,
it is far less than the value of auto-correlation function. After
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FIGURE 4. BER performance of LS, MMSE, ZCC-mEN =4, ZCC-mEN =5 and
True channel.

FIGURE 5. Multiuser channel estimation of sZCC1, sZCC2 and sZCC3 with
different channels.

setting the appropriate threshold value, it is easy to identify
different users and their estimated channel parameters.

VIII. CONCLUSION
In this paper, a set of base sequences of period N are initially
either repeatedm times or upsampled by a factorm to generate
a new set of sequences of period mN for further modulation
by a set of m digital carriers to construct a set of ZCC
sequences with cardinality m. Possessing the ideal PCCF

property, the ZCC sequences are capable of achieving zero
CCI or MAI performance in a multiuser communication sys-
tem or a multiple access scheme system. Additionally, when
the base sequences applied for constructing ZCC sequences
possess the ideal PACF property, the auto-correlation func-
tion of the resultant ZCC sequences can still preserve the
desired PACF property. Because of this property, the ZCC
sequences can be applied to perform channel estimation so
that optimal joint symbol detection and channel estimation
similar to those sequences possessing the ideal PACF prop-
erty can be achieved. Based on these results, it is evident that
the ZCC sequences have broader applications compared with
other sets of sequences.

APPENDIX A
NOTATION TABLE
Notation Description

B base matrix {c0, c1, . . . , cN−1}

cn the DFT of δ
(n)
N

CN a set of Kronecker delta function of period N
its circular shifts {δN , δ

(1)
N , . . . , δ(N−1)

N }

Dt an integer vector, Dt = {l mn }
n−1
l=0 and

m
n =

k ≥ 2
Ds the rest of the entries of anN -tuple vector of Dt
EN energy of the base sequence st
h true channel
ĥZCC−E channel estimation of ZCC sequence periodic

auto-correlation operation,mEN times of ĥZCC
ĥZCC channel estimation of ZCC
h0 channel parameters h0 = [h[0] h[1] · · ·

h[N − 1]]T

H0 the DFT of h0
Hy channel matrix and associated elements H0,

H1,H2,H3 and H4

ĤLS channel estimation of least-squares
ĤMMSE channel estimation of minimum-mean-

squared-error
Ĥ channel estimation
ĤLS[k] each component of the LS channel estimation
Ĥ[k] each component of the channel estimation
Rr [τ ] auto-correlation function
Rr,s[τ ] cross-correlation function
Rs the periodic auto-correlation function of s
RĤLS ĤLS

the auto-correlation matrix of ĤLS

RHĤLS
the cross-correlation matrix between the true
channel vector and temporary channel estimate
vector in the frequency domain

|RZCC [τ ]| the absolute value of the periodic auto-
correlation function of the ZCC sequence

s a vector of sizeN×1 or a sequence of period N
sZCC ZCC training sequence used in simulation
sZCC−4 ZCC training sequence with mEN = 4 used in

simulation
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S the DFT of s
s(m) the circular shift of s to right
s(−m) the circular shift of s to left
sun Upsampling of sn
Sun the DFT of sun
st a base sequence of period N
St the DFT of St
s(k)u distinct circular shifts of su
tn repeating sn m times
Tn the DFT of tn
T Toeplitz matrix
VB(s) the coordinate vector of sequence s of period

N relative to base matrix B
v the vector of noise
v′ he estimation error vector
v′[n] The component of v′

={v′[n]}mN−1
n=0

W weight matrix of MMSE estimation
y vector of received signal
yZCC1sig the part of the received signal containing ZCC1

training sequence
Y The DFT of y
Yest The DFT of the received signal after channel

estimation equalization
z0 A sequence of period mN is constructed by

epeating and cascading sequence st m times
Z0 the DFT of z0
{Z(k)

0 } distinct circular shifts of Z0
δN Kronecker delta function of period N
ε[n] the model error
λq the CE-BEM coefficient
σ 2
z Variance of signal

σ 2
x Variance of noise

⊗c circular convolution
⊗l linear convolution
◦ component-wise product
| · | the absolute value of the argument
|| · || the norm of the argument
(·)∗ complex conjugate of the argument
(·)′ transposition of the argument
(·)N modulo N operation
(·)H conjugate transpose operation
tr{} traccs of matrix
≜ definition
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