
Received 18 April 2023, accepted 4 May 2023, date of publication 12 May 2023, date of current version 24 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3275757

Microarchitectural Side-Channel Threats,
Weaknesses and Mitigations: A Systematic
Mapping Study
ARSALAN JAVEED , CEMAL YILMAZ , (Member, IEEE), AND ERKAY SAVAS, (Member, IEEE)
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey

Corresponding author: Arsalan Javeed (ajaveed@sabanciuniv.edu)

ABSTRACT Over the course of recent years, microarchitectural side-channel attacks emerged as one of
the most novel and thought-provoking attacks to exfiltrate information from computing hardware. These
attacks leverage the unintended artefacts produced as side-effects to certain architectural design choices and
proved difficult to be effectively mitigated without incurring significant performance penalties. In this work,
we undertake a systematic mapping study of the academic literature related to the aforementioned attacks.
We, in particular, pose four research questions and study 104 primary works to answer those questions.
We inquire about the origins of artefacts leading up to exploitable settings of microarchitectural side-channel
attacks; the effectiveness of the proposed countermeasures; and the lessons to be learned that would help
build secure systems for the future. Furthermore, we propose a classification scheme that would also serve
in the future for systematic mapping efforts in this scope.

INDEX TERMS Cybersecurity, microarchitecture, side-channel, systematic-mapping.

I. INTRODUCTION
The manifestation of computer architecture roots into
microarchitecture and instruction set architecture (ISA).
Microarchitecture refers to the ways, in which an ISA is
implemented for a specific microprocessor. For reasons,
such as design, cost, and optimization, a given ISA can
be implemented under different microarchitectures, which
typically distinguish among each other in the way con-
stituent components of the processors are interconnected
and interoperated. With all these aforementioned complex
entanglements in play, exploitable security vulnerabilities
may arise, which can be abused by a malicious adversary to
affect the confidentiality and integrity of a computing system,
potentially resulting in serious loss.

In recent years, among some of the many reported side-
channel attacks exploiting the microarchitectural vulner-
abilities, Meltdown [1] and Spectre [2] are few of the
notable and widely talked-about examples, as these attacks

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

particularly abuse the transient state of the microprocessors
during speculative execution. The mechanics of these attacks
are although complex, yet they are practical and have
successfully demonstrated exfiltration of sensitive private
data and cryptographic secrets.

Furthermore, the findings about the microarchitecture
attacks have sparked the interest of the security research
community and accelerated the research efforts in this
relatively recent area of software and cyber security. In this
regard, research efforts are being carried out both on the axis
of uncovering newer vulnerabilities and to prevent, mitigate,
and lessons to build secure systems of the future.

The literature on microarchitecture security research has,
therefore, been growing at a relatively fast pace. Typically
a microarchitecture side-channel attack is discovered and
reported at first, followed by research efforts into its potential
attack variations, mitigations, and security-oriented lessons
to be learned. However, efforts that over-arch the individual
works to systematically gather and to assemble various
aspects of microarchitecture security research in a broader
context, are yet limited and somewhat outdated, and thus

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 48945

https://orcid.org/0000-0002-8970-6178
https://orcid.org/0000-0003-4124-2295
https://orcid.org/0000-0003-2601-9327


A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

are still desired. The purpose of our presented work as a
systematic mapping study is a step in this direction. To the
best of our knowledge, this work is the first systematic
mapping study carried out on this subject.

A systematic mapping study provides an overview of the
existing research through systematic classification of the
published literature on the topic, guided by the posed research
questions under the constraints of a mapping protocol [3].
A prime finding from such studies are the research spots,
which have gained considerable attention, as well as the
emerging research trends, which can launch newer investiga-
tions and guide the direction for further research. In contrast,
a literature survey aims to comprehensively index and, thus
report the existing state of affairs on a topic of interest.
Consequently, systematic mapping studies and surveys differ
from each other in terms of their end goals and the research
process they follow.

To guide our investigation, we have raised four research
questions (RQs)(Section IV-A) to address the security con-
cerns about microarchitectures, such as the aspects leading
up to leakage, the ways in which exploitable corridors are
created, the effectiveness of the existing countermeasures as
well as their applicability to zero-day attacks, and the lessons
to build more secure systems.

The main contributions of our mapping study are: i) a
broad overview of the research efforts in the area of
microarchitecture security; ii) a classification scheme that can
be used to classify newer research in this area; iii) a decent
yet diverse coverage of the published research on the topic,
particularly from the last five years; and iv) the identification
of hot and cold research spots to date.

The target audience of this work is the researchers and
practitioners, who aim to establish a better overarching
understanding of the research efforts being carried out in this
area.

The remainder of the paper is organized as follows:
Section II discusses related work; Section III presents the
necessary background information; Section IV presents the
methodology followed, detailing the search, inclusion, and
the exclusion criteria together with the study selection
process used; Section V introduces the classification scheme
employed, followed by the mapping results; Section VI
details the answers to our research questions; Section VII
presents potential threats to validity in the study; and
Section VIII concludes the paper and presents possible
directions for future work.

II. RELATED WORK
To the best of our knowledge, our study is the first systematic
mapping study in the area of microarchitectural side-channel
threats, weaknesses, and mitigations. However, there exist a
few surveys in the literature [4], [5], [6] as well as some
individual works [7], [8], [9], each addressing a specific
aspect. Albeit, some of theseworks are either being somewhat
dated or generally lacked wider scope. Table 1 presents a
highlevel glimpse on existing related work together with its
strengths and limitations.

TABLE 1. Publication year, Strengths(S) and Limitations(L) of notable
related work.

Kanuparthi et al. present a survey [4] dating till 2012. The
scope of the survey is bound to embedded microprocessor
security only. As the proliferation of embedded systems
was on the rise, so as emerging challenges to secure their
vulnerable nature due to their limited onboard resources.
The authors reported some of the prominent attacks plaguing
that arena during those times. Furthermore, the authors
compared the trade-offs among sought-after countermeasure
approaches, such as levering integrity checks, data encryp-
tion, and microarchitecture revisions.

Szefer et al. present a survey [5] on microarchitectural
side- and covert-channels with their defense proposals dated
until 2018. The prime emphasis of the aforementioned
work is on timing-based and (to some degree) access-based
exploitations. In a distinct regard, the authors did foresee the
role of the prefetchers in microarchitectural exploitations and
did theoretically present a setting for such an attack, yet were
unable to provide a citation to any known published literature,
since the research into prefetcher exploitations was still in its
infancy during the time of the work.

Another survey [6], which Ge et al. authored around
the same year of 2018, exclusively focused on the timing-
based microarchitectural attacks and their countermeasures.
The main motivation behind this survey was to taxonomize
the aforementioned efforts. These attacks established their
reputation as prime vectors for remote exploitation in cloud
computing. Furthermore, the authors emphasize the need to
secure cloud systems against such class of attacks, as our
ever-increasing adoption and growing reliance on cloud
computing would continue to grow with the passage of time.

Note that a direct comparisonwith these works wouldn’t be
straightforward because of the different sought after research
objectives as well as the methodology being employed. Last
but not least, we believe the constituent studies employed in
our work are fairly recent in the sense that half of them have
been published in the last five years (since 2018).

As we and other researchers [5], [6] have observed that
microarchitecture security is a fast-growing field and even the
entire playground may change quickly. So we believe, in this
time frame, our systematic gathering of literature, especially
from the last five years is going to be an important effort and
would serve as a valuable scientific resource.

48946 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

III. BACKGROUND INFORMATION
To assist the understanding of the reader for the remainder
of this article, we, in this section, introduce essential
terms/concepts and provide some relevant definitions for the
material ahead. Furthermore, for clarity, we also provide
Table 6 in Appendix B to list out all the abbreviations and
their expansions in one place, which will be used throughout
this article.

The usual intention behind a microarchitectural side-
channel attack undertaken by amalicious actor is to exfiltrate
some secret information or to perform acts of sabotage on a
system. In literature, malicious actors are also often referred
to as adversaries. This secret information is usually well-
protected and is not meant to be revealed to any adversaries.
In the case of cryptography, this secret information could be
a secret key, the content of a file containing sensitive business
information, the content of a buffer, or the latent parameters of
a machine learning algorithm. In contrast, an act of sabotage
would intend to disrupt the services provided by a system,
such as a ransomware attack. Regardless of the intention
of the malicious actor, an affected system or a process is
generally referred to as a victim. If the malicious actor’s main
intention is to exfiltrate some information then it is referred
to as a spy in contrast to a saboteur carrying out a sabotage.
Both the spy and saboteur could be a single process, a group
of processes, a compromised system component, or another
involved remote actor.

A side-channel is a communication channel established
between a sender party and one or more receiver parties,
such that sensitive information is unintentionally leaked as a
result of side-effects to computations being carried out on the
underlying hardware. In contrast, a covert channel is a side-
channel that is intentionally established between a malicious
sender and receiver, uponwhich exfiltrated secret information
is being transmitted.

A CPU (central processing unit) also referred to as pro-
cessor or microprocessor, executes the machine instructions.
A CPU is realized on a silicon die through an electronic
design and automation (EDA) process and usually comprises
billions of interconnected transistors. A CPU provides a
programmable interface in the form of instruction set archi-
tecture (ISA). The ISA could be implemented in several ways
dictated by the underlying microarchitectural design, i.e.
microarchitecture. Generally, a microarchitecture comprises
some specialized processing elements, which are referred to
as functional units, and some intermediate temporary storage
elements, which are referred to as registers and buffers.
A register is a small, but fast temporary storage area within
the processor to hold some data, such as an argument to
an instruction. A buffer, on the other hand, is a temporary
storage area allocated in the main memory to hold data in-
between transfers. In recent microarchitectures, however, few
specialized buffers exist in the CPU to assist the operations
of various onboard functional units, such as pipeline buffers.
Furthermore, a CPU or GPU (graphics processing unit)
could be equipped with performance counters, which are
special onboard registers counting the low levels occurring

in the CPU, such as the number of cache misses or hits.
A GPU is a specialized processor meant to process computer
graphics.

Instructions of a program execute in a pipeline and
typically go through instruction- fetch, decode, execute,
memory, and writeback steps. During each stage of this
pipelined execution, the intermediate results are stored in
the pipeline buffers where the arguments and the operational
configuration are provided through intermediate registers.

The microarchitecture itself is a specific instance of the
number of valid ways, in which the underlying functional
units of the CPU should be interconnected to fulfill the design
and performance goals intended by the designers. On modern
CPUs, the ISA is mapped onto a sequence of small microcode
operations established by the underlying microarchitecture.
Instructions are executed in one or more clock ticks, which
are referred to as clock cycles.

A multicore processor is a single processor containing
multiple execution cores in a single package. Each core
has some core-private resources, such as cache and pipeline
stages, in addition to having some resources shared with other
cores. Multicore processors deliver significant performance
improvements as the workload can be distributed among
available cores to be executed concurrently.

Out-of-order and speculative execution are other perfor-
mance enhancement mechanisms, leveraged to optimize the
execution of instruction stream on modern processors. Out-
of-order execution refers to executing instructions inde-
pendently from each other in their order of execution to
increase overall throughput. Those instructions that do not
have pending data dependencies are executed immediately
whereas instructions with pending dependencies are sched-
uled for a later time when those dependencies are met.
However, out-of-order execution remains hidden from the
application point of view and everything appears as it has
been executed sequentially. In a distinct regard, speculative
execution refers to executing branches speculatively ahead of
time by guessing the most probable branch. If the guesswork
is correct then results are already available from the executed
branch. Otherwise, the executed branch is discarded and the
correct branch is taken.

Caches are small memories that bridge the data-access
latency between slow but large physical memory and fast
CPU(s) by buffering frequently accessed data. Modern
systems typically have multiple cache levels (L1, L2, and
often L3) arranged in a hierarchy comprising the cache-
subsystem. L1 cache is split as instruction and data cache,
followed by a larger L2 cache. L1 and L2 caches are core-
private, i.e., each core gets its own dedicated set of these
caches. On some systems, L3 cache, also called the last-level
cache (LLC), is shared between all the CPU cores. Onmodern
Intel microarchitectures, LLC is inclusive in nature [10],
which contains all the data within L1 and L2 caches. Given
a memory address to be accessed, the CPU first looks it
up in the L1 cache, if the respective data is found in the
cache, its called a cache hit, otherwise a cache miss. Upon
a cache miss, the CPU next looks for the address in next level

VOLUME 11, 2023 48947



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

cache and keeps on traversing the cache hierarchy until either
the respective data is located in the cache or it reaches all the
way to the main memory. A cache is organized into cache
lines and cache sets, each of which contains the same number
of cache lines. A given memory address is decoded into tag,
index, and offset fields in order to look up the respective data
in the cache hierarchy.

The memory controller handles the memory accesses to
DRAM when data requested by the CPU is not available
in the cache. Memory controller serves a data request by
translating the given physical address into an internally
maintained DRAM map of channel, bank, row, and column
information. Furthermore, the memory controller arbitrates
internally among the concurrent memory accesses through
scheduling and buffering policies. Memory deduplication is
a mechanism to save the physical memory space by keeping
one copy for each duplicated memory pages as long as the
pages are unmodified. The modified page is isolated and kept
as a separate independent page.

Prefetching is among the few employed methods besides
speculative execution to enhance performance in modern
CPUs. Hardware prefetchers are those microarchitectural
units that perform the task of prefetching and handling
associated aspects. In a nutshell, prefetchers increase the
cache hit rate through speculatively prefetching the data
that would potentially be requested in the near future
during a computation. To this end, patterns of memory
access requests are observed and speculative data fetching
is issued accordingly. Prefetchers exist in a hierarchy among
all the levels of cache-to-memory, such as L3-L2 and
L2-L1. The implementation details of the prefetchers are
usually proprietary and subject to change as the underlying
microarchitecture evolves. Broadly speaking, prefetchers are
categorized into next line prefetchers and stride prefetchers.
The former simply prefetches the next line for the current
cache-line in use, whereas the latter learns and utilizes the
patterns in memory accesses.

In recent years, a paradigm in secure computing has
emerged themed around its reliance upon hardware-based
Trusted Execution Environments (TEE), realized in software
through enclave programming [11]. CPU vendors provided
TEE environments through microarchitectural extensions.
For instance, ARM provides ARM-TrustZone [12] and
Intel provides TPM+TXT [13] and later Software Guard
Extensions (SGX) [14].

Last but not least, Peripheral Component Interconnect
(PCI) and its modern high-speed variant PCIe (PCI express)
is the de-facto protocol with supporting hardware, through
which CPU and high-speed peripheral devices, such as GPU
and NIC, are connected.

IV. METHODOLOGY
In this work, we followed the widely-accepted guidelines for
carrying out systematicmapping studies [15], [16], which had
also been adopted by some of the relevant mapping studies
in the literature [17], [18], [19]. To this end, we first carried

out a planning phase, primarily for laying out the research
questions, choosing the method to locate and appraise
primary studies, crafting a search strategy, and carrying
out the curation of the primary studies. In this context,
a primary study is a chosen, peer-reviewed, and published
scientific article that went through the usual phases of
searching, screening, and classification, which are performed
as a part of the typical workflow in a systematic mapping
process. Each primary study is meant to contribute to the
systematic data synthesis by answering one or more research
questions.

We, in particular, decided to follow a mapping process
comprised of the following steps [15]: defining research
questions, conducting search, screening of papers, keyword-
ing of abstracts, classification, and data extraction and
mapping. Although all of these steps are sequential in nature
and performed one after another, oftentimes the individual
steps are performed iteratively more than once to refine their
outcomes and improve the overall end result of the whole
mapping process. Next, we discuss how we actually carried
out each of these steps in this study.

A. DEFINING RESEARCH QUESTIONS
We put together the following research questions as a basis
for this study:

• RQ1: What are the aspects of microarchitectural arte-
facts, which contribute to the sensitive information
leakage to compromise security and privacy?

• RQ2: How some of the recent microarchitectural
surfaces were crafted and turned into feasible attack
corridors?

• RQ3: How effective are the proposed countermeasures
of microarchitecture side-channel attacks and whether
these countermeasures are generalizable? Can these
generalized countermeasures predict/prevent zero-day
attacks?

• RQ4: Given the published countermeasures, how secure
a system we can build against microarchitecture side-
channel attacks and what lessons we can incorporate in
this system-design process?

B. CONDUCTING THE SEARCH
Guided by our research questions, we defined an initial set
of keywords as seeds to locate relevant papers in Google
Scholar [20]. We read these papers and utilized snowballing
technique [21] to find additional papers that we find relevant
to our RQs. Snowballing refers to locating additional papers
based on the reference lists or citations of a given paper [18].
To aid the snowballing process, we used an online tool, called
Connected Papers [22]. In particular, we came upwith 11 core
papers as a result of the initial search, these papers were
used to put together a set of keywords (listed in Table 2),
which were then used as the basis for defining search strings.
The validity of these keywords was tested by rediscovering
the core papers they were driven from. We also eliminated
some keywords that we found to be redundant, superfluous,

48948 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 2. Keywords used to form search strings. To avoid redundancy,
we are adopting regex format to specify potential variations of a
keyword. We used these keywords in Title, Abstract, Author defined, and
All metadata fields for performing database queries.

or causing an increased number of irrelevant results in the
search.

To carry out the actual search, we utilized three standard
databases as sources, namely IEEExplore [23], ACM Digital
Library [24], and Springer Link [25]. This decision was
primarily influenced by the availability of the database
subscriptions that our campus had, themanpower of our team,
and the fact that these sources are the de-facto prime venues
of scientific literature in computer science. Furthermore,
we leveraged the advanced search features of these databases
to perform the search queries. The advanced search features
enabled us to limit or expand the scope of the queries for
decreasing the frequency of the irrelevant results. Based on
the keywords given in Table 2, the search strings for each
database were created and iteratively experimented with to
come up with the most appropriate search results.

We, furthermore, observed that the internal mechanics of
these databases were different. That is, a query suitable for
one database was not necessarily to be equally effective in
another database. For example, we found out that searching
for keywords in the abstracts at IEEExplore was more
effective than running the same search at ACM Digital
Library. Nonetheless, we used the listed set of keywords
(Table 2), the database-specific advance search features (e.g.,
boolean operators), and available filters to tailor the relevance
of the search results.

After getting the search results, we sorted them in the order
of relevance and picked the top 100 results for ACM Digital
Library and Springer Link. For IEEExplore, we chose to stop
when 5 irrelevant papers in a row were observed. We used
ranking by relevance for ACM and Springer Link databases.
For IEEExplore, however, this feature was unavailable. Thus,
we opted to use two different aforementioned stopping
criteria. Other works [18], [26] have also followed a similar
approach.

C. SCREENING AND CLASSIFICATION PROCESS
To aid the screening and the study selection process,
we tailored the following inclusion and exclusion criteria,
which were adopted from [16], [19], and [18].

1) INCLUSION CRITERIA
• a study must answer at least one of the formulated
research questions (RQs),

• a study must be dated until the March of 2023,

• priority must be given to the evaluation and validation
research studies during the selection process,

• a study must be peer-reviewed and published in English.

2) EXCLUSION CRITERIA
• a study should not be in one of these forms: patents,
white papers, reports, thesis, tutorials, and webpages,

• duplicate studies located by different search engines,
• inaccessible, irretrievable, or irrelevant to the theme of
our work,

• any article, the subject matter of which is around
quantum computing.

Note that the aforementioned criteria aided us to perform
the initial screening and sanitation of the search results.

D. OVERVIEW OF THE DATASET
Our initial search effort resulted in 546 articles from the
three databases as follows: 192 from IEEExplore, 210 from
ACMDigital Library, and 144 from Springer Link. However,
after the title and abstract screening, we manually went
over the content of the articles, i.e. content scanning,
especially for those articles where the abstracts were short
enough to be suitably meaningful or lacked ample clarity in
general. Furthermore, we also content scanned those articles
with abstracts where it was found difficult to pinpoint the
investigated problem and/or the main contribution being
made. We also performed content scanning of the individual
sections for the papers, where we felt that individual clauses
of inclusion and exclusion criteria were difficult to apply.
In such a case, we relied on team discussion to reach a
final consensus. Other mapping studies [18], [27] have also
followed a similar practices.

For classification we settled for 104 articles to serve
as our primary studies, the list of which is available in
Table 5, whereas, the remainder 442 (out of 546) articles were
dropped at this step. The classification scheme is described
in Section V which guided us toward the final data extraction
and mapping of results. Ultimately, the primary studies also
served as the basis for answering our RQs, whichwas, indeed,
the main goal of this mapping study.

Regarding further relevant statistics of the primary studies
dataset, we notice that 25% (25 out of 104) of articles
are published in journals and remainder 75% (79 out
of 104) as conference papers. Similarly, page count of
primary studies span between 4-27 pages, where 12 is the
median count. Lastly, 57% (60 out of 104) of primary
studies primarily focused on a countermeasure approach and
remainder 43% (44 out of 104) proposed an attack approach.
These aforementioned statistics establish a fair degree of
confidence about the balance in the dataset for our systematic
mapping study.

V. RESULTS
Systematic mapping studies aim to provide an overview
of a research arena through the classification of published
literature on the subject topic. To aid discussion and present
the results of our study, we first describe the classification

VOLUME 11, 2023 48949



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

scheme, which we used to categorize the primary studies.
We then present the mapping results in the light of the
aforementioned scheme.

In accordance with the established norm of systematic
mapping studies, we first describe the classification scheme,
followed by the presentation of aggregate statistics on the
individual facets of classification. The main takeaway from
the aggregate statistics is the quantitative presentation of
the data gathered from primary studies. This data presents
an overall picture and helps build ample confidence in the
selection and the classification process as well as in the
thematic diversity present in the pool of primary studies.
The primary studies are then used to answer themain research
questions in this study.

A. CLASSIFICATION SCHEME
Our classification scheme broadly classifies the studies into
seven categories: research type, main contribution, hardware
platform, instruction set architecture (ISA), leakage vector,
and leakage component. Next, we describe each of these
categories.

1) RESEARCH TYPE
This category describes the different research approaches
as outlined by Wieringa et al. [28]. We chose to use
Wieringa’s classification scheme as it has also been used
in earlier mapping studies [18], [19], [29]. We associated
each of our primary studies with one of these research
approaches: evaluation, validation, and solution proposal.
Based on a typical exclusion criterion of mapping stud-
ies [18], [26], we disregarded philosophical, opinion, and
personal experience papers, and focused on opting primarily
for the evaluation and validation research. Note that the
aforementioned types of research aim to demonstrate the
practical usage of a technique backed by real data, relevant
experiments, and empirical evaluation.

2) MAIN CONTRIBUTION
Categorization based on contribution type in mapping studies
has been employed previously by Zein et al. [19] and
Shahrokhni et al. [17], which classifies each primary study
to one of the following specific types of contribution:
framework, tool, metric, approach, and criterion.
A framework paper introduces a detailed method, which

has a broad scope and tends to focus on more than one
research question or area. Whereas, an approach paper has
a narrower scope and tends to have a more specific goal
addressing a single research question. Similarly, a tool paper
presents an implementation of at least one approach with
the aim of demonstrating the applicability of the proposed
approach to the practitioners. Primary studies, where the core
emphasis was on tool demonstration, are classified in this
category. A metric paper, on the other hand, proposes an
empirical measure to quantitatively describe a variable of
interest. In contrast, a criterion paper outlines a strict method,
by which a certain quantitative or qualitative attribute of an
observatory aspect can be judged upon.

3) HARDWARE PLATFORM
This category represents the nature of the physical hardware
considered by a primary study, upon which the main subject
matter was presented and/or evaluated. This categorization
would help establish whether microarchitecture attacks are
specific to or prevalent for a certain hardware type. We opted
for the following subcategories: commodity, mobile, embed-
ded/IoT, cloud, and any, based upon the explicit mentioning
of the platform type discussed. Commodity hardware refers
to the general purpose computing platforms, such as work-
stations for daily usage. Whereas, mobile hardware refers
to the handheld portable devices, which are primarily meant
for communication and serve the limited computing needs of
the users. Smartphones are a prime example of this category.
Similarly, embedded/IoT devices refer to the microprocessor-
equipped hardware with optional networking ability and
occasional connections to the internet, which are designed to
perform a dedicated function. Similarly, cloud platform refers
to a group of server machines that are networked together
and connected to the internet, located typically in a data-
center environment. The users are given remote access over
the internet to utilize these machines for their application
usecases. Last but not least, the any category refers to either
an unspecified platform or the specification of the platform
does not matter. Those primary studies, which present a
generic approach, criteria, or empirical metric, fall under
this category as their subject matter is agnostic to a specific
hardware type.

4) EVALUATION METHODOLOGY
This category refers to the methods adopted in the pri-
mary studies to conduct their experimental evaluations.
In this regard, we have observed the following types of
methodologies: pure software implementation, employment
of simulation tools, evaluations performed on real hardware,
evaluations performed on FPGA-synthesized hardware, and
other, referring to the studies where the aforementioned
categories do not matter. For instance, studies presenting
a criterion or an empirical metric belong to the other
category. Note that primary studies may follow more than
one evaluation methodology, such as a study carrying out
the evaluations through simulation followed by hardware
implementation and so on.

5) INSTRUCTION SET ARCHITECTURE
Instruction set architecture (ISA) refers to the syntactic and
semantic realization employed at the machine level, to which
the compiled software is assembled for execution. In this
regard, we observed that the following types of ISAs were
used in the primary studies selected: Intel(x86,x86_64),
ARM, RISC, Nvidia-CUDA, MIPS, and other, referring to
the studies where either multiple ISAs or lesser-known ISAs
are used. This categorization would help establish whether
microarchitecture attacks are agnostic to ISA or not.

6) LEAKAGE VECTOR
Leakage Vector refers to the side-channel, through which
the sensitive information leaks or emanates. In this regard,

48950 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

we consider the following leakage vectors: access patterns,
contention, sharing, dependence, duplication,EM, execution,
fault, interruption, power, speculation, state, and timing.
Access patterns refer to the recurrent patterns observed

in accessing some hardware resources, through which the
high-level behavior of the requesting entities can be inferred.
This can later be used as a ladder step to either assist or
rely for further malicious exploitation. In contrast, contention
refers to at least two entities contending to get access to
a shared resource to perform their task. Similarly, sharing
refers to a shared resource being granted (according to
some agreed-upon policy) to one of the several requesting
entities. Whereas, dependence refers to an entity being reliant
upon some resources or being controlled by some resources,
to perform its assigned function. In contrast, duplication
refers to creating a duplicated copy of a requested resource for
the requesting entity to fulfill its needs. Moreover, EM refers
to the electromagnetic emanations, which can be observed at
a distance without physical proximity. These emanations can
be utilized to infer the underlying state as well as the ongoing
activities of the system radiating from them. Similarly, power
refers to the electrical power being consumed in relation
to the hardware demand. Whereas, execution refers to the
act of executing instructions on a processor. Fault refers to
an event or untimely interruption, which disturbs the sanity
of the internal state of a processor and the correctness of
an ongoing computation. To recover from a faulty state,
often the intermediate computation is discarded and the
execution is rolled back to some previously known good
state. In contrast, interruption refers to an event, which needs
to be served immediately, causing temporary suspension
of the lower-priority execution happening at the time of
the interruption. Speculation refers speculative execution
(Section III). Similarly, state refers to an existing internal
state of a resource, which would lead to one of the possible
future states. Lastly, timing refers to the elapsing of the time
between two microarchitectural events of interest.

7) LEAKING COMPONENT
This refers to the microarchitectural functional unit or
subsystem, which is the culprit of the side-channel leakage by
exposing one or more leak vectors. The constituents for this
category that we relied upon organizing the selected primary
studies are: buffers, caches, instructions, interconnects,
memory, microprocessing elements, tee (trusted execution
environment), and timers. The background information for
these components has been presented in Section III

B. MAPPING RESULTS
In this section, we present the quantitative and qualitative
results of our systematic mapping study with respect to the
classification scheme introduced in Section V-A.

1) PUBLICATIONS TIMELINE
We curated a total of 104 primary studies by following the
steps of the systematic mapping methodology introduced

FIGURE 1. Publication timeline of the primary studies. The timeline spans
from 2006 to 2023. For each year, the number of primary studies is
indicated on the vertical axis. The year 2023 is covered only until month
of March.

in Section IV. Table 5 lists the title of each study and its
associated bibliographic reference. Furthermore, each study
is assigned a sequential study ID, such as S1, S2, and
S3. We use these study IDs to refer to specific primary
studies throughout the remainder of the paper. Note that
assigning study ID is an established practice and has
widely been followed in other mapping studies [19], [26].
More specifically, study IDs help the reader differentiate
between references to bibliographic items versus a primary
study.

Figure 1 illustrates the publication timelines for the
primary studies over the years from 2006 to 2023. We first
observe that the research in microarchitectural side-channel
attacks became visible in 2006 and gained gradual attention
over the years till 2017. From 2017 onward, the research area
gained more and increasing attention, which is evident from
the sharp increase in the number of publications. Software
and cyber security has been gaining more and more attention
over the recent years and this trend has been observed in other
studies [18], [26] as well.

Figure 1 also illustrates that the pool of primary studies we
assembled for this work is fairly recent. More specifically,
83% (87 out of 104) of the studies were published in the last
6 years (i.e., between 2017 and 2022). Note that, for the year
2023, the studies were included until the end ofMarch, during
which we carried out the analysis.

2) RESEARCH SPOTS
Figure 2 highlights the research spots as a matrix of bubbles
where the size of a bubble is proportional to the volume of the
studies at the intersection of the respective leakage vector and
leaking component categories. As such, the figure reveals the
hot and cold spots where the research has focused.

VOLUME 11, 2023 48951



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

FIGURE 2. Research spots for leakage vector vs. leaking components.

Although some care must be taken when interpreting the
research spots in Figure 2 as the pool of primary studies
used in the analysis is solely assembled based on a strict
selection criterion designed to address our research questions
(Section IV-C), the figure illustrates some important research
characteristics of the primary studies. Among the notable
patterns, we observe that contention and timing as the leakage
vectors have been involved across almost all (7 out of 8) the
leaking components. Similarly, cache and trusted execution
environment as the leaking components have been involved
across most (11 and 9 out of 14, respectively) of the leakage
vectors. The ways, in which the various leaking components
leak information through leakage vectors are discussed at
length in Section VI.

3) RESEARCH FACET AND CONTRIBUTION TYPE
We classify the primary studies (Table 5) along the axes of
research facet and main contribution (Section V-A). Figure 3
illustrates the results we obtained.We observe that most of the
primary studies belong to the validation category (59 out of
104), followed by the evaluation category (37 out of 104), and
then the solution proposal category (8 out of 104). Note that
the solution proposal category is customarily [18] excluded
from the study selection criteria, because, by nature, they
lack considerable evaluation. However, we opted to flex on
this practice and, in the final iteration of our study selection
process, we included a small number (i.e., 8) of solution
proposals. We did this because we found the presented ideas
to be interesting and relevant to the scope of our research
questions.

Along the same lines, we observe from Figure 3(b)
that 75% of the primary studies are actually contributing
approaches backed by evaluations. However, the remaining
25% contribute tools (4 out of 104), metrics (7 out of 104),
frameworks (15 out of 104), and criteria (1 out of 104). Note

FIGURE 3. Percent-wise share of the primary studies with respect to
(a) research facet and (b) main contribution. The length of a bar depicts
the percentage value, whereas the integer associated with the bar
indicates the actual count.

that the studies occasionally contributed to more than one
category.

4) TARGET PLATFORM AND INSTRUCTION SET
ARCHITECTURE
In terms of the target platform hardware and the instruction
set architecture (Figures 4a and b, respectively), we observe
that all of our primary studies have considered them all, albeit
to various degrees as shown through percent-wise proportion
in Figure 4. However, we do observe that the commodity
hardware platform and the Intel x86 ISA have the largest
share overall, which is to be expected due to their proliferation
worldwide. Nonetheless, we see contributions from other
ISAs and platforms too, which reveals an important fact
that microarchitectural exploitations and vulnerabilities are
not limited to one specific platform and ISA, but rather
threatening the whole spectrum of computing hardware.

5) EVALUATION METHODOLOGY
The percent-wise distribution of different types of evaluation
methodologies employed by the primary studies is shown
in Figure 4(c). Overall, 55% and 22% of the primary
studies opted to be evaluated on real hardware and FPGA
systems, respectively. In contrast, 25% and 12% of the studies
opted for simulation- and software implementation-based
evaluations, respectively. And, the meager 2% are grouped
under the other category, indicating that the other categories
do not apply (e.g., the studies, which propose a criterion).

VI. DISCUSSION — ADDRESSING THE
RESEARCH QUESTIONS
In this section, we address our research questions by using the
primary studies in due length and scope. However, the gist of

48952 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

FIGURE 4. Percent-wise share of primary studies with respect to
(a) target hardware platform and (b) instruction set architecture. The bar
length indicates the percentage value and the integer value on each bar
indicates the actual count.

following sub-sections span along the following lines: i) to-
date almost all known microarchitectural components have
been exploited in quite novel ways; ii) themotivations behind,
reverse-engineering skills, knowledge of the microarchitec-
tural intricacies at system-level, and availability of needed
resources to research, prove to be sufficient in the hands of
exploit developers; iii) upon public disclosure of an exploit,
in due time researchers are able to come up with effective
mitigations, albeit often at the cost of decrease in system
performance; iv) long-term academic research is bearing fruit
and has gathered sufficient knowledge that is improving and
shaping security-oriented future of microarchitectures.

A. RQ1: WHAT ARE THE ASPECTS OF
MICROARCHITECTURAL ARTEFACTS, WHICH CONTRIBUTE
TO THE SENSITIVE INFORMATION LEAKAGE TO
COMPROMISE SECURITY AND PRIVACY?
Undesired information leakage from the microarchitectures
often originates due to the spatio-physical implementation
of the CPU, the design optimizations, the trade-offs, and the
temporal resource allocations among various functional units
during the program executions. Effective resource allocation
and optimal scheduling of the functional units can deliver the

desired performance, but may fail to deliver perfect security.
From the existing security research, the diverse aspects of the
microarchitectures have been explored to discover the secu-
rity vulnerabilities, which often involve one or more compo-
nents being engineered into an information leakage state.

We identified a number of artefacts through our set of
primary studies (Table 5) compromising microarchitectural
security. Next, we provide a high-level overview, which
should serve as a primer for a starter audience. The more
focused and technically inclined security-specific account
will be covered in Section VI-B.

Concurrent execution of multiple processes has an influ-
ence on the contents of shared and private caches in a multi-
core environment. Furthermore, the hardware scheduling and
resource allocation policy determines the assignment of cores
to concurrently executing processes. Processes executing on
the same core can access the core-private caches as well as the
shared ones. However, processes even executing on different
cores can indirectly influence the content of the private caches
of other cores, through the propagation of the side-effects
from the shared LLC cache to all cores [S13], [S18] Thus,
code execution and data access, ripple through the cache
hierarchy in ways, which an adversary can exploit through
timing and access based channels.

The memory controller resolves memory accesses made
by CPU onto the internal organization of DRAM, such as
into channels, banks, rows, and columns. Furthermore, it also
arbitrates and schedules multiple concurrent memory access
requests in addition to overseeing the buffering of data for
reads and writes according to the predetermined policies. The
choice among different internal policies exhibits an effect on
the timing variations and on the frequency of conflicts during
bank- and row- address resolutions. Certain combinations
of these policies give rise to exploitable timing differences,
which an adversary can leverage [S21] to build a covert
communication channel and utilize patterns in these timing
differences to encode bits of secret message. In a recent
work [S33], the authors described a feasible exploitation
of memory deduplication mechanism to establish a covert
channel in a cross-vm (virtual machine) scenario.

The buffer contents and the order of register allocation can
significantly impact the internal state of the CPU core and
could be exploited to engineer an internal state feasible for
security exploitation. One such tactic is to prolong intervals
of transient execution for certain processes, which would
provide an opportunity to attacks reliant on transient state.
It would also assist to increase the overall effectiveness of the
similar attacks [S58]. Furthermore, under favorable internal
states, potent electromagnetic and power side-channel attacks
[S54] can be carried out. The internal state of a CPU has a
direct correlation to power consumption and electromagnetic
emissions. Analyzing these emissions can help a spy infer the
degree of system activity as well as the specifics regarding the
current workloads.

Intel SGX creates an isolated execution environment,
called enclave, which provides a protected, secure, and
isolated sandbox to code segments in a user process.

VOLUME 11, 2023 48953



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

In these code segments, sensitive computations are carried
out, which rely on some secret information, such as a
cryptographic attestation. The notion here is to protect
sensitive user processes from untrusted system software,
such as an OS or a hypervisor. However, in recent years
various microarchitectural attacks have been demonstrated to
break the security provided by SGX, despite the strong iso-
lation guarantees provided by this technology [S78], [S77].
In particular, attackers have been able to compromise
authentication during the entry and exit protocol performed
while delegating the computations from OS to enclave and
vice versa. In another instance, malware has been able to
conceal itself inside a secure enclave by abusing the SGX
protection features, which enabled the malware to carry out
attacks on neighboring enclaves [S77].

Modern microarchitectures enable speculative execution
of programs. In a nutshell, processors can speculatively
fetch and execute a stream of instructions along a predicted
path ahead of time. Later, if the program actually executes
along this predicted path, the pre-computed results are
already available and ready to use. On the contrary, if the
prediction fails, the thus-so-far speculative computation
trail is simply discarded. However, research reveals that
speculative execution leaves behind trails of temporary
microarchitectural state changes, such as the cache lines
being touched and/or evicted and the updates in the behavior
of the branch predictors or prefetchers. The exploitation of
aforementioned state changes led up to many side-channel
attacks to exfiltrate sensitive information, which otherwise is
not possible to do so [S71], [S8].

Some recent research revealed that prefetchers can be
exploited to establish a high-bandwidth covert-channel across
processes. A prefetcher has the ability to learn and retain
patterns of memory accesses and leverage this knowledge
to fetch data ahead of time. However, a malicious process
can abuse this ability and selectively make the prefetcher
to forget the strides it has learned for another process.
This is typically feasible due to the limitation that only a
finite number of patterns can be kept. Therefore, to make
room for a new pattern, one of the old patterns has to be
forgotten. Leveraging the aforementioned limitation, two spy
processes can exchange secret messages by placing their
stride patterns into the prefetcher and determining whether or
not their strides are forgotten at a later time. Demonstrations
reveal that attackers can build much more stealthier and
high-bandwidth covert channels capable of transmitting
information in the order of several tens of KBps with low
error-rates [S38].

Modern CPUs are equipped with a range of onboard
electronic modules to ensure reliability of the operations
despite the changing conditions in the surrounding envi-
ronment. Among other functionalities, these modules are
meant to manage power, regulate voltages, and provide
protection against excessive temperature. However, these
modules are not devoid of side-channel leakage, through
which an adversary can snoop into the inner workings of
a CPU core. Typically, in adversarial settings, power and

electromagnetic emanations are leveraged either to infer or
to affect the inner state of a CPU core [S39].

In the preceding account, we observe that the artefacts
leading up to the compromised security and privacy are not
limited solely to one specific aspect of themicroarchitectures,
but typically span across the physical components, such
as cache, memory, and registers. Nonetheless, they also
span across the executional mechanics of the speculative
execution and prefetching. Interestingly enough, the onboard
electronics also contribute to the artefact emanations in power
consumption and electromagnetic emissions.

B. RQ2: HOW SOME OF THE RECENT
MICROARCHITECTURAL SURFACES WERE CRAFTED AND
TURNED INTO FEASIBLE ATTACK CORRIDORS?
In RQ1 (Section VI-A), we presented a high-level overview
of the artefacts emanating from the microarchitectural
intricacies, which ultimately are leveraged by adversaries to
compromise the security and the privacy of the computing
systems. In RQ2, we intend to cover the ways, through
which the aforementioned artefacts are utilized. To this end,
we group the primary studies based on the leaking component
and provide a brief account of how the attack corridors are
actually created.

1) CACHES
From our set of primary studies (Table 5), microarchitectural
cache-attacks compromising security and privacy, appear to
be a frequent theme. In the following, we briefly summarize
and highlight the aspects, through which this involvement
was observed.

Fernando et al. [S70] audit the strength of the cache
mapping functions, which map memory addresses to cache
sets, through their proposed framework and reveal several
vulnerabilities. The study emphasizes that sophisticated
mapping functions, which obfuscate the address mapping to
cache sets, are needed. The authors pointed out a malicious
process can significantly infer the portions of a secret
key by indirectly observing the cache sets being accessed
during encryptions. However, this approach requires prior
knowledge of how the addresses are mapped to the cache
sets by the underlying hardware. The cache set mapping
is typically performed through specific cache mapping
functions, the details of which are often proprietary [30].
Weak cache mapping functions reveal a subset of the address
bits that can be inferred by the malicious processes. In this
regard, one-to-one mapping functions were found to be the
weakest, which can reveal all of the bits of the set index.
Moreover, larger memory footprints also leak a significant
portion of the cache tag. Thus, information-theoretic security
measures for the mapping function are absolutely essential.

Similarly, caches are found to be leaking ongoing data
accesses of concurrently executing processes through fine-
grained timing observations. In such a setting, a malicious
process intentionally manipulates the cache contents to either
transmit information to a co-collaborating process or to infer

48954 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

secret data being accessed by a victim process. In such
settings, cache access patterns of the spy process happen
to conflict with in-cache data being processed by a victim
process. Such conflicts lead to data evictions from the cache
lines, followed by data loads for the affected process. These
events of evictions followed by loads are observable in
varying access latency, which can be captured through fine-
grained time measurements made by a different spy process
executing concurrently. To serve the malicious intentions,
such time measurements can be leveraged to pinpoint the
cache lines being in use by a victim process, which can then
be associated with the different portions of the secret data,
such as the secret keys. This information leakage through
the timing channels is a prevalent threat as caches expose a
large attack surface, which is difficult to mitigate. The timing
aspect has been of particular focus in few of the primary
studies [S67], [S15].

Saeshwar et al. [S36] demonstrate a feasible cache covert
channel that, although, works on the principle of flushing a
cache-line, does not depend on the native flush instruction
(clflush) for this purpose. The authors point out that attacks
relying on the flush instruction are known to be some
of the fastest ones. However, the reliance on the flush
instruction requires the sender and the receiver to be in
tight synchronization for maintaining a low error rate. The
authors conjuncture that higher data rates could be achieved,
if reliable asynchronous coupling between the sender and
the receiver could be established. To this end, they observe
that sequentially accessing a large-enough address space
(comparable to the size of LLC) implicitly triggers cache-
thrashing operations where previously accessed entries from
LLC are automatically evicted to create room for the new
requests. Leveraging this property, a covert communication
channel between a spy and a receiving process can be created.
For this to work, a spy needs to consistently stay ahead
and sequentially access the successive addresses in a large
array. The receiving process, on the other hand, needs to
slightly fall behind and observe the incurred LLCmisses. The
values of the bits in the communicated messages are inferred
from these miss patterns. In reality, speculative execution
and prefetchers can cause major disruptions by polluting the
cache in the aforementioned scheme. To workaround this
limitation, a coarse synchronization, such as once every few
thousand accesses, is required between the sender and the
receiver.

Thoma et al. [S102] argue on the effectiveness of
employing randomization schemes as defences to a variety of
cache side-channel attacks. To this end, the authors uncovered
a new microarchitectural attack named Write+Write, capable
of defeating cache randomization based defences. This attack
leverages the Write-after-Write side-effects to establish
covert-communication across CPU cores. These side-effects
emerge whenever two physical addresses collide in a specific
range during memory writes, in a sense when a write
request is issued, a subsequent write operation to a nearby
address in a specific 10-bit range is notably slower than
any other address far out of this range. A predetermined set

of addresses within aforementioned range are alternatively
read and written such that, when write requests are issued
among one of those addresses, a concurrent process reads and
measure the time it takes for the rest of these addresses. If a
pair of write requests do collide on physical addresses under
aforementioned range, notable time difference is observed
and vice-versa, this strategy is used to encode and secretly
transmit ones and zeros of a covert message. A limitation
of presented attack is its practicality stays only over short
time periods and its stability is adversely affected by
dynamic adjustments made to CPU clock frequency by power
management hardware. Nonetheless, the attack demonstrates
its usability and effectiveness to circumvent randomization
based defense mechanisms.

2) MEMORY SUBSYSTEM
Semal et al. [S21] present two novel microarchitectural covert
channel attacks, demonstrating a vulnerability surrounding
the scheduler of the memory controller. These attacks are
particularly potent in the context of cloud-based virtualization
environments. The underpinnings of the attack dynamics
involve a malicious pair of sender and receiver processes
sharing regions of the DRAM banks. The sender process
continuously creates some intentional memory-bank con-
flicts to encode bits of a covert message. These conflicts
inadvertently also manifests into observable timing variations
as the channel scheduler in memory controller experiences
higher latency. The receiver retrieves the covert message
through continuously performing uncachedmemory accesses
in a pre-determined memory bank and observes the patterns
of latency to infer upon transmitted bits of covert message.

Lindemann et al. [S33] reveal that the memory dedupli-
cation mechanism can be exploited by demonstrating that a
spy virtual machine can identify the software configurations
used by the co-located victim virtual machines sharing the
same physical memory. The attacker first establishes the
knowledge about the exact subset of the memory pages
that would uniquely identify an application as well as its
version. Such a subset of the memory pages is referred
to as the application signature. The attacker overwrites the
signature pages that are believed to be a part of the victim
VM. The attacker silently waits for the deduplication to
take place, then rewrites the signature pages, and finally
measures the time required for these operations. The time
measurements serve as an indicator of the pages that have
been overwritten during the deduplication. This information
is later used to determine whether the application of interest
and its corresponding version is present in the victim VM.
Similarly, Gulmezoglu et al. [S44] rely on the de-duplication
mechanism as a prerequisite step to carry out yet another
cross-VM attack on AES implementations.

Semal et al. [S64] describe an inter-process covert channel
attack, namedmemory order buffer (MOB) attack. The attack
underpins a side-effect of write-after-read hazard known as
4K-aliasing, which happens whenever the lower 12 bits of
a virtual address match during a successive load and store
operations. This effect inadvertently re-issues an additional

VOLUME 11, 2023 48955



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

load operation, which causes the load/store bandwidth to
drop momentarily, inducing higher latency. A spy process
leverages this effect to encode the ones and zeros of a secret
message by allocating a buffer at a page-aligned boundary.
A value of one is encoded by filling this buffer. On the other
side of the covert channel, a process monitors the trends
in observed latency and recovers the encoded message bits
accordingly.

Shi et al. [S7] advocate for reliance on general-purpose
secure processors in trusted computing environments. Secure
processors provide a tamper-proof trusted computing envi-
ronment and protect information stored in regular memory
devices by keeping the data in encrypted form. The authors
audit a few contemporary secure processor designs and
reveal their proneness to memory-fetch attacks. Although the
data remains in an encrypted form inside memory, yet it is
decrypted on-the-fly inside the processor during execution.
However speculative execution poses a challenge as the
instructions and data being fetched ahead of time are being
decrypted on-the-fly and lead up to additional fetch requests
in plain form on the memory bus. A spy snooping on the
system bus can leverage these fetch patterns and selectively
corrupt the bits of issued addresses to engineer alternate
flows of instruction execution and/or data accesses in effort to
disclose sensitive information. The authors propose remedial
measures and alternate designs for the speculative pipeline,
which incorporate the integrity verification of code and data.

Ravichandran et al. [S100] present a novel yet potent
vulnerability, named Pacman. This vulnerability is among
first of its class where a pair of individual vulnerabilities
are teamed up to break existing security barriers in-place
to curate a more potent attack. Interestingly, pacman targets
Apple’s M1 ARM CPU and defeats an important memory
protection mechanism based on pointer authentication. ARM
introduced pointer authentication to protect pointer integrity
as a security feature, and has been in wide use on variety
of systems ever since. A memory pointer is protected
through storing a computed hash value alongside its contents.
The hash value serves to establish if there has been an
unwanted pointer modification performed, presumably by an
attacker. Whenever, a pointer is used its integrity is verified
by validating aforementioned hash value. An attacker who
wants to modify a pointer has to correctly infer the correct
hash value after a modification to prevent the system from
detecting a pointer tampering. Naive brute force attempts
of attacker to infer correct hash value will not work as
it would lead to program crash once the system detects a
hash mismatch during pointer authentication. However, the
attacker synthesizes an oracle which he could utilize during
speculative execution phase, alongside an experimental guess
of a hash value, and queries the oracle about legitimacy of
said value. Upon a correct guess the attacker can proceed
with pointer modification and its associated hash value,
otherwise the attacker would wait for subsequent speculative
phase with a newly guessed hash value. The authors describe
a practical and systematic way to craft aforementioned
oracle and guess for the hash value. To this end, pacman

successfully demonstrated all experimental scenarios of
overcoming pointer authentication mechanism and hijacked
pointers to execute malicious payloads performing attacks
from userspace.

Zang et al. [S103] outline that data-execution prevention,
and execute only memory protection are effective security
hardening mechanisms to protect critical programs and
defend against attacks employing principles of return-
oriented programming(ROP) [31]. The study makes an
important observation that system call routines lack a
subsequent return instruction which is deemed essential for
any ROP technique, however, exploiting the signal handler
mechanism can circumvent this lack of return instructions.
Upon exploitation these system calls can be utilized to
assemble a set of ROP gadgets through which a broad range
of exploitations can be carried out. However, for presented
approach to succeed, syscalls need to be timely interrupted
during their execution through signals such as illegal memory
access. Carefully crafted illegal memory accesses when
carried out, open up an avenue where code segments are
stitched together through a set of system calls, to craft a
complete microarchitecture attack. The authors demonstrate
their approach by successfully carrying out three different
scenarios of creating a back-door into a victim system.

3) MICROARCHITECTURAL BUFFERS
Barenghi et al. [S59] investigate the extent of the microarchi-
tectural information leakage attributed to the pipeline buffers.
They demonstrate that significant information leakage is
observed in the power traces obtained during the compute-
intensive program executions. The observed leakage turns out
to be correlated with the order, in which the registers are
allocated for the memory loads and stores, rather than the
data dependencies among the instructions. They also observe
that minor changes in the order of register allocation can
potentially lead to exploitable vulnerabilities. In particular,
inter-stage buffers among the issue and execution stage
(IS/EX), execution and writeback (EX/WB) stage, ALU
output, and memory data registers are the main contributors
to the said leakage, which tends to get highly influenced by
the order of register allocation. In [S54], the authors also
demonstrate the role of the pipeline buffers and the associated
functional units in causing power-based information leakage.

Schluter et al. [S71] focus on the role of the short-time
buffers in information leakage, which are present on CPU
cores. In particular, they investigate the role of the line-fill
buffers (LFBs) in harboring microarchitectural data sampling
attacks. During speculative execution in the event of page
faults, such attacks exfiltrate transient data from concurrent
processes executing on the same logical cores. Moreover, the
study cites the role of the store buffers, fill buffers, and bus
configuration registers, which are prone to leakage.

Kim et al. [S58] present a more potent variant of
Meltdown [1] attack by using the return stack buffers (RSBs)
to widen the window of transient execution. The proposed
exploitation technique enables the establishment of a covert

48956 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

channel without requiring a context switch, providing better
tolerance to noise-based countermeasures.

4) TRUSTED EXECUTION ENVIRONMENTS (TEE)
A notable number of primary studies have focused on the
vulnerabilities of TEE. Next, we briefly summarize their
aspects of exploitation.

Gysenlik et al. [S82] demonstrate, in a novel attack, that
legacy features for backward compatibility of x86 instruction
set can be leveraged to compromise the security of 32-bit
SGX enclave. The attack abuses x86 segmentation unit to
reveal enclave memory accesses at the granularity of page
level and, in more favorable conditions, even at the byte level.
In essence, the proposed attack loads the segmentation unit
registers with an engineered configuration, which ultimately
causes either a general protection fault or an ordinary
page fault. The pattern of page faults reveals the secret-
information-dependent memory accesses inside the enclave.
From this information, the structure of the sensitive code
doing secret processing is inferred and the control flow can
be spied upon. This study is notable in the regard to be the
first study to expose avenues for newer attacks exploiting the
legacy x86 features, which would remain a part of the Intel
CPUs providing backward compatibility in the foreseeable
future.

Moghimi et al. [S78] present an attack to retrieve secret
information from a SGX enclave. The proposed attack
exploits the false dependence of the memory read-after-write
operations during serialized accesses of specific 4K-byte
memory blocks by a victim process. The victim, which has
constant-time code implementation for additional security,
performs cryptographic operations inside the enclave and per-
forms frequent enclave-memory operations. The aforemen-
tioned serialization causes observable and distinguishable
latency patterns, which a spy process ultimately harvests to
infer upon the bytes of a secret cryptographic key.

Schwarz et al. [S77] present a practical SGX enclave-
based malware, which operates from a compromised enclave.
The malicious enclave exploits the SGX enclave protection
features to conceal itself from the operating system thus,
thwarting the discovery while remaining stealthy. And, the
attack can be carried out either against the other co-located
enclaves or against the secure docker containers co-located at
the samemachine. The underpinnings of this attack utilize the
Prime+Probe [32] technique to determine the cache-access
patterns by observing the memory access latencies, such that
an RSA key processed by a victim process can be discovered.

Skarlatos et al. [S32] target the privacy of SGX enclaves
through microarchitecture replay attacks. Such attacks rely
on hardware support to roll back and re-execute instructions
under certain preconditions in a quasi-transient state. The
attack details a SGX spy, which exfiltrate secret information
from the enclave-private memory of a victim by making
it repeatedly replay on page faults. The repeated replays
enable the adversary to break the privacy of the enclave
and figure out the secret enclave data to the extent possible.
The proposed approach positions itself as a potent technique,

which can function effectively even in the presence of
considerable noise.

Lang et al. [S72] point out the tactics of a malicious
adversary having complete control over OS, through which
the traffic to and from the outside world to a secure enclave
can be influenced. One way is to frequently interrupt and
preempt the execution inside an enclave from outside. Such
repeated interruptions could potentially cause an enclave
to move into some meta states, through which the secret
information can be exfiltrated. Moreover, in such a setting,
the adversary, being an untrusted OS, can block, delay, replay,
and modify all the communications issued from outside the
enclave, causing the establishment of a weakened inner state,
against which an attack can be carried out.

Han et al. [S23] introduce a covert-channel attack that
works across Intel SGX enclaves. The attack exploits a
special cache, which is part of the memory encryption engine
(MEE) of SGX hardware. The authors observe that the
aforementioned cache keeps a portion of the integrity tree
storing some enclave-private data. And, it turns out that
the number of MEE cache accesses performed during the
fetching of this enclave-private data, is directly influenced by
the internal state of the tree. The proposed attack follows the
footsteps of a typical Prime+Probe attack and systematically
forces the integrity tree updates by influencing the MEE
cache. The patterns observed through the forced updates are
then leveraged to encode and transmit the bits of a secret
message across the enclaves.

5) PREFETCHERS
Up until the recent past [5], the microarchitectural attacks
targeting the prefetchers in a practical setting were non-
existent. Recently, researchers have exploited the prefetchers
after the empirical investigation of their inner workings and
leveraged the knowledge gained to craft successful attacks.
Next we provide a brief account of these attacks.

Patrick et al. [S38] present a microarchitectural covert
channel attack targeting the hardware prefetchers on modern
Intel CPUs. The presented attack establishes a bi-directional,
high-bandwidth covert channel, which is stealthier and can
avoid detection. The attack employs a stride prefetcher
to differentiate between accesses to the data blocks with
the ultimate goal of figuring out whether the blocks are
retrieved from the memory or have been already prefetched
into the cache. More specifically, the spy process, which
concurrently runs with the victim process, intentionally
engineers some sequences of prime and evict operations from
the L3 cache to perturb the thus-so-far learned sequences by
stride prefetchers. The degree of the perturbation is used to
encode the bits of a covert message, which is consequently
decoded by the receiving spy process through the monitoring
of prefetching behavior.

Note that the prefetchers are used to build a covert
channel in the aforementioned study [S38]. Interestingly
enough, in the case of cache side-channel attacks, prefetching
unintentionally hinders the effectiveness of the attacks. Since
the prefetching mechanism speculatively brings data into

VOLUME 11, 2023 48957



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

the cache, it weakens the attacker’s ability to distinguish
whether a cache line have been fetched on demand by the
victim or have been speculatively brought by the prefetcher
for the victim. Wang et al. [S46] point out this shortcoming
and present a work-around solution in order to enhance
the effectiveness of the cache side-channel attacks, thus
making them more potent. The main challenge they address
is to understand and reliably model the uncertainty in the
prefetching patterns, which originates due to the undisclosed
proprietary details of the inner workings of the prefetchers.
In the aforementioned work, the authors reverse engineer the
inner workings of the Intel CPUs and develop a statistical
description of the prefetching mechanism implemented by
them. This description is later leveraged to strategically craft
and place probes to build the enhanced versions of the
cache side-channel attacks. Furthermore, they demonstrate
a Flush+Reload [33] attack, which is more potent and
equipped with the ability to effectively operate under the
disruptive behavior of prefetcher.

Ibrahim et al. [S97] argue that sophisticated interactions
among various microarchitecture components give rise to
potent and often enable previously undiscovered attacks
from userspace. Effective defense and offense often require
detailed knowledge of inner-workings of aforementioned
components however, such details are usually unpublished for
many CPUs. The authors introduce concept of leakage tem-
plates, to abstractly describe and identify specific dynamics
of known attacks. The presented approach, leverages these
abstractions to discover leakage-causing code segments in
a binary and once discovered, variants of culprit code seg-
ments are synthesized through instruction fuzzing, operand
mutation and contextual analysis. Later these synthesized
variants are executed on a microarchitecture of interest and
changes in the microarchitectural state are observed. Among
the observed state space, vulnerable states are identified and
the code variant causing it. Equipped with this knowledge,
practical exploits for a given microarchitecture are crafted.
The approach showcases its strength by uncovering a novel
cache eviction and a prefetcher based exploits on an ARM
CPU.

6) PCIe
Tan et al. [S53] present some attack scenarios by analyzing
the patterns in PCIe contention where a spy process can
exfiltrate sensitive information spanning from keystroke
timings to figuring out the webpages being visited and the
machine learning models being used. Note that these attacks
are particularly relevant in the settings of cloud computing
and data centers where co-resident virtual machines can
snoop on each other. The underpinnings of the proposed
attack assume a pair of peripheral devices connected to the
same PCIe switch, one of which serves under the spy process
while the other serves the victim process. The spy is interested
in learning the distinguishable patterns in IO latency routed
through the PCIe switch. The patterns are later post-processed
through a supervised learning approach to infer the victim’s
state. The spy can intentionally choke the PCIe switch to a

degree that causes these patterns to emerge as a side-effect to
the intermediate buffering of reliable data transfers.

7) PERFORMANCE COUNTERS AND GPUs
Graphical Processing Units (GPUs) became one of the must-
have components of modern computer systems, which are
meant to provide enhanced capabilities and performance for
graphical workloads. However, besides graphics processing
on modern systems, they can be employed to process
intensive workloads such as scientific computation and
machine learning applications. The flexibility of the GPUs
for the aforementioned purposes is achieved through lever-
aging the GPU APIs (application programming interfaces).
The internal registers of GPU capable of monitoring and
profiling executions, are also made available in these APIs.
Although a GPU can serve multiple workloads through time
sharing, a workload with malicious intentions can abuse the
microarchitectural components of a GPU to establish a side-
channel.

Naghibijouybari et al. [S35] demonstrate the information
leakage through the GPU performance counters to a spy
process by inferring the graphics workload being rendered
for a victim process, which was enough to fingerprint the
websites. In the proposed approach, a victim process, such
as a web browser, renders the web graphics through the
GPU, which leaves a trail of the deviated values in the
performance counters. The spy process employs machine
learning to classify these trails, such that the websites being
visited can be identified with high accuracy. In a similar
setting, the interleavings between the spy, victim, and other
processes due to the GPU scheduling, are shown to influence
the values of the performance counters, which, in turn,
enables the spy process to infer the scheduling order of the
workloads. The authors also present some similar attacks
operating by abusing the low-level GPU APIs, which they
discovered from the accompanying GPU-programming SDK
(software development kit). These abused APIs enable one
to read the values of the performance counters as well as
the contents of the internally used GPU-memory allocation
registers. Their attacks showcase the exfiltration of keystroke
timings, website fingerprinting, and the discovery of the
parameters of a neural network workload.

Dutta et al. [S13] demonstrate the feasibility of two
microarchitectural covert channel attacks from GPU to CPU
and vice versa. The authors showcase two such attacks, on an
Intel CPU with onboard integrated GPU. This particular
design share components such as the last level cache (LLC)
and ring-bus interconnect among GPU and CPU. A spy could
utilize latency on the aforementioned shared components and
establish a covert channel. In the first attack, the spy employs
shared LLC and uses Prime+Probe [32] technique to encode
and transmit bits. The spy on the sender side, primes the
LLC cache set, which is probed by the spy on the receiver
side. If the sender wants to send zero, it does not prime the
cache set, but the receiver still probes it and deduces this
transmitted zero. In the second attack, the sender and the
receiver simultaneously cause contention, which is higher

48958 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

than the usual amount on the ring-bus to encode a zero.
Furthermore, the authors argue that the GPU-CPU cross-
component attacks are novel and could deliver an attacker
newer stealth capabilities and that any research aimed to
develop countermeasures in these contexts will face unique
challenges.

8) ONBOARD ELECTRONICS
Sehatbakhsh et al. [S39] demonstrate a microarchitectural
security vulnerability by targeting the onboard electronics
of the CPU cores. They, in particular, focus on the voltage
regulator module (VRM), which serves to stabilize the
voltage variations arriving at the CPU cores in the presence
of power fluctuations or workload variations. A CPU can
also switch to one of the suitable operating power states
via the software configuration of VRM. The authors observe
that electromagnetic emanations from VRM are directly
correlated with the operating state of the CPU. Leveraging
this behavior, a spy could establish a covert communication
channel through VRM manipulations by switching among
possible operating states and hence could transmit secret
information from inside the victim to a remote system
wirelessly over the air. The authors showcase keystroke
logging through this proposed approach.

Schwarz et al. [S79] present NetSpectre, a variant of
Spectre attack [2] capable of carrying out remote attacks
across the machines over a network. The authors state
that unlike the traditional Spectre attack, which employs a
cache-covert channel and leverages the observed latencies
during the cache accesses, their presented attack utilizes the
AVX2 instructions and their effects on the observed latencies
under a special power-saving mode on CPU. The authors
report that CPU can power up the upper half of the AVX2
unit whenever an instruction requires 256-bit computation.
Otherwise, this unit is kept powered down. However, this
powering up on the need basismanifests as observable latency
in AVX2 instruction execution, which is more noticeable
during operations involving concurrent network accesses.
Secret data can covertly be exchanged between a pair of
remote machines, such that the spy machine runs a compute
function using the AVX2 instructions, receiving the input
from a different machine over the network and returning the
result back to the requesting machine. Another spy process
running on the requesting machine can observe the timing
differences in relation to the input values, thus can infer the
bits of the covertly sent message.

Liu et al. [S99] highlight that modern CPUs dynamically
adjust their clock frequency and operational voltage to
achieve energy savings and optimize operations in lieu
to varying workloads. The onboard power management
architecture continuously monitors and reactively adjusts
CPU frequency to keep operating within safety limits.
However, these dynamic adjustments by power management
system leads up to a timing-based side-channel through
which an attacker could exfiltrate sensitive information. In a
nutshell, the attacker profiles a constant-time implementation
of a victim workload under known conditions and presets a

limited power management policy to record any frequency
adjustments being made while victim executes. After ample
observations, the attacker launches a stress-testing workload
with carefully crafted input parameters, under attacker’s
control. The attacker intend to stress-out current power policy
such that it would lead to reactive frequency readjustments
as CPU demands for more power. In this state, the attacker
makes ample further observations so he can correlate changes
in current frequency adjustments and contrast against its
previous observations. With large number of observations,
attacker is able to statistically infer upon the data being pro-
cessed by victim workload. Under aforementioned strategy
the study showcases successful retrieval of cryptographic
keys from a constant-time implementation of a victim
workload. Furthermore, this attack is both novel and potent
in the sense that attacker does not need any special privileges
and can operate through userspace and work across many
mainstream CPUs. Dipta et al. [S91] outline a similar
attack abusing direct read access to operating frequency
values in userspace. The authors argue that instantaneous
values of operating frequency are directly correlated to
degree of system utilization. A passive userspace attacker
can silently monitor and observe the trends in frequency
changes, the presented approach employs statistical analysis
to fingerprint websites being visited by a user. Furthermore
trained machine learning models were used to analyze this
data and user keystrokes were inferred. Fendri et al. [S93]
presents an interesting attack, through which an attacker can
infer individual instructions while they are executing thus,
compromising code confidentiality and ultimately recovers
sensitive information. The presented attack is referred as
disassembly-through-side-channel and is particularly effec-
tive in the context of embedded/IoT devices. The attacker first
obtains a design netlist of target CPU to simulate the power
consumption within its various subsystems, under various
scenarios in relation to pre-specified instruction streams thus,
develops a behavioral profile. Next, a multi-layer machine
learning classifier is trained against said profiles of target
CPU in conjunction to CPU-specific features. Once trained,
the classifier is leveraged to disassemble instruction streams
executing on a victim CPU on a target system, through its
captured power-consumption traces. The study showcases
practical strengths of proposed approach to be able to
successfully disassemble, about 96% of instructions being
executed on two different target RISC-V CPUs.

9) SPECULATIVE EXECUTION
Chowdurry et al. [S8] observe that the conditional branch
executions in a speculative path have an effect on the
continuously maintained history of the branch predictors.
Regardless of whether the speculation ultimately leads to an
abortion or not, the branch history is never restored back
to its original state. Thus, the internal state of the branch
predictor is permanently affected. An adversary can either
passively observe or actively modulate the speculatively
affected history as a means of covert communication with a
malicious peer process. The information encoding is carried

VOLUME 11, 2023 48959



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

out by using the predicted outcome of a conditional branch
and/or the predicted target address.

Last but not least, Trippel et al. [S9] leverage formal
methodology to discover vulnerabilities under speculative
execution and synthesize the corresponding exploit programs.
Given a specification of the microarchitecture represented as
a special graph, the approach reasons about the orderings
and the interleavings of the hardware execution events in
relation to the program executions. More specifically, the
indicative behaviors leading up to the exploit scenarios are
mined. Once an exploitable pattern is found, several programs
can be synthesized in an automated manner, exploiting the
vulnerability in some potentially feasible ways. The proposed
approach showcases its unrivaled ability by discovering
several novel and existing vulnerabilities regarding pure
speculative execution. Moreover, notable timing- and cache-
based vulnerabilities have been uncovered through the same
approach.

C. RQ3: HOW EFFECTIVE ARE THE PROPOSED
COUNTERMEASURES OF MICROARCHITECTURE
SIDE-CHANNEL ATTACKS AND WHETHER THESE
COUNTERMEASURES ARE GENERALIZABLE? CAN THESE
GENERALIZED COUNTERMEASURES PREDICT/
PREVENT ZERO-DAY ATTACKS?
We identified the studies from our list of primary studies
(Table 5), in which the main focus has been presenting
a countermeasure approach to address a microarchitectural
threat. We observed that the primary studies discussed the
scope and the effectiveness of the proposed approaches to
various degrees. To answer our current research question, we,
therefore, chose to include a subset of those countermeasure-
presenting studies, in which the effectiveness and the incurred
overhead of the proposed approaches had been evaluated.

We, furthermore, observed that some primary studies,
in conjunction with numerical reporting, also qualitatively
state in adjectives the degree of the effectiveness and the
performance overhead of their approaches, such as highly
effective approach and negligible performance overhead.
On the contrary, other studies only relied on numerical
reporting. This inconsistent reporting style forced us to follow
the following categorization scheme, which we utilized to
group the studies to aid in answering RQ3. More specifically,
we opted to categorize the reported effectiveness of the
countermeasures in two levels: highly-effective (HC ) and
effective (EC ). Similarly, we categorized the performance-
overhead in three levels: low (Lo), moderate (Mo), and high
(Ho).We assignedHC label to those studies where the authors
described the effectiveness of their approach in superlative
adjectives, such as quite-, highly-, and extremely-, or in
numerical reporting between 85% and 100%. Otherwise,
the EC label was used. Similarly, the performance-overhead
reporting under the adjectives, such as negligible-, low-,
and practically-zero, or numerical reporting between 0%
and 5% has been assigned Lo. The studies using the
comparative degrees of adjectives, such as some-, tuneable-,

TABLE 3. Categorization of primary studies which cover countermeasure
approaches.

and moderate-, or numerical reporting between 6% and 20%
were assigned Mo. And, for the remaining studies, the Ho
label was used.

Table 3 presents the categorization results we obtained for
our primary studies. Next, we discuss the answers obtained
for the individual parts of the current research question.

1) EFFECTIVENESS AND GENERALIZABILITY OF PROPOSED
COUNTERMEASURES
The studies selected to answer this research question (Table 3)
comprise 25% (27 out of 104) of our list of primary studies
(Table 5). Regarding the effectiveness, 48% (13 out of 27) of
the studies are classified as highly-effective and the remaining
52% are classified as effective. Regarding the incurred
overhead, 40% (11 out of 27) of the studies report low, 40%
report moderate, and the remaining 5% report high overheads.
Ideally, a countermeasure demonstrating high effectiveness
with negligible overhead is desirable, which may, however,
not always be feasible. Next, we briefly outline the proposed
countermeasures from the individual studies given in Table 3.

Fang et al. [S67] present a countermeasure addressing
the cache-based covert timing channels, which tend to be
an essential vehicle in a large number of microarchitectural
attacks. The proposed approach selectively monitors the
specific regions of the cache memory exhibiting some
suspicious behavior. The cache-miss patterns of the regions
of interest are recorded and constantly analyzed. The size
of the monitored regions can also be adaptively increased or

48960 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

decreased as needed. Any statistically significant deviations
from the predetermined normal behavior raise alarms.

Panda et al. [S12] present an approach to defend against
the cache eviction attacks employing time measurements.
These attacks open up avenues for cross-core attacks
and have been prominent in recent years. The proposed
approach leverages the automatic activation of a specific
prefetching mechanism, known as back-invalidation-hits-
triggered prefetching (BITP), to fill the L2 and LLC cache.
In this context, back invalidation hit refers to the phenomenon
when a block from a lower-level cache, such as LLC, needs
to be evicted, which also happens to be present in a higher-
level cache, such as L2, thus needs to be evicted as per cache
coherence policy. As eviction takes place BITP prefetching
kicks in and loads a new block from the main memory into
the cache hierarchy. The proposed approach intentionally
triggers BITP prefetching frequently, which inadvertently
interferes with the time measurements being carried by a
spy, thus introducing imprecision in those time readings and
hampering the success of an ongoing attack.

Li et al. [S98] emphasize on mitigating cache attacks
carried out under general and speculative execution. The
study outlines that a typical cache attack has three essential
phases and hindering at-least one of the phases effectively
disrupts an ongoing attack. The three phases broadly span
across: an initial state of cache that an attacker can leverage,
victim’s access of cache accompanied by a change in cache
state, and attacker determines the cache state change typically
through timing to infer victim’s secret. To this end the study
proposed design of a secure and performant prefetcher which
would interfere with one or more of the aforementioned
attack stages. At its core, the proposed prefetcher accurately
predicts the cache-lines which a victim during execution
would evict, followed by prediction of cache access patterns
by an attacker to perform its timingmeasurements. Guided by
these predictions the proposed prefetcher strives to obfuscates
the attacker by aggressively pre-loading a set of cache lines of
interest, before attacker gets a chance to make a meaningful
measurement. The experimental results validate the effective
defense with very low overhead.

Yuce et al. [S6] address fault attacks where the adversary
engineers a controlled fault in the microprocessor through
the careful manipulation of the operating conditions, such
that the execution gets into a vulnerable state, through
which the secret information can be exfiltrated. These
attacks are particularly relevant in embedded and IoT
systems. The proposed countermeasure relies on providing
a secure exception mode for a microprocessor by using a
microarchitectural extension together with a trap mechanism
in software. Furthermore, upon detecting an injected fault, the
hardware checkpoints are utilized to bring the execution to a
good state. Checkpointing is a mechanism, through which the
sanity of the execution is periodically verified by keeping a
trail of surpassed milestones termed as checkpoints. During
checkpointing, if a fault in the execution trail is detected,
the ongoing computation is discarded and the execution
is resumed back from the last known good checkpoint.

Specifically, the proposed approach maintains a hardware
checkpoint of the critical system state periodically. In the
event of a fault injection attempt, the checkpoint is frozen,
a secure trap handler is initiated in the software, and the user
space is notified. The user space can then optionally specify
the recovery policy for the detected fault and ultimately roll
back to a known good state, thus thwarting the attacker’s
attempt.

Kumar et al. [S40] propose an approach to enhance
the security of the crypto-processors against the power
and electromagnetic emissions, which could potentially be
harvested remotely to compromise security. The study argues
that the contemporary approaches solely address the attacks
that aim to infer the cryptographic keys through the time-
domain analysis of the harvested emissions, yet they remain
prone to the frequency-domain analysis. Note that the time-
and frequency-domain analyses aim to quantitatively study
the signal properties, such as the time-varying behavior
in relation to its frequency components. The proposed
countermeasure involves a hardware extension in the low-
dropout regulator (LDO) module of the crypto-processor,
utilizing controlled randomization within its control loop.
This, in effect, provides resistance in the time and frequency
domain, enabling the AES and RSA modules of the crypto-
processors to remarkably deter the aforementioned attacks.

Mane et al. [S48] propose an approach to systematically
eliminate the exploitable side-channel leakage to enhance
the resilience of the block ciphers, such as AES and DES,
in embedded processors. The study argues that the roots of the
aforementioned leakage stem from the data-dependent elec-
tromagnetic signal transitions, which manifest themselves
from data-dependent processing at the microarchitectural
level. The study observes that the aforementioned leakage
can effectively be mitigated at the level of implementation
with the employment of dual-rail pre-charge logic (DPL).
DPL can be materialized by simultaneously storing and
processing every data bit and logic operation. The study
prototypes and evaluates a soft-core CPU synthesized on an
FPGA board, with a custom instruction set and an optimized
memory organization scheme under the guidelines of DPA,
demonstrating promising results.

Zhang et al. [S31] present a countermeasure to harden
the Intel SGX enclaves, such that information leakage
caused by the engineered page faults can be prevented.
In these exploitation attempts, the adversary relies on the
deterministic memory access patterns against a known input.
The proposed countermeasure is based on emulating a
secure memory subsystem leveraging an enhanced ORAM
(oblivious RAM [34]) protocol to load code and data into a
pair of virtual caches. These caches periodically shuffle and
re-organize their contents, which, in effect, poses a barrier
for the adversary leveraging the engineered page faults.
Furthermore, the proposed approach exhibits a tuneable
performance overhead, thus enabling the system policy to
balance the trade-off between security and performance.

Guo et al. [S15] present a countermeasure to the cache-
timing attacks in the context of speculative execution

VOLUME 11, 2023 48961



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

where intermediate transient states occasionally lead to
vulnerable cache states, from which the secret information is
exfiltrated by analyzing the patterns in the access latencies.
The proposed approach relies on symbolic execution to
systematically explore the state space of a program at
conditional branches during speculative execution, such that
the side effects on potential paths can reliably be analyzed.
More specifically, the side effects of each path of interest
on the cache memory are accumulated to create the leak
predicates, which subsequently are utilized to perform cache
behavior analysis using constraint solving. Paths leading up
to sensitive states, which can potentially leak information, are
avoided through tailoring the program executions.

Brotzman et al. [S86] present an approach to coun-
termeasure cache attacks which exploit secret dependent
leftover execution footprints under speculative execution.
The study argues that speculation-aware static code analysis
combined with precise cache models remain insufficient to
screen vulnerable code segments. To this end, under the
light of known cache models and recent attack strategies,
this work proposes speculation-aware program semantics
and a security definition. The proposed semantics leverage
a prediction oracle which returns predicted outcome of a
branch, and architecture dependent length of speculative
transactions. Given this information the approach reasons
about sequence of emitted microarchitecture events and
tracks memory locations being accessed while instructions
being speculatively executed thus, identifies the scenarios
which would give rise to information leakage. Existing tools
for auditing microarchitecture security could be strengthened
with proposed approach and would detect vulnerable code
segments which remained undetected previously.

Sakalis et al. [S101] discuss microarchitecture replay
attacks, abusing speculative execution can trap execution of
victim application in a loop and could perpetually amplify
the attack by executing it indefinitely, regardless, whether
the software has already been hardened against replays.
To this end, the study presents a hardware only defense,
named delay-on-squash, that tracks squashed instructions and
prevents them from being replayed under subsequent spec-
ulative executions, thereby achieving remarkable security
against these attacks with moderate hardware and execution
overheads.

Vougioukas et al. [S41] focus on mitigating the exploits
relying on the hardware branch predictors. Although the
branch predictors are crucial for a high-performing system,
they have been a part of the security exploitations where
deliberate context switches influence the branch predictions.
As a result, an adversary can alter/perturb the instruction
flow of a context, which is unrelated to the current execution
context, thus opening up an exploitable state. The proposed
countermeasure uses a branch retention buffer as a novel
mechanism to maintain isolated contexts during context
switches, thus preventing vulnerable history alteration in the
presence of malicious attempts.

Kiriansky et al. [S45] present an approach, which is
based on minimal hardware modification to defend against

a broad class of cache-based attacks, involving the ones
relying on timing and speculative execution. The proposed
approach utilizes the strong isolation achieved through
protection domains. These domains segregate the cache
hit/miss metadata information, line replacement data, and
cache update policies. Based on the security requirements,
the domains can be either adaptively granularized at the cost
of the performance or nested together to establish a more
performant, yet coarse-grained policy. The authors also argue
that the proposed countermeasure is inherently robust against
speculative execution attacks, such as Spectre.

Chouary et al. [S88] outline that during speculative
execution a set of instructions, termed transmitters, inad-
vertently could aid an attacker to build a microarchitectural
covert channel. Transmitter instructions which typically are
branches and loads, can mis-speculatively execute with secret
operands, which they would not execute with such operands
under valid executions. The study conjectures that it is safe
to delay, rather prevent transmitter instructions, iff it can be
proven that secret operands were already leaked by a prior
non-speculative execution. Based on proposed conjecture
the study develops a speculative privacy tracking hardware
protection, which delays execution of transmitter instructions
until it could be proved that corresponding operands leak
during non-speculative program execution. Once such a
secret operand leak is detected then it is taint-tracked and
guarded through fence instruction to avoid a subsequent
exploitation. The study showcased the effectiveness of
proposed approach albeit with non-trivial overheads.

He et al. [S51] propose a number of mitigation strategies
for flush-based cache attacks in the context of ARM-
based embedded/IoT systems. The presented work highlights
the potential security threats demonstrated by the Spectre
attack [2], which leverages the cache-line flush instruction,
the abuse of which leads up to the exfiltration of sensitive
information during speculative execution. The proposed
countermeasure provides a secure cache-line flush operation
that encapsulates the native flush instruction together with
an accompanying mechanism to monitor its invocations. The
invocations are monitored constantly for any sequence of
suspiciously close invocations to detect and pinpoint the
culprit process, which if found to be malicious, is blocked
to safeguard the system.

Buiras et al. [S87] emphasize that observational models
play a vital role in the security analysis of information flows.
The authors introduce observation refinement technique to
guide exploration of state space with a focus on hardware
components of interest. To this end, the authors extended an
existing model validation framework incorporating proposed
model refinements through which, a new speculative leakage
vector in ARMv8 architecture is uncovered. Last but not
least, proposed approach also discovered a new vulnerability
SiSCLock arising, during speculative execution of ARM
Cortex-A53 processor.

Pham et al. [S43] present a countermeasure against the
timing attacks in the context of embedded/IoT systems.
The proposed countermeasure, which is based on program

48962 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

diversification, uses a tailored compiler to generate custom
instructions for the security-sensitive program regions. The
aforementioned instructions exhibit diverse timing charac-
teristics every time they are executed. However, hardware
support is required for such custom instructions. The
proposed countermeasure is evaluated by synthesizing a
soft-core CPU on an FPGA board, delivering a mitigation
performance of 86%.

Lang et al. [S72] present an approach to mitigate
access/trace-driven cache attacks on secure Intel SGX
enclaves. The mitigative approach leverages multiple concur-
rent threads of execution inside an enclave to monopolize the
whole CPU during the security-critical computations. These
threads perform either some enclave-related computations or
some dummy computations to keep all the cores occupied,
as a result of which, any potential adversary is starved
due to the unavailability of the CPU. It is shown that
although the proposed countermeasure is effective, it imposes
considerable performance overheads.

Wu et al. [S55] highlight the role of Simultaneous Multi-
threading (SMT) in contention-based attacks. They argue that
SMT provides a broader surface for resource contention in
microarchitectural components per logical core than across
physical cores. To strengthen the security posture against
the aforementioned attacks, the proposed approach limits
SMT on logical cores and the threads performing sensitive
computations are exclusively and separately scheduled on
available physical cores. To this end, a tailored user-
level thread library is provided, which ensures the thread
placement on the dedicated cores, limiting an attacker’s
ability to target the shared CPU resources on the victim’s core
under a contention-based side-channel.

Payer et al. [S75] present an effective proof-of-concept
countermeasure system for a wide range of microarchitec-
tural attacks, which is based on the concept of intrusion
detection. The proposed system employs a plugin-based
architecture, which can be equipped by developing an attack-
specific plugin. The whole system leverages the statistics
collected from the hardware performance counters on a per
program basis to monitor the deviations from the normal
behavior profiles. On a system-wide level, the profiles
from multiple processes are correlated to determine whether
multiple processes are involved in an ongoing attack. The
proposed approach is showcased by effectively detecting
the row-hammer, CAIN, and other cache-based attacks with
acceptable performance overheads.

Busi et al. [S56] layout some security-centric design
guidelines for the architectural extensions with regard to
the isolation mechanisms, such as enclaved execution. The
study particularly targets the small microprocessors due to
their widespread utilization in the embedded/IoT systems
and argues that enclave-isolation mechanisms are relevant
more than ever in this domain. However, the contemporary
designs are found to be exploit-prone in a number of ways,
particularly to the fault- and untimely interrupt-based attacks.
To this end, the presented approach lays out the formal criteria
for any security-related microarchitectural design extension

to ensure strong security posture. In particular, the study
demonstrates a security-hardened enclave design, which is
provably secure and resilient to the fault- and interrupt-
attacks.

Chen et al. [S47] propose an approach to address
the compromised security of Intel SGX enclaves through
untimely interruptions and during speculative execution. The
study points out that Intel has been unable to fully mitigate
and fix the security vulnerabilities of these SGX enclaves.
Therefore, they will remain exploitable in the foreseeable
future. At a very high level, the proposed approach relies on
temporarily disabling the enclave interrupts while carrying
out sensitive computations. Furthermore, some constrained
execution conditions are proposed for the operating systems
to ensure sufficient protection against the attacks reliant
on speculative execution. Lastly, a compiler-assisted tool is
proposed to protect the sensitive code executing inside an
enclave by embedding code regions performing attestation,
sealing, and unsealing of the secrets required.

Cook et al. [S89] discover a shortcoming when it comes
to employing machine-learning (ML) based approaches to
countermeasure and analyze microarchitecture attacks. The
authors elaborate that ML at its core is a black-box approach
and often lead to largely incorrect interpretations of actual
mechanics of attack under consideration. Such is the case in
one of recently published sweep-counting-attack [35] where,
a neural network based analysis on cache-traces led to the
false notion that caches were the actual culprit, and were
main sources of leakage. However, this later found out to
be not true when, more traditional microarchitecture analysis
methodologies are applied where, it found out that untimely
system interrupts are the actual culprit. Furthermore, the
study builds the case that interrupt-based attack vectors have
the potential to mount powerful attacks from unprivileged
userspace from areas such as Javascript executing in web-
browser. Moreover, the study present sophisticated security
implications of non-moveable interrupts such as, soft-irqs
and rescheduling interrupts. One way to countermeasure
non-movable interrupts based attack vectors is to generate
arbitrary interrupts at random times to maintain ample noise
floor within a system to hamper any attack attempts. To this
end, the study further presents a framework to analyze,
address and strengthen the security posture in aforementioned
context.

Liu et al. [S27] address the vulnerability regarding the
instruction cache (I-cache), which leaks secret information in
cloud-based environments across different virtual machines.
In such exploitations, the sensitive information is leaked
through I-cache due to the secret-dependent execution paths
the cipher takes. The authors argue that these attacks pose
a serious threat and evaluate the degree of suitability of
various randomized-mapping schemes as countermeasures.
Given a set of randomized mapping schemes, the proposed
approach leverages machine learning to build a classification
matrix to quantitatively characterize the strength of a
given scheme against an I-cache attack. Although, there is
no silver bullet to the mitigation, the proposed approach

VOLUME 11, 2023 48963



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

enables the practitioners to craft an adaptive solution for an
effective defense while taking into consideration the trade-
offs between the level of security and the runtime overheads.

Hsaio et al. [S52] also address the vulnerability of the
virtual machines to cross-VM cache attacks in the cloud
environments. The authors propose an approach to instrument
the hypervisors utilizing the Intel VT-x extension, to monitor
the memory allocation and access behavior of the guest
VMs at runtime. In particular, a novel hardware-assisted
MMU (memory management unit) redirection mechanism is
presented, which allows the monitoring and profiling of all
the memory accesses made on behalf of the guest VMswithin
the hypervisor memory space by transparently intercepting
the accesses. Note that although the proposed approach
needs to modify neither the guest nor the host VM, the
instrumentation of the hypervisor is required. Furthermore,
depending upon the configurable trade-off between the level
of security and performance, some use-case sensitive defense
postures can be delivered.

Deutsch et al. [S90] present a performant mitigation
approach to memory based timing channels where an attacker
utilizes contention to exfiltrate sensitive information. The
study elaborates that existing countermeasure approaches
can occasionally be effective however, they suffer from
severe performance penalties. Among such approaches
bandwidth partitioning and intensive profiling are notables
ones however, they remain prone to fine-grained timing
exploitations. To this end, the study presents an approach
to deliver good performance, dynamic reshaping of memory
traffic and protects against timing channels. At its heart,
the proposed approach utilizes a novel directed acyclic
graph based traffic representation and locates the paths
which experience significant contention and employ heuristic
based dynamic partitions to reshape, group and adaptively
delay culprit traffic patterns while, ensuring absence of
timing channels. Furthermore, the study formally verifies
the security of aforementioned approach and provides strong
security guarantees. Last but not least, presented approach is
claimed to be generic enough so it can be extended to defend
against scheduler-based timing channels.

Belleville et al. [S24] present a preventive countermea-
sure to harden the programs against the microarchitectural
side-channel attacks. The proposed approach utilizes code
polymorphism as a mechanism to add unpredictability in
sensitive code segments. Furthermore, lightweight runtime
code generation, on top of static code optimization during
compilation, is used to further strengthen the program
executions. The empirical results confirm that the programs
treated with the aforementioned approach exhibit strong
security characteristics while having acceptable runtime
overheads.

Brosch et al. [S85] put forward the case of protecting pri-
vacy of trained neural networks (NN) which recent research
has revealed to be prone to a wide range of microarchitec-
ture side-channel attacks, through which attacker aims to
infer latent parameters. Embedded/IoT devices typically are
employing these trained NN models in specific application

scenarios but, due their constrained designs become a prime
victims of aforementioned attacks. Typically, a NN evaluation
for given input comprises sequential execution of neurons
within a hidden layer where, each neuron performs one or
more sequential multiplicationswhich give rise to determinis-
tic patterns from an attacker’s point of view. To counteract, the
study proposes that execution order of neurons within same
layer should be altered each time and the multiplication order
within each neuron to be randomized. Overall, the cumulative
effect poses a barrier for an attacker, to identify at which
point in time a neuron is executed and when which input
was multiplied with corresponding weight. The experimental
results demonstrate that proposed technique significantly
hampered attack’s success in a number of scenarios.

2) PREDICTION/PREVENTION OF ZERO-DAY ATTACKS
Yuce et al. [S6] present a number of countermeasures
against the zero-day fault injection-based attacks on the
embedded/IoT processors. Fault injection remains an effec-
tive vector of attack, which operates by perturbing the
ongoing computations, such as cryptographic operations.
These perturbations, in effect, derail the sanity of the
processor’s internal state, which opens up potential side-
channels for adversarial exploitation. The proposed approach
leverages three techniques: fault detection, critical state
checkpointing, and rolling back to last known good state
of the computation in the event of a fault. The authors
argue that adopting the aforementioned techniques in a
microarchitectural design would ensure effective resilience
on the hardware side against a range of fault injection-based
attacks, including clock glitches, voltage starvation, and EM
pulses. Similarly, on the software side, a set of custom
instructions can strategically be placed inside the sensitive
code regions to minimize the pollution in the internal state of
the microarchitectural elements in lieu of certain events, such
as exceptions. The aforementioned countermeasures can help
avoid potentially exploitable states, through which the attacks
can be carried out.

Guo et al. [S15] present an approach to detect the program
paths that can potentially lead up to the timing-based
exploitation of the CPU caches. The authors point out that the
standard static analysis approaches may be used to determine
whether a program is secure against the aforementioned
exploitations. However, these guarantees remain short when
it comes to the speculative execution scenarios. To this end,
the proposed approach uses symbolic execution for state-
space exploration tailored to speculative program execution,
which aims to discover the paths that could potentially be
exploited. Avoiding these paths during the speculative or
normal executions would then guarantee the safety of the
system against the aforementioned timing attacks, including
the zero-day attacks.

Lang et al. [S72] present an approach to safeguard the Intel
SGX enclaves against all the known access- and trace-driven
cache attacks. The proposed approach aims to monopolize
the whole CPU during the security-critical computations
inside the enclaves by spawning a number of dummy SGX

48964 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 4. Primary studies which employ machine learning in (O)ffense
and (C)ountermeasure roles, accompanying a short summary and their
publication year.

threads. These threads are then closely monitored against
the violations of exclusive scheduling, abrupt termination,
and exit events. The attacks, including the zero-day attacks,
are prevented by starving the adversaries during the secure
computations.

Chen et al. [S47] also present an approach to safeguard
the Intel SGX enclaves against the speculative execution
attacks, including Foreshadow [36]. The proposed approach
augments the sensitive code regions to protect the computa-
tions carried out in the enclaves. The external interrupts are
also temporarily disabled during the computations inside the
enclaves, which are, indeed, one of the prime enablers for the
attacks of interest. Since the proposed approach establishes
a secure environment even during speculative execution,
it curbs the possibility of successfully carrying out the attacks,
including zero-day attacks.

3) FURTHER DISCUSSION
Cache-focused countermeasures remain a prominent and
recurrent theme as cache-based side-channels are frequently
exploited in the attack dynamics regardless of the underlying
hardware type, such as general-purpose-computing-based,
cloud-computing-based, or embedded/IoT hardware. More-
over, cache exploitation, even in the speculative execution
flows, is more troublesome as the potential countermeasures
typically penalize the system’s performance.

An emerging theme among microarchitecture attacks
and defences is employment and utilization of machine
learning as an artificial intelligence approach in recent years.
We observe that overall 4% (5 out of 104) of primary studies
belong to this theme spanning across years 2015-2022 and
we anticipate this trend to accelerate. Factors like generative
AI [37] will certainly be among the forefront of discovering
new microarchitecture vulnerabilities and perhaps generate
after-fixes on-the-fly with automated reasoning. With sus-
tained miniaturization in chip fabrication and advances in

lithographic techniques, we anticipate newer generation of
chips with affordable onboard AI hardware being readily
available, which could be programmed for any application-
specific purpose including security. However, it could also
be a double-edged sword where in the wrong hands could
lead upto new generation of smart and sophisticated attacks
that were never seen before. However, to date Table 4
provides the subset of primary studies which leveraged
machine learning both for the offense and countermeasures.
Notably, we observe that research inclination is somewhat
more towards offensive approaches as, 4 out of 5 studies
fall in this category. A frequently reported drawback is high
computational cost of employing ML, which although could
be tolerable for workstation grade systems however, usually
not for embedded/IoT devices.

Another recurring theme is securing the trusted computing
mechanisms, such as Intel SGX. Despite the vendor’s tight
security assurances, researchers have been able to circumvent
and compromise these assurances. In this regard, several
mitigation strategies have been proposed. These strategies,
however, incur performance overheads. Therefore, until
the CPU vendors patch/update their microarchitectures, the
trusted computing mechanisms will deliver little faith in their
security guarantees to the end users.

D. RQ4: GIVEN THE PUBLISHED COUNTERMEASURES,
HOW SECURE A SYSTEM WE CAN BUILD AGAINST
MICROARCHITECTURE SIDE-CHANNEL ATTACKS AND
WHAT LESSONS WE CAN INCORPORATE IN THIS
SYSTEM-DESIGN PROCESS?
To guide the security-oriented architectural process, we have
identified the relevant primary studies and grouped them in
the following categories:Metrics, Modeling, and Assessment
– grouping the studies that guide the architectural process
to appropriately model and quantitatively assess the security
postures of the microarchitectural components; Design flow
and Synthesis – grouping the studies that aid hardware
designers to integrate security evaluation techniques to assess
the security postures during the design phase; Verification
– grouping the studies that help the designers verify the
intended security postures of the designed components; and
Miscellaneous – grouping the studies that do not belong to
any of the categories above, but are relevant in the scope of
the current research question.

1) METRICS, MODELING, AND ASSESSMENT
He et al. [S30] focus on the security assessment of caches.
Existing research proposes a number of secure cache
architectures to address the cache-related security flaws. The
authors, however, argue that reliable methods for assessing
the strengths of cache architectures remain unavailable.
To this end, they propose a probabilistic information flow
graph (PIFG) to model the interactions between a given cache
architecture, a malicious program, and a victim program.
At a very high level, the PIFG model is used to quantify
the resilience of a cache architecture against the attacks. The

VOLUME 11, 2023 48965



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

effectiveness of the proposed metric has been thoroughly
evaluated on nine different cache architectures. Note that the
lack of such a metric would left the researchers to rely on
simulations or hardware instrumentation-based approaches to
assess the cache security.

Deng et al. [S26] propose an approach to determine and
thoroughly explore whether a given cache architecture is
prone to the timing-channel vulnerabilities. Their approach is
based on bounded model checking utilizing the computation
tree logic to model the execution paths regarding the
interactions between the processors and the caches, such
that logic formulas can be derived for the vulnerable paths
leading up to the timing side-channels. Overall, the proposed
approach uncovered 28 different types of existing attacks,
including 8 novel variations.

Callan et al. [S5] propose a metric, called SAVAT, to quan-
titatively measure the side-channel signal by quantifying
the single-instruction difference among the executions of
otherwise two identical programs. Thismetric is significant in
the sense of its granular applicability to the level of difference
of a single instruction execution, which can account for a
large variety of microarchitectural and electronic activity.
Therefore, the proposed metric can be utilized to pinpoint the
vulnerable aspects of a microarchitecture under the influence
of program execution, which would help designers make
informed decisions when addressing the vulnerable aspects
of an existing design.

Yilmaz et al. [S42] develop a metric to quantitatively
measure the amount of information to be transmitted by
the execution of a particular sequence of instructions on
a CPU. The proposed metric is significant in regards to
aiding the software and hardware designs to minimize the
inadvertent side-channel leakage. Furthermore, leveraging
this metric would also help identify the vulnerable portions
of the programs involved in the leaks.

2) DESIGN FLOW AND SYNTHESIS
Barenghi et al. [S76] present an approach for strengthening
the existing FPGA design flows with integrated side-
channel security mechanisms. FPGAs, being programmable
hardware, are frequently used to synthesize soft-core proces-
sors. The study argues that having earlier security-oriented
feedback during the design phase would help the designers
develop security-hardened designs. The proposed approach
detects the side-channel leakage during the post-synthesis
and the post-implementation phases of the hardware design.
Furthermore, it provides precise insights into the sources
of information leakage at the level of microarchitectural
components. The evaluations of a cryptographic hardware
uncovered several design vulnerabilities and aided in recti-
fying the design.

Arsath et al. [S54] propose to have a module-wise microar-
chitectural security audit for the processor designs. The
notion behind the proposed approach is to ultimately establish
a methodology that universally safeguards all the sensitive
applications to be executed on a given processor. Moreover,
such a ground-up design approach should lead to minimal

performance degradation and reduce the power as well as
the area overheads to the extent possible. As a use case,
the study focuses on the resilience of an open source RISC
CPU against the power-consumption side-channel attacks.
The CPU is first analyzed by running a set of benchmark
applications and its overall power consumption profile is
correlated to the degree of information leakage. Then, given
the collected data and the source RTL (Register-transfer
Level) of the design, the proposed approach analyzes the
leakage on a per hardware module basis, such as the register
banks and the pipeline buffers. The empirical evaluations
demonstrate that the predicted degree of leakage of a module
is generally in direct proportion to the module’s vulnerability
for exploitation. Such leakages often originate as a byproduct
of the automated translations in EDA (electronic design
automation). Although such translations are functionally
correct, they are often prone to the security flaws, which need
to be mitigated through a redesign. The aforementioned study
also advocates for the data path obfuscation as it significantly
helps reduce information leakage.

Hur et al. [S96] emphasize that critical microarchitecture
vulnerabilities need to be discovered and addressed during
the RTL development stage of a CPU design. In this regard,
transient execution vulnerabilities are the most serious which
could have critical security impacts on software systems.
To this end, this study leverages fuzz testing [38] to aid
discovering and subsequent remedial of aforementioned
vulnerabilities in a two step process. In the first step,
templates of known vulnerabilities (such as Meltdown [1])
are utilized and all potential variations of a particular attack
dynamics are exercised, to establish whether the design in
question is prone specifically to this attack. In the second
step, different combinations of known vulnerabilities are
specified as design approval constraints, to establish whether
given RTL design is vulnerable to a particular combination
and if so, the approach outputs the test-case exercising the
culprit vulnerability, which aids the designer to rectify the
affected areas of his design. Furthermore, the presented
approach has showcased its strengths by discovering two
novel vulnerabilities affecting a RISC-V microarchitecture.
The study also emphasizes on leveraging fuzz testing as an
indispensable tool to test security posture of any non-trivial
RTL design.

He et al. [S95] argue that cryptographic hardware design
revisions at register-transfer-level (RTL) often do not take
into account fine-grained security enhancements and thus
vulnerable components remain exploitable in the future.
To address, the study proposes a security-aware hardware-
design, synthesis and optimization framework with eval-
uation metrics. In a nutshell, implementation details of
hardware RTL design are analyzed at first, followed by
observations made in an environment while, being subjected
to leakage-causing inputs. The degree of observed leakage
is quantitatively assessed and vulnerable sub-modules in
the design are identified. The study proposes to employ
conditional-hiding in contrast to masking schemes, as an
effective approach to curb leakage. Conditional hiding refers

48966 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

to re-architecting those registers (which store or process
sensitive information), such that their behavioral patterns
remain consistent regardless, to change in input patterns. This
is usually realized by governing multiple registers, under
a load-balancing strategy. Lastly, the proposed framework
demonstrates its strengths through simulations and FPGA
based hardware synthesis, for a number of AES cryptographic
test scenarios.

Lee et al. [S49] exclusively highlight the relevance of ECC
(elliptic curve cryptography) on portable and IoT devices.
However, ECC is generally computationally intensive. There-
fore, some dedicated hardware is typically needed for suffi-
cient performance. Furthermore, when ECC is implemented
on IoT and embedded hardware, a mathematically limited
flavor of ECC, such as a single finite field, is often employed.
The authors present a hardware-efficient and secure design
to support a robust ECC implementation, which is also
resilient against the attacks. The proposed solution relies on
a single-chip, heterogeneous dual-processing-element (dual-
PE) architecture capable of providing various types of PEs
leveraging the full pipelining. The authors also suggest that
the aforementioned design can further benefit from a two-
level memory hierarchy with a local memory synchronization
scheme.

Bache et al. [S60] propose a methodology towards having
a timing and power side-channel resistant cryptographic
processor based on ARX-cryptography, which utilizes only
the addition, rotation, and xor (ARX) operations. The
adequate utilization of the ARX-based computations ensures
ample confusion and diffusion properties. Although naive
ARX-based implementations are prone to the power attacks,
they are robust against other classes of attacks, such
as the timing attacks. They are, therefore, often deemed
desirable in IoT and smart card applications. The authors
address the aforementioned limitations and propose a novel
application-specific processor design based on the ARX
theory. At a very high level, the proposed approach provides
security against the timing and power attacks by protecting
the data paths with a custom boolean masking scheme.
Furthermore, the processor-specific instruction set used in
the proposed masking scheme, follows the principles of
Threshold Implementation [39] for provable security. Last but
not least, the approach incurs moderate costs compared to
more sophisticated and protected hardware implementations.

Borrello et al. [S104] advocate for constant-time imple-
mentation of cryptographic implementations as effective
deterrence against speculative execution attacks. However,
they argue that developing quality constant-time code by hand
is difficult and implementations from real world revealed
many flaws. Moreover, automated tools to transform a given
implementation into constant-time implementation offered,
limited security in production grade software. To this end,
the study introduces a compiler based automated tool to
harden programs against a range of microarchitecture attacks.
At its core, the proposed tool strives to completely linearize
secret-dependent control- and data-flows. However, doing
so in real world can result in state explosion. To address

this challenge, optimizations such as just-in-time loop
linearization and excessive function cloning is used. The
resultant implementation although provides hardened secu-
rity on real world software albeit, with moderate performance
overhead.

Kiaei et al. [S61] present a software synthesis technique
for time-sensitive embedded applications. The study argues
that in certain application scenarios, the strict execution-
time requirements are not mandatory as long as the imposed
real-time deadlines are met. In cryptographic applications,
to prevent the timing side-channels, the implementation
demands to be data-independent and should follow the
precise execution timings. To this end, the study proposes
a parallel synchronous programming model, which delivers
high throughput under modest time constraints for the
aforementioned application scenario. The approach auto-
matically transforms a given program for a predetermined
number of parallel threads of execution, which coordinate
synchronously. This coordination ensures the elimination of
the contention while providing high throughput and meeting
the timing deadlines. Furthermore, the study illustrates that
the proposed execution model can also curb the timing side-
channels.

Oh et al. [S37] discuss a hardware-based defense mech-
anism for mitigating the access-based side-channel attacks
under speculative execution in the Intel SGX enclaves. The
authors discuss that the state-of-the-art mitigation is based on
the ORAM (Oblivious RAM) protocol, which, although, ade-
quate, incurs significant overhead. The proposed approach is
based on the PCI plug-in hardware implemented in FPGA,
providing a trusted storage service in a completely isolated
and secure environment. The service securely keeps the
SGX authentication secrets and verifies the authenticity as
well as the authorization for the communication between
the program running in an enclave and the storage device
implemented in FPGA. The empirical results suggest that
the FPGA-based solution outperforms the three state-of-the-
art ORAM-based approaches. The proposed approach could
also serve as a beacon to adopt a synthesized hardware-based
security solution where software-based solutions are simply
too prohibitive in terms of overall performance.

Barenghi et al [S59] argue that changes in the CPU
microarchitecture and ISA can manifest into side-channel
leakage. Even innocuous changes, such as modifying the
register allocation order, can lead to an exploitable vulnera-
bility. Therefore, the microarchitectural features of the target
CPU should be kept in consideration while assessing the
side-channel leakage behavior of a software implementation.
Moreover, the authors discover that the contention inside the
pipeline buffers can cause critical information leakage, which
could never have been spotted through mere static analysis.

Vougiokas et al. [S41] provide design lessons on perfor-
mant, attack-resistant branch predictors. The authors argue
that the existing approaches sacrifice performance gains
achieved by branch prediction for side-channel security.
For example, to remain secure, the existing approaches
often liberally rely on flushing the internal prediction states.

VOLUME 11, 2023 48967



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

To this end, the authors introduce a quantitative metric, called
transient-state prediction accuracy (TIPA), aiming to rank
the side-channel free branch predictor designs for the future.
The motivation behind TIPA lies on the idea that flushing
the branch predictor during the transient states, affects the
performance far worse than flushing it during the steady
states. Leveraging TIPA would aid in designing safer branch
predictors of the future.

3) VERIFICATION
Eldib et al. [S29] describe an approach to formally assess the
degree of security provided by a countermeasure technique.
The study focuses on data-masking techniques as an effective
countermeasure approach to the power-based side-channel
attacks against the cryptographic applications. Data masking
is often relied upon to decouple the statistical dependence of
sensitive data to its corresponding side-channel emissions,
which is an important mitigative step. However, the study
argues that the sensitive data is desired to be perfectly
masked. The selection of a suitable masking technique for a
particular use case, on the other hand, remains to be a research
problem. To this end, the study proposes an SMT-based
(i.e., a satisfiability modulo theory-based) method to formally
verify the degree of security provided by a given masking
technique, where the verification problem is translated into
a sequence of satisfiability problems. The underlying notion
is to checkwhether any intermediate computation statistically
depends upon the contents of the sensitive data.

Grandmaison et al. [S94] present a framework to address
security reduction in software masked implementations
which, originates due to mismatch between leakage sources
considered in the security proof and actual sources of leakage
in microarchitecture. The presented approach addresses
this limitation by taking into account detailed models of
microarchitectural components and their leakage profiles
and synthesizes automated test cases to uncover leakage
scenarios. Furthermore, discussed approach formally verifies
a given software implementation through, binary analysis and
identifies, the chain of events and sequence of instructions
which would lead upto opening of windows for information
leakage. The experiments conducted on an ARM CPU
validate strengths of their presented approach.

Colvin et al. [S17] argue that speculative execution makes
it difficult to formally reason about the security properties of a
software system. Such a void has, therefore, left the software
systems to fall victim to a wide spectrum of attacks, including
Spectre and Meltdown, which are attributed to speculative
execution. Similarly, the role of cache in all these attacks
is even a more difficult problem to be formally reasoned
about. To address these issues, the authors present high-
level abstract semantics to formalize speculative execution
and its side effects. The proposed semantics is found to
be effective in discovering the sources of information leaks
caused by speculative execution. For example, the empirical
studies suggest that had the proposed approach been used,
Spectre could have been discovered early on during a
security assessment. Another study [S22] deals with the

same problem by following a similar approach. In particular,
a realistic model of speculative execution is transformed
into an abstract one, which is then simplified and refined
under formal verification by using a standard model checker.
The practicability of the proposed approach is demonstrated
by discovering some security leaks in a pipelined RISC
processor.

4) MISCELLANEOUS
Regazzoni et al. [S4] focus on the emerging paradigm of
approximate computing, which is an architectural paradigm
where limited and controlled errors are tolerated during
computations. Although more research in this field is needed,
the proposed paradigm can help build faster, smaller, more
cost-effective, and less power-consuming hardware circuits.
From the perspective of security, approximate computing can
deliver resistance to the fault injection as well as the side-
channel attacks.

Grimsdal et al. [S69] explore the feasibility of adopting
micro-kernels to thwart microarchitectural attacks. With the
help of the empirical studies where three micro-kernels with
strict process isolation mechanisms have been evaluated, the
authors conjuncture that strict process isolation is effective
in limiting the effectiveness of the microarchitectural attacks,
such as Meltdown and Spectre.

Nabeel et al. [S11] advocate for the need to have
new processor designs that natively provide support for
data privacy through cryptography. They argue that design
optimizations in recent years paved the ways for unique
microarchitectural vulnerabilities, which caused attacks, such
as Meltdown and Spectre. They present their findings with
regard to a secure co-processor design aimed at delivering
privacy through leveraging homomorphic encryption in the
data paths. In the empirical studies, they opt to integrate their
design as a co-processor linked through the communication
bus to the main processor. Depending on the data privacy
settings, the main processor can opt to delegate the sensitive
computations to this co-processor to guarantee data security.

Mao et al. [S57] advocate for onboard reconfigurable
hardware architectures capable of on-demand software con-
figuration. Software-based mitigations may have an impact
on the system’s performance. A hardware-based solution,
on the other hand, would be flexible and circumvent the
runtime overheads. The authors first synthesize a soft-core
processor on an FPGA board, whose architecture and features
can be reconfigured through software. The processor is then
configured to create a hardware attack detection module,
which also delivers tailored hardware-based mitigation for
cache-based timing attacks.

Seuscheck et al. [S14] highlight that embedded/IoT
systems remain vulnerable to side-channel attacks. Although
masking scheme-based mitigations are generally effective,
they remain prone to unwanted correlation-based leakage
through different registers on the same shared CPU. The
authors do not specify a particular type of leakage, but
rather describe the leakage at an abstract level to cater
for any side-channel leakage that can be correlated with

48968 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 5. Table of articles which are selected as primary studies.

VOLUME 11, 2023 48969



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 5. (Continued.) Table of articles which are selected as primary studies.

48970 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 5. (Continued.) Table of articles which are selected as primary studies.

the contents of the registers. Software-based cryptographic
implementations on embedded/IoT systems remain particular
candidates for exploitations through this type of leakage. The
study empirically demonstrates that an arbitrary mapping of
the registers to the intermediate values of a software cipher
can cause information leaks. As a mitigation technique,
a compile-time tool is presented, which sensibly maps
the intermediate values to the registers with the goal of
minimizing the aforementioned correlation.

Feldtkeller et al. [S92] bring forward an important threat
vector to cryptographic implementations with regards to
combination of side-channel vulnerability discovery, analysis
and tailored fault-injection attack strategies. The study
explains that on individual basis aforementioned vectors
are well-researched however, attempts to combine them is
mostly unexplored, yet quite potent when employed. To this
end, the study presents a mitigative formal framework, built
upon the ideas of domain isolation and secure composition
to construct, an essential set of hardware-level building
blocks which can provide resilience against faults and when
employed in a collaborative-chain, can effectively hamper
an attacker using combination of tactics. Lastly, the study
outlines that although proposed approach has significant
overhead costs but nonetheless to-date an only effective
remedy against outlined attacks.

5) OUR THOUGHTS
Architecting systems that are prone to microarchitectural
exploitations in both arenas of hardware and software remains
an actively researched topic. However, as more and more
exploitations are being discovered and remedied, they are
also shaping the security-oriented design practices, which are
improving over time. Furthermore, establishing a fine trade-
off between system performance and security still remains to

be a difficult problem as these facets are often orthogonal.
Designers are often faced with the challenges to produce a
design under strict time and budget constraints. However,
as further research continues, lessons are being learned and
quantitative metrics to evaluate the security-oriented aspects
of the designs are being proposed and utilized. We are hoping
in the future that more refined and broad-spectrum security-
oriented design processes become the common norm.

VII. THREATS TO VALIDITY AND FUTURE WORK
Systematic mapping studies capture the research focus and
the trends within the literature. They, however, do not delve
into the details of the findings reported by the primary studies.
Although, we, as researchers, tend to implicitly pick the
quality works as the primary studies to be analyzed, we are
often limited by the selection process and the classification
criteria. Therefore, if desired, a focused literature review with
a narrower scope is recommended.

Moreover, systematic mapping studies are empirical in
nature. Therefore, they typically suffer from some threats
to validity. To address the threats to validity surrounding
the selection, screening, and the classification processes,
we opted to follow the footsteps of the previously published
mapping studies. Yet, we chose to flex and/or adopt the
footsteps, tailored to suit the focus and the scope of our work.
We also relied onmore than one iteration during the selection,
screening, and the classification process to minimize the
potential misjudgments. Furthermore, we also utilized team
discussions as needed to reach on mutual consensus. We used
three well-known and frequently-used scientific databases.
We, however, do not neglect the possibility that had we relied
on more than three research databases could have further
improved the quality of our discussions or expanded the
selection of primary studies.

VOLUME 11, 2023 48971



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

TABLE 6. Abbreviations and their expansion which are used in this article.

Due to limited manpower and resources available at our
expenditure, we did not had the opportunity to undertake
multiple detailed reviews of complete set of papers. However,
it is our firm belief that our selected pool of primary studies
represents large and diverse aspects of microarchitecture
security research, and does present an accurate and precise
overall picture.

VIII. CONCLUDING REMARKS
This systematic mapping study presents a review of the state
of knowledge from the curated set of primary studies in
the field of microarchitecture side-channel security offenses,
defenses, and measures to improve the security posture
of computing systems. Directed by the review protocols,
we relied on three standard databases for scientific literature

48972 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

and located 546 articles, which further underwent screening
within the protocol constraints identifying 104 articles as
primary studies for this work. The classification scheme
utilized seven classes for the task to locate the culprit
components and vectors responsible for microarchitectural
exploits. Furthermore, we also curated answers for our target
research questions from the primary studies. We questioned
and answered a number of aspects, including the aspects
of microarchitectural leakage; how attack corridors have
been created; the degree to which existing countermeasures
are effective; and how to architect systems with improved
resilience against these attacks. Moreover, we also identified
the research spots where research emphasis had been present
as well as the spots which may get further attention.
Furthermore, we observed that over the course of the last
five years there has been a linear growth in the number of
publications, which directly reflects the importance and the
attention of research being carried out in this domain.

We believe that our adopted classification scheme is
suitable and fits the focus of this work well. This scheme
is also highly reusable in the sense that it can be applied to
capture new research trends by carrying out similar studies
in the future. Last but not least, the inclusion of grey
literature outside the academia, such as white papers, patents,
webpages, and technical reports, could be valuable and reveal
emerging themes rather quickly. However, such an effort is
manually demanding, resource intensive, and perhaps would
not be practical.

APPENDIX A
LIST OF PRIMARY STUDIES
See Table 5.

APPENDIX B
TABLE OF ABBREVIATIONS
See Table 6.

REFERENCES
[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,

J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
‘‘Meltdown: Reading kernel memory from user space,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Secur.), Jun. 2018, pp. 973–990.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ‘‘Spectre
attacks: Exploiting speculative execution,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1–19.

[3] B. Kitchenham, ‘‘Procedures for performing systematic reviews,’’ Dept.
Comput. Sci., Keele Univ., Keele, U.K., Tech. Rep. TR/SE-0401, 2004.

[4] A. K. Kanuparthi, R. Karri, G. Ormazabal, and S. K. Addepalli, ‘‘A survey
of microarchitecture support for embedded processor security,’’ in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI, Aug. 2012, pp. 368–373.

[5] J. Szefer, ‘‘Survey of microarchitectural side and covert channels, attacks,
and defenses,’’ J. Hardw. Syst. Secur., vol. 3, no. 3, pp. 219–234,
Sep. 2019.

[6] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, ‘‘A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,’’
J. Cryptograph. Eng., vol. 8, no. 1, pp. 1–27, Apr. 2018.

[7] M. H. I. Chowdhuryy, H. Liu, and F. Yao, ‘‘BranchSpec: Information
leakage attacks exploiting speculative branch instruction executions,’’
in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), Oct. 2020,
pp. 529–536.

[8] Z. Wu, Z. Xu, and H. Wang, ‘‘Whispers in the hyper-space: high-
bandwidth and reliable covert channel attacks inside the cloud,’’
IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 603–615, Apr. 2015.

[9] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, ‘‘Hertzbleed: Turning power side-channel attacks into
remote timing attacks on x86,’’ in Proc. 31st USENIX Secur. Symp.
(USENIX Secur.), 2022, pp. 679–697.

[10] C. Maurice, C. Neumann, O. Heen, and A. Francillon, ‘‘C5: Cross-cores
cache covert channel,’’ in Detection of Intrusions and Malware, and
Vulnerability Assessment: 12th International Conference, DIMVA 2015,
Milan, Italy, July 9–10, 2015, Proceedings 12. Springer. 2015, pp. 46–64.

[11] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas,
and C. W. Fletcher, ‘‘MicroScope: Enabling microarchitectural replay
attacks,’’ in Proc. 46th Int. Symp. Comput. Archit., 2019, pp. 318–331.

[12] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, ‘‘TrustZone
explained: Architectural features and use cases,’’ in Proc. IEEE 2nd Int.
Conf. Collaboration Internet Comput. (CIC), Nov. 2016, pp. 445–451.

[13] R. Wojtczuk and J. Rutkowska, ‘‘Attacking Intel trusted execution
technology,’’ Black Hat DC, vol. 2009, pp. 1–6, Feb. 2009.

[14] B. C. Xing, M. Shanahan, and R. Leslie-Hurd, ‘‘Intel software guard
extensions (Intel SGX) software support for dynamic memory allocation
inside an enclave,’’ in Proc. Hardw. Architectural Support Secur. Privacy,
Jun. 2016, pp. 1–9.

[15] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[16] S. Keele, ‘‘Guidelines for performing systematic literature reviews in
software engineering,’’ School Comput. Sci. Math., Softw. Eng. Group,
Keele Univ., Keele, U.K., EBSE Tech. Rep. EBSE-2007-01, 2007.

[17] A. Shahrokni and R. Feldt, ‘‘A systematic review of software robustness,’’
Inf. Softw. Technol., vol. 55, no. 1, pp. 1–17, Jan. 2013.

[18] P. Meland, S. Tokas, G. Erdogan, K. Bernsmed, and A. Omerovic,
‘‘A systematic mapping study on cyber security indicator data,’’
Electronics, vol. 10, no. 9, p. 1092, May 2021.

[19] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[20] Google Scholar. Accessed: Feb. 4, 2023. [Online]. Available:
https://scholar.google.com

[21] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng., May 2014, pp. 1–10.

[22] Connected Papers|Find and Explore Academic Papers. Accessed: Feb. 4,
2023. [Online]. Available: https://www.connectedpapers.com

[23] IEEEXploreDigital Library. Accessed: Feb. 4, 2023. [Online]. Available:
https://ieeexplore.ieee.org/Xplore/home.jsp

[24] ACM Digital Library. Accessed: Feb. 4, 2023. [Online]. Available:
https://dl.acm.org/

[25] Springer Link. Accessed: Feb. 4, 2023. [Online]. Available:
https://link.springer.com/

[26] Y. Zacchia Lun, A. D’Innocenzo, I. Malavolta, and M. D. Di Benedetto,
‘‘Cyber-physical systems security: A systematic mapping study,’’ 2016,
arXiv:1605.09641.

[27] P. H. Nguyen, S. Ali, and T. Yue, ‘‘Model-based security engineering
for cyber-physical systems: A systematic mapping study,’’ Inf. Softw.
Technol., vol. 83, pp. 116–135, Mar. 2017.

[28] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, ‘‘Requirements
engineering paper classification and evaluation criteria: A proposal and a
discussion,’’ Requirements Eng., vol. 11, no. 1, pp. 102–107, Mar. 2006.

[29] A. A. Ramaki, A. Rasoolzadegan, and A. G. Bafghi, ‘‘A systematic
mapping study on intrusion alert analysis in intrusion detection systems,’’
ACM Comput. Surveys, vol. 51, no. 3, pp. 1–41, May 2019.

[30] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, ‘‘Mapping the intel
last-level cache,’’ Cryptol. ePrint Arch., 2015.

[31] M. Prandini and M. Ramilli, ‘‘Return-oriented programming,’’ IEEE
Secur. Privacy, vol. 10, no. 6, pp. 84–87, Nov. 2012.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[33] Y. Yarom and K. Falkner, ‘‘FLUSH+ RELOAD: A high resolution, low
noise, L3 cache Side-Channel attack,’’ in Proc. 23rd USENIX Secur.
Symp. (USENIX Secur.), 2014, pp. 719–732.

VOLUME 11, 2023 48973



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

[34] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,
and S. Devadas, ‘‘Constants count: Practical improvements to oblivious
RAM,’’ in Proc. 24th USENIX Secur. Symp. (USENIX Secur.), 2015,
pp. 415–430.

[35] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom. (2021). Prime+ Probe 1, JavaScript 0: Overcoming Browser-
Based Side-Channel Defenses. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity21/presentation/shusterman

[36] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘‘Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,’’ in Proc. 27th USENIX Secur. Symp. (USENIX Secur.), 2018,
pp. 991–1008.

[37] I. Solaiman, ‘‘The gradient of generative AI release: Methods and
considerations,’’ 2023, arXiv:2302.04844.

[38] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang, ‘‘Fuzz testing in
practice: Obstacles and solutions,’’ in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Mar. 2018, pp. 562–566.

[39] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup,
‘‘Threshold implementations of small S-boxes,’’ Cryptogr. Commun.,
vol. 7, no. 1, pp. 3–33, Mar. 2015.

[40] D. Zoni, A. Barenghi, G. Pelosi, and W. Fornaciari, ‘‘A comprehensive
side-channel information leakage analysis of an in-order RISC CPU
microarchitecture,’’ ACM Trans. Design Autom. Electron. Syst., vol. 23,
no. 5, pp. 1–30, Sep. 2018.

[41] A. G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson, ‘‘An
architecture-independent instruction shuffler to protect against side-
channel attacks,’’ACMTrans. Archit. CodeOptim., vol. 8, no. 4, pp. 1–19,
Jan. 2012.

[42] A. Fuchs and R. B. Lee, ‘‘Disruptive prefetching: Impact on side-channel
attacks and cache designs,’’ in Proc. 8th ACM Int. Syst. Storage Conf.,
2015, pp. 1–12.

[43] F. Regazzoni and I. Polian, ‘‘Side channel attacks vs approximate
computing,’’ in Proc. Great Lakes Symp. VLSI, 2020, pp. 321–326.

[44] R. Callan, A. Zajic, and M. Prvulovic, ‘‘A practical methodology
for measuring the side-channel signal available to the attacker for
instruction-level events,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2014, pp. 242–254.

[45] B. Yuce, C. Deshpande, M. Ghodrati, A. Bendre, L. Nazhandali,
and P. Schaumont, ‘‘A secure exception mode for fault-attack-resistant
processing,’’ IEEE Trans. Dependable Secure Comput., vol. 16, no. 3,
pp. 388–401, May 2019.

[46] W. Shi and H.-H. S. Lee, ‘‘Authentication control point and its
implications for secure processor design,’’ inProc. 39th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2006, pp. 103–112.

[47] C. Trippel, D. Lustig, and M. Martonosi, ‘‘CheckMate: Automated
synthesis of hardware exploits and security litmus tests,’’ in Proc. 51st
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2018,
pp. 947–960.

[48] B. Liu, R. Lysecky, and J. M. Wang-Roveda, ‘‘Composable template
attacks using templates for individual architectural components,’’ in Proc.
IEEE 36th Int. Conf. Comput. Design (ICCD), Oct. 2018, pp. 1–8.

[49] M. Nabeel, M. Ashraf, E. Chielle, N. G. Tsoutsos, and M. Maniatakos,
‘‘CoPHEE: Co-processor for partially homomorphic encrypted execu-
tion,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
Oct. 2019, pp. 131–140.

[50] B. Panda, ‘‘Fooling the sense of cross-core last-level cache eviction based
attacker by prefetching common sense,’’ in Proc. 28th Int. Conf. Parallel
Archit. Compilation Techn. (PACT), 2019, pp. 138–150.

[51] S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez,
and K. Barker, ‘‘Leaky buddies: Cross-component covert channels on
integrated CPU-GPU systems,’’ in Proc. ACM/IEEE 48th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 972–984.

[52] H. Seuschek and S. Rass, ‘‘Side-channel leakage models for RISC
instruction set architectures from empirical data,’’ in Proc. Euromicro
Conf. Digit. Syst. Design, 2015, pp. 423–430.

[53] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo,
‘‘SpecuSym: Speculative symbolic execution for cache timing leak
detection,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng., Jun. 2020,
pp. 1235–1247.

[54] T. H. Pham, B. Marshall, A. Fell, S.-K. Lam, and D. Page, ‘‘XDIVINSA:
Extended diversifying instruction agent to mitigate power side-channel
leakage,’’ in Proc. IEEE 32nd Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2021, pp. 179–186.

[55] R. J. Colvin and K. Winter, ‘‘An abstract semantics of speculative
execution for reasoning about security vulnerabilities,’’ in Proc. Formal
Methods. FM Int. Workshops, vol. 12233, 2020, pp. 323–341.

[56] C. D. Hailfinger, K. Lemke-Rust, and C. Paar, ‘‘CCCiCC: A cross-
core cache-independent covert channel on AMD family 15h CPUs,’’ in
Smart Card Research and Advanced Applications: 18th International
Conference, CARDIS 2019, Prague, Czech Republic, November 11–13,
2019, Revised Selected Papers 18. Springer, 2020, pp. 159–175.

[57] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, ‘‘Fantastic timers
and where to find them: High-resolution microarchitectural attacks
in JavaScript,’’ in Financial Cryptography and Data Security: 21st
International Conference, FC 2017, Sliema, Malta, April 3–7, 2017,
Revised Selected Papers 21. Springer, 2017, pp. 247–267.

[58] B. Semal, K. Markantonakis, R. N. Akram, and J. Kalbantner, ‘‘Leaky
controller: Cross-VM memory controller covert channel on multi-core
systems,’’ in ICT Systems Security and Privacy Protection: 35th IFIP TC
11 International Conference, SEC 2020, Maribor, Slovenia, September
21–23, 2020, Proceedings 35. Springer, 2020, pp. 3–16.

[59] G. Cabodi, P. Camurati, F. Finocchiaro, and D. Vendraminetto, ‘‘Model
checking speculation-dependent security properties: Abstracting and
reducing processor models for sound and complete verification,’’
Electronics, vol. 11445, pp. 462–479, Sep. 2019.

[60] Y. Han and J. Kim, ‘‘A novel covert channel attack using memory
encryption engine cache,’’ in Proc. 56th Annu. Design Automat. Conf.,
2019, pp. 1–6.

[61] N. Belleville, D. Couroussé, K. Heydemann, and H.-P. Charles, ‘‘Auto-
mated software protection for the masses against side-channel attacks,’’
ACM Trans. Archit. Code Optim., vol. 15, no. 4, pp. 1–27, Dec. 2018.

[62] D. Evtyushkin, R. Riley, N. C. A. E. Abu-Ghazaleh, and D. Ponomarev,
‘‘BranchScope: A new side-channel attack on directional branch predic-
tor,’’ ACM SIGPLAN Notices, vol. 53, no. 2, pp. 693–707, Nov. 2018.

[63] S. Deng, W. Xiong, and J. Szefer, ‘‘Cache timing side-channel
vulnerability checking with computation tree logic,’’ in Proc. 7th Int.
Workshop Hardw. Architectural Support Security Privacy, 2018, pp. 1–8.

[64] F. Liu, H. Wu, and R. B. Lee, ‘‘Can randomized mapping secure
instruction caches from side-channel attacks?’’ in Proc. 4th Workshop
Hardware Architectural Support Security Privacy, 2015, pp. 1–8.

[65] X. Wang and W. Zhang, ‘‘Cracking randomized coalescing techniques
with an efficient profiling-based side-channel attack to GPU,’’ in Proc.
8th Int. Workshop Hardware Architectural Support Security Privacy,
2019, pp. 1–8.

[66] H. Eldib, C. Wang, and P. Schaumont, ‘‘Formal verification of software
countermeasures against side-channel attacks,’’ ACM Trans. Softw. Eng.
Methodol., vol. 24, no. 2, pp. 1–24, Dec. 2014.

[67] Z. He and R. B. Lee, ‘‘How secure is your cache against side-channel
attacks?’’ in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Oct. 2017, pp. 341–353.

[68] P. Zhang, C. Song, H. Yin, D. Zou, E. Shi, and H. Jin, ‘‘Klotski: Efficient
obfuscated execution against controlled-channel attacks,’’ in Proc. 25th
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2020,
pp. 1263–1276.

[69] J. Lindemann and M. Fischer, ‘‘On the detection of applications in co-
resident virtual machines via a memory deduplication side-channel,’’
ACM SIGAPP Appl. Comput. Rev., vol. 18, no. 4, pp. 31–46, Jan. 2019.

[70] N. Gattu, M. N. I. Khan, A. De, and S. Ghosh, ‘‘Power side channel attack
analysis and detection,’’ in Proc. 39th Int. Conf. Comput.-Aided Design,
2020, pp. 1–7.

[71] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
‘‘Rendered insecure: GPU side channel attacks are practical,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 2139–2153.

[72] G. Saileshwar, C. W. Fletcher, and M. Qureshi, ‘‘Streamline: A
fast, flushless cache covert-channel attack by enabling asynchronous
collusion,’’ in Proc. 26th ACM Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2021, pp. 1077–1090.

[73] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, ‘‘TRUSTORE:
Side-channel resistant storage for SGX using Intel hybrid CPU-
FPGA,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1903–1918.

[74] P. Cronin and C. Yang, ‘‘A fetching tale: Covert communication with the
hardware prefetcher,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur.
Trust (HOST), May 2019, pp. 101–110.

[75] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, ‘‘A
new side-channel vulnerability on modern computers by exploiting
electromagnetic emanations from the power management unit,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2020,
pp. 123–138.

48974 VOLUME 11, 2023



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

[76] R. Kumar, X. Liu, V. Suresh, H. K. Krishnamurthy, S. Satpathy,
M. A. Anders, H. Kaul, K. Ravichandran, V. De, and S. K. Mathew, ‘‘A
time-/frequency-domain side-channel attack resistant AES-128 and RSA-
4K crypto-processor in 14-nm CMOS,’’ IEEE J. Solid-State Circuits,
vol. 56, no. 4, pp. 1141–1151, Apr. 2021.

[77] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst,
B. M. Al-Hashimi, and G. V. Merrett, ‘‘BRB: Mitigating branch
predictor side-channels,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 466–477.

[78] B. B. Yilmaz, R. L. Callan, M. Prvulovic, and A. Zajic, ‘‘Capacity
of the EM covert/side-channel created by the execution of instructions
in a processor,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 3,
pp. 605–620, Mar. 2018.

[79] T. H. Pham, A. Fell, A. K. Biswas, S.-K. Lam, andN. Veeranna, ‘‘CIDPro:
Custom instructions for dynamic program diversification,’’ in Proc. 28th
Int. Conf. Field Program. Logic Appl.(FPL), 2018, pp. 224–2245.

[80] B. Gulmezoglu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar,
‘‘Cross-VM cache attacks on AES,’’ IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 211–222, Jul. 2016.

[81] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
‘‘DAWG: A defense against cache timing attacks in speculative execution
processors,’’ in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2018, pp. 974–987.

[82] Z. Wang, S. Peng, W. Jiang, and X. Guo, ‘‘Defeating hardware
prefetchers in flush+reload side-channel attack,’’ IEEE Access, vol. 9,
pp. 21251–21257, 2021.

[83] G. Chen, M. Li, F. Zhang, and Y. Zhang, ‘‘Defeating speculative-
execution attacks on SGX with HyperRace,’’ in Proc. IEEE Conf.
Dependable Secure Comput. (DSC), Dec. 2019, pp. 1–8.

[84] S. Mane, M. Taha, and P. Schaumont, ‘‘Efficient and side-channel-secure
block cipher implementation with custom instructions on FPGA,’’ in
Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL), 2012, pp. 20–25.

[85] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, ‘‘Efficient power-
analysis-resistant dual-field elliptic curve cryptographic processor using
heterogeneous dual-processing-element architecture,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 49–61, Jan. 2014.

[86] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, ‘‘EMSim:
A microarchitecture-level simulation tool for modeling electromagnetic
side-channel signals,’’ in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), 2020, pp. 71–85.

[87] M. He, C. Ma, J. Ge, N. Gao, and C. Tu, ‘‘Flush-detector: More secure
API resistant to flush-based spectre attacks on ARM cortex-A9,’’ in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jul. 2020, pp. 1–6.

[88] S. Hsiao, Y. S. Sun, and M. C. Chen, ‘‘Hardware-assisted MMU
redirection for in-guest monitoring and API profiling,’’ IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 2402–2416, 2020.

[89] M. Tan, J. Wan, Z. Zhou, and Z. Li, ‘‘Invisible probe: Timing attacks with
PCIe congestion side-channel,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2021, pp. 322–338.

[90] M. K. F. Arsath, V. Ganesan, R. Bodduna, and C. Rebeiro, ‘‘PARAM:
A microprocessor hardened for power side-channel attack resistance,’’
in Proc. IEEE Int. Symp. Hardware Oriented Secur. Trust (HOST),
Dec. 2020, pp. 23–34.

[91] X. Wu, Y. He, Q. Zhou, H. Ma, L. He, W. Wang, and L. Chen,
‘‘Partial-SMT: Core-scheduling protection against SMT contention-
based attacks,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy
Comput. Commun. (TrustCom), Dec. 2020, pp. 378–385.

[92] M. Busi, J. Noorman, J. V. Bulck, L. Galletta, P. Degano, J. T. Muhlberg,
and F. Piessens, ‘‘Provably secure isolation for interruptible enclaved
execution on small microprocessors,’’ in Proc. IEEE 33rd Comput. Secur.
Found. Symp. (CSF), Jun. 2020, pp. 262–276.

[93] Y. Mao, V. Migliore, and V. Nicomette, ‘‘REHAD: Using low-frequency
reconfigurable hardware for cache side-channel attacks detection,’’
in Proc. IEEE Eur. Symp. Secur. Privacy Workshops (EuroS&PW),
Sep. 2020, pp. 704–709.

[94] T. Kim and Y. Shin, ‘‘Reinforcing meltdown attack by using a return stack
buffer,’’ IEEE Access, vol. 7, pp. 186065–186077, 2019.

[95] A. Barenghi and G. Pelosi, ‘‘Side-channel security of superscalar CPUs:
Evaluating the impact of micro-architectural features,’’ in Proc. 55th
Annu. Design Automat. Conf., 2018, pp. 1–6.

[96] F. Bache, T. Schneider, A. Moradi, and T. Giineysu, ‘‘SPARX—A side-
channel protected processor for ARX-based cryptography,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib. (DATE), 2017, pp. 990–995.

[97] P. Kiaei and P. Schaumont, ‘‘Synthesis of parallel synchronous software,’’
IEEE Embedded Syst. Lett., vol. 13, no. 1, pp. 17–20, Mar. 2021.

[98] N. K. Patel, P. Krishnamurthy, H. Amrouch, J. Henkel, M. Shamouilian,
R. Karri, and F. Khorrami, ‘‘Towards a new thermal monitoring based
framework for embedded CPS device security,’’ IEEE Trans. Dependable
Secure Comput., vol. 19, no. 1, pp. 524–536, Feb. 2020.

[99] V. Cristiani, M. Lecomte, and T. Hiscock, ‘‘A bit-level approach to side
channel based disassembling,’’ in Smart Card Research and Advanced
Applications: 18th International Conference, CARDIS 2019, Prague,
Czech Republic, November 11–13, 2019, Revised Selected Papers 18.
Springer, 2020, pp. 143–158.

[100] B. Semal, K.Markantonakis, R. N. Akram, and J. Kalbantner, ‘‘A study on
microarchitectural covert channel vulnerabilities in infrastructure-as-a-
service,’’ in Proc. Appl. Cryptogr. Network Secur. Workshops, vol. 12418,
2020, pp. 360–377.

[101] O. Aciiçmez andW. Schindler, ‘‘A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on OpenSSL,’’
in Topics in Cryptology—CT-RSA 2008: The Cryptographers’ Track at
the RSA Conference 2008, San Francisco, CA, USA, April 8–11, 2008.
Proceedings. Berlin, Germany: Springer, 2008, pp. 256–273.

[102] C. Wang, N. Min-Allah, B. Guan, Y.-Q. Lin, J.-Z. Wu, and Y.-J. Wang,
‘‘An efficient approach for mitigating covert storage channel attacks in
virtual machines by the anti-detection criterion,’’ J. Comput. Sci. Technol.,
vol. 34, no. 6, pp. 1351–1365, Nov. 2019.

[103] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovacki, and G. Venkataramani,
‘‘Cache-zoomer: On-demand high-resolution cache monitoring for secu-
rity,’’ J. Hardw. Syst. Secur., vol. 4, no. 3, pp. 180–195, Sep. 2020.

[104] G. Didier and C. Maurice, ‘‘Calibration done right: Noiseless flush+flush
attacks,’’ in Detection of Intrusions and Malware, and Vulnerability
Assessment: 18th International Conference, DIMVA 2021, Virtual Event,
July 14–16, 2021, Proceedings 18. Springer, 2021, pp. 278–298.

[105] G. Grimsdal, P. Lundgren, C. Vestlund, F. Boeira, and M. Asplund, ‘‘Can
microkernels mitigate microarchitectural attacks?’’ in Secure IT Systems:
24th Nordic Conference, NordSec 2019, Aalborg, Denmark, November
18–20, 2019, Proceedings. Cham, Switzerland: Springer, Nov. 2019,
pp. 238–253.

[106] F. Mosquera, N. Gulur, K. Kavi, G. Mehta, and H. Sun, ‘‘CHASM:
Security evaluation of cache mapping schemes,’’ in Embedded Computer
Systems: Architectures, Modeling, and Simulation: 20th International
Conference, SAMOS 2020, Samos, Greece, July 5–9, 2020, Proceedings
20. Springer, 2020, pp. 245–261.

[107] T. Schlüter and Lemke-Rust, ‘‘Differential analysis and fingerprinting of
zombieloads on block ciphers,’’ in Smart Card Research and Advanced
Applications: 19th International Conference, CARDIS 2020, Virtual
Event, November 18–19, 2020, Revised Selected Papers 19. Springer,
2021, pp. 151–165.

[108] F. Lang, H. Li,W.Wang, J. Lin, F. Zhang,W. Pan, and Q.Wang, ‘‘E-SGX:
Effective cache side-channel protection for intel SGX on untrusted OS,’’
in Information Security and Cryptology: 16th International Conference,
Inscrypt 2020, Guangzhou, China, December 11–14, 2020, Revised
Selected Papers. Springer, 2021, pp. 221–243.

[109] R. Bloem, S. Jacobs, and Y. Vizel, ‘‘Efficient information-flow ver-
ification under speculative execution,’’ in Automated Technology for
Verification and Analysis: 17th International Symposium, ATVA 2019,
Taipei, Taiwan, October 28–31, 2019, Proceedings 17. Springer, 2019,
pp. 499–514.

[110] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+Flush: A fast
and stealthy cache attack,’’ in Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference, DIMVA 2016,
San Sebastián, Spain, July 7–8, 2016, Proceedings 13. Springer, 2016,
pp. 279–299.

[111] M. Payer, ‘‘HexPADS: A platform to detect ‘stealth’ attacks,’’ in
Engineering Secure Software and Systems: 8th International Symposium,
ESSoS 2016, London, UK, April 6–8, 2016. Proceedings 8. Springer,
2016, pp. 138-154.

[112] A. Barenghi,M. Brevi,W. Fornaciari, G. Pelosi, andD. Zoni, ‘‘Integrating
side channel security in the FPGA hardware design flow,’’ inConstructive
Side-Channel Analysis and Secure Design: 11th International Workshop,
COSADE 2020, Lugano, Switzerland, April 1–3, 2020, Revised Selected
Papers 11. Springer, 2021, pp. 275–290.

[113] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
‘‘Malware guard extension: Abusing Intel SGX to conceal cache attacks,’’
Cybersecurity, vol. 3, no. 1, pp. 1–20, Dec. 2020.

[114] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, ‘‘MemJam: A
false dependency attack against constant-time crypto implementations,’’
Int. J. Parallel Program., vol. 47, no. 4, pp. 538–570, Aug. 2019.

VOLUME 11, 2023 48975



A. Javeed et al.: Microarchitectural Side-Channel Threats, Weaknesses and Mitigations: A Systematic Mapping Study

[115] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
‘‘Netspectre: Read arbitrary memory over network,’’ in Computer
Security–ESORICS 2019: 24th European Symposium on Research in
Computer Security, Luxembourg, September 23–27, 2019, Proceedings,
Part I 24. Springer, 2019, pp. 279–299.

[116] O. Aciiçmez, S. Gueron, and J.-P. Seifert, ‘‘New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,’’ in
Proc. 11th IMA Int. Conf., vol. 4887, 2007, pp. 185–203.

[117] O. Aciiçmez, B. B. Brumley, and P. Grabher, ‘‘New results on
instruction cache attacks,’’ in Cryptographic Hardware and Embedded
Systems, CHES 2010: 12th International Workshop, Santa Barbara, USA,
August 17–20, 2010. Proceedings 12. Berlin, Germany: Springer, 2010,
pp. 110–124.

[118] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx, ‘‘Off-limits:
Abusing legacy x86 memory segmentation to spy on enclaved execu-
tion,’’ in Engineering Secure Software and Systems: 10th International
Symposium, ESSoS 2018, Paris, France, June 26–27, 2018, Proceedings
10. Springer, 2018, pp. 44–60.

[119] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, ‘‘Side-channel anal-
ysis of cryptographic software via early-terminating multiplications,’’ in
Information, Security and Cryptology—ICISC 2009: 12th International
Conference, Seoul, Korea, December 2–4, 2009, Revised Selected Papers
12. Berlin, Germany: Springer, 2010, pp. 176–192.

[120] H. Nemati, P. Buiras, A. Lindner, R. Guanciale, and S. Jacobs,
‘‘Validation of abstract side-channel models for computer architectures,’’
in Computer Aided Verification, vol. 12224. 2020, pp. 225–248.

[121] M. Brosch, M. Probst, and G. Sigl, ‘‘Counteract side-channel analysis of
neural networks by shuffling,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2022, pp. 1305–1310.

[122] R. Brotzman, D. Zhang, M. T. Kandemir, and G. Tan, ‘‘SpecSafe:
Detecting cache side channels in a speculative world,’’ Proc. ACM
Program. Lang., vol. 5, pp. 1–28, Oct. 2021, doi: 10.1145/3485506.

[123] P. Buiras, H. Nemati, A. Lindner, and R. Guanciale, ‘‘Validation of
side-channel models via observation refinement,’’ in Proc. 54th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2021, pp. 578–591, doi:
10.1145/3466752.3480130.

[124] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, ‘‘Speculative
privacy tracking (SPT): Leaking information from speculative execution
without compromising privacy,’’ in Proc. MICRO-54: 54th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2021, pp. 607–622, doi:
10.1145/3466752.3480068.

[125] J. Cook, J. Drean, J. Behrens, and M. Yan, ‘‘There’s always a bigger fish:
A clarifying analysis of amachine-learning-assisted side-channel attack,’’
in Proc. 49th Annu. Int. Symp. Comput. Archit. New York, NY, USA:
ACM, Jun. 2022, pp. 204–217, doi: 10.1145/3470496.3527416.

[126] P. W. Deutsch, Y. Yang, T. Bourgeat, J. Drean, J. S. Emer, and
M. Yan, ‘‘DAGguise: Mitigating memory timing side channels,’’ in
Proc. 27th ACM Int. Conf. Architectural Support Program. Lang.
Operating Syst. Lausanne Switzerland: ACM, Feb. 2022, pp. 329–343,
doi: 10.1145/3503222.3507747.

[127] D. R. Dipta and B. Gulmezoglu, ‘‘DF-SCA: Dynamic frequency side
channel attacks are practical,’’ in Proc. 38th Annu. Comput. Secur.
Appl. Conf. Austin TX USA: ACM, Dec. 2022, pp. 841–853, doi:
10.1145/3564625.3567979.

[128] J. Feldtkeller, J. Richter-Brockmann, P. Sasdrich, and T. Güneysu, ‘‘CINI
MINIS: Domain isolation for fault and combined security,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. Los Angeles CA USA: ACM,
Nov. 2022, pp. 1023–1036, doi: 10.1145/3548606.3560614.

[129] H. Fendri, M. Macchetti, J. Perrine, and M. Stojilovic, ‘‘A deep-learning
approach to side-channel based CPU disassembly at design time,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022,
pp. 670–675.

[130] A. D. Grandmaison, K. Heydemann, and Q. L. Meunier, ‘‘ARMISTICE:
Microarchitectural leakage modeling for masked software formal ver-
ification,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 41, no. 11, pp. 3733–3744, Nov. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9852775/

[131] J. He, H. Ma, M. Panoff, H. Wang, Y. Zhao, L. Liu, X. Guo, and Y. Jin,
‘‘Security oriented design framework for EM side-channel protection
in RTL implementations,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 8, pp. 2421–2434, Aug. 2022.

[132] J. Hur, S. Song, S. Kim, and B. Lee, ‘‘SpecDoctor: Differential fuzz
testing to find transient execution vulnerabilities,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. Los Angeles CA USA: ACM, Nov. 2022,
pp. 1473–1487, doi: 10.1145/3548606.3560578.

[133] A. Ibrahim, H. Nemati, T. Schlüter, N. O. Tippenhauer, and C. Rossow,
‘‘Microarchitectural leakage templates and their application to cache-
based side channels,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. Los Angeles CA USA: ACM, Nov. 2022, pp. 1489–1503, doi:
10.1145/3548606.3560613.

[134] L. Li, J. Huang, L. Feng, and Z. Wang, ‘‘PREFENDER: A prefetching
defender against cache side channel attacks as a pretender,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022,
pp. 1509–1514.

[135] C. Liu, A. Chakraborty, N. Chawla, and N. Roggel, ‘‘Frequency throttling
side-channel attack,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. Los Angeles CA USA: ACM, Nov. 2022, pp. 1977–1991, doi:
10.1145/3548606.3560682.

[136] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, ‘‘PACMAN: Attacking
ARM pointer authentication with speculative execution,’’ in Proc. 49th
Annu. Int. Symp. Comput. Archit., New York, NY, USA: ACM, Jun. 2022,
pp. 685–698, doi: 10.1145/3470496.3527429.

[137] C. Sakalis, S. Kaxiras, and M. Själander, ‘‘Delay-on-squash: Stopping
microarchitectural replay attacks in their tracks,’’ ACM Trans. Archit.
Code Optim., vol. 20, no. 1, pp. 1–24, Mar. 2023, doi: 10.1145/3563695.

[138] J. P. Thoma and T. Güneysu, ‘‘Write me and I’ll tell you secrets—Write-
after-write effects on Intel CPUs,’’ in Proc. 25th Int. Symp. Res. Attacks,
Intrusions Defenses. Limassol Cyprus: ACM, Oct. 2022, pp. 72–85, doi:
10.1145/3545948.3545987.

[139] T. Zhang,M. Cai, D. Zhang, and H. Huang, ‘‘SeBROP: Blind ROP attacks
without returns,’’ Frontiers Comput. Sci., vol. 16, no. 4, Aug. 2022,
Art. no. 164818, doi: 10.1007/s11704-021-0342-8.

[140] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, ‘‘Constantine:
Automatic side-channel resistance using efficient control and data flow
linearization,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 715–733, doi: 10.1145/3460120.3484583.

ARSALAN JAVEED received the B.S. degree in
telecommunication engineering from the National
University of Computer and Emerging Sciences,
Islamabad, Pakistan, in 2011, and the M.S. and
Ph.D. degrees in computer science and engineer-
ing from Sabanci University, Istanbul, Turkey,
in 2015, and 2022, respectively. His research
interests include software engineering, and testing
and security.

CEMAL YILMAZ (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
and information science from Bilkent University,
Ankara, Turkey, in 1997 and 1999, respectively,
and the Ph.D. degree in computer science from
the University of Maryland, College Park, MD,
USA, in 2005. From 2005 to 2008, he was a
Postdoctoral Researcher with the IBM Thomas J.
Watson Research Center, Hawthorne, NY, USA.
He is currently an Associate Professor of computer

science with the Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey. His current research interests include software
engineering, software quality assurance, and software security.

ERKAY SAVAS (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
from the Electronics and Communications Engi-
neering Department, Istanbul Technical Univer-
sity, in 1990 and 1994, respectively, and the
Ph.D. degree from the Department of Electrical
and Computer Engineering (ECE), Oregon State
University, in June 2000. He had worked for
various companies and research institutions before
he joined Sabanci University, in 2002. His research

interests include applied cryptography, data and communication security,
privacy in biometrics, security and privacy in data mining applications,
embedded systems security, and distributed systems. He is a member of
ACM, the IEEE Computer Society, and the International Association of
Cryptologic Research (IACR). He is currently an Associate Editor of IEEE
TRANSACTIONS ON COMPUTERS and Journal of Cryptographic Engineering.

48976 VOLUME 11, 2023

http://dx.doi.org/10.1145/3485506
http://dx.doi.org/10.1145/3466752.3480130
http://dx.doi.org/10.1145/3466752.3480068
http://dx.doi.org/10.1145/3470496.3527416
http://dx.doi.org/10.1145/3503222.3507747
http://dx.doi.org/10.1145/3564625.3567979
http://dx.doi.org/10.1145/3548606.3560614
http://dx.doi.org/10.1145/3548606.3560578
http://dx.doi.org/10.1145/3548606.3560613
http://dx.doi.org/10.1145/3548606.3560682
http://dx.doi.org/10.1145/3470496.3527429
http://dx.doi.org/10.1145/3563695
http://dx.doi.org/10.1145/3545948.3545987
http://dx.doi.org/10.1007/s11704-021-0342-8
http://dx.doi.org/10.1145/3460120.3484583

