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ABSTRACT Massive multiple-input multiple-output (mMIMO), assisted by reconfigurable intelligent
surface (RIS), can ensure reliable and energy-efficient data transmission. However, the receiver design for
large-scale networks based on traditional mathematical approaches requires complex statistics. Therefore,
in this paper, machine learning (ML) approaches are investigated to design receivers for the RIS-assisted
multi-user MIMO (muMIMO) systems to avoid complicated channel information requirements. Extreme
learning machine (ELM) is an effective ML tool for MIMO receiver design because it simplifies the learning
process. However, the learning performance of the ELM can get affected by the random choice of its hidden
layer size. To address this issues, this paper proposes an incremental ELM (I-ELM) based receiver for the
RIS-mu-MIMO system. The proposed receiver computes the weights between the hidden and the output
layer based on the automated incremental addition of hidden neurons and provided conditions. The suggested
receiver is contrasted with the multilayer perceptron (MLP), conventional ELM, and minimum mean square
error (MMSE) receivers. The simulation results show that the throughput performance of the proposed
receiver is satisfactory.

INDEX TERMS Extreme learning machine, intelligent surface, machine learning, massive MIMO, multi-
layer perceptron.

I. INTRODUCTION
Massive multiple-input multiple-output (mMIMO) is
acknowledged as a key enabler for future wireless network
systems [1], [2]. The deployment of large number of anten-
nas in mMIMO provides improved spectral efficiency and
massive IoT device connectivity with high throughput. These
large antenna arrays can assist in producing directional beams
that can reduce propagation loss at high frequency spectrum,
but the directed beams suffer from blockage. To overcome
this phenomenon, additional relays and base stations (BSs)
can be implemented, which in turn increase the implementa-
tion cost and power consumption.

In recent times, reconfigurable intelligent surface (RIS) has
attracted a lot of attention due to its capability in changing
EM wave properties, such as amplitude and phase [3]. This
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provides the opportunity to improve the energy of received
signal as well as coverage area, and prevent signal leakage
to the undesired user. Compared to conventional relays, such
as amplify-and forward (AF), decode-and-forward (DF), RIS
consumes less amount of power to amplify the signal without
introducing any noise ideally [4]. Thus, RIS assisted MIMO
system provides cost and energy efficient 6G network sys-
tems. Our research is focused on to design a receiver for RIS-
multi-user MIMO (RIS-muMIMO) system.

A. RELATED WORKS
In general, channel estimation (CE) is required to design
a MIMO receiver [5]. In an RIS-muMIMO system,
CE becomes more crucial since its mathematical modeling
involves amplitude attenuation and phase shifts [3]. As a
result, much research efforts have been provided to estimate
RIS-MIMO channels that would aid in designing a receiver.
A two stage channel estimation approach is presented in [6],
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where first stage of the proposed CSI estimation approach
uses the traditional uplink training method to determine the
direct MIMO channel between the access point (AP) and
the users and the second stage of the proposed approach
estimates the AP-RIS channel and the RIS-user channel.
In [7], the CE involves estimation of the direction-of-arrival
(DoA) and path gains. Channel parameters such as angle
of departures (AoDs) of BS-RIS channels, angle of arrivals
(AoAs) of the RIS-user end channels, angle differences and
product of the path gains in a RIS-mmWave-MIMO system
are estimated in [8]. In [9], the CE problem is formulated
as DoA estimation problem. In [10], maximum achievable
rate of the RIS-MIMO system is attempted to obtain by
means of the proposed CE and the passive beamforming [11]
schemes. The reflection coefficients of the RIS are consid-
ered to be pre-designed and the effective superposed channel
is estimated. The beamformer is designed on the basis of
the estimated superposed channel. In [12], minimum mean
square error (MMSE)-based approaches are studied for CE
and the design of phase shifts and equalizer. Estimation of
the composite channel, which is the direct channel between
the user and BS and cascaded channel among the user, RIS
and BS, is also analyzed in the study.

With the increase of the number of users, complexities
in network performance analysis will also increase. Diffi-
culties in ensuring QoS demands of the users will also rise.
Machine learning (ML)-based methods is seen as a potential
tool for the future network systems, including RIS-based
networks [13]. A deep learning (DL) framework, presented
in [14], consists of a twin convolutional neural network
(CNN) architecture that estimates both the direct link and cas-
caded link channels by analyzing the received pilot signals.
The research work conducted in [15] uses a three-stage train-
ing approach with deep neural network (DNN) to estimate
the CSI of direct communication link as well as the cascaded
CSI for both the active and inactive RIS components. A deep
residual learning-based CSI estimation approach is presented
in [16]. A convolutional neural network architecture is used
that utilizes the spatial properties of the noisy channel matri-
ces aswell as the cumulative behavior of the noise. In [17], the
training of a deep neural network with the aid of unsupervised
learning technique is performed for designing passive beam-
forming [11] matrices in an RIS-enabled network system.
The joint design of the transmit beamformer and phase shift
matrix is performed by means of deep reinforcement learning
(DRL) algorithm in [18]. The transmit beamforming and
phase shift matrices are both said to be obtained concurrently
by the proposed approach at the neural network’s output.
However, DL-based approaches require complicated param-
eter adjustment through backpropagation algorithm, which
can be expensive in terms of duration. In such case, extreme
learning machine (ELM) can be implemented.

An ELM-based receiver is designed in [19] for a
light-emitting diode (LED)-based MIMO system. The
ELM receiver is constructed on real domain base. ELM-
based approach can also be extended to complex domain

applications, which are observed in [20], [21], and [22].
In [20], the ELM is trained offline first with the training
data and then deployed online. However, the ELM algorithm
can be both trained and deployed online, which is demon-
strated in [21]. Least square (LS)-based channel estimation is
conducted first and the symbols are equalized, based on the
estimated channel. Then the online trained ELM is used to
refine the equalization process [22]. Therefore, in this paper,
the online ELM algorithm is explored for designing RIS-
MIMO receiver. The traditional ELM, implemented in the
above studies, is not immune to the random choice of the
hidden layer size. It will not provide satisfactory performance
if the hidden layer size is too small or large. Therefore,
to address this issue, an incremental constructive approach
for the ELM algorithm-based method is presented.

B. CONTRIBUTION OF THE PAPER
In an incremental ELM (I-ELM) algorithm, the hidden neu-
rons are randomly chosen. Based on given specifications,
it is able to adjust the hidden layer size and provide descent
prediction performance. Therefore, an I-ELM algorithm is
proposed in this paper to design a receiver for an RIS-
muMIMO system. The main contributions of the paper is
summarized as follows.

• An I-ELM receiver is proposed for an RIS-assisted
muMIMO systems with a single BS, a single RIS unit
and several users.

• The proposed receiver is compared to the MMSE, the
traditional ELM and the multilayer perceptron (MLP)
receivers in terms of throughput performance for a
given RIS-muMIMO system configuration. Further-
more, comparative studies are also conducted for differ-
ent BS antennas and RIS elements. It is shown that the
proposed I-ELM provide satisfactory performance with
respect to the other receivers.

The paper is organized as follows. The RIS-muMIMO sys-
tem model and receiver design with traditional mathematical
approach in section II. ELM based receiver is discussed in
section III. Architecture of I-ELM is described in section IV.
Simulation results are provided in V. The paper is concluded
with section VI.

II. SYSTEM MODEL OF RIS-muMIMO
In this paper, an uplink communication system is consid-
ered, as shown in Fig. 1, where the single BS contains NR
antennas, the RIS unit contains M elements and K users
contain NT antennas. The user-base station direct link, the
user-RIS link and the RIS-base station link are denoted by
Hd,k ∈ CNR×NT , Fk ∈ CM×NT and G ∈ CNR×M respec-
tively. These channel matrices follow Rayleigh distribution.
A total of N subcarrier frequencies are used for transmitting
data symbols, where Nk =

N
K orthogonal subcarriers are

allocated to each users. Cyclic prefix-orthogonal frequency
division multiplexing (CP-OFDM) protocol with 120 kHz of
subcarrier spacing is followed by the system. The channel
coded bits are digitally modulated, based on the normalized
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FIGURE 1. System model of RIS-assisted mu-MIMO system.

modulation power. The inverse discrete Fourier transform
operation (IDFT) is executed on these normalized modulated
data and transmitted through the direct and cascaded channel
links. The received time domain signal at the base station is

y =

K∑
k=1

(Hd,k + G8Fk )xk + z (1)

Here, the transmitted signal by the user k is represented
by xk . The noise is denoted by z with the characteristics
CN (0, σ 2), where σ 2 is the noise power. The amplitude
attenuation αi and the phase shifts φi, occurred at each RIS
element (i = 1, 2, . . . ,M ), are respectively represented by
the following diagonal matrix.

8 = diag[α1ejφ1 , α2ejφ2 , . . . , αMejφM ], (2)

where αi ∈ [0, 1] and φi ∈ [0, 2π ). No signal attenuation
on the RIS is considered, thus αi = 1 is considered in
this paper [23]. Furthermore, the phase shifts are derived
according to [6].

At the receiving end, the CP is removed from the received
signal and discrete Fourier transform operation (DFT) is
executed. The received symbol Y k ∈ CNR×NUT at the base
station corresponding to the UT k is given by

Y k = DFT (Hd,k + G8Fk )Xk

+

K∑
i=1,i̸=k

DFT (Hd,i + G8Fi)X i + DFT (Z) (3)

The above equation is further simplified as follows.

Y k = HkXk +

K∑
i=1,i̸=k

H iX i + Z. (4)

Here, Hk = DFT (Hd,k + G8Fk ), H i = DFT (Hd,i +

G8Fi), Xk = DFT (xk ) and X i = DFT (xi). In this paper,
the composite channel, Ĥk , is aimed to be estimated for the
user k by using the reference symbols (transmitted with the
data symbols), which is known at the receiving end (i.e. base
station).

A. RECEIVER DESIGN BY MEANS OF CHANNEL
INFORMATION
With the help of the estimated channel information, tradi-
tional linear receiver(s) equalizes the received symbols. If the
transmitted reference symbols are Xρ,k and the received
reference symbols are Yρ,k , then the CE by means of LS
estimation technique [24] is

Ĥk,LS = Yρ,kX−1
ρ,k . (5)

To minimize the mean square error (MSE) of the LS chan-
nel estimation, a Bayesian-based MMSE estimation method
can be used [25], [26], which gives the following equation.

Ĥk = σ 2
Ĥk,LS

(σ 2
Ĥk,LS

+ σ 2
k )

−1Ĥk,LS . (6)

Here, the estimated channel variance is denoted by σ 2
Ĥk,LS

.

With the help of MMSE-based CE, that is, Ĥk , channel
equalization is performed on the received data.

X̂k,MMSE = (Ĥ
∗

kĤk + σ 2
k I)

−1Ĥ
∗

kY k = V kY k . (7)

To extract the transmitted bits, digital demodulation on
the equalized symbols and channel decoding operations are
performed.

B. THROUGHPUT DETERMINATION
The throughput of the user k is determined from the following
expression.

Rk = B log2(1 + SINRk ). (8)

Here, the allocated bandwidth for each user is denoted
by B. The signal-to-noise ratio is represented by SINRk ,
which is generally defined as follows.

SINRk =
|V∗

kĤk |
2

(
∑K

i=1,i̸=k |V∗
kĤ i|

2 +
∑K

i=1 V
∗
kCkV k + ||V k ||

2)
(9)

Here, the corresponding estimation error covariancematrix
is denoted by Ck . However, the ELM algorithm does not
explicitly determine channel information. Therefore, SINRk
is determined by adopting the following equation.

SINRk = −[PAPR+ 20 log10(EVMk/100%)]. (10)

Here, PAPR represents peak-to-average-power ratio and
EVMk represents the error vector magnitude. Peak-to-
average-power ratio value is chosen according to the digital
modulation strategy. The error vector magnitude is deter-
mined by calculating the Euclidean distance between the
originally transmitted and received modulated symbols.

III. PRELIMINARY KNOWLEDGE OF THE ELM
ALGORITHM
In this section, a three-layered traditional extreme learning
architecture is described, as shown in Fig. 2. The input layer,
hidden layer and output layer contains NR, L and NT neurons
respectively. The ELM is assigned with random input weights
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FIGURE 2. Architecture of traditional extreme learning machine.

W k ∈ CL×NR and biases bk ∈ CL×1. The input layer
is fed with the received signals received at each antenna.
On the basis of a chosen activation function, the hidden layer
output is computed from the input data. The desired output
is obtained at the output layer after the ELM network is
trained. Different from the backpropagation approach based
ML networks to update the weightsW k and biases bk (bk =

b1, b2, . . . , bL), the ELM uses an output weight βk ∈ CL×NT

(between the hidden layer and the output layer). It is calcu-
lated in training phase from the hidden layer output and the
desired output (from the training data).

The transmitted and received reference symbols are con-
sidered as training datasets, expressed as

T k = (Yρ,k ,Xρ,k ),

for the ELM training. The hidden layer output Dρ,k for the
received reference symbols is calculated from Yρ,k (received
reference symbols),W k and bk as follows.

Dρ,k = a((W kYρ,k + bk )T ). (11)

Here, a(.) is the activation function. The output weights
βk can be determined from Dρ,k and transmitted reference
symbols Xρ,k , by finding the least square solution of the
problem Dρ,kβk = XT

ρ,k .

βk = (D†
ρ,kDρ,k )−1D†

ρ,kX
T
ρ,k . (12)

The received data symbols Y k is then provided into the
input layer of the trained ELM receiver. The hidden layer
output Dk for the received data symbols is then computed as
follows.

Dk = a(W kY k + bk ). (13)

By using the computed output weight βk , the transmitted
symbols is determined from Dk .

XELM ,k = βTk Dk . (14)

Algorithm 1 Summary of ELM-Based Receiver Design
Mechanism
Training pilot symbol sets T k = Yρ,k ,Xρ,k for user k ,
hidden layer with L number of neurons and activation
function a(.)

TRAINING PHASE
• Random generation ofW k and bk .
• Determination of Dρ,k from (11).
• Determination of βk from (12).

TESTING PHASE
• Determination of Dk from (13).
• Estimation of XELM ,k from (14).

The equalized symbols by means of ELM algorithm is
denoted by XELM ,k ∈ CNT×Nk . The ELM algorithm is sum-
marized in 1.

IV. PROPOSED RECEIVER FOR THE RIS-muMIMO
SYSTEM
In this section, the working mechanism of the I-ELM is
discussed with a view to designing RIS-muMIMO receiver.
Fig. 3 represents the training architecture of the I-ELM
receiver. Let us assume that the ELM network has Li initially
assigned neurons. The initial input weights and biases would
be W k,i ∈ CLi×NR and bk,i ∈ CLi×1 respectively. The
hidden layer output for received reference symbols would be
expressed as follows.

Dρ,k,i = a((W k,iYρ,k + bk,i)T ). (15)

The output weight for Li hidden layer neurons would be

βk,i = (D†
ρ,k,iDρ,k,i)−1D†

ρ,k,iX
T
ρ,k . (16)

The equations (13) and (14) would be used to estimate the
transmitted reference symbols for Li hidden neurons.

Dk,i = a(W k,iYρ,k + bk,i). (17)

X I−ELM ,ρ,k,i = βTk,iDk,i. (18)

If the number of hidden neurons is not appropriately cho-
sen, then an error (say, MSE = ξρ) will exist between Xρ,k
and X I−ELM ,ρ,k,i. The I-ELM network will then keep adding
hidden layer neurons until ξρ is minimized to an expected
value ξρ,exp. A maximum allowable number of hidden layer
neurons, Lmax is also assigned to control the addition of
hidden neurons.

After the training of I-ELM, input weightsW k,new, biases
bk,new and output weights βk,new for the hidden layer with
Lnew neurons. The testing of I-ELM is similar to the tradi-
tional ELM. The I-ELM receiver mechanism is summarized
in 2.

With the increase of hidden layer neurons, the prediction
accuracy improves. However, too many hidden layer neurons
may increase the load on the computational resources. In this
case, I-ELM algorithm is advantageous for automatically
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FIGURE 3. Block diagram of the training phase of I-ELM receiver. This phase of the proposed receiver continues until ξρ and Li criteria are
met.

handling of the hidden layer size and consequently deliver
satisfactory prediction performance.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, the simulation results obtained for the
RIS-muMIMO system with center frequency of 30 GHz is
presented. The spacing among the subcarrier frequencies is
120 kHz. Four users (K = 4, with NT = 2 transmitting
antenna each), single BS with NR = 64 and single RIS unit
with M = 64 are initially considered for the study. The
number of total subcarrier is N = 960, which is divided
equally among the 4 users. In other words, the number
of allocated subcarrier for each user is Nk = 240. Low-
density parity check (LDPC) with 1/2 code rate is applied
to the data bits. The modulation format is elected to be
16-quadrature amplitude modulation (16-QAM). The signal-
to-noise ratio is defined as E[|xk |2]

σ 2 . The ELMalgorithms (both
traditional and proposed) are trained with the transmitted
and received symbols (corresponding to the user k) at one
OFDM symbol time, out of 14 OFDM symbol times. Acti-
vation function tanh is chosen for the hidden layer of both
of the ELM receivers. The input weights and the biases are
assigned by random complex numbers within [−10−2, 10−2].
This interval is chosen such that the weight and the bias
values fall within the activation function’s region of con-
vergence [22]. Based on the study conducted in [27], the
number of hidden layer neurons in the traditional ELM is
considered to be L = max(NR,NT ). In case of I-ELM
receiver, the initial hidden layer size Li and the maximum
number of hidden layer neurons, i.e. Lmax , are considered to
be equal to 10 and max(NR,NT ) respectively. The expected
minimum MSE value ξρ,exp for I-ELM receiver is chosen to
be 0.01.

Algorithm 2 I-ELM-Based Receiver Mechanism
Training pilot symbol sets T k = Yρ,k ,Xρ,k for user k ,
activation function a(.), initial hidden layer neurons Li,
maximum hidden layer neurons Lmax and ξρ = ξρ,exp.

TRAINING PHASE
• Initialization ofW k,i and bk,i for given Li.
• Computation of βk,i from (15) and (16).
• Estimation of X I−ELM ,ρ,k,i from (17) and (18).
• Determination of ξ between Xρ,k and X I−ELM ,ρ,k,i.
• While Li ≤ Lmax and ξρ ≥ ξρ,exp

– Li is expanded to Li+1 for adding single hidden layer
neuron each time.

– Expansion ofW k,i and bk,i toW k,i+1 and
bk,i+1 for the newly added hidden layer neuron.

– Computation of βk,i+1 by following (15) and
(16).

– Estimation of X I−ELM ,ρ,k,i+1 for the newly deter-
mined βk,i+1 according to (17)
and (18) and computation of ξρ between Xρ,k
and X I−ELM ,ρ,k,i+1.

TESTING PHASE
• Given, Lnew, W k,new ∈ CLnew×NR , bk,new ∈ CLnew×1

and βk,new.
– Dk,new = a(W k,newY k + bk,new).
– X I−ELM ,k,new = βTk,newDk,new.

A. ANALYSIS OF THROUGHPUT PERFORMANCES
The performance of the proposed I-ELM receiver is com-
pared to that of the MMSE, traditional ELM and MLP
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TABLE 1. Simulation parameters.

FIGURE 4. Average throughput obtained by means of the MMSE,
traditional ELM, I-ELM and MLP receiver.

receiver. An MLP algorithm [28], which is a DNN-based
algorithm, is used to design a receiver for comparing its per-
formance with the ELM-based receivers. According to [25],
the MLP algorithm uses each neuron for real and imaginary
part of the complex numbers respectively. Therefore, the
MLP-based receiver is constructed such that the real and
the imaginary part of the received symbols are separated
for training and equalization. The input layer of the MLP
contains 2 NR neurons and the output layer contains 2 NT
neurons. The MLP receiver has 4 hidden layers. The number
of neurons in the successive hidden layers are 64, 32, 16
and 8. The activation function chosen for each of the hidden
layers is tanh. To update the weight parameters, the learning
rate of 0.005 and momentum of 0.9 are assigned. In Fig. 4,
both of the ELM receivers have shown better throughput
performance with respect to theMMSE and theMLP receiver
for the RIS-muMIMO system with 2 transmitting antennas
and 64 receiving antennas. The MMSE receiver achieves
low throughput performance at lower SNR values due to
imperfect channel estimation. At SNR = 30 dB, about
6 Mbits/s more is achieved by the ELM receivers than the
MMSE receiver. For SNR values between 0 − 28 dB, both
the ELM receivers utilize L = 64 neurons in the hidden layers
for all user data. However, for the SNR value above 28 dB,
the lowest and highest values of L are 39 and 64 respectively
for the I-ELM receiver, whereas, the traditional ELM utilizes
L = 64 neurons. This demonstrates that the I-ELM receiver
has enough throughput performance that is comparable to the
traditional ELM receiver while also reducing computational

FIGURE 5. Average throughput as a function of BS antennas by means of
MMSE, traditional ELM, I-ELM and MLP receivers.

FIGURE 6. Average throughput as a function of RIS elements by means of
MMSE, traditional ELM, I-ELM and MLP receivers.

complexities. It can adapt the hidden layer size as necessary
based on the provided criteria, such as Lmax and ξρ,exp.

B. EVALUATION OF THE RECEIVERS FOR RIS-muMIMO
CONFIGURATION
In this section, the presented RIS-muMIMO receivers are
evaluated by varying the BS antennas and the RIS ele-
ments respectively, which can increase the throughput of the
RIS-muMIMO systems [3], [29]. Here, the expectedMSE, ξρ

is kept 0.01. In Fig. 5, the MMSE, traditional ELM, I-ELM
and MLP receivers are evaluated in terms of throughput per-
formance for 64 RIS elements and different BS antennas (as
mentioned in Table 1) at SNR = 22. As the BS antennas are
increased from 16 to 32, noticeable improvement is observed
for both of the ELM receivers. However, by increasing BS
antennas from 32 to 128, the throughput performance is
increased by small margin. On the other hand, the through-
put performance marginally increases by means of MMSE
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receiver. In Fig. 6, the MMSE, traditional ELM, I-ELM
and MLP receivers are evaluated for the RIS-muMIMO sys-
tem with 64 receiving antennas and different RIS elements,
as mentioned in Table 1, at SNR = 22. With the increase
of RIS elements, the throughput performance achieved by
employing the MMSE and both the ELM receivers improved.
The ELM receivers prevail its superiority over the MMSE
and the MLP receiver. The complexity of the receivers are
discussed in the following subsection.

1) COMPLEXITY OF THE RECEIVERS
Following the expression, KNk (3N 2

TNR + 2N 2
RNT − N 2

R +
2
3N

3
T + NTNR), the MMSE receiver requires a total of

12661760 mathematical operations for symbol detection,
whereas, 2KNk (La2NR+LaLb+LbLc+LcLd+Ld2NT ) math-
ematical operations are required for trained MLP receiver.
Here, La = 64, Lb = 32, Lc = 16 and Ld = 8. Therefore,
a total of 20951040 mathematical operations are required
for MLP receiver. The expression for complexity of the
trained ELM receivers is KNk (2LNR +L+ 2LNT −NT ). The
traditional ELM receiver performs 8169600 mathematical
operations at all SNR values, whereas, at SNR values above
28 dB (Fig. 4), the I-ELM receiver performs less number
of operations with 39 neurons (lowest value of L), which
is 4977600. This demonstrates that the I-ELM receiver has
comparable throughput to the traditional ELM receiver while
also reducing computational complexities.

VI. CONCLUSION
In this paper, an I-ELM-based receiver is proposed for the
RIS-muMIMO system. Based on the provided specifica-
tions, this ML architecture adjusts the hidden layer size and
minimizes the overall performance error. For a given RIS-
muMIMO system, the I-ELM receiver is compared to the
MMSE, traditional ELM and MLP receivers in terms of
throughput. Performance evaluation is done for different BS
antennas and RIS elements. In all cases, the I-ELM receiver
performs better than MMSE and MLP receivers.
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