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ABSTRACT Estimating visual odometry in dynamic environments is a challenging problem, as features of
moving objects prevent accurate image matching. Typical approach to deal with dynamic environments is to
remove features of moving objects. However, this results in a lot of information loss and makes it impossible
to use static parts of moving objects that could be fully utilized for image matching process. To address
this issue, we propose a geometrical inference approach that utilizes the static parts of moving objects and
background to achieve accurate feature matching. Moreover, we propose the concept of matching confidence
that is calculated by comparing the squared residual motion likelihood with the chi-square distribution. For
each frame, the geometric model and the semantic model are selected according to the proposed confidence,
so that visual odometry could be estimatedmore accurately. Our algorithmwas evaluated onRGB-D datasets,
including dynamic environments. The results show better performance than prior algorithms.

INDEX TERMS Visual odometry, robotics, computer vision, mobile robots, SLAM.

I. INTRODUCTION
Accurate odometry estimation is one of the fundamental tech-
niques for Simultaneous Localization AndMapping (SLAM)
and path planning as it helps determine the location of a
mobile robot. In particular, odometry estimation using visual
information has been studied extensively because cameras
provide abundant information about their surroundings and
are reasonably price. Many algorithms [1], [2] have been
examined for static environments and have been demon-
strated in various areas. However, in environments with mov-
ing objects, static constraints are not maintained by these
dynamic objects. Despite optimization techniques and outlier
removal, performance degradation by dynamic objects has
not been significantly improved.

Many algorithms have been proposed for dynamic envi-
ronments. Some of these algorithms [3], [4], [5], [6], [7]
use neural networks to recognize predefined dynamic objects
(such as people, bicycles, and cars) and additional dynamic
objects (such as chairs or books carried by people) based on
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geometric constraints. In the pre-processing step of tracking
in SLAM, the recognized dynamic objects are removed as
outliers. Other recent algorithms [8], [9] detect the semantic
type of objects based on neural networks and try to use
some movable objects if they are stopped. However, these
methods do not distinguish between static and dynamic parts
of moving objects, which leads to errors in pose estimation.
Furthermore, other algorithms [10], [11], [12] attempt to
exploit the object parts did not try to consider the confidence
of their geometric inference, which can sometimes lead to
estimation failures.

We propose a RGB-D Visual Odometry (VO) algorithm
for accurate estimation of camera motion in dynamic envi-
ronments. The proposed algorithm uses a combination of
the Conditional Random Field (CRF) model, deep neural
networks, and scene flow to recognize static objects and static
parts present in dynamic objects such as Fig. 1. The proposed
algorithm recognizes static objects and static parts present in
dynamic objects and serves as a pre-processor of keypoint
extraction for VO. It calculates the geometry model dynamics
probability, which means that a particular part in the scene is
moving, as a geometric inference using geometric constraints
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FIGURE 1. Framework of SP-VO. The proposed algorithm calculates the
scene flow from the RGB and depth images in consecutive scenes and the
geometry model dynamic probability. We computed the confidence Cg for
that probability. If Cg is greater than τc , we use the CRF model to
recognize the dynamic part. In the opposite case, we use DeepLab V3 to
recognize it. The dynamic part is excluded from VO.

based on scene flow. Furthermore, the proposed algorithm
obtains the confidenceCg about the inference. IfCg is greater
than threshold τc, the probability is modified using the CRF
model. In the opposite case, we calculate the semantic seg-
mentation dynamic probability using the semantic segmenta-
tion model DeepLab V3 [13]. Keypoints are extracted only
from the remaining parts with low probability of motion, and
used for VO.

Proposed algorithm has the following main contributions:
• It uses more keypoints than prior algorithms, which use
only static parts within static objects. This contributes to
estimating an accurate camera relative pose.

• Unlike prior algorithms, it recognizes pixel-wise
dynamic parts based on geometric inference and
employs the CRFmodel. By using CRFmodel, our algo-
rithms is robust for recognizing dynamic parts around
boundaries between objects or occluded dynamic ones
in consecutive scenes.

• It calculates the confidence of the geometric inference
and recognizes the dynamic parts using a semantic
segmentation model if the confidence is too low. The
confidence calculation makes us deal with motion blur
caused by fast movement of the camera and uncertainty
of relative pose estimation.

The rest of this paper is structured as follows: Section II
explains many visual SLAM algorithms that are robust to

dynamic environments and how moving objects are used for
VO in other algorithms. Then section III interprets process-
ing of the scene flow to recognize static parts inside the
objects and how to employ these parts for VO. Subsequently,
section IV provides evaluations of the proposed and prior
algorithms and demonstrates the reason for the performance
improvement with additional experiments. Section V dis-
cusses our algorithm, its performance, limitations, and future
work. Section VI presents the conclusion and future plans.

II. RELATED WORK
A. DYNAMIC SLAM BASED ON GEOMETRIC METHODS
FOR VO
Before deep neural network models are used to get semantic
information, many SLAM algorithms [14], [15], [16], [17]
were developed toward dynamic environments. D.-H. Kim &
Kim [14] proposed an algorithm that estimates camera pose
and nonparametric background model by calculating energy
function from continuous RGB-D images. The algorithm
was combined with DVO SLAM [1] as a preprocessor. For
calculating a camera ego-motion and detecting a dynamic
object, Sun et al. [15] performed a particle-based tracking and
MAP algorithm using perspective transformation between
continuous RGB-D images. However, the algorithm was able
to find only one dynamic area within the scene. Moreover,
because of inaccurate image segmentation running K-Means,
there was a limitation in that it could recognize incorrect
dynamic areas. Li and Lee [16] found correspondences of
depth edge points between continuous images and estimated
camera pose toward dynamic environments. Wang et al. [17]
clustered 3D points calculated by RGB-D camera to areas
using K-Means and calculated the change in the number of
inlier keypoints in the areas with epipolar constraint between
consecutive scenes. The areas with small numbers of inliers
were regarded as dynamic ones. Xu et al. [18] constructed
triangles using features and calculated whether the features
composing the triangles were dynamic by computing the
changes of the triangles between keyframes.

There were some algorithms [10], [12], [19], [20], [34]
using optical flow to detect dynamic parts. Namdev et al. [20]
calculated the motion potential of scene using optical flow
of mono camera images. The motion potential contributed to
detecting dynamic parts of the image by using graph-based
clustering. Alcantarilla et al. [10] estimated scene flow of the
3D points from optical flow and calculated residual motion
likelihood considering noise of stereo camera. Keypoints
extracted in areas of low likelihood were used for SLAM.
Jaimez et al. [11] ran geometric clustering using K-Means in
an RGB-D scene and separated the scene into regions as rigid
bodies. They determined whether each region is static using
a scene flow. The static ones were applied as background to
estimate camera poses. Hempel and Al-Hamadi [12] gener-
ated a pixel-wise dynamic segment mask by using optical
flow and homography matrix between continuous scenes.
The mask was applied as pre-processor of ORB-SLAM2 [2].
Because these algorithms based on optical flow were not able
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to deal with noise, uncertainty in boundaries of objects, and
occlusion, they had limitations on detecting dynamic parts.
Jeon et al. [34] tried to deal with noisy scenes and estimate
confidence of ego-motion using only CRF. However, when
noisy scenes persisted for a long time, the dynamic masks
created by their algorithms did not clearly distinguish the
dynamic parts.

B. DYNAMIC SLAM USING DEEP NEURAL
NETWORKS FOR VO
There were many SLAM algorithms [3], [4], [5], [6], [7]
using deep neural networks to detect and remove movable
objects for VO in dynamic scenes. DS-SLAM [3] based on
ORB-SLAM2 is a keypoint-based SLAM that recognizes
dynamic keypoints with semantic information using Seg-
Net [21] and calculates moving consistency check based
on epipolar constraint. Similarly, DynaSLAM [4] detects
dynamic objects using Mask R-CNN [22], which is the
semantic segmentation model. By calculating a depth change
of keypoints between consecutive scenes, this algorithm also
determines whether the keypoints in a scene are dynamic
ones. The object evaluated as dynamic is replaced with back-
ground image parts in image inpainting. For crowded envi-
ronments, Soares et al. [5] proposed Crowd-SLAM based on
a specialization model of YOLOv3 [23]. The SLAM can deal
with the situation when people take up most of the scene,
but frequently causes tracking lost when the bounding boxes
of people are too big to occlude the scene. For real-time
SLAM using semantic segmentation models with high time-
consuming, Liu and Miura [6] proposed RDS-SLAM. The
framework of RDS-SLAM based on ORB-SLAM3 [24] rec-
ognizes keypoints of movable objects by initializing the
moving probability of ones using segmentation results of
the models, propagating the probability to following frames.
By assigning a robust weight to keypoints of the scene,
Wen et al. [7] detected dynamic objects using Mask R-CNN
and built a map containing semantic information. These algo-
rithms use insufficient keypoints for accurate VO because
movable objects are removed in the overall SLAM process.
The performance of these algorithms also decreased when the
objects that the model can not recognize move in dynamic
environments.

Some algorithms [25], [26] did not remove dynamic
objects and tracked objects by defining the state of objects.
MaskFusion [25] is an algorithm that uses the depth infor-
mation of scenes obtained from RGB-D cameras and Mask
R-CNN to distinguish objects and track objects moving from
the background. The tracking was performed by optimizing
the geometric and photometric errors for the 3D points in the
scene. EM-Fusion [26] made a fixed-shape dynamic object
using a local volumetric signed distance function and contin-
uously tracked the dynamic objects based on the expectation-
maximization method.

Some algorithms [8], [9], [27] used movable objects for
VO when the objects do not move. Vincent et al. [8] classi-
fied dynamic objects using real-time semantic segmentation

models YOLACT [30] and YOLACT++ [31] and tracked
them using the extended Kalman filter. They classified
dynamic objects as moving or idle based on the speed of each
object. The moving dynamic objects were excluded from
the VO and loop closure detection of RTAB-MAP [32], and
the idle dynamic objects were only used for VO. However,
because the algorithm used the center point of the bounding
box obtained by the model as the state of the object, it was
significantly influenced by the recognition performance of
the model and failed to recognize the static parts of the
dynamic object within the bounding box. Ballester et al. [9]
proposed an algorithm for recognizing dynamic objects using
the neural network Detectron [33]. The algorithm included
object poses tracking algorithm, which minimizes photomet-
ric repair errors for each recognized object. In the algorithm,
the dynamic disparity and differential entropy of an object
were obtained using the tracked pose, and the object’s motion
was then evaluated. However, similar to [8], the algorithm did
not recognize the static part inside the object. Kuo et al. [27]
proposed the framework that assigns an attention weight to
semantic labels detected by mono camera, using an attention
module based on neural network for pose estimation. Cho
and Kim [28] utilized optical flow and semantic segmenta-
tion models to calculate the changes of objects that move
within a scene, and generated a dynamic mask. Kim et al.
[29] proposed the SimVODIS++ network, which utilizes
a self-supervised approach to select salient regions while
excluding moving objects.

III. PROPOSED ALGORITHM
A. SCENE FLOW ESTIMATION
The proposed algorithm applies scene flow estimation tech-
niques between consecutive scenes, as applied to the stereo
camera in [10] and the RGB-D camera in [34]. The scene
flow is a 3D vector representing the change in points between
scenes based on the coordinate system of the current scene.
This scene flow is obtained by using the coordinates of the
corresponding pixels between the scenes, which is matched
using the optical flow from the current to the previous scene.
The corresponding 3D points between consecutive scenes are
computed in (1) and (2). Scene flowM, a change between the
matched two 3D points, is computed as a 3D vector in (3).

Pt+1 =

xt+1
yt+1
zt+1

 = K−1

ut+1
vt+1
1

 dt+1 (1)

Pt =

xtyt
zt

 = R · K−1

utvt
1

 dt + T (2)

M = Pt+1 − Pt (3)

where pixel (ut+1, vt+1) in the t+1 scene is points Pt+1 in 3D
space in (1). Similarly, the pixel (ut , vt ) in the t scene corre-
sponding to (ut+1, vt+1) is point Pt in the coordinate system
of the t+1 in (2). The two corresponding points are obtained
by calculating the optical flow from t+1 scene to t scene. The
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dt and dt+1 are the depth values for the corresponding pixel
in each scene,K is the intrinsic parameters of the camera, and
R and T are the rotational and translational matrices, which
are the external parameters.

The ego-motion between scenes is estimated using key-
points belonging to the inlier for camera motion. To obtain
inliers with a small distance, which indicates that it is an inlier
point, we first calculate the Fundamental matrix between
scenes using all keypoints and obtain the Sampson distance of
each corresponding points to obtain inliers. Using a Random
Sample Consensus (RANSAC) algorithm that is robust to the
outlier, we solve the perspective n-point problem between the
inlier 3D points in the t scene and the matched keypoints in
the t+1 scene. By solving the problem, the initial ego-motion
between scenes is estimated.

B. RESIDUAL MOTION LIKELIHOOD ESTIMATION
Residual motion likelihood L is used to calculate the move-
ment of image parts in consecutive scenes from the scene
flow. The likelihood L represents the translation error of 3D
points between scenes considering sensor noise, as proposed
in [10]. The consideration of sensor noise is reflected by
using the Mahalanobis distance for 3D points in (4). The
covariance6SF of scene flow is obtained from the covariance
matrix SSF of the sensor and Jacobianmatrix JSF of the sensor
parameters for scene flow M in (5).

L =

√
MT6−1

SFM (4)

6SF = JSFSSFJTSF (5)

The covariance matrix SSF of the sensor is composed of
elements for the sensor parameters in (6). The sensor param-
eters are focal length fu, fv and principal point cu, cv and
depth value dt , dt+1 of the camera. The uncertainty of depth
value increasing in proportion to the distance from the camera
is modeled in a form proportional to the square of depth,
similar to the covariance model of the Kinect camera pro-
posed in [35]. σn is the standard deviation of the normalized
disparity.

SSF =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 ( 1fv σnd

2
t+1)

2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ( 1fv σnd

2
t )

2

 (6)

C. GEOMETRY DYNAMIC MODEL PROBABILITY
CALCULATION
In this study, we define the possibility that a part of an object
is moving in a scene as geometry dynamic model (GDM)
probability. This probability is computed as the output of the
sigmoid function with the likelihood L as an input.

Because of the properties inherent in optical flow, we do
not calculate the likelihood L of certain points with a
large error in the scene flow: points that do not match the

FIGURE 2. GDM probability. (a) The sample of consecutive scenes.
(b) Calculated GDM probability: the brighter it is, the more dynamic it is.

consecutive scenes, points with too large depth value and
boundary points between objects. For example, if a pixel in
the current scene has too far and inaccurate depth value, it is
inappropriate to determine whether the point is a geometri-
cally dynamic part. Therefore, pixels with depth value larger
than the threshold τd do not calculate the likelihood L.
The boundary extraction algorithm of object proposed

in [36] is used to determine the boundary of objects. More-
over, as error of a pixel for the optical flow near the boundary
affect neighborhood of the pixel, we apply a dilation oper-
ation to the boundary. The pixels, which are dilated bound-
aries, are included in the boundary set E .
The GDM (u, v), which is the GDM probability of a pixel

(u, v), which has the likelihood L(u, v), is calculated as (7).
If the GDM (u, v) is large, the pixel will be a dynamic part;
otherwise, it will be a static part. Because the pixels with a
large depth value are generally a static background with a
small influence in tracking module of VO, GDM (u, v) of a
pixel with a depth d(u, v) larger than the threshold τd is set
to 0. τl and σ are fixed parameters that are used to adjust
GDM (u, v). The set U is a set of unmatched pixels between
consecutive scenes. To obtain the unmatched pixels, we cal-
culate the optical flow from the t scene to the t + 1 scene to
determine the pixels that are not projected into the t+1 scene,
and these pixels are included in the set U . We initialize
GDM (u, v) of the pixel in set E to 0.5.

GDM (u, v) =


0, if d(u, v) > τd

1
1 + e−σ (L(u,v)−τl )

, if (u, v) /∈ E,U

0.5, else
(7)

The GDM probability for consecutive scenes in Fig. 2(a)
is represented as Fig. 2(b). The closer to white, the higher the
GDM probability, and the boundary parts or unmatched ones
of the object are gray. The black points are static parts with
depths within the threshold τd or parts with depths larger than
the threshold τd .

D. CONFIDENCE CALCULATION OF GDM PROBABILITY
FOR MODEL SELECTION
Depending on scene characteristics, the proposedGDM prob-
ability calculation may be unreliable. For example, when
dynamic objects take up a lot of the field of view or the
RGB-D camera movement is extremely fast, the reliable
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FIGURE 3. Histogram H in typical situations. (a) The sample of
consecutive scenes. (b) Histogram of squared residual motion likelihood.
The red lines are the frequency at each likelihood. The green lines are the
location of the median in the histogram.

FIGURE 4. Histogram H in noisy scenes. (a) The sample of consecutive
scenes. (b) Histogram of squared residual motion likelihood. The red lines
are the frequency at each likelihood. The green line are the location of
the median in the histogram.

estimation of ego-motion and scene flow becomes challeng-
ing. Therefore, calculating the confidence Cg of the GDM
probability and employing other alternative algorithms is
necessary.

For the confidence calculation, we propose using the his-
togramH of squared residual motion likelihood L. The likeli-
hood L is Mahalanobis distance, as described in section III-B.
Since the squared Mahalanobis distance is chi-squared distri-
bution, the square of the likelihood approximates chi-squared
distribution with 3 degrees of freedom and the likelihood of
dynamic parts are distributed to the right of the histogram
H as outliers. If the estimated ego-motion is close to the
real one and no motion blur appears in the scene, the dis-
tribution of square of the likelihood will be similar to chi-
squared distribution. For example, in general consecutive
scenes of Fig. 3(a), the histogram of squared likelihood has
a high frequency near 0 as Fig. 3(b). Additionally, most of
the objects in the scenes are static ones: a desk, chairs, and
cubicle walls, which are contributed to accurate ego-motion
estimation. This means that the actual distribution of squared
likelihood is approximated as chi-squared distribution.

However, in scene of Fig. 4(a), the estimated ego-motion
is different with real one because moving person occupies in
the field of view. This difference causes the histogramH to be
skewed to the right in Fig. 4(b). Therefore, we consider the
distribution characteristics of the histogram H for evaluating
the confidence Cg.
We calculate the confidence Cg using the median of

squared likelihood Ms(L) as (8), where M3 is the median of
chi-squared distribution with 3 degrees of freedom ≈ 2.381.
If the confidence Cg in the GDM probability calcula-
tion is lower than threshold τc, we calculate the semantic

FIGURE 5. SSD probability. (a) RGB image. (b) Calculated SSD probability.
Compared to the monitor, chairs and people appear brighter. This
indicates that these objects are more dynamic than monitors.

segmentation dynamic (SSD) probability, which we define,
using the semantic segmentation model, DeepLab V3 [13].
The model is a neural network that includes astrous spatial
pyramid pooling to recognize the multiscale features of the
image. We use RGB images, such as in Fig. 5(a) as input
to the model and calculate a predetermined SSD probability
from 0 to 1 for each type of object such as Fig. 5(b).

Cg = e−
|Ms(L)−M3|

10 (8)

E. POST-PROCESSING BASED ON CRF
In this study, when the confidenceCg aboutGDM probability
is larger than τc, we used DenseCRF [37] model, one of the
CRF’s techniques. It is a discriminant undirected probabilistic
graphical model that can represent the relationship between
different variables and is used to infer GDM probability of
the part where the likelihood L cannot be evaluated.

Optimization with CRF minimizes energy functions such
as (9) to infer whether the part is dynamic. X =

(x1, x2, · · · , xK ) is an observation variable corresponding to
the input and Y = (y1, y2, · · · , yK ) is the joint output variable
indicating whether some part of the scene is dynamic. K
is the total number of pixels in the current scene. We used
RGB values of each pixel as similarity information between
neighboring pixels. the binary variable yi indicates that the
pixel i is a dynamic part when it is 0 and a static part when it
is 1. The first term of the energy function, the unitary term,
is the penalty term for the wrong label, and the second term,
the pairwise term, induces the neighboring pixels with similar
color to have similar labels.

E(Y |X ) = 6i∈Kψu(yi) +6i,j∈Kψp(yi, yj) (9)

We compute the unary potential ψu(yi) about the occluded
part by applying the Occlusion Processing method proposed
in [34] to infer the GDM probability of the part unmatched
previous scene. When we project an unmatched 3D point in
the current scene into the previous scene, we determine the
point as a static part if the difference 1z = zproj between
the actual depth z′ and the expected depth zproj of the pixel
projected in the previous scene exceeds the threshold τb.
As per this method, we define the unary potential ψu(yi)
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FIGURE 6. Post-processing based on CRF. (a) GDM probability.
(b) Unmatched points and boundaries between objects (white).
(c) Post-processed GDM probability.

like (10), (11). clip is an operation that clips the input value
between 0.1 and 0.9 such that theGDM (u, v) does not become
0 or 1. The pairwise potential is the weighted mix of Gaussian
function about the position and RGB value of neighboring
pixels adopted in [34] and [37].

ψu(0) =


− log(clip(GDM )), (u, v) /∈ U
− log(0.4), 1z ≥ τb

− log(0.6), 1z < τb

(10)

ψu(1) =


− log(clip(1 − GDM )), (u, v) /∈ U
− log(0.6), 1z ≥ τb

− log(0.4), 1z < τb

(11)

The energy function defined in (9) is optimized by applying
the mean field approximation proposed in [37]. For GDM
probability shown in Fig. 6(a), thewhite color in Fig. 6(b) rep-
resents the unmatched part and the boundary between objects.
After mean field approximation, the GDM probability of the
white part in Fig. 6(b) has a probability close to 0 or 1,
as shown in Fig. 6(c).

F. VO USING THE DYNAMIC PROBABILITY
In this study, we extract keypoints to be used for VO by
selecting one of the two models as Fig. 7(a). If the confi-
dence Cg about GDM probability is higher than threshold
τc, keypoints are extracted from the static part, where GDM
probability post-processed with the CRF model is less than
the threshold τg. Otherwise, SSD probability is calculated
using the DeepLab V3 model, and keypoints are extracted
from the part where the probability is lower than the threshold
τs. These keypoints were used to calculate VO in the tracking
thread of ORB-SLAM2 such as Fig. 7(b).

IV. EXPERIMENTS
We evaluated our algorithm with dynamic environments
and compared its performance with ORB-SLAM2 [2] and
DynaSLAM [4] using TUM RGB-D dataset [38] and Bonn
RGB-D dynamic dataset [39]. In all experiments, loop closing
does not occur so that only the performance of VO can be
compared.

In the TUM RGB-D dataset, we compared our algorithm
with the result of other algorithm [3], [4], [8], [12], [25] which
are reported in previous studies. We compared the proposed
algorithm performance with the algorithm using only SSD

FIGURE 7. VO using static parts. (a) Extracted keypoints in scene. Red and
green points are extracted from static and dynamic parts, respectively.
(b) Extracted static keypoints is processed in tracking thread of
ORB-SLAM2.

probability in our algorithm and analyzed the post-processed
GDM probability generated by the algorithm.
In the Bonn RGB-D dynamic dataset, we compared the

proposed algorithm with other algorithms for dynamic envi-
ronments with moving boxes or crowds of people. Through
analysis of the results obtained from these algorithms,
we conducted a study on the performance differences and
limitations between the proposed algorithm and algorithms
that rely continuously on semantic segmentation models.

A. TUM RGB-D DATASET
We used a TUMRGB-D dataset [38] that includes a dynamic
environment. The dataset comprises color and depth images
having a resolution of 640 × 480. The ground truth trajec-
tory of the dataset was obtained from the tracking camera.
We used 8 sequences to evaluate our algorithm for multiple
dynamic environments. The sequences have sitting and walk-
ing sequences. The sitting sequence comprises two people
sitting in front of a desk to assess whether SLAM and VO
algorithms are robust to low-dynamic objects. The walking
sequence comprises two people walking in the office and
it is used to assess whether the SLAM and VO algorithms
are robust to high-dynamic objects. The sitting and walking
sequences in tables are marked as ‘‘s’’ and ‘‘w’’, respectively.

The performance criteria for the algorithm are Absolute
Trajectory Error (ATE) and Relative Pose Error (RPE). ATE
is the error between the camera trajectory of the ground truth
and the estimated camera trajectory; it shows the overall
performance of the VO and SLAM systems. RPE refers to the
difference between the relative pose and the actual relative
pose between consecutive frames; it is used to measure the
drift of the VO. Root Mean Square Error (RMSE) and Stan-
dard Deviation (SD) are the error metrics for the two criteria.

Table 1 and 2 are the results of comparing our algorithm
with ORB-SLAM2 and DynaSLAM. Our algorithm demon-
strated high performance improvements over ORB-SLAM2
in highly dynamic environments. In highly dynamic envi-
ronments, the performance is similar to that of DynaSLAM
because the person, the dynamic object in the sequence,
moves the whole body except at the beginning and end of the
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TABLE 1. Comparison of the RMSE of ATE [m] of SP-VO against
ORB-SLAM2, DynaSLAM in TUM dataset.

TABLE 2. Comparison of the RMSE of RPE [m] of SP-VO against
ORB-SLAM2, DynaSLAM in TUM dataset.

sequence; therefore, there were no static parts in the dynamic
object for a long time. However, in low dynamic environ-
ments, it performs better than the DynaSLAM algorithm.
Because static parts (e.g., legs) exist in the body of the person
sitting for a long time, rich keypoints could be utilized in part
for VO.

Fig. 8 shows the trajectory estimated by the proposed
algorithm. The blue line represents the estimated path, and
the red line represents the difference between the actual and
estimated paths. The proposed algorithm had higher path
estimation performance than the ORB-SLAM2.

To compare our algorithm with various others, we com-
pared the results of algorithms that used the TUM dataset for
experiments, as shown in Table 3. Since the codes for these
algorithmswere not all publicly available, we cited the RMSE
or median value of the ATE from each paper. If results for a
specific sequence were not reported in the paper, we marked
that entry with ‘-’. The algorithm proposed by Hempel and
Al-Hamadi [12] used sceneflow fromRGB-D images, similar
to our algorithm, but showed a large ATE. We interpreted this
performance difference as a positive effect of the selective
geometric approach using confidence Cg.
In the overall high and low dynamic environments, our

algorithm demonstrates good performance compared to the
algorithm using only semantic information, as shown in
Table 4. This difference is because the algorithm using only
semantic information cannot distinguish between static and
dynamic parts within a dynamic object and cannot cope with
moving objects that are semantically static or unrecognized
by the model. Our algorithm alleviates this problem through
the use of semantic information only when the confidence Cg
of the probability inferred by the likelihood is low.

Fig. 9 shows the reason our algorithm in the sitting xyz
sequence in Table 1 outperformed other algorithms. Between
the consecutive scenes in Fig. 9(a), only the right arm of the
left person is moving. The post-processed GDM probability
in this scene is high in the dynamic right arm part, and this
probability about the black region in Fig. 9(b) is excluded
from the VO measurement. The proposed algorithm extracts
keypoints except for the dynamic arm, and uses them for VO.
Therefore, the loss of information is less.

B. BONN RGB-D DATASET
The Bonn RGB-D dynamic dataset is a dataset of dynamic
environments that includes 23 sequences of moving objects,
as well as people. Because objects such as balloons and boxes
move within the dataset, it is difficult to accurately recog-
nize whether they are changing objects through semantic
segmentation. Additionally, unlike the TUM dataset, people
often occupy the majority of the scene, making this dataset
evaluated for more general environments.

As the dataset uses the same data structure and file format
as the TUM dataset, we used ATE and RPE as performance
criteria in the same way. Additionally, we defined the Success
Rate of Tracking (SRT) in visual odometry as an additional
criterion. Since ATE and RPE do not include camera poses
that were not successfully tracked in the metric calculation,
this rate was used as an indicator of how robustly the algo-
rithm succeeded in estimating poses in image sequences.

The experiments on the proposed algorithm and ORB
SLAM2, Dyna SLAM were conducted using four differ-
ent sequences. First, the Crowd sequence contains a scene
where three people are walking. The Kidnapping Box (KB)
2 sequence captures a scene where a box disappears between
camera viewpoint changes. The Placing Nonobstructing Box
(PNB) sequence includes a scene where a person carries a
box of appropriate size and places it down while walking.
Lastly, the Moving Obstructing Box (MOB) sequence shows
a person pushing a very large box while moving.

The results of the experiments showed different perfor-
mances depending on the characteristics of each sequence,
as shown in Table 5, 6 and 7. In the Crowd sequence,
the proposed algorithm showed slightly higher RMSE in
ATE compared to DynaSLAM, indicating a limitation of the
proposed ego-motion-based method in accuracy when there
are many people walking in the scene. On the other hand,
the proposed algorithm showed robust performance in the
KB 2 sequence compared to DynaSLAM, as the proposed
algorithm estimates odometry based on the change between
the current and previous frames, unlike DynaSLAM, which
considers geometric changes between keyframes. Therefore,
even if a certain object suddenly disappears, the proposed
algorithm showed robust visual odometry performance. In the
PNB sequence, the proposed algorithm showed robust per-
formance for objects that are not pre-determined to move,
as it recognizes object motion as scene flow. In the MOB
sequence, DynaSLAM showed low RMSE in ATE but
low SRT. This is because the proposed algorithm utilizes
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FIGURE 8. Trajectories of sequences walking halfsphere, static, xyz.

TABLE 3. Comparison of ATE [m] of SP-VO against other algorithms in TUM dataset.

FIGURE 9. Example of good performance in sitting xyz sequence, (a) The
sample consecutive scenes. (b) Post-processed GDM probability. Only the
dynamic arms of the human body are expressed in black.

information about people in VO estimation, whereas
DynaSLAM has limitations in geometric verification based
on depth comparison between keyframes.

V. DISCUSSION
In this section, we discuss the performance, limitations,
and future research of proposed algorithm. Our algorithm
detects static parts in dynamic scenes and utilizes them to
estimate the camera’s position, showing better performance
compared to algorithms that remove movable objects using
semantic models. We interpret that increasing the number
of features extracted from the static parts in the scene is
related to the improvement in performance. As the number
of static features increases, the correspondences necessary
for calculating relative poses between frames also grow. the
relation has also been reported in previous research [40] on
static environments. Additionally, in dynamic scenes where
moving objects mostly occupy the camera’s field of view,
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TABLE 4. Comparison of the RMSE of ATE [m] of SF-VO against Algorithm
using only SSD probability.

TABLE 5. Comparison of ATE [m] of SP-VO against other algorithms in
Bonn dynamic dataset.

TABLE 6. Comparison of RPE [m] of SP-VO against other algorithms in
Bonn dynamic dataset.

TABLE 7. Comparison of ATE [m] and SRT [%] of SP-VO against other
algorithms in Bonn dynamic dataset.

semantic segmentation model-based approaches removed a
large number of features and often resulted in tracking lost.
These factors contributed to the improved performance of our
algorithm.

Our proposed algorithm has some limitations. If semantic
segmentation model is chosen based on confidence, the pro-
posed algorithm uses fixed probability to represent whether
the object is moving. However, if this probability takes into
account the situation of the scene, it would be more suitable
for representing the moving probability. For example, if a
person is holding a box, it would be natural to assign a higher
dynamic probability to the box than usual. we are attempting
to recognize dynamic objects based solely on the situation
information of a scene without information on geometric
changes between scenes. Additionally, our algorithm uses
static features asmap points between scenes, which is suitable
for accuracy in visual odometry, but inappropriate for creating
a map for SLAM that can be used in the long term. To create

a map that can be used by a robot continuously, it would be
helpful to recognize map points that cannot be used over a
long period and to remove them at an appropriate time during
SLAM (e.g., loop closure detection).

VI. CONCLUSION
In this study, we presented a VO algorithm that uses static
parts present in dynamic objects and static background in
dynamic environments. The proposed algorithm uses scene
flow to calculate the GDM probability that a particular part
of a scene is moving. Moreover, depending on the confidence
of the probability, we proposed an algorithm that uses either
the CRF model or the semantic segmentation model for accu-
rate VO. Our algorithm demonstrated robust performance
in high-dynamic environments of TUM and Bonn dynamic
dataset withmoving objects, exhibiting lower pose estimation
errors than existing DynaSLAM or ORB-SLAM2.

In future, our work will include real-time performance.
Additionally, we will recognize dynamic parts within a scene
based not only on semantic information but also on situational
information of the scene.
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