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ABSTRACT Training deep learning-based image segmentation networks require large number of samples
of adequate quality. However, obtaining large number of samples is not possible in certain domains. Recent
approaches use augmentation and transfer learning techniques to overcome small sample size. Augmentation
techniques are known to introduce noise to the dataset, while transfer learning approaches may fail if the
existing dataset is novel to deep learning algorithms. This study investigated how four deep learning-based
image segmentation networks learned and adapted to identify epiphytes when trained with fewer image
samples (n = 132) of heterogeneous quality without transfer learning and data augmentation. Encoder-
Decoder with skip connection (Unet), Deep Residual (DRUnet), Vision transformer (TransUnet), and Con-
ditional Generative (Pix2Pix) represent different generations of deep learning networks. The segmentation
performance of the trained models was evaluated by computing the Jaccard score (IoU) for predicted labels
for test images. Test images (n= 20) with heterogeneous quality were evaluated by categorizing them into six
categories based on target occupancy and lighting conditions. Results from this study showed that among the
four networks, predicted images from the TransUnetmodel achieved high average Jaccard score of 0.78. Role
of additional layers apart from Unet was important for accurate localization and context understanding of the
target plants. However, these networks misclassified visually similar plants as target plant. The transformer
and attention layers in TransUnet showed significant contribution towards improvement in localizing target
and understanding context in images with varying quality. TransUnet can be used for segmenting target plants
when fewer training samples are available. The presence of Unet based encoder-decoder in TransUnet is well
contributing for deriving good features from minimum samples.

INDEX TERMS Image segmentation, less training samples, image quality, encoder-decoder networks, deep
neural networks, vision transformer.

I. INTRODUCTION
The deep learning (DL)-based segmentation approaches have
proven their capability for various applications in different
domains [1], [2]. Segmenting target from an input image
requires a good understanding of the context and precise
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localization of the target [3]. In DL-based solutions, the
expressive space of the model must be large enough to adapt
well and learn the relevant information.

Data collection in some domains is complex and expen-
sive, making it challenging to build high-quality annotated
dataset in sufficient quantity. In domains like environmental
science, certain events are observed very rarely. For exam-
ple, collecting images of rare species/animals resulting in

47040
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3944-8155
https://orcid.org/0000-0003-3745-6944
https://orcid.org/0000-0003-3547-9464
https://orcid.org/0000-0003-3835-1079


V. V. S. Variyar et al.: Learning and Adaptation From Minimum Samples With Heterogeneous Quality

fewer samples. This poses challenges for training and testing
DL-based networks. The limited sample problem is encoun-
tered in domains such as medical imaging and environmental
science.

Epiphytes are plants growing in areas like tree trunks and
branches. Access to these plants is possible by manually
climbing trees or constructing watch towers / temporary
structures next to the tree/target. This conventional mode of
data collection is risky, time-consuming, and expensive, and
therefore results in fewer samples. A previous study reported
the use of unmanned aerial vehicles (UAV’s) or drones for
imaging epiphytes [5]. Drones can reduce the risks during
data collection and collect relatively more samples compared
to manual methods. However, capturing epiphyte images
using drones may compromise the quality of the dataset col-
lected since they are flown inside the canopy. Sajithvariyar et
al. reported the challenges and opportunities while flying the
UAV inside the canopy are reported in the following work [5].
Due to a host of reasons, only 132 images of heterogeneous
quality were suitable for segmentation.

Data augmentation [6] and transfer learning techniques [7]
are recommended to overcome the problem of small data
samples in deep learning applications. However, geometrical,
and color-space transformations add noise and bias to the
training images, whichmay not appear in test images [6]. Fur-
ther, augmenting techniques require resources such as addi-
tional memory, space, and processing time. Transfer learning
is a technique to imbibe knowledge from the source domain
to a target domain. The knowledge is derived from data
trained using DL architectures. It is always recommended to
do transfer learning if source and target domain data have
similar features; else, the improvements are less significant
in models [7]. There are CNN based semantic segmentation
networks capable to reduce the utilization of computational
resources while training and inference. The semantic seg-
mentation networks named FU-net [27] and REF-net [28]
specifically designed to deploy applications in hardware’s
with limited computational resources. Eventhough these net-
works are computationally cheap, these networks are trained
on large data samples. Apart from the above mentioned net-
works another network named AEDCN-net [29] claims low
computational time and high accuracy. The current study is
mainly focused on capability of networks to deals with min-
imum training samples rather than optimizing computational
resources during training and inference.

The epiphyte dataset is novel to the deep learning algo-
rithms. To the best of our knowledge the epiphyte dataset
is not introduced to deep learning algorithms for any image
processing application. The plant dataset collected using
unmanned aerial vehicles or hand held cameras are widely
used for detection of diseases, analyzing the plant growth
and estimation of yields [30], [31]. The semantic plant
segmentation introduced by segmentation introduced by
Sakurai et al. used a two-step transfer learning method.
A network is initially trained with dataset which contains
maximum images from plant domain and later these weights

are used while training the dataset with less samples. This
study reports that the source and target domain in this study
during transfer learning is having very high correlation which
helped to retain better weights during transfer learning [32].
The data collection using UAV in agriculture applications for
crop growth analysis, yield estimation and disease detection
requires the UAV to fly above the plant/crop in an open
field. The challenges while flying UAV’s inside the canopy
are not applicable in open field survey except the lighting
conditions [33]. Hence the data collected from these domains
will have good quality dataset with reasonable sample size
for training a DL model.

Selecting an optimal DL network for segmenting targets
with fewer training samples without transfer learning and
augmentation requires an effective way of localizing and con-
text understanding while training the deep neural network.
Several DL-based networks are available for segmenting
targets in images, and comparative analysis to evaluate the
performance of few widely used ones is needed.

The fully convolutional neutral (FCN) network pro-
posed by Long et al. [8] localized targets in the images
using skip connections that combine lower and coarse lay-
ers that take global structure into account. The encoding
(or down-sampling) and decoding (or up-sampling) steps in
an FCN network localize the target and capture the context
respectively. Studies have reported that FCN-based networks
with skip connections ensure precise target localization with
small number of samples [8]. However, studies have also
reported that due to the large size of the filter, some con-
text information is lost during propagation in the decoding
steps [8].

Ronneberger et al. introduced Unet for localizing and
simultaneously capturing the context from small number of
samples [3]. The large number of feature channels between
each up-sampling step enables Unet to preserve context. Fur-
ther, Unet can accurately predict border pixels usingweighted
loss to distinguish the border pixels. Several studies have
reported Unet’s ability to predict target class in various 3D
medical image segmentation applications [9], [10], [11], [12],
[13].

Unet’s encoder-decoder combination has been combined
with other DL architectures to improve their segmenta-
tion ability. Presently many DL architectures have Unet’s
encoder-decoder for completing their down-scaling and up-
scaling data during the training stage [14].

DRUnet has a similar encoder-decoder structure to Unet,
with few components derived from RestNet and DenseNet.
DRUnet alters the usual Unet encoder path with further con-
catenation between input and output and decoder blocks with
1 × 1 convolution to reduce the input dimension. DRUnet
is efficient in back propagation of gradients by aggregating
feature maps by additional connection between the first and
last Conv-BN layers [15].

Recently there are neural networks developed to train in
an adversarial fashion. The adversarial trained networks are
capable of image generation, which penalizes for an objective
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function [16]. This competitive mode of training the net-
works allows better adaptation and learning while building
the model. Generative Adversarial Network (GAN) algo-
rithms use generator (Unet) and discriminator networks for
adversarial training and are used for various image segmen-
tation tasks [17], [18]. Pix2Pix is a GAN algorithm that is
known for its image-to-image translation with fewer training
samples [20]. GAN networks used for document image bina-
rization in which pixels in an image are classified as either
foreground or background [18]. This process of classification
can be challenging when it deals with degradation and noise
in the images. Epiphyte segmentation can be challengingwith
complex background with high similarity between the target
(epiphyte) and background (other plants and trees) classes.

The limitations in CNN based neural networks for vision
applications [21], [22] are addressed in attention-based trans-
former networks [23], [24]. TransUnet uses transformer
networks with self-attention mechanisms to overcome the
limitations while modelling long-range relations among the
data [25]. However, the transformers lack target localization
due to 1D operations on the sequence of information extracted
from the input data. TransUnet feeds the input images to a
Unet encoder for extracting features, which are then fed to the
transformer blocks as a sequence of embeddings. The output
from the transformer blocks are passed to Unet decoder,
which upsamples the output from the transformer block and
combines the low-level information from the encoder blocks
through skip connections. The unique combination of Trans-
former and Unet decoder makes it a unique network.

The objective of this study is to evaluate the ability of
4 commonly used DL-based networks to learn from rela-
tively fewer samples without data augmentation or transfer
learning techniques. In this study, we analyzed the learn-
ing and adaptation of four segmentation networks having
Unet as the encoder-decoder unit. For this study, we selected
three DL networks (DRUnet, Pix2Pix, and TransUnet) that
incorporate Unet based encoder-decoder and compared their
performance to the original Unet. Our assumption is that
presence of Unet and contributions from additional layer in
each network will ensure precise localization and context
understanding from minimum training samples with hetero-
geneous quality. All four networks are trained to build an
epiphyte segmentation model. The input to the trained model
is an epiphyte color image; the output will be a segmented
mask with target and background classes separated. All four
networks are trained on the same training images and eval-
uated on the same test images. The learning and adapta-
tion of the four networks are analyzed using the validation
loss and accuracy over training iterations. The segmenta-
tion performance of each model derived from 4 networks is
quantitatively analyzed using the Jaccard Score [26]. The sig-
nificant contributions and scope of this study are limited to the
following.

• Analyzing the learning and adaptation of each network
with limited samples for training and heterogeneous
quality.

FIGURE 1. a) The epiphyte input image b) The annotated image of
epiphyte image where target is highlighted in red pixels and background
in black pixels.

• We are exploring the ability of Unet to deal with
minimum sample size, precise localization and context
understanding for epiphyte data.

• Influence of Unet in DRUnet, Pix2Pix and TransUnet to
deal with minimum training samples, precise localiza-
tion and context understanding for epiphyte data during
inference.

• Examine the individual contributions of 4 networks apart
from Unet layers, instead of their unique structure and
learning mechanism while training with epiphyte data.

• Identify the capability of 4 networks to deal with the
heterogeneous quality in test set.

The rest of the study is organized as follows. Section II
details the epiphyte dataset used in this study. Section III
gives the details of the four networks used for segmentation,
and their training strategy and section IV gives the segmen-
tation performance of the model derived from 4 networks
and their corresponding quantitative performance compari-
son. The potential of each model to deal with test images of
heterogeneous quality is analyzed by dividing the test images
into six categories.

II. THE EPIPHYTE DATASET
This study is performed on an epiphyte dataset which con-
sists of 132 target species images captured using a drone.
The input images hold a dimension of 512 × 512 × 3. The
current study concentrates on a single epiphyte species named
Warahuai Kupperina captured from the Costa Rica reserve
forest [4], [5]. The quality factors of the epiphyte images, like
lighting conditions, the distance at which the drone captures
the images, and the occupancy of the target and background,
vary throughout the image samples. The various deep neural
architectures used in this study follow a supervised learning
method that requires the ground truth mask for each image.
The epiphyte dataset is pixel-wise annotated into two classes
to generate the mask, composed of a target and background,
as shown in Fig 1.

A. THE EPIPHYTE DATASET QUALITY
The epiphyte dataset collected is composed of images with
varying quality. The epiphytes are plants that grow on top of
trees and high altitude places. It will be challenging to collect
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FIGURE 2. The epiphyte images of varying quality used while training and
testing the models.

the images with drones uniformly. The dataset is composed of
images with varying lighting conditions and distance at which
the images is captured as shown in below Fig 2. The deep
learning algorithms find it challenging to train a model with
a dataset consisting of fewer samples and more variations
among the images.

III. DEEP LEARNING MODELS FOR SEGMENTATION
The proposed study implemented the 4 deep learning archi-
tectures to train an epiphyte segmentation model. The 4 net-
works chosen for this study are Unet [3], DRUnet [15],
Pix2Pix [20] and TransUnet [25]. The selected deep learn-
ing architectures are coming from different generations with
unique layers and training strategy. From 132 image samples
107 images are used for training, 5 images for validation
and 20 images are used for testing the model. The valida-
tion images for TransUnet network is randomly chosen from
112 training samples during training. The test images across
the models are made common to compare the performance of
each model. The overall training and testing of the 4 models
for this task is depicted in Fig 3. The 4 networks shown in
Fig 3 is having some similarity by adopting a common
encoder-decoder layers and skip connections with in this lay-
ers. The encoder-decoder layers present in DRUnet, Pix2Pix
and TransUnet follows an original Unet based encoder
decoder structure and skip connections. Apart from encoder
decoder layers the 4 networks are having additional layers.

TheDRUnet follows aUnet structurewith additional layers
derived from Densenet, Resnet and feature map aggregation
blocks which eliminate gradient decent problems while back
propagating.

The adversarial mode of training in Pix2Pix generative net-
work makes it different from other networks training strategy.
In Pix2Pix the Unet encoder-decoder is only used in generator
network to produce fake samples.

Among the 4 networks TransUnet is having a more addi-
tional layers compared to other 3 networks. In TransUnet

the features from Unet encoder layers are vectorized in to
patches of size 16 × 16. These patches are projected into a
d dimensional embedding space. From the embedding space
the patches undergo a second level training in transformer
blocks which contains Multihead Self-Attention (MSA) and
Multi-Layer Perceptron (MLP) blocks.

The output from transformer blocks are given to Unet
decoder to produce the final output. The Unet, DRUnet,
Pix2Pix and TransUnet implemented in this study follows a
similar architecture as given in their original implementation.
The network parameters of 4 networks while training are
given in Table 1.

A. UNET FOR EPIPHYTE SEGMENTATION
Unet is a state of the art segmentation network widely used
for medical image segmentation for limited training samples.
The unique orchestration of convolutional layers and skip
connections during encoding and decoding in Unet makes
it different from other networks. The unique property of
Unet to deal with minimum samples made it combined with
other networks to solve similar problems.Many deep learning
models used Unet as the feature extraction network in initial
stages to derive robust features for segmentation task. It is
worth investigating how epiphyte segmentation is benefitted
when Unet is combined with other networks with different
training mechanisms.

The proposed study trained an epiphyte segmentation
model only with Unet and compared the segmentation scores
with the other three methods. We implemented the original
Unet implementation proposed by olaf [3] for the epiphyte
segmentation task. These inferences will help to understand
the opportunities and challenges of epiphyte segmentation
techniques used in this study with challenges involved in the
dataset and minimum training samples.

B. DRUnet FOR EPIPHYTE SEGMENTATION
It is worth looking of improvements of segmentation when
we have additional layers along the Unet layers. The quality
of output produced by network depends on the coarser layers
which utilize the fundamental features derived in the initial
layers. DRUnet is enhanced version of Unet with additional
layers. DRUnet is novel with unique capability to produce
minimum trainable parameters. The DRUnet is primarily
designed for a medical image segmentation application [15].
The DRU-net follows a fundamental Unet architecture with
additional Batch normalization operation after every layer.
These additional changes help to faster convergence and sta-
bilize network learning.

The DRUnet makes use of the property from densenet,
and the residual network makes it ideal for robust image
segmentation. The DRUnet network architecture used in this
study is depicted in Fig 4. The Unet backbone of this network
is well known for training with limited samples and less
training time. The epiphyte data set used in this study has
challenges like, limited training samples, high pixel overlap
between target and background to be segmented, the size and

VOLUME 11, 2023 47043



V. V. S. Variyar et al.: Learning and Adaptation From Minimum Samples With Heterogeneous Quality

FIGURE 3. The overall training process of the 4 models on epiphyte dataset. All the 4 architectures have common encoder-decoder structure and skip
connections.

position of epiphytes in drone images and lighting conditions.
The DRUnet derives the property of Resnet and Densenet
in the encoder-decoder blocks to get good features with
minimum samples and less training overhead. In DRUnet,
the additional connections between the first convolution and
batch normalization operations to the last convolution –Batch
normalization output with a summation operation for feature
map aggregation are implemented.

This addition is essential for network training with limited
samples like epiphytes to avoid gradient decent problems
while back propagating from current to previous convolu-
tional blocks. The 1×1 convolutional blocks are implemented
in decoder blocks instead of cropping the output from previ-
ous layers reducing information loss in the feature maps. This
additional modification in network contributes well while
segmenting epiphytes where we have high pixel intensity
similarity between target and background.

C. Pix2Pix FOR EPIPHYTE SEGMENTATION
The generative models composed of generator and discrimi-
nator network in adversarial settings grabbing high attention
in many computer vision application. The generative models
are proven for image generation with limited training samples
and extensively used as data augmentation technique. In this
study we used a variant of GAN named Conditional-GAN

primarily introduced in an image to image translation appli-
cation named Pix2Pix [20]. Unlike the conventional GANS
the conditional GAN will keep a copy of the image to be
generated as reference to the generator network.

The Pix2Pix network illustration is given in Fig 5. The
conditional GAN network used in this study having Unet
with skip connections as the generator network and CNN
network named patchGAN as the discriminator network. This
Conditional GAN with Unet as the image generator makes it
ideal to deal with limited training samples. We are also inves-
tigating the capability of this generative models to segment
epiphyte when we have varying target(s) size /occupancy,
lighting conditions and high pixel level similarity between
two subjects to be segmented.

The generative models learns the distribution of the data
to be generated through an adversarial designed objective
functions with two loss functions for generator and discrimi-
nator. These networks not only learn the mapping from input
image to output image, but also learn a loss function to train
this mapping. This will enforce the network to learn data
distribution faster compared to other CNN based sequential
training techniques for segmentation.

The pix2pix architecture implemented for this study has
Unet as the generator network and a convolutional PatchGAN
classifier as the discriminator network. The epiphyte dataset
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TABLE 1. The hyper parameters and their settings for the 4 networks
used for epiphyte segmentation.

are stored in pairs were each input has its corresponding label
image or known as target image. The generator will take
the epiphyte color image as the input. During training each
target generated from the generator is compared with ground
truth target image and output from generator is transferred to
discriminator network for computing the loss. The training
procedure of the pix2pix network is listed below

• For each input image the generator will generate output
image.

• The discriminator receives the input image and the
generated image from previous step as the first input.

• The second input to the discriminator is the input image
and its ground truth image.

• Then, it will compute the generator loss and the dis-
criminator loss.

• Then, calculate the gradients of loss with respect to
both the generator and the discriminator variables
(inputs) and apply those to the optimizer.

D. TransUnet FOR EPIPHYTE SEGMENTATION
TransUnet, the visual attention model has proven their capa-
bility in medical image segmentation tasks [25]. The CNN
based state of the art architecture like Unet is having intrinsic
locality of convolution operations, U-Net generally demon-
strates limitations in explicitly modelling long-range depen-
dency in the features derived from input images. TransUNet,
which merits both Transformers and U-Net, as a strong alter-
native for medical image segmentation. On the one hand,
the Transformer encodes tokenized image patches from a
convolution neural network (CNN) feature map as the input

FIGURE 4. DRUnet architecture implemented for epiphyte segmentation
in this study [15]. a) Residual block. b) DenseNet c) The encoder-decoder
blocks in DRUnet.

FIGURE 5. Training a conditional GAN to map epiphytes image to
segmented mask. The discriminator, D, learns to classify between fake
(produced by the generator) and real {Mask, Epiphyte image} tuples. The
generator, G, learns to fool the discriminator.

sequence for extracting global contexts. On the other hand,
the decoder up-samples the encoded features combined with
the high-resolution CNN featuremaps to enable precise local-
ization. Considering the challenges with the epiphyte dataset,
the network should be able to understand the global context
and further enable precise localization of the target in the
input image. The TransUNet is a hybrid architecture with the
UNet encoder connected with Transformer layers as shown
in Fig 6.

The encoder part in the UNet down samples the input
image using filters that create feature maps. The Transformer
layers convert these feature maps from the encoder into vec-
torized embedding’s using 1 × 1 patches. This study uses a
patch size of 16 × 16. Here the vectorized patches are pro-
jected into a d-dimensional embedding space using a train-
able linear projection. A positional embedding is also added
to this to learn the position of the patches. These embedding’s
are later given to the Transformer layers that are connected
in-between for the feature learning. The Transformer encoder
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FIGURE 6. Training a) The components of transformer layer. b) The TransUnet layers used for Epiphyte segmentation [25].

consists of Multihead Self-Attention (MSA) andMulti-Layer
Perceptron (MLP) blocks. In this study, 12 such layers
of Transformer blocks are stacked for learning the hidden
features.

The overall architecture of the TransUnet used in this study
is depicted in Fig 6. The number of blocks can be considered
as a hyper parameter to improve the model performance.
The input images converted to a sequence of patches will
help the network to learn robust features even though the
epiphyte occupancy vary in drone captured images. The study
also analyses the model’s performance while we have fewer
samples for training. The capability of TransUnet to preserve
global context and merge high-level features while decoding
to preserve local information motivated us to use this model
for segmenting a challenging dataset like epiphytes.

IV. RESULTS AND DISCUSSION
The primary challenge with given dataset is fewer training
samples and heterogeneous quality. The learning and adap-
tation of these networks are significant if the model is able
to achieve ideal training with high validation accuracy and
low validation loss. Apart from learning and adaptation, the
model trained with optimum weights is capable to precisely
localize the target and preserve the context under varying
quality in test images. The presence of Unet in 3 networks
and model trained out of only Unet will reveal the signifi-
cance of additional layers in other 3 models and capability of
Unet to deal with fewer training samples. The quantitative

performance evaluation of the models generated out of 4
networks for epiphyte segmentation are done using the stan-
dard segmentation scores Jaccard / IoU [26]. Apart from the
quantitative analysis, the performance of the models while
qualitative inferences on the trained models help to analyze
how well each model is adapted to deal with challenges in
dataset.

A. LEARNING AND ADAPTATION OF SEGMENTATION
NETWORKS
The validation loss, accuracy and training loss and accuracy
plots obtained by training the four networks for 500 epochs
are presented in Fig 7.

The Pix2Pix has a different implementation of loss func-
tions hence those plots appear different than the ones gen-
erated from the other three networks. Apart from the loss
and accuracy curves, testing with images of varying quality
are qualitatively analyzed by visual comparison with ground
truth data.

The TransUnet reports only the training accuracy and a
dedicated loss function which is combination of binary cross
entropy and dice loss. Fig 7a and 7b depict the training,
validation accuracy and training, validation loss for Unet
model. The Unet model had several fluctuations for the initial
epochs while predicting validation data. The disturbances
in Unet model settled down after 300 epochs. The spike
after 450 epoch shows poor model performance due to few
samples in validation set. The Unet model is able to achieve
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FIGURE 7. Understanding Learning and adaptation of all the 4 networks from validation accuracy and loss plots. (7a, 7b) Validation accuracy and loss
for Unet model, (7d, 7e) Validation accuracy and loss for DRUnet model, (7g, 7h) Validation accuracy and loss for TransUnet Model. The pix2pix
generator loss (7c) and the discriminator loss (7f) and the total gan loss (7i);.

around 0.97 validation accuracy and 0.05 validation loss after
training for 500 epochs.

Figs 7d and 7e plots the validation loss and validation accu-
racy of DRUnet model for 500 epochs. The validation loss of
DRUnet at 100 epoch is very high. Both the validation and
training loss settled down for DRUnet after 150th epoch. The
DRUnet achieved a minimum validation loss of 0.15 and the
highest validation accuracy of 0.95. The TransUnet training
accuracy and dedicated loss function values are shown in
Figures 7g and 7h, respectively. The performance of Tran-
sUnet has typical learning curves with perfect adaptation over
iterations. The transitions over the epoch are very smooth,
and the growth in scores over the iterations is linear. The
transitions in TransUnet loss towards the end of the iterations
are settled down, and the changes are not significant after
the 450th epoch. TransUnet achieved a highest validation
accuracy of. 97 and a minimum validation loss of 0.07 after
completing 500 epoch.

Unlike Unet models, DRUnet settled down in 100 epochs
and had fewer fluctuations after this. In Fig 7d the training
loss trend line is lying below the validation loss and in Fig 7e
the training accuracy is above the validation accuracy, this

shows the over fitting of the model and leads early decaying
of loss.

The DRUnet is a deeper network than Unet and deeper
networks over fit while training with less data samples. The
frequent spikes in Unet loss and accuracy plots indicate the
poor performance of the model for specific samples.

Among the 4 models the transunet model is having an ideal
learning curves in Figs 7g and 7h. the smooth transitions
and decaying of loss over the epochs show a good model
characteristics. the transunet implementation did not had val-
idation loss specifically, rather it had dedicated loss function
(binary cross entropy + dice loss) which resulted in training
loss and accuracy plots. In an ideal situation, both generator
and discriminator will have loss values close to each other.
The generator loss shown in Fig 7c is having very high
fluctuations and it is varying between 0.1 and 1.3. A similar
trend is repeating in discriminator loss shown at Fig 7f and
it is varying between 0.04 and 0.12. These frequent changes
in Figs 7c and 7f shows the poor performance of generator
and discriminator network in this Pix2Pix gan architecture.
The plot shown at fig 7i depicts the overall loss function
of the Pix2Pix gan architecture. the total loss value for this
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FIGURE 8. The Jaccard segmentation scores by the 4 models towards target class for 20 test images.

Pix2Pix architecture is between 7 and 15. From the learning
curves of the models depicted in Figure 7 the transunet is
having the well-trained model followed by unet which shows
average performance and poor performance. For few selected
images the drunet and Pix2Pix shows performance degrada-
tion among the 4 models.

B. TARGET CLASS SEGMENTATION PERFORMANCE
This section includes the details of the four networks and
their ability to produce accurate labels for 20 test images of
heterogeneous quality. Table 2 gives the list of images with
each category. The models were trained to generate the labels
towards two classes 1) Target class and 2) Background class,
as shown in Fig 1. In the predicted images generated by the
models, the target and background classes appeared as white
and black pixels respectively.

The Jaccard score is computed between the ground truth
mask generated by the expert and the predicted mask gener-
ated by a trained model. The Jaccard scores range between
0 and 1, a value close to 1 indicates high similarity, and
0 indicates the least similarity between the ground truth and
predicted masks.

The bubble plot given in Fig 8 depicts the jaccard
scores achieved by the various models while segmenting

TABLE 2. The characteristics of test images among 20 test images.

the epiphyte images. Each trained models can be uniquely
identified by the size and color of the bubble. The overlap
between the bubbles in the plot indicates a similar jaccard
scores achieved by two or more models for the same test
image. The bubbles are made transparent such that if multiple
models shows a similar performance the overlap between
different models will be visible.
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FIGURE 9. The Performance of the models for images captured close to
the target epiphyte.

1) TEST PERFORMANCE FOR CATEGORY ID-1
Images in this category were captured close to the target
under good lighting conditions. Two sample images from this
category and their Jaccard scores for the target class from
each model are given in Fig 9. Based on the Jaccard scores for
images taken close to the target, all models are well trained
to segment the target except Pix2Pix model.

Scores from the Pix2Pix model were affected by the false
positives, the edges of the target and the small separation
among the leaf of the target plant are not well preserved. Unet
can be used when majority of the images contain the target in
close proximity and good lighting conditions. TransUnet and
DRUnet was also able to learn and well adapt for these types
of images.

The overlap between the bubbles in Fig 8 shows a similar
performance among the models for certain test images. For
the remaining three models except Pix2Pix, performance for
image 18 shows high overlap and the TransUnet scores are
slightly higher.

A similar performance by 4 models is repeating for
image number 11. These images are captured close to
the target under good lighting conditions. Since all the
models could predict images under Category ID 1 except
Pix2Pix model, we recommend Unet model can be used
with less training overhead can perform well for these set of
images.

2) TEST PERFORMANCE FOR CATEGORY ID-2
Images in this category have the target farther away from
the camera and also under poor lighting conditions. This is
due to the limitations of flying drones in dense canopy. The
TransUnet outperformed all other 3 models for this category
of images. The Unet and DRUnet completely failed to predict
the target whereas Pix2Pix predictions were affected by false
positives. The sample predictions and Jaccard score from
each model is given in Fig 10.
When the drones are operating in dense canopy, it is diffi-

cult to reach near to the target to be imaged due to obstacles.
This will end up in images where the target visibility is poor.

FIGURE 10. Performance of the models for images captured far away
from the target.

The models except Pix2Pix and TransUnet completely failed
to make the predictions. The predictions made by the Pix2Pix
contains lot of false positives. None of the models except
TransUnet can guarantee a proper prediction during this sit-
uation. The TransUnet had fewer false positives compared to
other models. The predictions made by TransUnet for these
images may not preserve the proper shape and structure due
to smoothed edges.

The hidden CNN features with linear projection to trans-
formers layers as sequence of embedding’s in TransUnet
helped to acquire minute details of target while imaged from
a higher distance. For future missions, we recommend bring-
ing the drone as close to target which will make sure a
guaranteed predictions by the models. The predictions done
by TransUnet will work in images same as shown above.
The TransUnet cannot guarantee proper predictions beyond
this distance. The predictions made by TransUnet in higher
distance may have smoothed edges with less target details.
The presence of Unet encoder-decoder and Transformer lay-
ers in TransUnet helped to localise the target precisely and
retain the context. This shows that TransUnet is able to learn
and adapt for these test cases after training with minimum
samples.

3) TEST PERFORMANCE FOR CATEGORY ID-3
Images in this category had other vegetation that appeared
similar to the target plant. The performance for these images
are shown in Fig 11. The difference in Jaccard scores among
the models for these category of images vary less. All 4 mod-
els had uniform performance for this category of images.
The false positives pixels due to visually similar background
is high from all the models. Compared to other 3 models
TransUnet had less false positives pixels. This shows that
all the four models learned the shape characteristics of the
target plant very well which caused the false positives from
similar shape plants. The Unet layers in attentional models
helped to localise the target plant even though the background
vegetation’s having visually similar plants. The better per-
formance of TransUnet also shows its capability of context
understanding with effective use of embedding’s processed
at patch size of 16 × 16.
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FIGURE 11. The Performance of the models for test images where target
occurrence with visually similar plants.

FIGURE 12. Performance of the models for test images where target is
partially visible.

The identification of epiphytes in species level will be chal-
lenging for all 4 models under this situation. We recommend
family level identification rather than species level in test
images where target species appears with visually similar
species from same family.

4) PERFORMANCE FOR CATEGORY ID-4
The images in this category are poor illuminated. The poor
illumination is due to presence of target in dense forest which
blocks the sunlight and shades from nearby vegetation’s.

Fig 12 shows the performance for these category of images.
Unet and DRUnet performed well for target imaged closer
and under poor lighting (Fig 12 rows 2 & 3). The images
with poor illumination and target farther was predicted well
by TransUnet model (Fig 12 row 1).

We recommend Unet / DRUnet when test images are cap-
tured close to target with poor illumination. The TransUnet
is not able to make good predictions compared to Unet and
DRUnet in this scenario. The low contrast images cause the
patches generated by the TransUnet to have uniform infor-
mation across all patches. The TransUnet is processing all
patches in 16 × 16 size. Whereas Unet and DRUnet hav-
ing different size of convolution kernel enables identifying
target when the contrast is uniform in images. TRansUnet is
highly recommended when you have target captured farther

FIGURE 13. The Performance of the models for test images where target
under poor lighting / under shade. Row 1- Test image 5 under poor
illumination and imaged from higher distance. Row 2 and 3 contains test
image 7 and 14 under poor illumination.

away from the camera under poor / good lighting conditions.
Enhancing these images prior to testing may introduce noise
which may not appear naturally.

5) PERFORMANCE FOR CATEGORY ID-5
The images in this category had the target partially visible
in the frame. The Unet and DRUnet equally performed for
these images and followed by TransUnet. Compared to other
models Pix2Pix model had lowest Jaccard scores. The per-
formance of the model for Category ID 5 where the target is
partially visible in the test images are reported in Fig 13.

When the target is partially visible the image contains small
portion of the target and some of the relevant informationmay
not be visible. In such images, when the convolution filter
found it difficult to discriminate the target class from nearby
pixels as they have very small region belongs to target class.

The test images considered under partially visible tar-
gets had images where 90% of the target is not visible
(Fig 13 –Row1) and target with 50 % visible. While the
drones fly in dense canopy this may occur due to other
vegetation’s. The highest score for this first image in Fig 13
is 0.37 achieved by Unet, but it failed to identify the small
target present in the branch.

The DRUnet had more false positives. The TransUnet was
not able to predict the target with poor visibility whereas,
it was able to identify the small target present in the branch
and a visually similar target from same family. This shows the
potential of TransUnet to identify targets away from camera if
it is fully visible.We recommend in future missions the target
occupies as much of the frame as much possible. If the target
visibility is more than 50 % in the images except pix2pix all
the models will have reasonable performance.

6) PERFORMANCE FOR CATEGORY ID-6
The images in this category were captured under good light-
ing conditions and at an optimum distance. A few sample pre-
dictions from this category are shown in Fig 14. In category
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FIGURE 14. Performance of the models for test images captured at
optimum distance under good lighting conditions.

ID 1 the target images is fully covering the frame where as in
this we will have some portion of the background vegetation
also visible. For this category the TransUnet well performed
and followed by Unet and DRUnet. The Pix2Pix model is
least performed compared to other 3 models. The predictions
made by TransUnet is having very good edge information’s
and also preserved the separation among the leaves compared
to Unet and DRUnet.

From the above mentioned inferences after training the
4 segmentation networks, comparing across all 6 categories
of test images, TransUnet model showed consistently higher
performance in comparison to the other 3 models except for
categoires III and V. In Category I and VI Unet outperformed
DRUnet and equally performing with TransUnet which could
result in saving time during the training step.

The learning and adaptation of the Unet and DRUnet are
consistent for categories I, IV and VI. In the TransUnet, the
features are processed in a Unet encoder through Transformer
blocks as embedding. This resulted in good quality labels
from the TransUnet decoder with higher Jaccard scores for
the target class. Presence of certain elements of Unet in
DRUnet and TransUnet contributed to the localization and
context understanding of the target. However, the adaptation
and learning of Pix2Pix were not good with fewer images of
heterogeneous quality. This caused the Pix2Pix to underper-
form across all categories of test images. The CGAN based
Pix2Pix will not be useful when there are fewer images with
heterogeneous quality.

V. CONCLUSION AND RECCOMENDATIONS
Segmentation scores obtained in this study show the potential
of Unet and Unet-derived networks to identify target plants
when the training samples are relatively less. TransUnet
outperformed in comparison to Unet and DRUnet in terms
of segmentation scores. The additional layers in TransUnet
contributed to better localization and context understand-
ing. However, all four networks struggled to correctly iden-
tify the target plant when similar vegetation was present
in the images. The optimal performance of Unet across all

categories make it ideal for user with minimal hardware
resources for training. The TransUnet ability to localize pix-
els with patches and into embedding’s is highly effective
for dataset with similar characteristics. However, networks
derived from CGAN such as Pix2Pix might not be suitable
for identifying target class when the number of images is low
and of heterogeneous quality. The individual network layers
among 4 models can be considered while building a hybrid
model. The post training preprocessing pipelines are possible
to enhance the output received from individual models. The
individual layers contributions from current networks can be
considered for future networks. The effect of augmentation
and transfer learning to resolve less data sample can be con-
sidered in future study. The real-time implementation of this
application inUAV embedded platform can consider modified
versions of Yolo architectures which can deal with minimum
training samples and achieve low latency and high throughput
in predictions.
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