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ABSTRACT To provide accurate key variable prediction, data-driven soft sensing techniques have extracted
much attention in recent years. Due to different control strategies in industrial processes, it is noticed
that the variables in the control loops can be autocorrelated while the others may be static, which needs
to be considered simultaneously. In this paper, a quality-related concurrent dual-latent variable (CDLV)
model is proposed for soft sensing construction. Two different kinds of latent variables are adopted to learn
quality-related dynamic information and quality-related static information respectively. Both quality-related
variables are then applied for quality prediction purposes. On this basis, the CDLV model is extended to
a semi-supervised form to provide a comprehensive description for the soft sensor design with insufficient
quality information. The proposed models are demonstrated by two industrial cases which show superiority
over other relative methods in the accuracy of key quality variables prediction.

INDEX TERMS Concurrent dual-latent variable (CDLV), soft sensor, probabilistic latent variable model,
quality-related information, semi-supervised learning.

I. INTRODUCTION
To realize precise process control in modern industrial sys-
tems, it is of great significance to obtain a reliable value
of key variables that are closely related to product qual-
ity [1], [2], [3]. However, due to the increasing complexity of
industrial environments, limitations of measurement equip-
ment, and other economic considerations, some key quality
variables cannot be measured properly or promptly. In the
past decades, a large number of soft sensing techniques have
been developed to analyze the relationship between hard-to-
measure quality variables and easy-to-measure process vari-
ables [4], [5], [6], which mainly includes three types, namely
mechanism-model-based, knowledge-based, and data-driven
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soft sensors [7], [8]. The accuracy of the first two types can be
guaranteed only when adequate process mechanisms or prior
expert knowledge is available, which is often time-consuming
in practical situations. Meanwhile, due to the popularity of
distributed control systems (DCS) and the internet of things
(IoT), a large amount of process data has been collected,
transmitted, and stored, which makes the data-driven soft
sensing techniques quite reasonable solutions for quality pre-
diction tasks [9], [10].

To date, various multivariate statistical process control
models have been developed for industrial soft sensors, such
as principal component regression (PCR) [11] and partial
least square (PLS) [12], which tried to project the original
data into latent space to extract corresponding data charac-
teristics. These models perform well when the process is
hardly affected by stochastic noise, but do not handle the
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process uncertainty problem well. Alternatively, a series of
probabilistic frameworks [10], [13] have been developed to
cope with the above situations, including the probabilistic
principal component regression (PPCR) model [14] and the
supervised factor analysis (SFA) model [15]. Specifically, the
probabilistic latent variablemodels are a class ofmethods that
find variable relationships usingmaximum likelihood estima-
tion, which not only preserves the average value operations
in measurements, but also contains a covariance term that
represents the process uncertainty. Despite the progress, the
above models are always constructed based on an assumption
that the samples are independent of each other, which lacks
a dynamic description for the autocorrelations of process
data [16], [17].

In most industrial processes, the process data could exhibit
dynamical characteristics due to the existence of the systems
control loops, resulting in the deficiency of traditional static
latent variable models [18], [19]. In fact, the autocorrelation
characteristics among the process data always play important
roles in quality prediction tasks. To this end, several pio-
neering works have been carried out, such as the time-series
models [20], and the autoregressive models [21]. Among
them, Ge et al. recently proposed a dynamic probabilistic
latent variable (DPLV) model [22] and a supervised linear
dynamic system (SLDS) model [23] by introducing the linear
Gaussian state space method into the latent variable modeling
framework. In this way, both cross-correlation and autocor-
relation within the data can be employed for the regression
purpose. On this basis, literatures [24], [25] improved the
above dynamic latent variable structure with the concept of
autoregression modeling where an autoregression dynamic
latent variable (ARDLV) model and its supervised version
were then carried out for high-order dynamical informa-
tion description. Nevertheless, the above latent information
derived from the dynamic structure cannot be directly applied
for quality prediction since the quality-related information
has not been emphasized.

Recently, supervised deep learning modeling has made
great advances in soft sensing techniques. For instance, Shen
proposed a supervised weighted nonlinear dynamic system
to extract the deep dynamic and nonlinear features within the
process [26]. Guo introduced a semi-supervised dynamic soft
sensor to capture dynamic characteristics while eliminating
noise and redundancy within the raw data [27]. Besides,
to capture hierarchical local nonlinear dynamic features,
Yuan designed a dynamic convolutional neural network and
applied it in soft sensor modeling [28]. Thesemethodsmainly
focused dynamic or static feature within the process. Unfortu-
nately, due to process complexity, different control strategies
can be found in one system, which will lead to the coexistence
of dynamic and static data. As a result, both quality-related
dynamic and quality-related static information should be con-
sidered in a uniformed model.

On the other hand, due to the limitations in measure-
ment technology, it is difficult and time-consuming to col-
lect some quality variables, resulting in severe incomplete

data problems during the modeling [29]. Particularly, the
down and up sampling strategies are often exploited by
simply deleting incomplete samples or estimating missing
values in advance, so that traditional models can be applied
on the modified dataset [30], [31]. However, this kind of
data form regularization not only introduces extra noise into
the original data but abandons a large amount of valuable
quality data information. Thus, it is of particular interest if
the existing data can be fully incorporated into those mod-
els without any modification. In recent years, to tackle the
above problem, the semi-supervised modeling methods have
attracted much attention [32], [33]. For example, literature
[34] proposed a semi-supervised soft sensing method based
on a hierarchical extreme learning machine to combine both
labeled and unlabeled data through sample similarity where
the final latent layer serves as a integration of all information,
so that accurate regression model can be established with
the existing data [35]. In addition, semi-supervised learn-
ing can also be applied to static probabilistic generative
models, such as the semi-supervised PPCA model [36] and
the semi-supervised PPLS model [37], so as to capture the
variable cross-correlation for soft sensing modeling. Alter-
natively, to prevent dynamic drift due to data incomplete-
ness, [38] and [39] proposed dynamical soft sensormodels for
quality variable missing situations where the process global
information can be learned from those incomplete samples.
Unfortunately, the above semi-supervised methods have not
well balanced the relationship between dynamic information
and static information when extracting quality-related infor-
mation.

In this paper, a concurrent dual-latent variable (CDLV)
model is proposed for soft sensing purpose inwhich two kinds
of latent variables are designed to deal with the quality-related
dynamic information and quality-related static informa-
tion, respectively. Specifically, the dynamical latent variable
defined by the first-order Markov process is designed to
describe the quality-related dynamic information among the
original data, while the static latent variable mainly focuses
on remaining quality-related information extraction. In addi-
tion, inspired by the previous research, the CDLV model
is further extended to a semi-supervised form, namely the
semi-supervised dual latent variable structure (Ss-CDLV) to
handle the insufficient quality data problem. In summary, the
main contribution can be summarized as follows.

• A novel CDLV structure is proposed where dynamical
and statical latent variables are designed to give a full
explanation for soft sensor construction.

• The Ss-CDLV is further developed to deal with insuffi-
cient quality variables issue.

The remainder of this article is organized as follows. Pre-
liminaries are given in Section II where two classical proba-
bilistic latent variable regression models are briefly reviewed.
In Section III, the proposed CDLVmodel will be discussed in
detail, followed by the Ss-CDLV model construction in Sec-
tion IV. The performance of proposed methods is validated
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FIGURE 1. Models structure; (a) supervised factor analysis; (b) supervised
linear dynamic system.

through two industrial cases in Section V. Finally, some
conclusions are made.

II. PRELIMINARIES
A. PREVIOUS RESEARCHES
The SFA model is a linear Gaussian latent variable model
that takes quality variable information into consideration for
regression modeling. Compared with the traditional factor
analysis (FA) model that only uses variables xt , SFA treats
additional quality variables yt as a constraint where the follow
common latent variable ht is created to capture the quality-
related information. The structure of the SFA model is shown
in Figure 1(a).

xt = Bht + ex

yt = Dht + ey (1)

However, the ht=1:T ∼ N (0, I) in (1) means that only part
of the static information related to the quality variables can
be obtained using the SFA model.

In contrast, the SLDS builds a new latent variable qt to
learn quality-related dynamic information, as shown in (2).

qt = Fqt−1 + eq

xt = Aqt + ex

yt = Cqt + ey (2)

where the dynamical latent variable qt tries to describe vari-
able cross-correlations from the current observed variables
xt and yt , which adds additional relationship between qt and
qt−1. eq, ex, ey represent model noises. The structure of the
SLDS model is shown in Figure 1(b).

B. PROBLEM STATEMENT
Although both SFA and SLDS try to involve quality vari-
ables, the two structures have not focused on the relation-
ship between process variables and quality variables which
is of great importance for soft sensor construction. That
means these two methods are naturally incapable of han-
dling quality-related information. Besides, the latent vari-
ables introduced in these methods are assumed to be static
or dynamic, which indicates processes characterized by
both features cannot be described by these methods. There-
fore, it seems more reasonable to introduce two different
latent variables to care about static and dynamic features
respectively.

TABLE 1. Descriptions of all mathematical terms.

FIGURE 2. CDLV model structure.

Furthermore, the main mathematical symbols appearing in
this paper are defined in Table 1.

III. QUALITY-RELATED CONCURRENT DUAL-LATENT
VARIABLE MODELING
A. MODEL DESCRIPTION
In this paper, the CDLV model is designed to extract com-
plete quality-related information using two types of latent
variables, as shown in Figure 2, where qt ∈ ℜ

(l×1) indi-
cates the quality-related dynamic latent variable depicted
by the first-order Markov chain while ht ∈ ℜ

(s×1) is
the quality-related static latent variable. The relationship
between observation and latent variables can be expressed as
(3), where s, l,m, n represent the vector dimensions in qt ∈

ℜ
(l×1), ht ∈ ℜ

(s×1), xt ∈ ℜ
(m×1), yt ∈ ℜ

(n×1), respectively.
Compared to previous methods, quality-related information
reflected by the latent variables qt and ht can take both
quality-related dynamic information and static information
simultaneously.

qt = Fqt−1 + eq

xt = Aqt + Bht + ex

yt = Cqt + Dht + ey (3)
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in which ht=1:T ∼ N (0, I) is assumed to be inde-
pendent of qt=1:T . A ∈ R(m×l),B ∈ R(m×s),C ∈

R(n×l) and D ∈ R(n×s) are the observation transition
matrices. eq ∼ N

(
0, 6q

)
, ex ∼ N (0, 6x) , ey ∼

N
(
0, 6y

)
are the noise terms with zero means and diag-

onal covariances. The model parameter set 2CDLV ={
uq0,V

q
0,F,A,B,C,D, 6q, 6x, 6y

}
can be calculated by

maximizing the joint log-likelihood function in (4).

ln p (xt=1:T , yt=1:T ,qt=1:T ,ht=1:T )

= ln p (q1) +

T∑
t=2

ln p (qt | qt−1) +

T∑
t=1

ln p (xt | qt ,ht)

+

T∑
t=1

ln p (yt | qt ,ht) (4)

where T is the total number of the sample set and the
log-likelihood function in (4) can be derived by the applica-
tion of the product rule of probability.

B. MODEL PARAMETER ESTIMATION
The maximization of log-likelihood function is always dif-
ficult. To solve this problem, the above parameters can be
obtained by the expectation maximization (EM) algorithm
including E-step and M-step whose convergence has been
demonstrated in [40], [41], and [42].
E-step: The posterior distributions of the latent variables

qt ∼ N
(
uqt ,V

q
t
)
and ht ∼ N

(
uht ,V

h
t
)
should be calculated

as well as the expectation form of the model log-likelihood
function with respect to these latent variables. Given the
observed data xt=1:T and yt=1:T , the posterior distribution
of the latent variables can be calculated by the improved
Kalman filter algorithm after state prediction and observation
correction. In the prediction stage, the state of dynamic latent
variables qt is obtained from its previous moment.

p (qt | qt−1) ∼ N
(
Fuqt−1,FV

q
t−1F

T
+ 6q

)
(5)

where the statistics Fuqt−1 and FV
q
t−1F

T
+6q are the predic-

tive distributions of qt at time t . uqt−1,V
q
t−1 are the corrected

posterior distributions of qt−1 at time t − 1. In particular,
p (qt=2 | qt=1) ∼ N

(
Fuq0,FV

q
0F

T
+ 6q

)
. On the other

hand, the static latent variables ht=1:T obey a prior distribu-
tion throughout the whole process:

p (ht | ht−1) = p (ht) ∼ N (0, I) (6)

According to the independence assumption between qt and
ht , the joint distribution of current time t can be defined as:

p

 qt

ht

 qt−1

ht−1


∼ N

Fuqt−1

0

 ,

FVq
t−1F

T
+ 6q 6qh

6hq I

 (7)

Combined with the diagonal property of F, p (qt | qt−1)

and p (ht) are also considered to be independent of each other.

That means the two sub-matrices 6qh and 6hq in (7) are zero
matrices. Otherwise, qt and ht will be collinear, which results
in the incomplete extraction of either dynamic information or
static feature information.

In the correction stage, the observation evolution equation
in (3) can be rewritten as: xt

yt

 =

A B

C D

 qt

ht

+

 ex

ey


 ex

ey

 ∼ N

0,

6x 0

0 6y

 (8)

Therefore, the conditional distribution of the joint latent

variables

 qt

ht

 will be modified as:

 uqt

uht

 =

Fuqt−1

0

+ Kt

 xt

yt


−

A B

C D

Fuqt−1

0

 (9)

 Vq
t 6̂

qh
t

6̂
hq
t Vh

t

 =

I − Kt

A B

C D


×

FVq
t−1F

T
+ 6q 0

0 I

 (10)

Kt =

FVq
t−1F

T
+ 6q 0

0 I

A B

C D

T
6x 0

0 6y

+

A B

C D


×

FVq
t−1F

T
+ 6q 0

0 I

A B

C D

T


(11)

in which Kt is the intermediate variable. On this basis, the
marginal distributions of the two latent variables can be
updated according to the condition of observation, which can
be used as the input of the next prediction stage.

p (qt | xt , yt) ∼ N
(
uqt ,V

q
t
)

p (ht | xt , yt) ∼ N
(
uht ,V

h
t

)
(12)

Finally, the posterior expectation of the latent variables can
be obtained as follows:

E ⟨qt | x1:T , y1:T ⟩ = uqt
E ⟨ht | x1:T , y1:T ⟩ = uht
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E
〈
qtqTt | x1:T , y1:T

〉
= Vq

t + uqt
(
uqt
)T

E
〈
hthTt | x1:T , y1:T

〉
= Vh

t + uht
(
uht
)T

E
〈
qtqTt−1 | x1:T , y1:T

〉
= Vq

t−1F
T
(
FVq

t−1F
T

+ 6q

)−1
Vq
t

+uqt
(
uqt−1

)T
(13)

The expectation of the log-likelihood function can be
expressed as:

Eqt ,ht ⟨ln p (xt=1:T , yt=1:T ,qt=1:T ,ht=1:T )⟩

= Eq1 ⟨ln p (q1)⟩ +

T∑
t=2

Eqt ⟨ln p (qt | qt−1)⟩

+

T∑
t=1

Eqt ,ht ⟨ln p (xt | qt ,ht)⟩

+

T∑
t=1

Eqt ,ht ln p (yt | qt ,ht) (14)

where each part can be expanded as:

Eq1 ⟨ln p (q1)⟩

⇔

∫
q1
lnN

(
uq0,V

q
0

)
dq1

=−
1
2


ln
∣∣Vq

0

∣∣+E 〈qT1 (Vq
0

)−1 q1
〉
−
(
uq0
)T (Vq

0

)−1
E ⟨q1⟩

−E
〈
qT1
〉 (
Vq
0

)−1 uq0 +
(
uq0
)T (Vq

0

)−1 uq0


(15)

Eqt ⟨ln p (qt | qt−1)⟩

⇔

∫
qt
lnN

(
Fqt−1, 6q

)
dqt

= −
1
2


ln
∣∣6q

∣∣+ E
〈
qTt 6−1

q qt
〉
−E

〈
qTt−1F

T6−1
q qt

〉
−E

〈
qTt 6−1

q Fqt−1

〉
+ E

〈
qTt−1F

T6−1
q Fqt−1

〉

(16)

Eqt ,ht ⟨ln p (xt | qt ,ht)⟩

⇔

∫
qt

∫
ht
lnN (Aqt + Bht , 6x) dhtdqt

= −
1
2



ln |6x| + xTt (6x)−1xt

−
[
E
〈
qTt
〉
E
〈
hTt
〉 ] [

A B
]T

6−1
x xt

−xTt 6−1
x
[
A B

] [
E
〈
qTt
〉
E
〈
hTt
〉 ]T

+E
〈[
qTt hTt

] [
A B

]T
6−1

x
[
A B

] [
qTt hTt

]T 〉


(17)

Eqt ,ht ⟨ln p (yt | qt ,ht)⟩

⇔

∫
qt

∫
ht
lnN

(
Cqt + Dht , 6y

)
dhtdqt

= −
1
2



ln
∣∣6y

∣∣+ yTt (6y)−1yt

−
[
E
〈
qTt
〉
E
〈
hTt
〉 ] [

C D
]T

6−1
y yt

−yTt 6−1
y
[
C D

] [
E
〈
qTt
〉
E
〈
hTt
〉 ]T

+E
〈[
qTt hTt

] [
C D

]T
6−1

y
[
C D

] [
qTt hTt

]T 〉


(18)

M-step: The model parameters can be updated by maxi-
mizing (14), which are expressed as:(

uq0
)new

= E ⟨q1⟩(
Vq
0

)new
= E

〈
q1qT1

〉
− E ⟨q1⟩E

〈
qT1
〉

(19)

Fnew =

(
T∑
t=2

E
〈
qtqTt−1

〉)( T∑
t=2

E
〈
qt−1qTt−1

〉)−1

(20)

6new
q =

1
T − 1

·

T∑
t=2

{
E
〈
qtqTt

〉
− Fnew · E

〈
qt−1qTt

〉}
(21)

Anew
=

(
T∑
t=1

xtE
〈
qTt
〉)( T∑

t=1

E
〈
qtqTt

〉)−1

Bnew =

(
T∑
t=1

xtE
〈
hTt
〉)( T∑

t=1

E
〈
hthTt

〉)−1

Cnew
=

(
T∑
t=1

ytE
〈
qTt
〉)( T∑

t=1

E
〈
qtqTt

〉)−1

Dnew
=

(
T∑
t=1

ytE
〈
hTt
〉)( T∑

t=1

E
〈
hthTt

〉)−1

(22)

6new
x =

1
T

·

T∑
t=1

{
xtxTt −

(
AnewE ⟨qt ⟩ + BnewE ⟨ht ⟩

)
xTt
}

6new
y =

1
T

·

T∑
t=1

{
ytyTt −

(
CnewE ⟨qt ⟩ + DnewE ⟨ht ⟩

)
yTt
}

(23)

The iteration of E-step and M-step will stop until the
log-likelihood function converges. The whole EM procedure
of the CDLV and Ss-CDLV model is shown in Appendix B.

IV. SEMI-SUPERVISED EXTENSION AND SOFT SENSOR
APPLICATION
Based on the proposed CDLV model, the Ss-CDLV model
is carried out to cope with the insufficient label problem.
In addition, the corresponding soft sensor is also given.

A. CONSTRUCTION OF Ss-CDLV
During data collection, not all training samples include qual-
ity variables, which results in the incomplete data issue
among different samples, as shown in Figure 3. To better
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FIGURE 3. The schematic of incomplete data.

FIGURE 4. The schematic of semi-supervised data.

describe the specific missing locations of quality variables,
a sampling indicator ϖt is introduced. When ϖt = 1,
the quality variable value is effectively collected at time t .
Otherwise, ϖt = 0. Therefore, the collected data can be
naturally divided into labeled samples and unlabeled samples.
According to the definition of CDLV in (3), the modified
likelihood function of the Ss-CDLV model can be obtained
as follows:

ln p (q1) +

T∑
t=2

ln p (qt | qt−1)

+



T∑
t=1

ln p (xt | qt ,ht) if ϖt = 0

T∑
t=1

ln p (xt , yt | qt ,ht) if ϖt = 1

⇒ ln p (q1) +

T∑
t=2

ln p (qt | qt−1) +

T∑
t=1

ln p (xt | qt ,ht)

+

T∑
t=1

ϖt ln p (yt | qt ,ht) (24)

Equation (24) is the semi-supervised learning extension
of the proposed model. In order to better extract useful
information from semi-supervised data, both quality-labeled
and quality-unlabeled samples should be used for parameter
learning of the model, as shown in the Figure 4. Therefore,
(24) contains two terms, p (xt |qt ,ht) and p (xt , yt |qt ,ht),
which can actually be regarded as an approximation of the
model learning under full data. Since the data are fully uti-
lized, the proposed semi-supervised model can extract the

correlation relationship between process variables and quality
variables to ensure the accuracy of online soft sensing.

B. PARAMETER SOLUTION OF THE Ss-CDLV MODEL
The EM algorithm is also introduced to obtain the Ss-CDLV
parameters learning. Due to the insufficient quality informa-
tion, those incomplete samples provide an adaptive posterior
estimation for the latent variables. When the conditional dis-

tribution of the joint latent variable
[
qt
ht

]
in (9)-(11) will be

modified as follows: uqt

uht


=

Fuqt−1

0

+ Kt
[
xt −

[
A B

]
Fuqt−1

]
(25)

 Vq
t 6̂

qh
t

6̂
hq
t Vh

t


=
[
I − Kt

[
A B

] ]FVq
t−1F

T
+ 6q 0

0 I

 (26)

Kt

=

FVq
t−1F

T
+ 6q 0

0 I

[A B
]T

×

6x +
[
A B

]FVq
t−1F

T
+ 6q 0

0 I

[A B
]T 
(27)

In M-step, all updated expressions related to quality vari-
ables are revised as:

Cnew
=

(
T∑
t=1

ϖtytE
〈
qTt
〉)( T∑

t=1

ϖtE
〈
qtqTt

〉)−1

Dnew
=

(
T∑
t=1

ϖtytE
〈
hTt
〉)( T∑

t=1

ϖtE
〈
hthTt

〉)−1

(28)

6new
y =

1
T

·

T∑
t=1

ϖt

{
ytyTt −

(
CnewE ⟨qt ⟩ + DnewE ⟨ht ⟩

)
yTt
}

(29)

The other operation steps are consistent with the CDLV
model.

C. SOFT SENSORS APPLICATION
The flow chart of soft sensing application can be shown in
Figure 5 which is mainly composed of two parts includ-
ing off-line stage and on-line stage. When a query sample
Xquery
k=1,2,3,··· appears, the trained parameters can be utilized as
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FIGURE 5. The soft sensor application flow chart.

follows: ûqk

ûhk


=

Fnewûqk−1

0

+ Kk
[
xk−

[
Anew Bnew

]
Fnewûqk−1

]
(30) V̂q

k 6̂
qh
k

6̂
hq
k V̂h

k


=
[
I − Kk

[
Anew Bnew

]]
· 9k−1 (31)

Kk

= 9k−1
[
Anew Bnew

]
×

[
6new

x +
[
Anew Bnew

]
9k−1

[
Anew Bnew

]T ] (32)

where 9k−1 =

FnewV̂q
k−1 (Fnew)T + 6new

q 0

0 I

, ûqk , ûhk
and V̂q

k , V̂
h
k represent the means and covariances of the

dual latent variables containing quality-related information,
respectively. Then, the predicted value of quality variables
can be calculated as follows:

ypredictk = Cnewûqk + Dnewûhk (33)

V. CASE STUDY
In this section, two industrial cases are implemented to verify
the soft sensing performance of the proposed methods, one
of which is the Tennessee Eastman (TE) benchmark, and the
other is a gasoline catalytic cracking process. For comparison,
SFA [14], PPLS [13], SLDS [22] and their semi-supervised
forms Ss-FA [15], Ss-PPLS [37], Ss-LDS [38] are also
introduced. In addition, the regression evaluation index root

FIGURE 6. The TE process diagram.

means square error (RMSE), mean absolute error (MAE)
and R-Squared (R2) are employed to evaluate prediction
accuracy. Then the formula for calculating RMSE, MAE and
R2 can be expressed as:

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷl)2 (34)

R2
= 1 −

∑
I

ˆy(i) − y(i)∑
I (y

(i)
− y(i))2

(35)

MAE =
1
m

m∑
i=1

|yi − ŷi| (36)

A. TE BENCHMARK VALIDATION
TE benchmark is a chemical simulation platform, which is
widely used to evaluate the process monitoring performance
of different soft sensing models. The process is mainly com-
posed of five units: reactor, condenser, compressor, separa-
tor, and stripper, involving 41 measurement variables and
12 control variables. The schematic of TE process can be
shown in Figure 6 where different units organically cooperate
with each other through different streams and connections.
Since various control strategies are implemented, a part of
the variables can be autocorrelated while others are not.

In this case, the liquid product H in stream 9 is considered
as quality variable while 22 process variables XMEAS (1)
– XMEAS (22) are selected as process variables which are
shown in Table 2. For more detail about variable descriptions,
please refer to [22]. To evaluate the performance of quality
prediction, 960 samples are collected as training samples
while another 960 samples are collected as the testing dataset
in the same working condition. These two datasets are then
normalized with unit variance and zero mean. In addition,
the model hyperparameter including the initial parameters
and latent dimensions can be determined according to the
historical results and the PCA-based cumulative variance
contribution plot [38].
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TABLE 2. The description of the variables selected in the TE process.

TABLE 3. The regression evaluation results of each model.

The prediction results of different models without unla-
beled data are shown in Table 3 and Figure 7 where SFA
model can partially extract the cross-correlation between pro-
cess variables and quality variables by one single static latent
variable. Unfortunately, it ignores the autocorrelation among
training samples. Meanwhile, the SLDS model has made
certain improvements because it considers the quality-related
dynamic information for regression. However, neither of
these two models can fully describe the quality-related
information within the complex process. Although the
PPLS model has divided the variable cross-correlations into
two aspects to emphasize the quality-related and quality-
unrelated information, the autocorrelation still has not been
considered in quality prediction. Comparatively, the proposed
CDLV has better soft sensing performance due to the involve-
ment of dynamic and static latent variables so that both
variable cross-correlation and sample autocorrelation can be
fully explained.

In addition, another two datasets with sameworking condi-
tion are collected for soft sensing performance validationwith
insufficient sample labels. Both datasets contain 960 sam-
ples where the labels of 50 % training samples are missing.
The four methods, namely Ss-CDLV, Ss-FA, Ss-PPLS and
Ss-LDS, are involved and analyzed. Figure 8 shows the pre-
diction scatter plot of each model, where the prediction of
the proposed method lies very close to the diagonal line and
the other three methods still have some points far from the
diagonal line, such as point 1, 2 and 3. Other methods such as

FIGURE 7. Quality prediction curve of each model.

Ss-FA and Ss-PPLS shows large distance from the diagonal
line since the dynamic information within the process is not
well considered while the Ss-LDS ignores the quality vari-
able information in the quality prediction. Comparatively, the
results of CDLV closely aligns with the diagonal line, indi-
cating a higher degree of accuracy. The detailed performance
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FIGURE 8. The error analysis of each semi-supervised model.

FIGURE 9. Likelihood function curve of the proposed model in TE
process.

TABLE 4. The regression evaluation results of each semi-supervised
model.

of several methods can be seen in Table. 4. To demonstrate
the convergence of corresponding algorithm, the convergence
analysis of the proposed model in the TE process is shown in
the Figure 9. It can be seen that the algorithm converges after
10 iteration times.

B. CATALYTIC CRACKING PROCESS
Nowadays, the catalytic cracking process is an important
technique that converts heavy oil into gasoline, diesel and
low-carbon olefin. However, current gasoline cleaning tech-
nology inevitably reduces the Research Octane Number
(RON, an important indicator of the combustion performance
of gasoline) in the process of desulfurization and olefin
reduction, resulting in the deterioration of gasoline quality

FIGURE 10. RON prediction curve of each model.

and combustion performance. Precise control of the RON in
catalytic cracking gasoline refining unit can bring consider-
able economic benefits. Unfortunately, the reliable values of
RON are usually difficult to measure online due to the com-
plexity of the catalytic cracking gasoline production process.
To guarantee high-quality gasoline production, it is necessary
to perform soft sensing modeling for the catalytic cracking
process to achieve real-time prediction of RON. In this case,
a total of 325 samples were collected from Sinopec Gao-
qiao Petrochemical real-time database and Laboratory Infor-
mation Management System (LIMS). Meanwhile, 12 mea-
surements that are highly correlated with RON are selected
from the database as the process variables, including the
raw material properties, product properties and the adsorbent
properties of the catalytic cracking unit, as shown in Table 5.
To evaluate the performance of quality prediction, the first
200 samples are used as training data and the other 125 sam-
ples serve as test data. These two datasets are then normalized
with unit variance and zero mean.

The prediction result of each comparison model can be
listed in Table 6 where the proposed method shows great
performance in accuracy and goodness of fit, while the pre-
diction curves of each methods are shown in Figure 10.
The prediction accuracy of the SFA and PPLS model is
still unsatisfactory since the static modeling method cannot
well describe the behavior of data autocorrelation within
the catalytic cracking processes. Compared with the static
models, the process dynamic information can be described
by the latent variables of SLDS, hence better soft sensor
performance can be obtained. However, a large amount of
quality-related information that is more suitable for static
description remains in the residual of SLDS, which has not
been well extracted and reflected in the quality variable.
To cope with both information, CDLV introduces two differ-
ent latent variables which divide the complete quality-related
information into dynamic and static parts. The dynamic latent
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TABLE 5. The description of the variables selected in the gasoline catalytic cracking process.

TABLE 6. The regression evaluation results of each model.

FIGURE 11. RON prediction curve of each semi-supervised model.

TABLE 7. The regression evaluation results of each semi-supervised
model.

variable is used to extract quality-related dynamic informa-
tion while the static latent variable can be a useful supplement
to the description of quality-related information. Therefore,
the soft sensing performance of CDLV has a great advantage
over other quality-related models.

In the actual gasoline catalytic cracking process, the sam-
pling time of the variables in Table 5 is 10 mins, while the
sampling rate of RON depends on the experimental cost,

FIGURE 12. The error analysis of each semi-supervised model.

FIGURE 13. Likelihood function curve of the proposed model in Catalytic
cracking process.

and it usually takes much longer time to obtain a precise
measurement. To further verify the soft measurement perfor-
mance of several semi-supervised models, the missing rate
of quality variables in the training sample sets is set by 50
%. On this basis, the prediction results of Ss-CDLV, SSLDS
and SSFA are recalculated, as shown in Table 7 where the
proposed model outperforms other models in all metrics. The
experiment results show that the soft sensing performance
of Ss-CDLV is significantly better than Ss-FA and Ss-LDS,
especially at some peak points, such as point 1 and point 2 in
Figure 11. At the same time, Figure 12 provides a prediction
scatter plot to intuitively reflect the prediction error of each
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Algorithm 1 The EM Procedure of the CDLV and Ss-CDLV
Model
Input: training dataset {x1:T , y1:T }

1: initialization parameter;
2: E-step:calculating the posteriori distribution of dual-

latent variables.
3: Define the augmented form of the latent variables accord-

ing to (5)-(8).
4: if the data is complete then
5: Executing (9)-(11)based on complete Kalman filter

algorithm;
6: else
7: for t = 1 : T do
8: if ϖt=0 then
9: Executing (25)-(27) by adaptive posterior

estimation;
10: if ϖt=1 then
11: Executing (9)-(11) by adaptive posterior esti-

mation;
12: Deriving the adaptive posteriori expectations of latent

variables by (12)-(13);
13: M-step:solvingmodel parameters bymaximizing the log-

likelihood functions;
14: if the data is complete then
15: Executing (19)-(23) for parameter updates;
16: else
17: Use (28)-(29) to replace the corresponding parame-

ters in (19)-(23);
18: The trained parameters are used to determine whether the

objective function converges. L(θnew) − L(θprevious) < ϵ

represents convergence, where ϵ is the preset error value.
19: If the function converges, stop training; otherwise,

go back to step 2.

model. The convergence analysis of the proposed model in
Catalytic cracking process is shown in the Figure 13.

VI. CONCLUSION
It is significant and challenging to simultaneously consider
both dynamic and static information in the quality prediction
of modern industry. In this paper, a quality-related CDLV
structure is proposed for soft sensing applications where
two latent variables are designed to describe the dynamic
and static parts in quality-related information respectively.
Compared with traditional single-latent variable structure,
the CDLV model improves the data expression for the rela-
tionship between process variables and quality variables.
In addition, the CDLV is extended to the Ss-CDLV model to
solve the insufficient quality information problem. The per-
formance of the involved methods is demonstrated through
two cases including the TE process and the catalytic crack-
ing process. Compared with related works, the CDLV has
shown high accuracy in predicting results where the values
of RMSE and MAE reduce at least 10 % while the tracking

performance index R2 increases about 3 %. However, the
nonlinearity is another feature that can affect the predic-
tion performance. Therefore, this problem may be solved by
kernel-based method or deep learning method, which will be
discussed in our future works.

APPENDIX A
The calculation and derivation process of the equations (19)
to (23) are expressed in (A.1)–(A.5), as shown at the top of
the previous page.

Because of the structural symmetry among A, B, C, D, the
calculation process of B, C, D will not be repeated here in
(A.6), as shown at the bottom of the previous page.

According to the symmetry between 6x and 6y, the 6new
y

can also be calculated easily.

APPENDIX B
See Algorithm 1.
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