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ABSTRACT Traffic signal control (TSC) is a challenging problem within intelligent transportation systems
and has been tackled using multi-agent reinforcement learning (MARL). While centralized approaches are
often infeasible for large-scale TSC problems, decentralized approaches provide scalability but introduce
new challenges, such as partial observability. Communication plays a critical role in decentralized MARL,
as agents must learn to exchange information using messages to better understand the system and achieve
effective coordination. Deep MARL has been used to enable inter-agent communication by learning com-
munication protocols in a differentiable manner. However, many deep MARL communication frameworks
proposed for TSC allow agents to communicate with all other agents at all times, which can add to the existing
noise in the system and degrade overall performance. In this study, we propose a communication-based
MARL framework for large-scale TSC. Our framework allows each agent to learn a communication policy
that dictates ‘‘which’’ part of the message is sent ‘‘to whom’’. In essence, our framework enables agents to
selectively choose the recipients of their messages and exchange variable length messages with them. This
results in a decentralized and flexible communication mechanism in which agents can effectively use the
communication channel only when necessary. We designed two networks, a synthetic 4 × 4 grid network
and a real-world network based on the Pasubio neighborhood in Bologna. Our framework achieved the lowest
network congestion compared to related methods, with agents utilizing ∼ 47− 65% of the communication
channel. Ablation studies further demonstrated the effectiveness of the communication policies learned
within our framework.

INDEX TERMS Multi-agent reinforcement learning, communication, traffic signal control, intelligent
transportation systems, deep reinforcement learning.

I. INTRODUCTION
Rapid urbanization in recent years [1] has given rise to a
growing problem of traffic congestion [2]. Recent trends also
show a huge rise in ride-hailing and e-commerce services,
which have contributed significantly towards the increasing
number of vehicles on the road [3], [4]. The impacts of
traffic congestion include increased delays and wasted fuel in
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addition to the impact on the environment and public
health [5], [6]. Traffic signal control (TSC) is one of the
challenging bottlenecks in reducing traffic congestion. The
goal of TSC is to dynamically and intelligently control signal
timings to reduce the number of vehicles halted on the road.

Recent advances in machine learning have opened up a
wide range of opportunities for developing intelligent trans-
portation systems solutions, including traffic signal control.
Deep learning based architectures provide flexibility in pro-
cessing data from various sensory inputs [7] and additionally
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serve as a useful tool for multimodal data fusion [8]. Deep
reinforcement learning (RL) uses deep neural networks
(DNNs) to map inputs to actions. Deep RL frameworks
have shown tremendous progress in learning effective poli-
cies directly from raw sensory inputs [9]. Following these
advances, deep MARL has emerged as one of the promising
tools to develop effective frameworks for network-wide TSC,
where each traffic light is treated as an agent that learns to
select appropriate phases to minimize congestion within the
network.

A straightforward way to carry over the framework of deep
RL into the MARL setting is to treat all the agents as a
collective entity. One can then use a function approximator,
such as DNNs, to map the state into joint actions. How-
ever, the problem with this approach is that the action space
grows exponentially with the number of agents. This kind of
centralized control often proves impractical for large-scale
applications. Furthermore, centralized approaches require
access to the global state of the environment, which may
not always be feasible. TSC is a large-scale problem for
which decentralized execution becomes crucial. Several deep
MARL frameworks have been proposed for independently
controlling the traffic signals [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37].
However, to apply these methods to real-world applications,
such as TSC, one must consider potential limitations of com-
munication such as bandwidth availability [38]. In addition,
allowing such unrestricted communication can be disadvan-
tageous for several reasons. One reason is that the system
incurs additional communication overhead when the mes-
sages received by an agent are unhelpful and excess commu-
nication can increase the overhead and reduce performance
by adding unnecessary noise. Another reason is that it leaves
the system in a state of vulnerability to adversarial attacks.
Potential solutions to these problems are (1) compressing
the information into a small number of bits [39], [40], [41],
[42], (2) communicating only when necessary [43], [44],
[45], [46], [47], [48], [49], and/or (3) communicating with
selective agents [43], [45], [48], [49], [50], [51]. The major-
ity of studies that proposed message passing mechanisms
focused extensively on the aspect of improving the content
of the messages by leveraging techniques from DL (e.g.,
attention mechanism [52], graph neural networks [53], and
variational inference [54]). The lines of work that focused on
addressing the problem of deciding when to communicate or
whom to communicate with involved heuristics-based frame-
works [43], [45], or use gating mechanisms [44], [46], [49],
[50], [51].

A. CONTRIBUTION
In this paper, we propose an alternate framework for learn-
ing communication protocols that builds upon the existing
Q-MIX [55] and NDQ [45] frameworks, which leverage the
paradigm of centralized training and decentralized execu-
tion (CTDE) by learning a global action-value function. The

FIGURE 1. The highlighted circles represent communication range for
each traffic light, i.e., each traffic light can communicate with its
immediate neighbor or within 500 meters of range.

global action-value is monotonically decomposed into indi-
vidual action-values for decentralized execution. Facilitating
communication among agents results in better action-value
estimates [45]. Within our framework, QRC-TSC, agents
learn how to effectively compress their environmental per-
ception and action intentions into a message and determine
which part of the message needs to be transmitted to another
agent for effective coordination. Also, this decision is made
independently for each available recipient, thereby, making
the communication framework flexible. We utilize the vari-
ational inference deep learning framework [54], [56], [57],
[58] to maximize the mutual information between the mes-
sage sent by the sender and the actions taken by the recipient
[45], which is an effective metric to measure communication
performance [59]. Specifically, we model the message space
as a joint distribution of generated message and communi-
cation policy (whether to send the bit of message). Through
our formulation of the communication objective, we also
encourage exploration over the communication policy space.

We used the SUMO simulator [60] to design two traffic
networks, a 4× 4 synthetic grid network with variable traffic
flow and a real-world network based on the city of Pasubio.
We demonstrated the efficacy of our framework in reducing
the congestion level of network-wide traffic by comparing
it with some of the leading communication-based MARL
frameworks. We also conducted ablation studies on the com-
munication mechanism by comparing the results of our
framework with several baseline communication strategies,
including full communication, no communication, and ran-
dom communication. We observed that traffic signals on the
network were able to dynamically adjust the number of bits
they send in the messages while maximizing performance.

The rest of the paper is organized as follows. Section III
provides an overview of the relevant work done in MARL
which serves as the basis of our framework. Section IV
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discusses our framework in detail and also describes the
formulation of the TSC problem within our framework.
In Section V we provide the experimental setup and compare
the results of QRC-TSC with other frameworks and perform
ablation studies. Finally, Section VI concludes the paper and
discusses potential future research directions.

II. RELATED WORK
A. INTER-AGENT COMMUNICATION IN MARL
Recently proposed algorithms (e.g., DIAL [39] and Comm-
Net [40]) have made it possible to learn communication
protocols through a feedback mechanism by leveraging DL
techniques. DIAL is an extension to Independent Q-learning
(IQL), where each agent generates both action-values and a
message vector. The message vector is then passed as input to
the other agent networks in the next time step, thus obtaining
feedback from the receiver agents in the form of gradients.

The most relevant work to our problem is the Nearly
Decomposable Q-function (NDQ) [45], which combines the
communication framework of DIALwith the general learning
framework of Q-MIX by utilizing the variational inference
[54] technique from DL. In addition to learning communica-
tion through feedback, NDQ proposes an objective function
that maximizes the mutual information (MI) between the
sender’s message and the recipient’s action. The main idea is
for agents to learn to capture the most relevant information
in as few bits of message as possible. A similar metric,
causal influence of communication (CIC), was proposed [59],
[61] to improve communication performance without imped-
ing the general learning process. However, NDQ uses a
threshold-based heuristic to filter out unhelpful messages in
its communication framework. In our work, we extend the
work done in NDQ and develop a communication framework
that learns to effectively select the important bits of messages.

B. DEEP MULTI-AGENT REINFORCEMENT LEARNING IN
TRAFFIC SIGNAL CONTROL
The problem of TSC has been studied through the lens of
MARL [10], [62], [63] by treating the traffic signal as an
agent and rewarding it based on a metric that is inversely pro-
portional to the level of congestion (queue length). Recently,
with the advent of Deep MARL, many proposed solutions
to the problem of TSC [12], [13], [18], [19], [21], [28], [32],
[37], [64] were effective in extracting richer information from
more sophisticated sensor inputs for the decision-making
process [20], [25]. Communication mechanisms are a part
of the progress in applying MARL in TSC domains as well.
Several methods proposed for TSC [20], [27], [64], [65], [66]
implemented a variety of communicationmechanisms to train
the traffic signals to send and receive messages from neigh-
boring traffic signals. However, the aforementioned methods
fail to avoid the pitfall of unrestricted communication. TSC is
a large-scale problem where communication between traffic
signals has to be wireless, which comes at the cost of limited
bandwidth and requires the utilization of additional resources.

Hence, the communication mechanism must be efficient in
allowing traffic signals to exchange relevant information only
when it is beneficial.

III. BACKGROUND
1) DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) aims at learning the optimal
policy through repeated interaction with the environment.
A standard RL problem can be formulated as a Markov
Decision Process (MDP). At each time step t agent observes
the state of the environment st ∈ S and takes an action at ∈ A
according to policy π . Based on this action, the agent receives
feedback from the environment in the form of reward rt and
transitions to the next state st+1. The objective is to maximize
the total expected discounted reward R =

∑T
t=1 γtrt , where

γ ∈ [0, 1] is the discount factor.
Deep Q-Networks (DQN) learns the action-value function

Qθ = E[Rt |st = s, at = a],

where θ represents the parameters of the Q-network. The
action-value function can be trained recursively by minimiz-
ing the loss

L(θ ) = Es,a,r,s′ [(y− Qθ (s, a))2],

where y = r + γ maxa′ Qθ ′ (s′, a′) and θ ′ represents the
parameters of the target network. The agent selects the action
that maximizes the Q-value with the probability 1 − ϵ or
acts randomly with probability ϵ. The set of parameters θ−

in the target network are updated in regular time intervals
by copying over the parameters θ from the primary network.
Double DQN [67] modifies DQN to add stabilization and
avoid overestimation. In Double DQN, the target action-value
is indexed from the output of the target network based on the
greedy action selected by the primary network

y = r + Qθ ′ (argmax
a′

Qθ (·|s′)|s′).

Both DQN and Double DQN are based on fully observable
MDPs. However, in partially observable settings, an agent
conditions its action-value function on the action-observation
history. DRQN [68] achieves this by using recurrent neural
networks. At each time step, the Q-network takes as input
the observation ot , and the hidden state ht−1 to approximate
the action values Qθ (ot , ht−1, at ). This enables the agent to
integrate past information to make decisions.

A. COOPERATIVE DEEP MULTI-AGENT DEEP
REINFORCEMENT LEARNING
One approach to modeling multi-agent systems as RL prob-
lems is to treat the whole system as a single agent. The
agent observes the true state of the environment and selects
joint-actions for all the agents. This approach, however, scales
poorly as the search space for joint-action increases expo-
nentially with the number of agents in the system. A more
feasible approach is to enable each agent to act independently.
Thus, one could formulate the problem as a decentralized par-
tially observable Markov decision process (Dec-POMDP),
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which extends the framework of MDP to multi-agent scenar-
ios with partial observability [69]. It is defined by a tuple of
M =< S,A,P, �,O, r,N , γ >, where s ∈ S is the global
state space and i ∈ N ≡ {1, · · · , n} is the finite set of agents.
At time step t , each agent a selects an action ai ∈ A resulting
in a joint action vector a ∈ A ≡ An. The transition dynamics
of the environment state are given by P(s′|s, a). All agents
receive a shared reward according to the reward function
r(s, a) and γ ∈ [0, 1) is the discount factor. Each agent
receives an observation oa ∈ � according to the observation
functionO(s, a). Each agent has an action-observation history
τ i ∈ T ≡ (� × A)∗ on which it conditions its individual
policy π i(ai|τ i). The joint policy π =< π1, · · · , πn >

induces a joint-action value function

Qπ (s, a) = Es0:∞;a0:∞ [
∞∑
t=0

γtrt |s0 = s; a0 = a, π ].

Some studies propose that each agent learn the global
action-value [70]. Recent works have demonstrated bet-
ter performance with monotonic factorization of the
global-action value [55], [71]. Q-MIX [55], specifi-
cally, leverages the CTDE paradigm to learn a mono-
tonic mapping between individual utilities and the global
action-value by utilizing a mixing network Qtotal(τ, a) =
f (Q1(τ 1, a1), · · · ,Qn(τ n, an); θmixer ). The weights of the
mixing network θmixer are generated by a set of hypernet-
works, conditioned on the state st , with absolute activation
function to ensure monotonicity ∂Qtotal

∂Qi
≥ 0. The decom-

position allows for decentralized action selection during
execution, since the mixing network is only used for training.
Thus, the mixing network can be conditioned on additional
information available during the training. Recent works
improved performance on complexmulti-agent environments
by combining Q-MIX with communication framework [43],
[45]. Thus, we utilize Q-MIX as the base framework for our
proposed communication mechanism.

argmax
a

Qtotal(τ, a)

=

(
argmax

a1
Q1(τ 1, a1), · · · , argmax

an
Qn(τ n, an)

)

IV. PROPOSED FRAMEWORK
A. PROBLEM FORMULATION
We extend the framework of Dec-POMDP to incorporate
inter-agent communication. We formulate the traffic signal
network as an undirected graph G = (V, E), where vi ∈ V
is the set of nodes and vij ∈ E is the set of edges. Each node
represents an agent (traffic signal) and each edge represents
the connectivity between agents. The neighborhood for a
node v is defined as N (v) = {u ∈ V|(u, v)} ∈ E and the
adjacency matrix A is a n × n matrix with Aij = 1 if eij ∈ E
and Aij = 0 if eij /∈ E . We design communication framework

FIGURE 2. Prototype of a traffic signal network with two intersections.
The highlighted zones on the incoming lane on each traffic light represent
the range within which the traffic light can access information about the
vehicles.

such that each agent is only allowed to communicate with its
neighbors.

We set up the problem of TSC as a Dec-POMDP, where
each traffic signal in the network is treated as an agent and
the central goal of the system is to reduce network-wide con-
gestion. The traffic signals make decisions using information
about incoming vehicles, which is assumed to be accessible
through sensors located near the signals. The traffic signals
control the flow of traffic through the intersection by selecting
a phase from the available set of phases.We discuss the details
of our formulation in detail below.

1) OBSERVATION REPRESENTATION
Each traffic signal has a limited range of vision of 50 meters,
within which it can obtain information related to the traffic
flow. This is equivalent to the sensory information that can
be obtained from practical common sensors. We implement
observation collection in the environment using by placing
laneAreaDetector of length 50 meters on each incom-
ing lane to capture the traffic information which can be seen
by the boxes highlighted in grey in Fig. 2. The observation
for each traffic signal consists of: the number of vehicles
{nl}

Li
l=1, the average normalized speed of the vehicles {sl}

Li
l=1,

the number of halted vehicles (queue lengths) {ql}
Li
l=1, and the

current phaseID of the traffic signal, where Li ∈ L are the
incoming lanes for a traffic signal i and L is a set of all the
lanes in the network.

2) ACTION REPRESENTATION
For each traffic signal i, we define its action ai as choos-
ing one green phase from a list of available phases. As an
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FIGURE 3. An example of the phases available for an intersection in a
4 × 4 grid network from SUMO simulator. The colored lines (red, yellow,
and green) together indicate the phase of the traffic signal. The first
phase (from the left) indicates an all green phase, where the vehicles are
allowed to go straight and/or make turns. Each agent controls the traffic
signals by selecting one of these phases.

example, Fig. 3 shows the list of phases that are available for a
traffic signal in a 4×4 grid network. A traffic signal can select
any green phase from its list or keep its current one, but it
must then follow the next yellow phase, which is enforced by
the environment. The action selection interval and the yellow
phases are fixed for a duration of 5 simulation seconds.

3) REWARD
Various metrics are used for rewards in traffic signal con-
trol settings. In our study, we chose queue length ql as the
performance metric of the traffic signal controller due to its
simplistic nature and its property of representing an instan-
taneous feedback signal. We define the objective function
as minimizing the number of vehicles stopped throughout
the network where rt ∈ R is the global reward and l ∈ L
represents the lanes in the network.

B. OVERALL FRAMEWORK
In this section, we present a detailed design of QRC-TSC
in the context of multi-agent Q-learning, Fig. 5. We adopt
the CTDE paradigm and use Q-MIX [55] as a base learning
framework. The training takes place in a centralized manner,
assuming that the global state information is available. Each
agent i has access to an agent network with parameters shared
across all agents. This approach has been shown to accelerate
learning and enhance scalability in deep MARL settings. The
agent network takes as inputs the action-observation history
of the agent and the incoming messages from other agents to
generate action-values. The agent uses its own action values
to select an action during decentralized execution. Each agent
also has a communication network that takes in the agent’s
action-observation history and generates the message vector
mij and a communication policy cij for each available recip-
ient agent j ∈ N (i). This can be seen in the communication
module in Fig. 4. The message is then gated

m̂ij = (m⊙ c)ij

1 based on the communication action cij. The parameters of
the communication network are also shared across agents.
The mixing network combines the individual action-values
of the agents Qi(τi, ai, m̂ij; θagent ) to compute the join-action
value function Qtotal . The weights of the mixing network
are generated by a set of hypernetworks conditioned on the

1
⊙ represents elementwise multiplication.

FIGURE 4. Example of the proposed communication framework. Agent A
generates a message space mA and communication action cAB and cAC
for agents B and agent C respectively. The message is then gated based
on the communication action and sent to respective agents.

state s. We use DIAL [39] as the base communication frame-
work and we improve on it in the following ways:

1) We use variational inference to maximize the mutual
information between the sent messages (including the
communication action) and the recipient’s action.

2) We introduce an entropy regularization term for the
communication policies, enabling controlled explo-
ration in the communication action space.

3) Communication policies are differentiable, allowing
for end-to-end training.

C. COMMUNICATION IN QRC-TSC
In our framework, each agent learns communication proto-
cols through feedback from the recipient agents. Feedback
is received in the form of gradients during backpropaga-
tion [39], [40]. Thus, the entire network architecture can
be trained from a single objective function. Our goal in
this work is to train agents to quickly and effectively learn
communication protocols. Therefore, agents must learn the
communication policy and send messages that reduce the
uncertainty in the recipient’s policy. To this end, we aim
to maximize the mutual information between the sender’s
message and the recipient’s policy, similar to NDQ [45]. This
metric was previously proposed [59] as one of the keymetrics
to measure communication performance. Therefore, it makes
sense to integrate such ametric into the objective function and
explicitly maximize it.

First, we model outgoing messages as a joint distribution
p(mij, cij) of the message generated mij and its communica-
tion actions cij by agent i for agent j.

p(mij, cij|τij) = p(mij|τij)p(cij|τij) (1)

[58]. Specifically, each agent i generates a shared latent
message distribution (a multivariate Gaussian) of size from
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FIGURE 5. Architecture of QRC-TSC with two agents. Each agent uses a communication network (shown in the communication block) in addition to the
agent network. The communication network takes the action-observation history (oi

t , ai
t−1) of the agent i as input and outputs both the message mij

t and

a communication action c ij
t for the recipient j at time t .

which a message vector mi is sampled and a discrete com-
munication policy distribution (encoded as Bernoulli) which
decides which bits of the messages are to be sent to agent j.
This decision cij is made independently for each agent j ∈

N (i) in the neighborhood. Similar to the approach proposed
in [56] and [57], we use Gumbel-sigmoid as a continuous
approximation of the categorical variables. The Gumbel-max
trick allows for differential sampling and does not suffer from
high variance like the REINFORCE algorithm [56]. Thus, our
framework is end-to-end differentiable.

The communication action cij acts as a mask over the
messages during execution. To achieve this, we use differ-
ential relaxation of categorical/discrete variables [56], [57].
Gumbel-sigmoid can be considered as a continuous relax-
ation of the Bernoulli distribution and can be written as

σ (αl) = sigmoid((αi + gl − gm)/λ) (2)

where gl and gm are samples from Gumbel(0, 1) distribution
and λ is the temperature parameter.

Next, we discuss the objective function Jc(θc) for learn-
ing communication. We maximize the mutual information
between the sender’s message and the recipient’s policy.

Iθc (πj(·|τj); m̂ij|τj, m̂(−i)j), (3)

where πj(·|τj, m̂inj ) = softmax(Q(·; τj, m̂inj )) represents the
policy of the agent conditioned on its action-observation
history and incoming messages, m̂ij is the resulting outgoing

message from agent i to agent j, and θc is the set of parameters
of the communication network.

Jc(θc) =
n∑
j=1

[Iθc (πj(·|τj); m̂ij|τj, m̂(−i)j)︸ ︷︷ ︸
(1)

−βIθc(m̂ij; τi)︸ ︷︷ ︸
(2)

], (4)

whereβ is the scaling factor that controls the tradeoff between
the expressiveness and compressiveness of the messages.
Since our objective is to maximize the mutual information it
is sufficient to derive the objective as the lower bound for the
term. The lower bound [45], [54] for the mutual information
objective, the first term in (4) can be given as

Iθc (πj(·|τj); m̂ij|τj, m̂(−i)j)

≥ Eτ∼D,minij ,c
in
ij ∼fc(τ ;θc)

[−CE(πj(·; τj, m̂inj )∥qθr (·; τj, m̂
in
j )]

(5)

where τ is the joint local action-observation history of
the agents sampled from the replay memory D and
CE is the cross-entropy. The posterior estimates are
given by qθr (·; τj, m̂

in
j ) = qθr (·; τj, (m ⊙ c)in

−(j)j) =

qθr (·; τj,m
in
−(j)j, c

in
−(j)j) and parameters θr are shared across all

the agents.
The second term, analogous to the variational bottle-

neck objective in [54], is the mutual information between
the agent’s action-observation history τ i and the messages
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generated mi.

βIθc(m̂ij; τi) = βDKL(p(mij, cij|τi)∥qθr (mij, cij|τi))

= βmDKL(p(mij|τi)∥qθr (mij|τi))︸ ︷︷ ︸
(1)

+ βcDKL(p(cij|τi)∥qθr (cij|τi))︸ ︷︷ ︸
(2)

, (6)

The first term in (6) controls the tradeoff between maxi-
mizing the mutual information between the message mij and
agent j’s policy πj(·; τj, m̂ij) and being compressive about the
action-observation history τi. The second term in (6) regular-
izes the communication policy. This encourages exploration
of varied communication policies, which can be controlled
by βc.
Combining equations (5) and (6), we can write the loss

function for the communication objective as:

L(θr , θc) =
Eτ∼D,minij ,c

in
ij ∼fc(τ ;θc)

[CE(πj(·; τj, m̂inj )∥qθr (·; τj, m̂
in
j )]

+ βmDKL(p(mij|τi)∥qθr (mij|τi))

+ βcDKL(p(cij|τi)∥qθr (cij|τi)) (7)

Thus, the final loss function for training can be given as:

L(θ ) = LTD(θ )+ LC (θr , θc), (8)

where

LTD = [r + γ max
a′

Qtotal(s′, a′; θ ′)− Qtotal(s, a; θ )]2 (9)

is the TD loss, θ− is the set of parameters of the target net-
work, θ is a set of parameters for all the networks combined
and LC (θr , θc) is the total communication loss.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
We built a synthetic 4× 4 grid network and a real-world net-
work of Pasubio, Bologna as proposed by Bieker et al. [72].
Trips are generated with origin-destination pairs of the fringe
edges. For both the networks, we generated variable hourly
traffic, similar to [18], as shown in Fig. 6d, where the solid
lines represent the high flow rates and the dotted lines rep-
resent the low flow rates. Flow rates are varied in 5-minute
intervals withinwhich the vehicles are inserted uniformly into
the network with the specified flow rate. The peak flow rate
is 900 veh/hr. For convenience and representation purposes,
we broke down the traffic flow into two types: (1) from
east-west/west-east (red lines), which starts at the begin-
ning of the hour and (2) north-south/south-north (blue lines),
which starts after 15 minutes. Both flows last for 35 minutes.
Flows from the opposite direction, represented by dotted lines
in Fig. 6d, are scaled down by a factor of 0.6. Every hour,
a random direction is selected as the opposite direction.

1) 4× 4 grid network:We built a two-lane synthetic 4×
4 grid network of homogeneous agents. We simulated
two traffic flow scenarios, one of which is selected

randomly at the beginning of each simulation hour. For
the first scenario, Fig. 6a, we simulated high traffic
on the external edges of the network, whereas in the
second scenario Fig. 6b internal edges of the net-
work received a higher bulk of traffic flow. To induce
a level of randomness in the traffic flow, a random
direction was selected at the beginning of each sim-
ulation hour to have a high flow rate. Traffic flow
settings in the synthetic version were not tethered to
reality but were designed to test the robustness of the
learning algorithm. The speed limit on all the lanes was
around 14 m/s.

2) Pasubio network: We used the real-world network of
Pasubio, Bologna. The neighborhood has a hospital and
includes common routes to the football stadium, and
therefor is prone to congestion. The network has 7 traf-
fic lights, some of which control multiple junctions.
3 traffic signals have 8 phases and the rest have 4, 10,
14, and 16 phases. The heterogeneity of the real-world
network made it a more challenging environment than
the synthetic network. We tried to replicate the traffic
flow settings from [72]. The maximum allowable speed
on each lane was set to 14 m/s.

Further, we adopt the metric average number of stops or
queue length to measure the performance of the algorithms
on the traffic network.

B. BASELINES
In this work, we are interested in teaching the agents efficient
communication policies. Specifically, our goal is to show
that agents do not need to communicate all the time to be
able to coordinate. Instead, agents can establish an optimal
communication policy that tells the agent which parts of the
message are worth sending and to which agent. To this end,
we set Q-MIX [55] as the baseline framework for learning the
action-value function and DIAL [39] as a baseline framework
for communication. To make fair comparisons, we imple-
mented DIAL by extending Q-MIX. We also compared our
framework to NDQ [45], a state-of-the-art method to learn
communication, which uses thresholds to filter out unnec-
essary messages. Thus, all the methods we compared our
framework to only differed in the type of communication
mechanism: (i) Q-MIX can be seen as a base method with-
out communication, (ii) Q-MIX + DIAL enables learning
communication via a feedback mechanism, (iii) Q+MIX +
TarMAC, adds attention mechanism to messages, and (iv)
NDQ can be seen as an extension to Q-MIX + DIAL, which
maximizes the mutual information between the sender’s mes-
sage and the recipient’s policy.

C. TRAINING SETTINGS
We trained all the algorithms on the grid network and
Pasubio environment for 1.8 million and 3 million simulation
steps, respectively. At the end of each episode, which lasted
for 90 steps or 360 simulation seconds, we ran a training
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FIGURE 6. (a) and (b) represent the flow scenarios for the 4 × 4 grid network. (c) shows the flow in Pasubio network and (d) shows
the hourly flow distribution for both the networks. The dotted lines represent flow from opposite direction whenever bidirectional
flows are simulated. The red and the blue lines represent the outer and inner network flow respectively.

FIGURE 7. The plot shows average queue length throughout training (lower the better). The x-axis represents simulation steps (in millions). The
solid lines show mean over 5 runs and the shaded region represents 95% CI.

iteration. To evaluate the robustness of the algorithm, we ran
10 evaluation episodes with each agent selecting its actions
greedily after every 200 training episodes.

D. RESULTS
To ensure a fair comparison, we used Q-MIX as a baseline
centralized training algorithm for all the algorithms based on

communication. The learning curves of the algorithms are
illustrated in Fig. 7. The solid lines represent the hourly aver-
age queue length of an intersection for each scenario. Queue
length, which represents the number of vehicles stopped in
the incoming lanes of the traffic signal, is a key metric in
evaluating the performance of a traffic signal network. Evalu-
ations were conducted after every 200 training episodes, and
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FIGURE 8. Message representation: The figure shows a t-SNE plot of the learned messages representations by an agent in the 4 × 4 grid network. The
color scale in the first three plots, starting from left, represents a feature (averaged across all incoming lanes) of observations received by the agent. The
color scale in the final plot represents the actions taken by the agent. We can see that the agent learns to embed messages in the latent space based on
its inputs and action intentions.

the results were averaged over 15 independent runs. Addi-
tionally, we compare our algorithm to some traditional traffic
signal control approaches (Fixed time [73], Self Organizing
Traffic Lights (SOTL) [74], Max pressure [75]). For the fixed
time algorithm, the phase duration for green phases was set
to 30 seconds.

In both network scenarios, QRC-TSC performed consis-
tently better than the other frameworks. While Q-MIX uses
a centralized training mechanism to factorize the action-
values, the agents operate in a completely decentralized way
during execution. Purely decentralized policies can hinder
the performance of systems, since traffic flow can be highly
dynamic at times. On the other hand, in DIAL, the agents
communicate all the time, which can decrease performance,
as communication is often unnecessary and acts as addi-
tional noise. The performance of Q-MIX+DIAL, Q-MIX+
TarMAC, and Q-MIX was relatively similar and significantly
underperformed in the Pasubio scenario. The performance
of NDQ and QRC-TSC was similar in the Pasubio network
(Fig. 7a), however, NDQ performed poorly in the grid net-
work (Fig. 7b). When considering average queue length,
QRC-TSC consistently outperformed the other frameworks
in both network scenarios and learned relatively stable poli-
cies, as can be seen in Fig. 7.

E. COMMUNICATION
1) LEARNED MESSAGE REPRESENTATIONS
Within our framework, each agent learns to generate mes-
sages conditioned on its action-observation history. Thus,
messages can be interpreted as compressed representations
of the agent’s inputs and its action intentions. The message
space is analogous to latent space in variational autoen-
coders, where each variable in the latent space is indepen-
dent of the other. Thus, each bit in the message represents
a unique information from the sender’s action-observation
history.

Fig. 8 shows an example t-SNE plot [76] of mes-
sage embeddings learned by our algorithm collected over

FIGURE 9. Comparison of performance of communication policies
averaged across 100 test episodes. QRC-TSC (in blue) represents the
performance of the communication policies learned by our framework.

100 evaluation episodes. In the first three plots from left to
right, the color gradients represent features of agents inputs
averaged over the number of incoming lanes: mean speed
( 1L
∑

l sl), mean density ( 1L
∑

l nl), and mean queue length

( 1L
∑

l ql), respectively. These images show that the message
distribution learned by the agents was correlated with its
inputs, confirming that the agents learned to send meaningful
information from their observations. The color labels in the
fourth plot represent the actions taken by the agents, which
indicates that the agents were able to effectively convey their
action intentions through the message space. A key observa-
tion from this figure is that mean density and mean queue
length are often correlated with each other, and hence the
agent can eliminate information.

2) LEARNED COMMUNICATION POLICIES
In our framework, the agents are allowed to send 5 bit
messages at each time step. Therefore, the communication
policy can be seen as an action of selecting the bit of mes-
sage for each recipient. This makes visualizing the commu-
nication policy for each agent in a reduced space almost
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TABLE 1. Performance results of various algorithms on 4 × 4 grid and pasubio network.

infeasible. To evaluate the effectiveness of communication
policy, we compared the communication policy learned by
QRC-TSC with (1) random policy, (2) full communication,
and (3) no communication. During the evaluation stage,
we ran 3 additional independent tests where we manually
altered the communication policies. Since this was done
during the execution stage, we can be sure that altering
the communication policies did not affect the training of
QRC-TSC.

Fig. 9 illustrates the performance of the communication
policies learned by our framework. We selected a few key
metrics (queue length, wait time, and mean speed) from
traffic signal control theory to showcase the effectiveness of
the learned policies. All metrics were averaged over 100 test
episodes and across five runs. The performance of QRC-TSC
(in blue) was the best across all metrics in both network
scenarios. By choosing which bits to send, the agents were
effectively able to balance the performance between no com-
munication and full communication. It is interesting to note
that the performance in the Pasubio network with full com-
munication is the worst, which can also be seen in Fig. 7(a)
where DIAL performs the worst among all the algorithms.
This strongly indicates that constant communication can
impede the performance of the system, likely caused due to
redundancy in input information (from incoming messages).
This leads us to conclude that the agents only need limited
information about the action-observation history of the other
agent to take optimal actions.

F. HYPERPARAMETERS
We based our framework on the PyMARL library [77] and
used the default parameters for all experiments. We experi-
mented with different values for the message size and found
that the message of length 5 performed the best. For the
additional hyperparameters within the QRC-TSC framework,
we conducted a coarse grid search to find the best set of
hyperparameters. We set the value of both βm and βc to
10−5 across all environments. We tried linearly annealing
the values of βm and βc over 50k iterations, but the overall

performance change was negligible. We trained our models
on an NVIDIAGeForce RTX 2080 using experience sampled
from 8 parallel environments.

VI. CONCLUSION
In this paper, we propose a novel communication mecha-
nism enabling agents to effectively learn (i) which part
of the message is worth sending (ii) when to send a
message, and (iii) to whom the message should be sent.
This can be especially beneficial for problems where there
exist constraints on communication (e.g. limited bandwidth).
Further, our proposed framework is differentiable which
allows for end-to-end training. The advantage of this frame-
work is that the agents can act in a completely decentral-
ized manner but exchange necessary bits of information
to maintain coordination between agents. The framework
is versatile and could be extended to a large number of
applications. We tested our framework, QRC-TSC, on the
real-world problem of traffic signal control by building
two different traffic signal network scenarios (a synthetic
and a real-world network). We compared QRC-TSC with
several state-of-the-art frameworks involving communica-
tion, and demonstrate that it is able to maintain the
least amount of congestion throughout the network while
keeping the utility of the communication channel within
∼ 47− 65 percent.

Some real-world problems have constraints, for example
the cost of communication. Although this study did not
address a constrained problem, we believe that QRC-TSC
can be extended to include additional parameters, such as
cost. One of the drawbacks QRC-TSC is that the maximum
length of the message needs to be set a priori. One solution to
this problem could be to allow for multiple communication
passes. Future work will address how to establish the maxi-
mum message length.

APPENDIX
A. ALGORITHM FOR QRC-TSC
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Algorithm 1 Training Procedure for QRC-TSC

1: Initialize the agent network with parameters θ , the target network with parameters θ−, replay buffer D with capacity ND,
and batch size NB

2: for each training episode e do
3: for each episode do
4: t = 0 and hi0 = 0, hci0 = 0 for each agent i = {1, · · · , n}
5: while st ̸= terminal and t < T do
6: t = t + 1
7: Obtain observation ot = {o1t , · · · , o

n
t } and global state St

8: Get message vector m̂it and communication action ci
′

t from agents ▷ m̂it , c
i′
t = CNeti(oit ,m

−i
t−1, hc

i
t−1, a

i
t−1; θ

i
c)

9: Set outgoing messages as: mi
′

t = m̂it ⊙ c
i′
t

10: Select action ait according to ϵ-greedy policy w.r.t. agent i’s decentralized action value
Q(oit ,m

−i
t−1, h

i
t−1, a

i
t−1; θ

i)
11: Execute joint action at = {a1t , · · · , a

n
t } in the environment

12: Obtain the global reward rt+1, next observation oit+1 for each agent i and next global state st+1
13: end while
14: Store the episode in the buffer D such that the oldest episode is replaced if |D| ≥ ND
15: end for
16: Sample a batch of NB episodes ∼ Uniform(D)
17: Calculate the communication loss LC (θr , θc) according to (7) and TD loss LTD(θ ) as in (9) and set total loss as in (8)
18: Update θ by minimizing the total loss L(θ )
19: Replace target parameters θ−← θ every K episodes
20: end for

B. VARIATIONAL BOUND ON MUTUAL INFORMATION
The posterior for the mutual information objective based on
information bottleneck [54] can be written as

Iθc (πj(·|τj); m̂ij|τj)

=

∫
p(τj)πj(·|τj)p(m̂ij|τj, m̂(−i)j) logπj(·|τj, m̂ij)dτjdπjdm̂ij

Next, qθr (·;τj, m̂
in
j ) can bewritten as variational approximation

toπj(·|τj, m̂ij) and sinceDKL(πj(·; τj, m̂inj )∥qθr (·; τj, m̂
in
j ) ≥ 0,

we obtain the upper bound for mutual information term.

≥

∫
p(τj)π (·|τj)p(m̂ij|τj, m̂(−i)j) log qθr (·|τj, m̂ij)dτjdπjdm̂ij

We approximate p(τj, aj) = p(τj)π (·|τj) using Monte Carlo
sampling.

≥ Eτ∼D,m̂inj ∼fc(τ ;θc)
[
∫

π (·|τj) log qθr (·|τj, m̂
in
j )dπj]

+H(·|τj, m̂(−i)j)

≥ Eτ∼D,minij ,c
in
ij ∼fc(τ ;θc)

[−CE(πj(·; τj, m̂inj )∥qθr (·; τj, m̂
in
j )],

where entropy term H(·|τj, m̂(−i)j) is independent of opti-
mization.

C. COMMUNICATION LOSS FUNCTION FOR JOINT
DISTRIBUTIONS

Jc[m̂i|τj, m̂(−i)j]

≥ Eτ∼D[−CE[p(aj|τ )||qθr (aj|τ , m̂inj )]]

− Eminj ,cinj ∼fc(τ ;θc)
[DKL(p(m̂ij|τ i)||r(m̂ij))]

≥ Eτ∼D[−CE[p(aj|τ )||qθr (aj|τ , (m⊙ c)inj )]]

− Eminj ,cinj ∼fc(τ ;θc)

[
DKL

(
log

p(mij, cij|τ i)
r(mij, cij)

)]
≥ Eτ∼D[−CE[p(aj|τ )||qθr (aj|τ , (m⊙ c)inj )]]

− Eminj ,cinj ∼fc(τ ;θc)

[
DKL

(
log

p(mij|τ i)p(cij|τ i)
r(mij)r(cij)

)]
≥ Eτ∼D[−CE[p(aj|τ )||qθr (aj|τ , (m⊙ c)inj )]][t]

− Eminj ∼fc(τ ;θc)

[
DKL

(
log

p(mij|τ i)
r(mij)

)]
− Ecinj ∼fc(τ ;θc)

[
DKL

(
log

p(cij|τ i)
r(cij)

)]

D. GUMBEL-SIGMOID FOR DISCRETE COMMUNICATION
VARIABLE
We consider the communication action cijk as a Bernoulli
random variable. We drop the subscripts ijk for the ease of
notation. Let c ∼ Bernoulli(α) be the communication action,
where α ∈ (0,∞) is the location parameter. We can write the
Gumbel-softmax [56], [78] function as:

cl =
exp((logαl + gl)/λ)∑
l exp((logαl + gl)/λ)

where λ ∈ (0,∞) is the temparature parameter and l is the
dimension over the softmax vector. And we can rewrite the
softmax function for two variables αl and 0 as:

σ (αl) =
exp((logαl + gl)/λ)

exp((logαl + gl)/λ)+ exp(gm/λ)
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=
1

1+ (exp(gm/λ)/ exp((αi + gl)/λ))

=
1

1+ exp(−(logαi + gl − gm)/λ)
= sigmoid((logαi + gl − gm)/λ)

The difference between two Gumbel distributions gl − gm is
given as Logistic distribution and can be sampled as logU −
log(1−U ), where U ∼ Uniform(0, 1) [57]. We set the value
of λ to 0.67.

REFERENCES
[1] World Urbanization Prospects: The 2014 Revision, United Nations Dept.

Econ. Social Affairs/Population Division, New York, NY, USA, 2014.
[2] S. Çolak, A. Lima, and M. C. González, ‘‘Understanding congested travel

in urban areas,’’ Nature Commun., vol. 7, no. 1, p. 10793, Mar. 2016.
[3] E-Stats 2014: Measuring the Electronic Economy, U.S. Census Bureau,

Suitland-Silver Hill, MD, USA, 2016.
[4] B. Schaller, ‘‘The new automobility: Lyft, Uber and the future of American

cities,’’ Schaller Consulting, Brooklyn, NY, USA, Tech. Rep. SC-2018-07,
2018. [Online]. Available: http://www.schallerconsult.com/rideservices/
automobility.pdf

[5] D. L. Schrank and T. J. Lomax, ‘‘TTI’s 2012 urban mobility report:
Powered by INRIX traffic data,’’ Texas Transp. Inst., Texas A&M Univ.,
Bryan, TX, USA, 2009.

[6] J. I. Levy, J. J. Buonocore, and K. von Stackelberg, ‘‘Evaluation of the
public health impacts of traffic congestion: A health risk assessment,’’
Environ. Health, vol. 9, no. 1, pp. 1–12, Dec. 2010.

[7] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, ‘‘A state-
of-the-art survey on deep learning theory and architectures,’’ Electronics,
vol. 8, no. 3, p. 292, Mar. 2019.

[8] R. Bokade, A. Navato, R. Ouyang, X. Jin, C.-A. Chou, S. Ostadabbas,
and A. V. Mueller, ‘‘A cross-disciplinary comparison of multimodal data
fusion approaches and applications: Accelerating learning through trans-
disciplinary information sharing,’’ Expert Syst. Appl., vol. 165, Mar. 2021,
Art. no. 113885.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[10] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, ‘‘Multiagent rein-
forcement learning for urban traffic control using coordination graphs,’’
in Machine Learning and Knowledge Discovery in Databases. Antwerp,
Belgium: Springer, Sep. 2008, pp. 656–671.

[11] D. Zhao, Y. Dai, and Z. Zhang, ‘‘Computational intelligence in urban traffic
signal control: A survey,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 42, no. 4, pp. 485–494, Jul. 2012.

[12] W. Genders and S. Razavi, ‘‘Using a deep reinforcement learning agent for
traffic signal control,’’ 2016, arXiv:1611.01142.

[13] E. Van der Pol and F. A. Oliehoek, ‘‘Coordinated deep reinforcement
learners for traffic light control,’’ in Proc. Learn., Inference Control Multi-
Agent Syst. (NIPS), vol. 8, 2016, pp. 21–38.

[14] J. A. Calvo and I. Dusparic, ‘‘Heterogeneous multi-agent deep rein-
forcement learning for traffic lights control,’’ in Proc. AICS, 2018,
pp. 2–13.

[15] X. Liang, X. Du, G. Wang, and Z. Han, ‘‘Deep reinforcement learning for
traffic light control in vehicular networks,’’ 2018, arXiv:1803.11115.

[16] Y. Lin, X. Dai, L. Li, and F.-Y. Wang, ‘‘An efficient deep reinforcement
learning model for urban traffic control,’’ 2018, arXiv:1808.01876.

[17] M. Camelo, M. Claeys, and S. Latré, ‘‘Parallel reinforcement learning with
minimal communication overhead for IoT environments,’’ IEEE Internet
Things J., vol. 7, no. 2, pp. 1387–1400, Feb. 2020.

[18] T. Chu, J. Wang, L. Codecà, and Z. Li, ‘‘Multi-agent deep reinforcement
learning for large-scale traffic signal control,’’ IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020.

[19] T. Tan, F. Bao, Y. Deng, A. Jin, Q. Dai, and J. Wang, ‘‘Cooperative deep
reinforcement learning for large-scale traffic grid signal control,’’ IEEE
Trans. Cybern., vol. 50, no. 6, pp. 2687–2700, Jun. 2020.

[20] H. Wei, G. Zheng, V. Gayah, and Z. Li, ‘‘A survey on traffic signal control
methods,’’ 2019, arXiv:1904.08117.

[21] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu,
K. Xu, and Z. Li, ‘‘CoLight: Learning network-level cooperation for
traffic signal control,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
Nov. 2019, pp. 1913–1922.

[22] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li,
‘‘PressLight: Learning max pressure control to coordinate traffic signals in
arterial network,’’ inProc. 25th ACMSIGKDD Int. Conf. Knowl. Discovery
Data Mining, Jul. 2019, pp. 1290–1298.

[23] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu, and
Z. Li, ‘‘Learning phase competition for traffic signal control,’’ inProc. 28th
ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 1963–1972.

[24] S. Gupta, R. Hazra, and A. Dukkipati, ‘‘Networked multi-agent reinforce-
ment learning with emergent communication,’’ 2020, arXiv:2004.02780.

[25] A. Haydari and Y. Yılmaz, ‘‘Deep reinforcement learning for intelli-
gent transportation systems: A survey,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 1, pp. 11–32, Jan. 2022.

[26] A. Jaleel, M. A. Hassan, T. Mahmood, M. U. Ghani, and A. U. Rehman,
‘‘Reducing congestion in an intelligent traffic system with collabo-
rative and adaptive signaling on the edge,’’ IEEE Access, vol. 8,
pp. 205396–205410, 2020.

[27] J. Ma and F. Wu, ‘‘Feudal multi-agent deep reinforcement learning for
traffic signal control,’’ in Proc. 19th Int. Conf. Auto. Agents Multiagent
Syst. (AAMAS), 2020, pp. 816–824.

[28] T. Tan, T. Chu, and J. Wang, ‘‘Multi-agent bootstrapped deep Q-network
for large-scale traffic signal control,’’ in Proc. IEEE Conf. Control Technol.
Appl. (CCTA), Aug. 2020, pp. 358–365.

[29] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong, ‘‘STMARL: A
spatio-temporal multi-agent reinforcement learning approach for cooper-
ative traffic light control,’’ IEEE Trans. Mobile Comput., vol. 21, no. 6,
pp. 2228–2242, Jun. 2022.

[30] Q. Wu, J. Wu, J. Shen, B. Yong, and Q. Zhou, ‘‘An edge based multi-agent
auto communication method for traffic light control,’’ Sensors, vol. 20,
no. 15, p. 4291, Jul. 2020.

[31] D. Xie, Z. Wang, C. Chen, and D. Dong, ‘‘IEDQN: Information exchange
DQNwith a centralized coordinator for traffic signal control,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[32] X. Zang, H. Yao, G. Zheng, N. Xu, K. Xu, and Z. Li, ‘‘Metalight: Value-
based meta-reinforcement learning for traffic signal control,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 34, 2020, pp. 1153–1160.

[33] Y. Zhao, G. Xu, Y. Duy, and M. Fangz, ‘‘Learning multi-agent communi-
cation with policy fingerprints for adaptive traffic signal control,’’ in Proc.
IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020, pp. 266–273.

[34] F.-X. Devailly, D. Larocque, and L. Charlin, ‘‘IG-RL: Inductive graph
reinforcement learning for massive-scale traffic signal control,’’ IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 7496–7507, Jul. 2022.

[35] J. Liu, H. Zhang, Z. Fu, and Y. Wang, ‘‘Learning scalable multi-agent
coordination by spatial differentiation for traffic signal control,’’Eng. Appl.
Artif. Intell., vol. 100, Apr. 2021, Art. no. 104165.

[36] M. Wang, L. Wu, J. Li, and L. He, ‘‘Traffic signal control with reinforce-
ment learning based on region-aware cooperative strategy,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 7, pp. 6774–6785, Jul. 2022.

[37] L. Zhu, P. Peng, Z. Lu, X. Wang, and Y. Tian, ‘‘Variationally and intrin-
sically motivated reinforcement learning for decentralized traffic signal
control,’’ 2021, arXiv:2101.00746.

[38] D. V. Pynadath and M. Tambe, ‘‘The communicative multiagent team
decision problem: Analyzing teamwork theories and models,’’ J. Artif.
Intell. Res., vol. 16, pp. 389–423, Jun. 2002.

[39] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, ‘‘Learning to
communicate with deep multi-agent reinforcement learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[40] S. Sukhbaatar, A. Szlam, and R. Fergus, ‘‘Learning multiagent commu-
nication with backpropagation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 29, 2016, pp. 1–9.

[41] Y. Hoshen, ‘‘VAIN: Attentional multi-agent predictive modeling,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[42] E. Pesce and G. Montana, ‘‘Improving coordination in small-scale multi-
agent deep reinforcement learning through memory-driven communica-
tion,’’Mach. Learn., vol. 109, nos. 9–10, pp. 1727–1747, Sep. 2020.

[43] S. Q. Zhang, Q. Zhang, and J. Lin, ‘‘Efficient communication in multi-
agent reinforcement learning via variance based control,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–10.

VOLUME 11, 2023 47657



R. Bokade et al.: MARL Based on Representational Communication for Large-Scale TSC

[44] A. Singh, T. Jain, and S. Sukhbaatar, ‘‘Learning when to communi-
cate at scale in multiagent cooperative and competitive tasks,’’ 2018,
arXiv:1812.09755.

[45] T. Wang, J. Wang, C. Zheng, and C. Zhang, ‘‘Learning nearly
decomposable value functions via communication minimization,’’ 2019,
arXiv:1910.05366.

[46] D. Kim, S. Moon, D. Hostallero, W. Ju Kang, T. Lee, K. Son, and Y. Yi,
‘‘Learning to schedule communication in multi-agent reinforcement learn-
ing,’’ 2019, arXiv:1902.01554.

[47] Y. Niu, R. R. Paleja, and M. C. Gombolay, ‘‘Multi-agent graph-attention
communication and teaming,’’ in Proc. AAMAS, 2021, pp. 964–973.

[48] A. Agarwal, S. Kumar, and K. Sycara, ‘‘Learning transferable cooperative
behavior in multi-agent teams,’’ 2019, arXiv:1906.01202.

[49] Y. Du, B. Liu, V. Moens, Z. Liu, Z. Ren, J. Wang, X. Chen, and H. Zhang,
‘‘Learning correlated communication topology in multi-agent reinforce-
ment learning,’’ in Proc. 20th Int. Conf. Auto. Agents MultiAgent Syst.,
2021, pp. 456–464.

[50] J. Jiang, C. Dun, T. Huang, and Z. Lu, ‘‘Graph convolutional reinforcement
learning,’’ 2018, arXiv:1810.09202.

[51] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, ‘‘Multi-agent game
abstraction via graph attention neural network,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 34, 2020, pp. 7211–7218.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[53] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
‘‘The graph neural network model,’’ IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2008.

[54] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, ‘‘Deep variational
information bottleneck,’’ 2016, arXiv:1612.00410.

[55] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘Monotonic value function factorisation for deep multi-
agent reinforcement learning,’’ J. Mach. Learn. Res., vol. 21, no. 1,
pp. 7234–7284, 2020.

[56] E. Jang, S. Gu, and B. Poole, ‘‘Categorical reparameterization with
Gumbel–Softmax,’’ 2016, arXiv:1611.01144.

[57] C. J.Maddison, A.Mnih, andY.W. Teh, ‘‘The concrete distribution: A con-
tinuous relaxation of discrete random variables,’’ 2016, arXiv:1611.00712.

[58] E. Dupont, ‘‘Learning disentangled joint continuous and discrete rep-
resentations,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 1–11.

[59] R. Lowe, J. Foerster, Y.-L. Boureau, J. Pineau, and Y. Dauphin, ‘‘On the
pitfalls of measuring emergent communication,’’ 2019, arXiv:1903.05168.

[60] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, ‘‘Recent develop-
ment and applications of sumo-simulation of urban mobility,’’ Int. J. Adv.
Syst. Meas., vol. 5, nos. 3–4, p. 164, 2012.

[61] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega, D. Strouse,
J. Z. Leibo, and N. De Freitas, ‘‘Social influence as intrinsic motivation
for multi-agent deep reinforcement learning,’’ in Proc. Int. Conf. Mach.
Learn., 2019, pp. 3040–3049.

[62] M. A. Wiering, ‘‘Multi-agent reinforcement learning for traffic light con-
trol,’’ in Proc. 17th Int. Conf. Mach. Learn. (ICML), 2000, pp. 1151–1158.

[63] M. Wiering, J. van Veenen, J. Vreeken, and A. Koopman, ‘‘Intelligent
traffic light control,’’ Inst. Inf. Comput. Sci., Utrecht Univ., Utrecht,
The Netherlands, Tech. Rep. UU-CS-2004-029, 2004.

[64] X. Wang, L. Ke, Z. Qiao, and X. Chai, ‘‘Large-scale traffic signal control
using a novel multiagent reinforcement learning,’’ IEEE Trans. Cybern.,
vol. 51, no. 1, pp. 174–187, Jan. 2021.

[65] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, ‘‘Multiagent reinforce-
ment learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC):Methodology and large-scale application on downtown
Toronto,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1140–1150,
Sep. 2013.

[66] T. Chu, S. Chinchali, and S. Katti, ‘‘Multi-agent reinforcement learning for
networked system control,’’ 2020, arXiv:2004.01339.

[67] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016,
pp. 1–7.

[68] M. Hausknecht and P. Stone, ‘‘Deep recurrent Q-learning for partially
observable MDPS,’’ in Proc. AAAI Fall Symp. Ser., 2015, pp. 1–9.

[69] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs. Cham, Switzerland: Springer, 2016, doi: 10.1007/978-3-319-
28929-8.

[70] M. Tan, ‘‘Multi-agent reinforcement learning: Independent vs. cooperative
agents,’’ in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[71] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning,’’ 2017, arXiv:1706.05296.

[72] L. Bieker, D. Krajzewicz, A. Morra, C. Michelacci, and F. Cartolano,
‘‘Traffic simulation for all: A real world traffic scenario from the city
of Bologna,’’ in Modeling Mobility With Open Data. Berlin, Germany:
Springer, 2015, pp. 47–60.

[73] R. P. Roess, E. S. Prassas, and W. R. McShane, Traffic Engineering.
London, U.K.: Pearson, 2004.

[74] C. Gershenson, ‘‘Self-organizing traffic lights,’’ 2004, arXiv:nlin/0411066.
[75] P. Varaiya, ‘‘Max pressure control of a network of signalized intersec-

tions,’’ Transp. Res. C, Emerg. Technol., vol. 36, pp. 177–195, Nov. 2013.
[76] L. Van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’

J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.
[77] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli,

T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson,
‘‘The StarCraft multi-agent challenge,’’ 2019, arXiv:1902.04043.

[78] E. J. Gumbel and J. Lieblein, ‘‘Some applications of extreme-value meth-
ods,’’ Amer. Statistician, vol. 8, no. 5, pp. 14–17, Dec. 1954.

ROHIT BOKADE received the master’s degree in
operations research from Northeastern University,
where he is currently pursuing the Ph.D. degree in
industrial engineering. His current research inter-
ests include exploring the potential of advanced
machine learning techniques, such as reinforce-
ment learning, deep learning, and optimization
techniques to improve industrial engineering prac-
tices, and solve real-world problems.

XIAONING JIN (Member, IEEE) received the
Ph.D. degree in industrial and systems engineer-
ing from the University of Michigan, Ann Arbor,
MI, USA, in 2012. She is currently an Assistant
Professor in mechanical and industrial engineer-
ing with the College of Engineering, Northeastern
University, Boston, USA. She has over 50 papers
in fully refereed international journals and con-
ferences. Her research interests include predictive
analytics and decisionmaking, data analytics, fault

diagnostics and prognostics, and artificial intelligence in various engineering
applications. She was a recipient of the National Science Foundation Career
Award, in 2020. She received the 2016 Outstanding Young Manufacturing
Engineer Award from the Society of Manufacturing Engineers (SME). She
also serves as the Vice-Chair for theManufacturing Systems Technical Com-
mittee with the ASME Manufacturing Science and Engineering Division.

CHRISTOPHER AMATO is currently an Assistant
Professor with Northeastern University, where he
leads the Laboratory for Learning and Planning in
Robotics. Before joining Northeastern University,
he was a Research Scientist with Aptima Inc., and
a Postdoctoral Researcher and a Research Scientist
with MIT and an Assistant Professor with the Uni-
versity of NewHampshire. He has published many
papers in leading artificial intelligence, machine
learning, and robotics conferences (including win-

ning a Best Paper Prize at AAMAS-14 and being nominated for the Best
Paper Prize at RSS-15, AAAI-19, AAMAS-21, and MRS-21). He has
also won several awards, such as Amazon Research Awards and an NSF
CAREER Award. His research interests include reinforcement learning and
planning in partially observable and multi-agent/multi-robot systems.

47658 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-319-28929-8
http://dx.doi.org/10.1007/978-3-319-28929-8

