IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 April 2023, accepted 9 May 2023, date of publication 12 May 2023, date of current version 24 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3275789

==l survey

Graph Neural Networks for Intrusion
Detection: A Survey

TRISTAN BILOT “123, NOUR EL MADHOUN“34, KHALDOUN AL AGHA2, AND ANIS ZOUAOUI!

1Iriguard, 92800 Puteaux, France

2Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
3LISITE Laboratory, ISEP, 92130 Issy-les-Moulineaux, France

4LIP6, CNRS, Sorbonne Université, 75005 Paris, France

Corresponding author: Tristan Bilot (tristan.bilot @universite-paris-saclay.fr)

This work was supported by the ISEP (Institut Supérieur d’Electronique de Paris).

ABSTRACT Cyberattacks represent an ever-growing threat that has become a real priority for most
organizations. Attackers use sophisticated attack scenarios to deceive defense systems in order to access
private data or cause harm. Machine Learning (ML) and Deep Learning (DL) have demonstrate impressive
results for detecting cyberattacks due to their ability to learn generalizable patterns from flat data. However,
flat data fail to capture the structural behavior of attacks, which is essential for effective detection. Contrarily,
graph structures provide a more robust and abstract view of a system that is difficult for attackers to
evade. Recently, Graph Neural Networks (GNNs) have become successful in learning useful representations
from the semantic provided by graph-structured data. Intrusions have been detected for years using graphs
such as network flow graphs or provenance graphs, and learning representations from these structures can
help models understand the structural patterns of attacks, in addition to traditional features. In this survey,
we focus on the applications of graph representation learning to the detection of network-based and host-
based intrusions, with special attention to GNN methods. For both network and host levels, we present the
graph data structures that can be leveraged and we comprehensively review the state-of-the-art papers along
with the used datasets. Our analysis reveals that GNNs are particularly efficient in cybersecurity, since they
can learn effective representations without requiring any external domain knowledge. We also evaluate the
robustness of these techniques based on adversarial attacks. Finally, we discuss the strengths and weaknesses
of GNN-based intrusion detection and identify future research directions.

INDEX TERMS Cyberattacks, cybersecurity, deep learning (DL), graph neural networks (GNNs), intrusion
detection (IDS), machine learning (ML).

I. INTRODUCTION

Cyberattacks are ubiquitous in our daily lives and their detec-
tion has become a priority for all infrastructures relying
on information systems. These attacks have evolved both
in quantity and complexity, resulting in many organizations
using legacy cyberdefense systems that may not prevent from
such attacks. Enterprise networks are even more complicated
to fully secure due to the multiplicity of devices connected
to the internet that create important attack vectors. Identi-
fying attacks before or during their execution thus becomes
a necessity to preserve the privacy of data and maintain

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy

the proper functioning of computer systems. Intrusions in
such systems can have severe consequences, ranging from
financial losses to the theft of sensitive information or even
critical infrastructure disruptions. Throughout the years, the
field of cybersecurity has followed this technical progress
by implementing new innovative cyberdefense tools. For a
long time, rule-based detection systems were integrated in
antiviruses and Intrusion Detection Systems (IDS) to detect
network- and system-level intrusions from previously known
patterns. The limitation of these methods lies in the fact
that they poorly generalize to new patterns and only a few
modifications to the attack sequence suffice to bypass the
rule or signature detection. To counter these issues, Machine
Learning (ML) has seen great success in cybersecurity tasks

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

49114 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-4153-735X
https://orcid.org/0000-0001-7742-7748
https://orcid.org/0000-0002-2471-6375

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

like intrusion detection [1], [2], [3] and malware detection
[4], [5]. The strength of these techniques lies in their ability
to yield satisfactory results across various scenarios, using a
small quantity of data along with proper feature engineering.
However, this feature engineering part is very error-prone,
since it requires domain experts for the selection of useful
features that can be used in downstream detection systems.

On the contrary, Deep Learning (DL) makes the learning
process more efficient as the features are learned from the
model itself, leading to meaningful features to detect com-
plex cyberattacks such as intrusions. Some researchers prefer
considering the intrusion detection task as anomaly detection,
by leveraging unsupervised approaches based on Deep Belief
Network (DBN) [6] or multiple variants of Auto Encoder
(AE) [7], whereas others leverage supervised approaches
usually based on Convolutional Neural Network (CNN) [8],
Recurrent Neural Network (RNN) [9] or traditional Multi
Layer Perceptron (MLP) [3], [10], [11].

Although these models achieve remarkable results in learn-
ing new patterns, they are trained from inherently flat data
structures such as vectors or grids. These simple structures
fail to capture complex structural patterns essential to the
detection of Advanced Persistent Threats (APTs) and 0-day
attacks. Indeed, such threats are often characterized by new
attack patterns involving weak signals, which elapse for an
arbitrary period of time. These signals are challenging to
capture using traditional Deep Learning methods on raw and
flat data, as such representations are not robust enough to
transcend the obfuscated behaviors of attackers. Graphs are
universal representations that offer a high-level and abstract
view of a system which is much harder to evade by attackers.
Indeed, graphs are expressive structures that provide even
more semantic in contrast to flat data, that loose valuable
relational information, ubiquitous in cyberattack scenarios.
Indeed, intrusions are essentially characterized by a sequence
of suspicious and benign interactions between entities such
as hosts in a network or processes in a host system. When
represented as a graph, these interactions can be learned
by Graph Representation Learning (GRL) models such as
Graph Neural Networks (GNNs), that have achieve promising
results in a variety of cybersecurity tasks such as vulnerability
detection [12], [13], threat intelligence [14], [15] or malware
detection [16], [17]. GRL and GNN methods have also been
successfully applied to intrusion detection, and to the best of
our knowledge, there exists no paper reviewing this topic yet.

This survey aims to give a comprehensive review of
existing techniques employed in intrusion detection with
graph-structured data and GNNs. We believe that the applica-
tion of GRL and GNNss to intrusion detection is a promising
research direction and hope that this survey will offer a
concise and normalized view of recent techniques for future
research. Our contribution is threefold:

« We first introduce the different types of graphs used in
graph-based intrusion detection, along with the random
walk and GNN models commonly employed. We also
provide a general architecture that summarizes most
approaches based on GNN for intrusion detection.

VOLUME 11, 2023

« To facilitate the easy comparison of existing works in the
field, we have classified the state-of-the-art papers and
provided a comprehensive review of current methods
and datasets for GNN-based intrusion detection. For
both network and system data, we also present the graph
structures that can be used, along with their strength and
weaknesses.

« Finally, we study the robustness of GNN classifiers
based on adversarial attacks and further discuss the
strengths and limitations of using these techniques.
We also provide recommendations for future research to
improve the field.

The content of this survey is organized as follows. Sec-
tion II introduces background on graphs, GRL and GNN
models. Sections IIT and IV respectively review the state-of-
the-art literature on GNNs applied to network-based and host-
based intrusion detection. Section V focuses on adversarial
attacks that may be led against these GNN-based methods.
Finally, Sections VI and VII are devoted to future research
ideas and conclusion.

Il. BACKGROUND
A. REPRESENTATION LEARNING ON GRAPHS
Graph Representation Learning involves extracting informa-
tive features, known as embeddings, from a graph. Depend-
ing on the specific method used for representation learning,
different information can be captured in the embeddings,
such as node attributes or structural properties of the graph.
By leveraging these learned embeddings, downstream tasks
can benefit from the rich semantic contained in the graph
structure, even when faced with incomplete or noisy data.
A general approach is to compute node embeddings, namely
find a differentiable mapping function that projects nodes to
a fixed-size embedding vector in a manner that similar nodes
are embedded close together in the embedding space. Other
approaches are dedicated to compute edge-wise and graph-
wise embeddings, depending on the use case. These tech-
niques can be applied to different types of graphs, described
in this section and summarized in Figure 1.

Graph: A graphis simply represented as G = (V, E) where
V is a set of nodes (or entities) and E is a set of edges (or
relations) between those nodes.

Heterogeneous Graph: A heterogeneous graph contains
multiple types of nodes and edges. Formally, it can be defined
as G = (V,E, ¢y, ¢p.), where ¢, and ¢, are functions that
respectively map each node and each edge to a type.

Attributed Graph: The attributed graph attaches attributes
to the elements of the graph (i.e. nodes and/or edges). A node-
attributed graph is described as G = (V, E, X,), where X, is
a mapping function that maps each node v € V to a list of
attributes. Similarly, an edge-attributed graph is described as
G = (V,E, X,), where X, maps each edge e € E to a list of
attributes.

Spatio-Temporal Graph: A spatio-temporal graph is a
graph with static structure and time-varying features. For-
mally, it can be described as G; = (V,E, Xy, Xe1),

49115

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

where X, ; and X, ; are functions that respectively map each
node v € V and each edge e € E to a feature vector that
represents the attributes of each element at timestamp .

Dynamic Graph: The dynamic graph models the
time-varying structure along with the time-varying features
in the graph. Indeed, dynamic graphs associate every edge
and/or node to a timestamp representing the time of the event
(e.g. add, remove or update a node/edge). A majority of
papers use Discrete-Time Dynamic Graphs (DTDGs), where
the evolving graph is modeled by a sequence of S graph
snapshots Gy, ..., Gs where G; is a snapshot of the graph
captured at timestamp ¢. Formally, it can be described as
G = (Vi,E/, Xy, Xe,), where V, and E; represent the
graph structure at each timestamp ¢, whereas X, ; and X, ;
represent the time-varying features. Other approaches lever-
age Continuous-Time Dynamic Graphs (CTDGs), which
associate an individual timestamp to each event observed in
the graph, resulting in a new snapshot created for each event.
CTDGs provide a more fine-grained representation of events
compared to DTDGs but are still little used in literature.

When learning from graphs, two approaches are commonly
employed:

o Inductive learning: in this approach, the goal is to learn
from multiple graphs and then generalize to new graphs.
Similarly as in traditional ML, the model is trained on
a set of graphs and then predict labels on new graphs,
made of nodes and edges not seen during training. In this
case, the train, validation and test sets are composed of
different graphs.

o Transductive learning: in this setting, the predictions
are taking place on a single large graph and cannot gen-
eralize to new graphs. Consequently, the model can pre-
dict labels solely from nodes and edges that have been
seen during training. In contrast to the inductive setting,
the train, validation and test sets cannot be divided into
different graphs as a single graph is available here. Each
set is thus composed of nodes and edges, and during
training, the features and labels from the training nodes
will be gathered. However, GNNs essentially aggregate
the features from neighbors, leading to a potential aggre-
gation of nodes from the validation and test sets during
the training. In this case, it should be considered that the
nodes in the training set could benefit from the features
of the nodes in the other sets.

In the special case of intrusion detection, an inductive detec-
tion model may be able to generalize on new enterprise net-
works or new host machines, whereas a transductive detection
model may be trained on a specific network with a fix set of
hosts, or on a specific host machine. The former model has
the ability to perform inference in new situations given its
pre-trained weights, whereas the latter needs to be entirely
retrained if the graph changes.

B. RANDOM WALK-BASED LEARNING

Random walks have been successfully applied to a large
range of domains such as recommender systems and com-
puter vision [18]. Despite the current success of recent GNNGs,

49116

random walks are still used in recent graph-based intrusion
detection works [19], [20], [21], [22]. Indeed, these algo-
rithms demonstrate strong capabilities at capturing graph
information and node co-occurrence relations while using
self-supervised embedding techniques, namely the graph
structure and features are used as the label for the predic-
tive task. In this section, we focus on two major random
walk-based embedding techniques used in intrusion detec-
tion: DeepWalk [23] and node2vec [24]. We then present
how variants of these models can be applied to more com-
plex graphs, and discuss the challenges induced by these
methods.

1) RANDOM WALK ON GRAPHS
DeepWalk: Given a starting node, a neighbor node is ran-
domly selected to continue the random walk, following a
uniform distribution probability. This step is repeated K times
to create a random walk of length K. To capture full graph
information, each node present in the graph is considered
as a starting node for a random walk. In total, N x R ran-
dom walks are generated, where N is the number of nodes
and R is a hyperparameter indicating the number of random
walks per node. To create embeddings, DeepWalk builds a
co-occurrence list L where all nodes that co-occur in the
random walk are present. For any tuple present in L, one
node is defined as the center node v; and the other as the
context node v;. The node embeddings are then created using
the Skip-gram model [25], by trying to reconstruct v; based
on v;, namely by maximizing the probability of observing v;
in the context of node v;. Using this process, close nodes tend
to co-occur in many random walks and their low-dimensional
vector representation tends to be similar in latent space.
node2vec: In DeepWalk, the construction of random
walks is limited by the random selection of co-occurring
nodes. node2vec proposes an improvement by introducing
a second-order biased random walk which captures local
and global structures using Breadth First Search (BFS) and
Depth First Search (DFS). Two hyperparameters p and g
can be tuned in order to respectively control the likeli-
hood of immediately revisiting a node and the traversing
behavior.

2) RANDOM WALK ON ATTRIBUTED GRAPHS

Previous methods only capture the structural information,
without taking into account the features that may be stored
in the nodes/edges of the graph. Such features can pro-
vide further information such as text or values, making the
embedding process aware of these attributes. Paper [26] pro-
posed Text-Associated DeepWalk (TADW), an improvement
to DeepWalk that considers the text information stored in
nodes. Another model inspired by DeepWalk is Max-Margin
DeepWalk (MMDW) [27], which computes embeddings in a
semi-supervised way by leveraging node labeling informa-
tion. Planetoid [28] is another approach that consists of a
transductive and an inductive variant where the graph struc-
ture and node features are leveraged together to learn the
embeddings.

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

Graph Heterogeneous Graph Attributed Graph
|
/////
\ - =
~ 11
G= (VzE) G= (V7E7¢v7¢e) G = (V»Eva)
Spatio-temporal Graph Dynamic Graph
Jdake dake
ﬁeat“te\m - ﬁea‘ﬁ“‘e‘md&w stmc%“‘e“? °
Go 1 Go G1 G»
11 o1 111 o 11 g
1171 11 [1 a4 Egj
11 1 1 11 11
[[11 11
time time
| | | | |
t=0 t=1 t=0 t=1 t=2

Gt = (V7 E7 Xv,t)

Gt = (‘/tv Et1 Xv,t)

FIGURE 1. Representation of graph structures used in graph-based intrusion detection. A graph consists in a structure made of nodes interconnected by
edges, whereas heterogeneous graphs refer to graphs with multiple types of nodes/edges, and attributed graphs assign a vector of features to
nodes/edges. In this illustration, we present a view of node-attributed graphs. Spatio-temporal and dynamic graphs leverage an additional temporal
dimension, where the former updates its features with respect to time, and the latter can update both its features and structure.

3) RANDOM WALK ON DYNAMIC GRAPHS

In many real-world scenarios including cybersecurity, graphs
may be inherently dynamic. Generally, such graphs are
modeled by adding a temporal dimension that contains
a stream of discrete graph snapshots taken at different
time intervals. A temporal random walk can then cross
through dynamic graphs by walking into this temporal dimen-
sion in an increasing order of time. Formally, it can be
described as a sequence of nodes (v, sy, ..., V) With 1 <
) < ... <t, where t represents a timestamp. Following the
same idea, authors in [29] leverage temporal random walks
to capture temporal relations with a high granularity. Paper
[30] proposes an online learning approach to continually
learn embeddings using temporal random walks and in [31],
an inductive method named Causal Anonymous Walk (CAW)
is introduced to extract causal anonymous walks from tempo-
ral random walks.

4) CHALLENGES WITH RANDOM WALK-BASED METHODS
Node representation learning with random walks has been
a powerful method to capture the structure of graphs and
represent it in embedding space. However, most of these
techniques are usually challenging to apply in an inductive
setting and they do not share parameters between nodes [32].
Furthermore, these methods are highly dependent on the
hyperparameters and tend to prioritize proximity information
above structural information [33].

In the next section, we discuss how Graph Neural Networks
can bypass these limitations and be applied on large graphs
and in an inductive setting.

VOLUME 11, 2023

C. GRAPH NEURAL NETWORK-BASED LEARNING
Learning on graphs is a challenging task but has been proven
to be successful in a number of complex tasks. The popu-
larity of deep learning has allowed the emergence of new
methods involving spectral and spatial convolutions applied
to graph structures, making it possible to benefit from both
the expressive structure of graphs and the power of represen-
tation learning. Spectral GNNs such as ChebNet [34] leverage
Laplacian matrix eigen decomposition in Fourier space to
analyze the underlying structure of the graph. Contrarily, spa-
tial GNNs work directly on the adjacency matrix and capture
local neighborhood of nodes in graph domain, which avoids
the time-consuming switch in spectral domain. Furthermore,
spectral methods tend to be less used as they are inherently
transductive [35], meaning that they cannot generalize to
unseen nodes or edges. We summarize in this section some
of the fundamental spatial GNNs that are commonly used and
that should be understood before diving into their applications
to intrusion detection.

1) ORIGINAL GNN MODEL

The Graph Neural Network (GNN) model [36], [37] is the ori-
gin of the first application of deep neural networks to graph-
structured data. Although deep learning on graphs has only
been recently democratized, the first GNN [36] dates back to
2005 and is originally inspired from Recurrent Neural Net-
works (RNNs). The authors explain that RNNs can directly
process graph data but they are limited to graph-focused tasks
on directed acyclic graphs. In response to this problem, the

49117

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

GNN model can be applied to directed, undirected, labeled
and cyclic graphs using the concept of neighbor information
propagation. More precisely, every node shares its informa-
tion with its local neighborhood until convergence to a certain
equilibrium. This model can be formalized as:

hM zf(xbh XV7 hv)a ue V7 Ve N(M), (1)

where h, corresponds to the embedding of node u, X; is the
feature vector of a given node i, N(u) represents the neigh-
boring nodes of u, and f is a parametric function that extracts
the dependencies between a node and its neighborhood.

2) MESSAGE-PASSING NEURAL NETWORK
More recently, authors in [38] proposed a general frame-
work to encapsulate common state-of-the-art GNN models.
As indicated by the name, Message-Passing Neural Net-
works (MPNNs) exchange messages between nodes and their
neighbors. The framework is essentially made of two steps:
message-passing and readout.

First, message-passing can be described as a function M
which computes a message for each node by gathering its
previous embedding along with its neighbor embeddings:

mit = S M (B) e € B O)
veN (1)

where mff‘ represents the messages collected at layer ¢ + 1,
N (u) is the list of neighbors of u, h!,, h!, are the embeddings
of nodes u and v at layer ¢ and e, is the edge feature
vector of edge (u, v). The message function M is generally
a differentiable function such as a neural network taking as
input the concatenation of node and edge embeddings [39].
The computed message is then leveraged by an update
function U to update the new representation of a node:

u

b = Ut (n, mi). 3)

where function U could be a neural network such as a Gated
Recurrent Unit (GRU) [40].

Finally, the readout step consists in transforming all node
embeddings into a fixed-size vector y which captures the
global information in the graph:

§=R({h§|uev}), &)

where R is a permutation-invariant readout function like a
sum. The framework can become even more general by
replacing the sum operation in Eq. 2 by an arbitrary aggre-
gation function.

3) CONVOLUTIONS ON GRAPHS WITH GCN

The Graph Convolutional Network (GCN) model [41] is a
generalization of convolutions on graphs, where node embed-
dings are learned from node features along with the graph
structure. One GCN layer, presented in Eq. 5, corresponds to
the aggregation of the 1-hop neighborhood of every node in
the graph, passed into a neural network such that

H™ = o (AH'W) ®)

49118

where o is the ReLU activation, H" and W' are respectively
the node embeddings and learnable parameters matrices at
layer ¢, with H® = X, the initial node feature matrix.
Normalized adjacency matrix A is created after applying a
re-normalization trick to the undirected adjacency matrix A in
order to avoid numerical instabilities and exploding gradients
due to the eigenvalues range:

A=DA+DD3, 6)

where A + I is the adjacency matrix with self-loops and D is
the degree matrix of A 4+ 1. A visual representation of GCN
and following models is provided in Figure 2.

4) SCALING TO LARGE GRAPHS WITH GRAPHSAGE

In traditional ML, the samples selected from the dataset are
usually considered statistically independent. This assumption
makes it possible to train models on large datasets by dividing
the dataset into chunks that can be trained independently
using mini-batches. Contrarily, nodes in a graph are inher-
ently connected and are thus not considered independent and
uniformly distributed. This makes the GNNs harder to be
scaled on very large graphs with billions of nodes or edges.
Indeed, models like GCN and GAT require the storage of
the whole adjacency matrix with corresponding features into
memory, which makes these models unusable on very large
graphs.

GraphSAGE [42] was the first model to address the scala-
bility issue by sampling a fixed number of nodes s from the
neighborhood of a given node u, rather than using the full
neighborhood. This sampling operation is denoted by:

N;(u) = SAMPLE(N (u), s),)

where Ny(u) corresponds to the uniformly sampled neigh-
borhood of node u and s is the number of samples to select
from the full neighborhood N (). By doing so, GraphSAGE
reduces the computational and memory requirements of the
model while preserving its ability to capture the structural
information of the graph.

To compute node embeddings using the sampled neigh-
bors, GraphSAGE employs two operations. The first opera-
tion is the aggregation of the neighbors’ embeddings, denoted
by

b, = AGGREGATE, ({hi™\ we Nw]). ®

where hj\/s () Tepresents the aggregated neighborhood and the
aggregation function AGGREGATE; can be a weighted sum,
a max-pooling, or a mean-pooling, among others.

The second operation consists in updating the embedding
of u using its previous embedding and the aggregation of the
neighbors’ embeddings:

b, = o (W' [hﬁ;l, hj\/x(u)]) ,)

where hl, is the node embedding of node u at layer z, W’ is a
weight matrix, and [., .] is the concatenation operation. The
fixed neighborhood sampling strategy used in GraphSAGE

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

has several advantages such as mini-batch training and induc-
tive training, which make this model adapted to large graphs
with changing structures.

5) ATTENTION APPLIED TO GRAPHS WITH GAT

Traditional GNNs such as the GCN, typically weigh the
embeddings of a node’s neighbors during aggregation by their
node degree, which is computed using the degree matrix D.
While this approach helps to stabilize the aggregation process
during training, it assumes that each node equally attends to
each of its neighbors, which may not be optimal in some
cases. To address this limitation, the Graph Attention Net-
work (GAT) [43] was introduced. GAT uses the attention
mechanism, originally proposed in Natural Language Pro-
cessing (NLP) [44], to learn an importance weight for each
neighbor of a given node. By attending to the most relevant
neighbors, GAT is able to capture more fine-grained rela-
tionships between nodes, leading to better communication
and higher quality aggregation of information. Formally, the
attention weight o, between two nodes u and v can be
computed as follows:

__ exp(o (a’ [Why, Wh]))
- 2 keNw) €XP(O (al [Why, Whi]))’

where a and W respectively represent a weight attention
vector and a shared weight matrix. h, and h, denote the
hidden representations of nodes u and v, respectively, whereas
N () is the full neighborhood of u and o corresponds to the
LeakyReLU activation function. Softmax is used here to map
the weights to a distribution of |/ ()| possible outcomes.

Ultimately, the final node representation &), is computed
by combining neighbor embeddings with the corresponding
attention weights:

(10)

Qyy

/_
h,=o0

Z awWh, | . (11)
veN (u)

For training stability reasons, multi-head attention may also
be used to calculate K independent attention weights in
parallel.

6) ATTENTION IN HETEROGENEOUS GRAPHS WITH HAN

Real-world data are diverse and complex, with a wide range
of entities and connections that traditional attributed graphs
may not adequately represent. To address this, researchers
are increasingly turning to heterogeneous graph learning for
attack detection [45], [46], [47], [48]. With heterogeneous
graphs containing multiple types of objects, specific methods
are needed to handle them. Meta-paths, which are sequences
of node and edge types that capture specific semantics in the
graph, are often used in heterogeneous graphs due to their
heterogeneous composition and strong semantic extraction
capabilities. The Heterogeneous Graph Attention Network
(HAN) [49] uses a similar attention mechanism to the original
GAT to aggregate information from meta-paths. More specif-
ically, two attention mechanisms are learned: a node-level

VOLUME 11, 2023

GCN
s
/ V4
. / va‘”»
rluw) v
V2 vy
GraphSAGE
\U2 /vl\:l;é
N Ns(u)
NS(U) vy) T
GAT

HAN

FIGURE 2. lllustration of common GNNs used in literature. GCN
aggregates its 1-hop neighborhood; GraphSAGE samples a fixed number
of neighbors and aggregates them; GAT leverages the attention
mechanism to weight neighbors depending on their importance; HAN
applies attention to heterogeneous graphs by learning attention weights
between nodes from a same meta-path.

attention, that consists in learning the importance between a
node and its meta-path-based neighbors, and a semantic-level
attention, that learns the importance weight to give to each
meta-path. In a meta-path &, the importance of a node j for
a node i can be calculated with the node-level attention o

) ij
described as:

o exp (o(ag.[h;, hj’.]))
N S e exp (o @l I D)

(12)

where is the embedding of node i after projection in such
a way that h; = Mg;.h; with Mg,; a type-specific transforma-
tion matrix for node type ®i and 4; the original feature vector
of node i. The vector a¢ represents the node-level attention
for meta-path @, and is learned by the network, whereas ./\fi<I>
denotes the meta-path-based neighbors of node i (included),
and o is an activation function. Meta-path-based neighbors
of a node 7 on a given meta-path ®, written as]\/’iq’, denote
all nodes that connect i through a meta-path of the same
type ®. The meta-path-based embedding of a node i can then

49119

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

be aggregated using the attention coefficients:

F=o| D afn|. (13)
JeN?

The coefficients may also be calculated using multi-head
attention, for training stability reasons.

In a second phase, semantic-level attention is learned to
give appropriate importance between different meta-paths.
This is measured as the similarity of the transformed embed-
ding with a semantic-level attention vector q. A softmax
function and an average over all embeddings are then applied
to get a normalized importance coefficient of each meta-
path i, denoted as Bo;:

Boi = softmax(L > q".tanh (W2 + b)), (14)
VI i€V

where (q is the semantic-level attention vector, V is the set

of nodes, W and b respectively denote the weight and bias

parameters. Final embeddings are obtained by combining the

computed attention coefficients, such that

P
7= Zﬁcbi-zcbi, (15)

i=1
where Zg; represents the semantic-specific node embeddings
from meta-path ®i, and P is the total number of meta-paths.

D. INTRUSION DETECTION WITH GNNs

In this section, we propose a 3-step architecture to summarize
GNN-based intrusion detection. Indeed, most of the studies
reviewed in this survey follow a similar scheme that can
be divided into three steps, which are Preprocessing, GNN
Embedding, and Detection & Training. This architecture is
illustrated in Figure 3.

1) Preprocessing: In the first step, raw data such as net-
work captures or system logs are converted into graph
structures. Important engineering may be required in
this step to handle the possibly large input data, and
techniques such as graph sampling may be applied to
divide the graph into batches or snapshots. Optionally,
node and edge features may be preprocessed to extract
even more semantic, and meta-paths can be crafted
to handle heterogeneous graphs. The graph structures
used for the representation of network and host systems
are presented in Sections III-A and TV-A.

2) GNN Embedding: The second step involves projecting
the nodes and edges of an input graph into an embed-
ding space to capture desired similarities among them,
such as structural and contextual similarity, or feature
similarity. The GNNs used in intrusion detection draw
inspiration from models discussed in Section II-C, with
some adjustments to better capture intrusion-based pat-
terns. Typically, the goal is to create embeddings that
closely embed malicious flows, attacker hosts, or suspi-
cious authentication requests, differentiating them from

49120

benign ones in embedding space. We describe in Sec-
tions III-B and IV-B, the different GNN encoders used
for the creation of meaningful embeddings.

3) Detection & Training: The last step of the intrusion
detection process is to leverage the embedding space to
search for potential anomalies or attacks. Depending on
the use case, a classifier can predict the label of a node,
an edge, or the whole graph. Node-level tasks such
as malicious host detection often consider a classifier
that takes as input node embedding, whereas edge-level
tasks like malicious flow detection typically leverage
both endpoint nodes along with the edge embedding,
to make a prediction. Graph classification tasks such
as malicious provenance graph detection are performed
by reducing all the node or edge embeddings into a
final graph embedding vector using a readout oper-
ation. A loss function then compares the prediction
to a ground truth value, and backpropagation updates
the weights of the model. In supervised setting, the
ground truth is a label, whereas unsupervised settings
are usually based on self-supervised learning, where
the goal is to reconstruct parts of the adjacency matrix
or feature matrix to learn embeddings [50], [51]. These
techniques will also be reviewed in Sections III-B
and IV-B.

In the following sections of this paper, we showcase the
various approaches proposed in the literature for extracting
graph structures, along with the different types of GNN
encoders employed for intrusion detection. Additionally,
we discuss the (training) strategies used to effectively train
such encoders.

IIl. NETWORK INTRUSION DETECTION

Network intrusion detection aims to analyze network data
and build tools to detect abnormal behaviors. In this section,
we first discuss the representation of network data as graphs
and then review how researchers leverage these data struc-
tures to learn useful embeddings using GNNs and classify
them with downstream classifiers. All the datasets mentioned
in the literature review are described at the end of the section.

A. REPRESENTING NETWORK DATA AS GRAPHS

A network is by definition a system made of interconnected
entities. This is why networks have intuitively been repre-
sented as graphs since the beginning of the Internet era. Nodes
usually represent hosts (e.g. computers, printers, IoT and
physical devices) and edges model the interactions between
those hosts (e.g. requests, authentications, communications).
Literature commonly relies on three types of network data to
model network traffic as a graph:

Packet Graph: A packet is a layer-3 normalized unit of
data transmitting on the network, notably composed of a
payload that contains the actual data to be transmitted, and
a header storing the necessary information to deliver the
packet, such as the source and destination IP addresses and
ports. The packet payload may contain sensitive information
such as authentication credentials or visited website content.

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

Preprocessing

GNN Embedding

Detection & Training

@ph construction \

mde/edge embedding projection

/Malicious host detection \

~

lzciuus?
Network/Host __ansform _ = B e
data network flow graph T) ha oo o
authentication graph - o i T3 . e
provenance graph... .. i T7 1 hy
. Z1 : embedding h1
C T Ty —> hg hy
Meta-paths : g .
LN]
MP; : Process — fork — Process F(h) node classification 3
) i Y
MP,, : Process — read — File — read™? — Process f(hi, by, eif) edge classification]
; graph class ti ~
) f(g hi) raph classification 9
Node/edge-level preprocessing
f i classifier (e.g. MLP, isolation forest, ...
. @; permutation invariant aggregation function (.g. mean, max)
. © embedding Training
) —_— @ N
_ i worzves . @ Loss = (L{§yy)
B ...~ Transformer
i VAE ' i
S il backpropagation Loss i cross-entropy, mean squared error
o Supervised: label prediction

Unsupervised: reconstruction of neighbor
features or structure

FIGURE 3. General architecture for intrusion detection with GNN-based methods. In a first Preprocessing step, the graph structure is built from raw flat
data such as network flows or system provenance data. Optional preprocessing operations may include the construction of meta-paths to handle
heterogeneous host-based graphs or the pre-computation of node and edge embeddings. Then, the GNN Embedding part aims to encode information
from feature space (represented as blue area) to embedding space (yellow area). In this step, various GNN architectures may be employed or created to
extract different kinds of embeddings. The last Detection & Training step leverages the computed embeddings for task-specific detection methods. The
model is finally trained by computing the loss based on the previous predictions.

Edge feature vector

Flow-based features

[protocol | nb_pkts Jduration] ...]

Packet-based features

|protocol |pkt,size | payload | |

Authentication-based features

[auth_type] logon_type [success or_failure | -]

FIGURE 4. Example of an edge-attributed graph for the representation of
network communications. Nodes are identified by IP addresses and
sometimes by the port on which the communication takes place. Edges
can possibly store an attribute vector, usually created based on flow,
packet or authentication features. Some works prefer storing the
attributes in the nodes, whereas others leverage only the graph topology,
without any domain-specific features.

However, the payload cannot be analyzed in HTTPS commu-
nications as it is encrypted using TLS protocol. Google trans-
parency report estimates in 2022 that 95% of Google’s traffic
is encrypted under HTTPS [52], making the payload analysis
unreliable for intrusion detection at first glance. Contrarily,
some companies intercept encrypted packets and rely on SSL
inspection [53] to decrypt, analyze and re-encrypt them for
security concerns. Packets can be transformed intuitively as
graphs, by associating nodes to IP addresses and by creating
an edge for each packet transmitted between a pair of nodes.
However, creating separate edges for every packets usually

VOLUME 11, 2023

results in scalability issues, which make this graph structure
rarely used in literature.

Flow Graph: Flows are abstractions made of multiple
packets captured in a period of time. One flow is usually
identified as a 5-tuple (Src IP addr., Dst IP addr., Src port,
Dst, port, Protocol) and summarizes the packets transmitted
between the two endpoints using statistics such as the number
of packets sent by the source or destination, the mean of the
packet size or the duration of the flow. These statistics are
usually stored as an edge feature vector but other variants
exist such as [54] that creates an intermediate attributed node
storing the flow statistics between the source and destination
nodes, or [55] that builds a line graph [56] where all nodes are
flows, and edges are communications between one endpoint
of the flow and an endpoint from another flow. Generally,
a TCP flow is ended upon connection teardown (by a FIN
packet), whereas an UDP flow is segmented by a time win-
dow. The flow can be unidirectional or bi-directional. The
former creates two separate flows for outgoing and incoming
packets, whereas the latter creates a unique flow combining
outgoing and incoming packets. The flow direction is also
an important information to consider before analyzing flow
data, especially in intrusion detection, where the attacker and
target must be identified. Furthermore, flows are often repre-
sented as graphs, which offer a more compact representation
of communication between hosts by condensing potentially
thousands of individual packets into a single edge.

Authentication Graph: Rather than analyzing all net-
work communications, certain detection methods focus
specifically on authentication requests. These methods are

49121

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

commonly used to detect attacks that rely on malicious
authentications, such as lateral movements in enterprise net-
works [21], [57]. In such scenarios, nodes may represent IP
addresses or identified users in a network, whereas edges are
associated to authentication requests.

By capturing different levels of abstraction in the network,
these types of data represent various features that can be
leveraged in downstream models to detect specific attacks
[3]. Many network monitoring tools are available to collect
network data, such as Zeek [58], Argus [59], Wireshark [60],
Joy [61], Splunk [62], Snort [63] or Suricata [64].

B. GRAPH-BASED NETWORK INTRUSION DETECTION
Detecting intrusions in network graphs typically involves
learning representations of nodes and edges, which can
be used in downstream clustering or classification models.
Depending on the downstream task, various classification
methods may be employed. Currently, most state-of-the-
art approaches model malicious entity detection as a node
classification task and malicious flow detection as an edge
classification problem, while network graph classification is
less common. In this section, we review existing state-of-the-
art works, grouped by graph type, and also summarized in
Table 1.

1) NETWORK INTRUSION DETECTION WITH FLOW GRAPHS
Against botnet attacks, some researchers attempt to leverage
the graph representation of network flows to detect com-
plex botnet communication patterns between hosts. Zhou
et al. [65] propose a supervised approach based on a GCN
and network traces. Here, only the topological structure of
the graph is considered. Indeed, they omitted edge features
and initialized node features as a vector full of ones. The
graphs used for training are significant and contain in aver-
age more than 140k nodes and 700k edges. A GCN model
first computes the node embeddings across all the graph
and malicious botnet nodes are then classified using a neu-
ral network at node-level. The performance of the model
has been evaluated using a synthetic dataset presented in
Section I1I-B4.

Similarly, Zhang et al. [66] suggest using a GCN for botnet
detection. In order to capture the long-term dependencies
present in large botnet architectures, the authors used 12 GCN
layers. However, the use of very deep GCN models is subject
to over-smoothing [80] and dedicated methods are usually
required to deal with these deep networks. The model was
evaluated on the same dataset proposed by Zhou et al. [65].

To prevent the previous over-smoothing problem, XG-BoT
[67] leverages grouped reversible residual connections [81]
along with a GIN model to capture hidden topological pat-
terns of botnets while maintaining more stability during the
training of very deep models. XG-BoT was also evaluated
on the dataset by Zhou et al. [65] and outperforms the
two previous works [65], [66] for the detection of botnet
nodes. Forensics analysis is also considered by leveraging
GNNExplainer [82] to highlight a relevant subgraph along

49122

with corresponding node features, ultimately resulting in an
explainable graph that security teams can analyze.

On a different dataset built from background traffic and
synthetic botnet topologies, the authors in paper [68] suggest
to leverage Inferential SIR_GN [83], a model able to gen-
eralize on unseen and very large graphs and that privileges
node structural similarity. Indeed, the authors suggest that
GNNs may not be fitted for botnet detection as they consider
the node proximity similarity an important indicator in the
learning process. They further explain that proximity-based
similarity generates node representations that are close in
embedding space when the nodes are near or highly con-
nected in the graph space. In the case of botnet and target
nodes, which are often close in graph space, proximity simi-
larity can create a relationship between these two nodes. For
these reasons Inferential SIR_GN takes into account node
structural similarity to create more structural-based embed-
dings, that are then fed into a traditional neural network for
node-level classification.

Although previous botnet detection works rely on homo-
geneous graphs, Zhao et al. [69] represent network flows as
a multi-attributed heterogeneous graph, where a node is one
flow entity from the 6-tuple (IP_src, IP_dst, port, protocol,
request, response) and edges are actions between flow enti-
ties such as access or connect. The heterogeneous graph is
made of multiple node features, such as a timestamp and a
user-agent for an IP address node. Knowledge is extracted
from this graph using 10 hand-designed meta-paths, which
capture useful symmetries hidden in botnet topologies (see
Section II-C6 for the definition of meta-path). Weighted sim-
ilarity graphs are built by calculating the similarity between
pairs of nodes and GCN layers are applied on these graphs to
characterize discriminative features of bots. Malicious nodes
are then detected using a standard feed-forward network at
node-level, trained with cross-entropy loss in an end-to-end
manner. The proposed model outperforms other graph-based
baselines such as a HAN and a standalone GCN, on private
network data and on the CTU-13 dataset.

A more general approach to detect intrusions with an
heterogeneous graph is proposed in paper [54]. The graph
is built based on network flows and for each flow, three
nodes are created: the source host node, destination host
node and the flow node, where two undirected edges exist
between source host and flow nodes and between flow and
destination host nodes. By creating a separate flow node, the
authors explain that it fits the way GNN models operate and
they will naturally better learn the embeddings from flows.
To handle heterogeneity between host and flow nodes, a non-
standard MPNN has been implemented where messages are
aggregated using two distinct functions oys, ofy respectively
associated to host-to-flow and flow-to-host edges. New node
embeddings are computed by learning an update function
Stype and by concatenating the previous node embedding with
the message as explained in Eq. 16 and 17.

o= gy 3 oo (i) a9

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

TABLE 1. State-of-the-art papers for network-based intrusion detection with GRL.

Data Graph type Classification Learning Models Year Paper
GCN 2020 Zhou et al. [65]
GCN 2022 Zh t al. [66
Graph Node Supervised ang et al. [66]
GIN, Grouped reversible connec- 2022 XG-BoT [67]
tions, GNNExplainer
Inferential SIR_GN 2022 isirgnl [68]
Semi-supervised GCN, Meta-path 2020 Bot-AHGCN [69]
Heterogeneous Node
Supervised GNN, GRU 2021 Pujol-Perich [54]
Flows
Node Graph Network 2020 Protogerou et al. [70]
Edge E-GraphSAGE, GraphSAGE 2021 E-GraphSAGE [71]
Attributed Node Supervised Attention, Adaptive Gate Fusion 2021 LGANet [72]
Node GAT, E-GraphSAGE, Residual 2021 E-ResGAT [55]
connections
Edge E-GraphSAGE 2022 E-minBatch
GraphSAGE [73]
Edge Self-supervised E-GraphSAGE, Isolation forest 2022 Anomal-E [50]
Graph Supervised GIN 2022 GraphDDoS [74]
Packets Spatio-temporal Edge Supervised ST-GCN 2021 Cao et al. [75]
Attributed Node Supervised, Meta- Auto Metric GNN 2022 Govindaraju et al. [76]
learning
Edge Unsupervised Random Walk, CBOW, LR 2020 Bowman [21]
Authentication Heterogeneous Edge Supervised Meta-path, CNN, Attention 2021 MLTracer [77]
logs Path Unsupervised Meta-path, metapath2vec++, Au- 2022 LMTracker [78]
toencoder
Temporal Edge Unsupervised Various GNN encoders, RNN 2022 EULER [57]
Authentication = Dynamic Edge Unsupervised Random Walk, GRU, Autoen- 2022 Pikachu [19]
logs+Flows coder, Skip-gram
Heterogeneous Edge Semi-supervised Meta-path, GNN with attention 2022 HetGLM [79]

The table categorizes all the network-based papers studied in this survey. Data corresponds to the input data type; Graph Type refers to the type of graph
constructed from the input data. We characterize a graph as attributed if either hand-crafted features, embeddings or raw features such as raw text are
intentionally assigned to a node or an edge; Classification indicates the downstream classification task; Learning represents the learning method; Models
summarizes the types of models used by each paper; Year refers to the publication year, whereas the Paper column provides references to each work.

h?“ = Suype ([hf “ﬁ]) ’ (17)
where 4! and k] are respectively the message and the embed-
ding of node i at iteration ¢, [.,.] is the concatenation oper-
ation, N(i) is the neighborhood of node i, oyype is one of
the two message functions oy and oyy, and dyype is one of
two update functions associated with the type of node. Note
that oyype and dyype respectively represent a fully connected
network and a GRU. A final MLP is used at node-level to
classify among multiple attack classes using softmax along
with the categorical cross-entropy loss for training. The cus-
tom MPNN has been tested against the CIC-IDS2017 dataset,
after dropping 90% of benign examples for unbalanced
classes reasons, and achieves a similar accuracy compared to
benchmarked ML methods such as MLP, random forest or
AdaBoost. However, the robustness of their model has been
demonstrated by modifying flow features like packet size and
inter-arrival times via multiple adversarial attacks [84]. The
results show that their accuracy remains good despite the
attacks, whereas other ML algorithms see their performance

VOLUME 11, 2023

diminished. This demonstrates that GNNs offer more robust-
ness and generalization capabilities than traditional ML
techniques.

For the detection of IoT-based network attacks, Protogerou
et al. [70] place multiple agents into a network to collect
flow statistics that are then attributed to nodes and edges in
a graph built from [P communications. For instance, a node
may store the average number of packets sent from this
node and an edge can contain the average number of pack-
ets sent between a pair of nodes. To propagate information
in the graph and compute embeddings, a Graph Network
(GN) [85] is used. This is a generalization block built from
various GNNs, including MPNNs and Non-Local Neural
Networks (NLNNs). Two Multi-Layer Perceptrons (MLPs)
are then used for attack detection, one at node-level and
another at edge-level, that are both leveraged to create a final
prediction. The authors built a synthetic dataset containing
benign and attack examples based on the CTU-13 dataset and
Mirai attack’s distribution. The proposed solution has been
evaluated against this custom dataset and outperforms the

49123

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

compared ML techniques such as SVM and random forest,
while consuming less energy.

E-GraphSAGE [71] is another method for network intru-
sion detection in IoT environment. When building the graph,
nodes are identified by an IP address and a port, whereas
edges represent the flow communication between two nodes.
The source IP addresses are randomly mapped to local
addresses on a given range to avoid unintentional label for
attack traffic. The actual flow features are stored in edges,
unlike the original GraphSAGE model that only works with
node features. For these reasons, they tuned the GraphSAGE
model to work with edge-level features. The aggregation and
update functions are similar to the ones used in GraphSAGE
(See Eq. 8 and Eq. 9). However, the newly created neighbor-
hood aggregator embeds sampled neighbor edges instead of
neighbor nodes, as explained in Eq. 18 and 19.

h}\/S(u) = AGG, ({ef,;l, Vv e Ns(u), uv € E}) , (18
h =0 (w’ : [h;—l, hj\/x(u)]) , (19)

where ei;l is the embedding of edge (u, v) at the previous
layer and E is the set of edges. No node features are used here
(i.e. anode is just a all-one vector). The model is composed of
two E-GraphSAGE layers to build the embeddings, meaning
that edges are aggregated up to a 2-hop neighborhood. After
message-passing, edge embeddings are used for supervised
edge classification. The performance has been evaluated on
the BoT-1oT, ToN-IoT datasets along with NF-BoT-IoT and
NF-ToN-IoT. These are the Netflow normalized versions of
the datasets, described in Section I11-B4.

For the detection of peer-to-peer botnets, LGANet [72]
proposes to consider each node in the network graph as a cen-
troid and builds a local graph from its 1-hop neighborhood,
on which the correlation between nodes is modeled using
attention. Indeed, P2P bots usually communicate with peers
to provide malicious commands and attention is leveraged to
capture such relations between hosts. The performance of this
custom model has been demonstrated on a dataset created by
merging multiple public datasets such as CTU-13, PeerRush
[86] and MAWI [87].

Based on the work of E-GraphSAGE [71], Chang et al.
[55] propose an improved version of the model by leveraging
residual connections to train deeper models and to deal with
the high class imbalance of most current intrusion detection
datasets. The graph is originally bipartite and is built from
flow data, where a node is identified by a tuple (IP address,
port), and an edge between two nodes is attributed with flow
statistics. The bipartite graph is then transformed into a line
graph [56] by converting edges into nodes, resulting in a node
classification task. As in E-GraphSAGE, random address
mapping is applied to source IP addresses to avoid uninten-
tional label for malicious traffics. In a first step, a fixed-size
set of neighbors is sampled from the nodes’ neighborhoods.
Neighboring edges are then aggregated using a mean opera-
tion and as described in Eq. 20, node embeddings are created
by concatenating the node embeddings from the previous

49124

layer with the aggregated edges:
hy, = o (WIH™ hye,) D, (20)

where h’v is the node embedding of node v at iteration ¢, h;\f(v)
represents the aggregated neighboring edge embeddings of
node v, W' is a trainable weight matrix and o is the ReLU
activation function. Node features are initialized with all-one
vectors with the same dimension as edge features storing flow
statistics. Edge features are then updated by concatenating
node embeddings from both endpoints along with the initial
edge features as a residual connection:

v =[5, WK e], (21)

u’y>

where z,,, is the final edge embedding between nodes u and v,
hf is the final embedding of a given node i after K iterations,
eyy is the initial feature vector of edge (u, v). Here, (1, v) € B
where B represents a batch of edges. In a second part, the
E-ResGAT model is presented. It consists of a GAT model
with additional residual connection and operates on the same
line graph as the first method. The authors evaluate the perfor-
mance of both models on UNSW-NB15, CIC-DarkNet, CSE-
CIC-IDS and ToN-IoT datasets. However, only the original
GAT is used as a baseline for the benchmark.

Another improvement to E-GraphSAGE is provided by
Lan et al. [73], by introducing a pre-sampling step before
training the model, resulting in smaller graphs and better
scalability. The performance of this model has been com-
pared to the original E-GraphSAGE along with other base-
lines on the UNSW-NB15 dataset where the accuracy and
Fl-score are slightly improved on both binary classifica-
tion and multi-class classification tasks. However, the per-
formance of this model has not been demonstrated on other
datasets such as the ones originally used in the E-GraphSAGE
paper.

Authors of E-GraphSAGE also contributed to an important
improvement to the model, by applying it to a self-supervised
approach. This new method named Anomal-E [50] leverages
the same graph structure (i.e. flows and endpoints respec-
tively represent edges and nodes) while not requiring any
label. Deep Graph Infomax (DGI) [33] is leveraged here to
build embeddings for positive and negative graph samples
and to compare them to a summarized version of the graph to
maximize local-global mutual information. In DGI, negative
samples are generated using a corruption function (e.g. shuf-
fling elements in feature matrix or adjacency matrix). Embed-
dings are then built using an encoder, like GraphSAGE or
GCN, and the global summary is computed by a readout
function like the average operation. A discriminator then
computes scores for both positive and negative embeddings,
in order to be used by the binary cross-entropy loss to max-
imize mutual information. DGI was initially made to train
an encoder to learn node embeddings but the authors deal
here with an edge classification problem, so they modified the
model to learn edge embeddings instead. Here, the negative
examples are created by shuffling the edge features, while
keeping the same adjacency matrix. E-GraphSAGE is chosen
as the encoder to compute positive edge embeddings, global

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

graph summary and negative edge embeddings. A discrimina-
tor function presented in Eq. 22 and 23 computes two scores
by comparing positive and negative edge embeddings with
the graph summary.

D, 5) = o (K W), (22)
DE,, 35 = oK W), 23)

where X and ZX respectively represent the true embedding
and negative embedding of edge (u, v) atdepth k. W is a train-
able parameter and s is the global graph summary defined
as the average of node embeddings passed in a sigmoid
activation:

1 n
5= 0(; ;zf), (24)

where le represents the final ith node embedding and o is the
sigmoid function. These scores are finally used in the binary
cross-entropy loss to train the model:

e 3 (ot (4:5) 0w 10 (4.).
(25)

where D (zK | 5) is a trainable bilinear binary classifier that
takes as input an edge embedding along with a graph sum-
mary. Anomal-E can then classify malicous flows based on
the embeddings using unsupervised classifiers. On both Net-
Flow datasets presented in [88], Anomal-E achieves close
performance compared to the original supervised baseline
[88], using an extra tree classifier. However, the current
approach does not require any label, which makes this solu-
tion more applicable to real-world scenarios.

Against DDoS attacks, a graph classification approach
is proposed by Li et al. [74]. In this work, the presented
GraphDDoS model aims to detect both low-rate and high-rate
DDoS attacks by considering the relationship of packets from
a single flow and the relationship between flows. To achieve
this, network packets from same source and destination IP
addresses are divided into groups that are used to obtain
an endpoint graph as final representation. Message-passing
is performed on these graphs using GIN and final graph
embeddings are computed after passing the embeddings into
a readout function. On the CIC-IDS2017 and CIC-DoS2017
datasets, GraphDDoS notably outperforms the node-based
method proposed in [54].

2) NETWORK INTRUSION DETECTION WITH PACKET
GRAPHS

Although flow-based detection is largely employed in intru-
sion detection systems, packets offer a fine-grained view of
the data that are actually transferred in the network. The
authors in [75] propose to represent traffic of packets using
a spatio-temporal graph, that is able to model features that
vary with respect to time. The proposed method aims to
detect DDoS attacks in software-defined networking (SDN)
networks based on a Spatio-Temporal Graph Convolutional

VOLUME 11, 2023

Network (ST-GCN) [89], a GNN model that is originally
used for traffic forecasting. They experiment their model on
a real-world enterprise network made of 20 programmable
switches with 1 SDN controller. DDoS attacks are simulated
with hping3 [90] and are embedded in CAIDA traffic traces
similarly to in [65]. The model has been evaluated on the
synthetic dataset against CNN, GCN and SVM baselines,
and the ST-GCN achieves an important accuracy increase and
false positive rate reduction.

Against intrusions in IoT environment, paper [76] lever-
ages the Auto-Metric Graph Neural Network (MAGNN) [91]
along with meta-heuristic optimization methods based on
HTTP requests data. The MAGNN was initially introduced
to be used for the diagnosis of Alzheimer’s disease, where it
outperforms most graph-based methods like GCN or GAT on
biomedical datasets [91] by using a meta-learning paradigm
[92]. Here, the authors apply this model to IoT node clas-
sification using 2 datasets: CSIC-2010 and ISCXIDS-2012.
On both datasets, the proposed model outperforms the com-
pared baselines.

3) NETWORK INTRUSION DETECTION WITH
AUTHENTICATION GRAPHS

In enterprise networks, attackers often tend to authenticate
into other host machines via lateral movement, in an attempt
to access new permissions. In their research paper, Bowman
et al. [21] leverage autentication data along with an unsuper-
vised framework to detect such lateral movements. A hetero-
geneous graph is constructed from Kerberos authentication
logs. In this graph, a node can either be an IP address, a user
or a service, and an edge represents an authentication event.
Furthermore, no additional features are used here, just the
graph topology is leveraged. In a first offline phase, random
walks randomly sample paths in the graph and Continuous
Bag Of Words (CBOW) [25] along with negative sampling
[93] compute the node embeddings. In a second online phase,
inference on new edges is done based on embedding lookups.
As explained in Section II-B1 with the Skip-gram method,
here CBOW predicts a center node given its context instead
of predicting context from center node. Negative sampling is
used to efficiently train embeddings in a self-supervised way.
In the context of CBOW, this technique consists in sampling
k nodes that are not the target node (i.e. center node) and
minimizing their co-occurrence probability with the context
node. Eq. 26 describes the corresponding loss function.

L=—|logo(hlyhee) + > [1oga(—hf.mhk)] ,
k~P(w)
(26)

where h., and h.,, are respectively the embeddings of center
and context nodes, P(w) is the noise distribution to ran-
domly sample nodes that are different from the center node,
and o is the sigmoid function. The first term maximizes
the probability of co-occurrence between center and context
nodes, whereas the second term minimizes the probability
of co-occurrence between context nodes and negative center

49125

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

node samples. Following this process, users who regularly
authenticate to similar entities are close in embedding space.
Finally, edge prediction (i.e. authentication prediction) is
done between every pair of nodes a and b by using a logistic
regression on embeddings a o b, where o is the Hadamard
product. The authentication subset of LANL dataset and
PicoDomain custom dataset are used for evaluation and the
proposed method outperforms other unsupervised ML tech-
niques, on both true positive and false positive rates.

To overcome malicious logins and credential-based lateral
movements, MLTracer [77] models login activity from logs
as a heterogeneous information network (HIN) and extract
contextual semantic with meta-paths. For each type of meta-
path, they apply a CNN along with co-attention to learn
vector representations, and a fully-connected layer predicts
malicious edges given as input the concatenation of source
and destination node embeddings.

The lateral movement detection problem is also tackled
by LMTracker [78], where the authors also model the inter-
actions between entities using a heterogeneous graph. The
metapath2vec++ model [94] computes all node embeddings
using meta-paths and random walks. An autoencoder then
tries to reconstruct the embeddings, in an attempt to find
outliers in embedding space when the reconstruction of mali-
cious examples fail. The final task is to predict a potential
lateral movement path, namely a malicious path along mul-
tiple edges in the graph. For training, only benign samples
from LANL and CERT datasets are leveraged.

Another solution to lateral movement detection is pro-
posed by HetGLM [79]. Rich semantics are captured on
the heterogeneous graph with meta-paths to profile each
network entity and distinguish authentication activities that
deviate from benign activities. The problem thus becomes
a weakly-supervised anomaly detection task, where only
few benign examples are required as input. Random walks
along with attention compute the node embeddings and a
dual-decoder identifies abnormal edges given the concatena-
tion of endpoints nodes.

EULER [57] consists in a model-agnostic framework espe-
cially designed for the detection of lateral movements with
GNNss in temporal graphs. This method captures the temporal
relations present in those graphs to perform anomaly link
prediction. Indeed, this temporal structure appears to be a
meaningful feature that seems to improve the prediction of
APTs. Network data such as authentication requests or flows
can be model as a temporal graph G; = (V, E;), where
each ¢-th graph represents a snapshot with fixed node struc-
ture and dynamic edges. The authors propose a distributed
architecture based on the leader/worker paradigm, to concur-
rently perform the time-consuming message-passing opera-
tions. Indeed, a leader dispatches graph snapshots to multiple
workers, that are responsible for loading the graphs into
memory and for computing the embeddings using a given
GNN encoder. These snapshot embeddings are then sent back
to the leader to capture the temporal dimension using an RNN
block and results are dispatched to the workers to perform
decoding and anomaly detection. Final back-propagation is

49126

performed on the leader node, and training is done in an end-
to-end manner with an unsupervised loss. Experiments are
conducted on authentication logs from LANL 2015 dataset,
with multiple encoders such as GAT, GCN or GraphSAGE,
along with various RNNs like GRU and LSTM.

Paudel et al. [19] also leverage the temporal dimension of
graphs for network-based anomaly detection. They propose
PIKACHU, an unsupervised dynamic graph embedding tech-
nique that considers both the dynamic edges and nodes. The
network is modeled as a stream of graphs, where a tempo-
ral dimension represents the superposition of discrete graph
snapshots, with possibly different structures. No features are
used, except the IP addresses and timestamps required to
build the dynamic graph. Temporal random walks are used in
combination with Skip-gram model to generate embeddings
that encode the spatial and short-term temporal dependencies
in the dynamic graph. A GRU-based auto-encoder also cap-
tures long-term temporal dependencies. An anomalous edge
can then be detected when it has a low probability to exist
between two nodes u and v at a given timestamp 7. This
probability is expressed in Eq. 27 and 28.

pv = POlu, Nw)r, 27)
pu = Puly, NO)r, (28)

where p, and p, respectively represent the probability that
there exists an edge (v, u) and (u, v). (i) is the neighborhood
of a given node i. This probability is estimated by the softmax
function and cross-entropy is used as loss to train the model.
Finally, an anomaly score is computed based on p,, and p,:

o = Lm0 =P) 00)

In their experimental setup, the authors use the LANL and
DARPA OpTC datasets, where 1 snapshot corresponds to
1 hour of data. Three dynamic graph-based anomaly detection
methods have been compared to PIKACHU and it notably
achieves a lower false positive rate and higher AUC.

4) NETWORK INTRUSION DATASETS

This section aims to review the different network intrusion
datasets that were employed in previous studies. A compre-
hensive listing of these datasets is also provided in Table 2.

CAIDA [95]: Between 2008 and 2019, the Center for
Applied Internet Data Analysis (CAIDA) recorded passive
network traces from high-speed monitors on a commercial
backbone link. Hundreds of Gigabytes of requests were
recorded over these years and can be accessed via pcap files.
These data are usually used as background traffic for creating
synthetic cyberattack detection datasets [65], [75].

Zhou et al. [65]: In their botnet detection method based on
GCN, Zhou et al. released a graph-based dataset made of both
synthetic and real botnet topologies within a real background
network traffic. The CAIDA 2018 passive network traces
were used as background traffic and random subsets of nodes
were chosen to embed botnet topologies using real botnets or
overlaid P2P topologies. A total of 4 synthetic topologies (DE
BRUIJN, KADEMLIA, CHORD, LEET-CHORD) and 2 real

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

TABLE 2. Datasets used by each network-based paper.

Paper Datasets Performance

Zhou et al. [65] Zhou et al. 99.03%, 99.51% acc
Zhang et al. [66] Zhou et al. 98%-98.91% F1

XG-BoT [67] Zhou et al. 99.52%, 99.47% F1
isirgnl [68] CAIDA+Synthetic samples 97.85%-99.78% F1
Bot-AHGCN [69] CTU-13 98.27%, 98.22% micro-F1

Pujol-Perich [54]
Protogerou et al. [70]
E-GraphSAGE [71]
LGANet [72]
E-ResGAT [55]
E-minBatch GraphSAGE [73]
Anomal-E [50]
GraphDDoS [74]

Cao et al. [75]
Govindaraju et al. [76]
Bowman [21]
MLTracer [77]
LMTracker [78]
EULER [57]

Pikachu [19]

HetGLM [79]

CIC-IDS2017

CTU-13+Synthetic samples

BoT-IoT, ToN-IoT, NF-BoT-IoT, NF-ToN-IoT
CTU-13+PeerRush+MAWI

99% weighted-F1

99% AUC

100%, 99%, 97%, 100% F1
95% F1

UNSW-NBI15, CIC-Darknet2020, ToN-IoT, CSE-CIC-IDS201899.5%, 92.32%, 99.88%, 96.5% weighted-F1

UNSW-NB15
NF-UNSW-NB15-v2, NF-CSE-CIC-IDS2018-v2
CIC-IDS2017, CIC-DoS-2017
CAIDA+Synthetic samples
CSIC 2010, ISCXIDS2012
PicoDomain, LANL 2015

LANL 2015, Private

LANL 2015, CERT

LANL 2015

LANL 2015, DARPA OpTC
LANL 2015, CERT, PicoDomain

99.88% F1

92.35%, 95.39% macro-F1
99.59%, 94.56% F1

~90% acc

90.75%-97.96%, 93.88%-96.97% F1
80%, 85% TPR

99.98%, 99.97% AUC

95%, 94% AUC

99.16%

94%, 99% AUC

89.28%, 91.28%, 92.68% F1

Categorization of all datasets used in the surveyed papers. Paper and Datasets refer to the paper reference and the datasets used in the corresponding
paper, respectively. When Datasets are separated by a "+" symbol, it indicates a global dataset assembled from each mentioned dataset. However,
if a comma is used, it means that the authors conducted experiments on separate datasets. If multiple comma-separated datasets are present in
Datasets, and only one metric is assigned in Performance, then that metric refers to the performance of the first dataset. Otherwise, each dataset
is assigned to a specific performance metric. If there are more metrics in Performance than there are datasets, multiple variants of the models
may be proposed. For further information, we suggest referring to the original paper; Performance refers to the metrics, defined as follows: "acc"
represents accuracy, calculated as (TP+TN)/(TP+TN+FP+FN), where TP, TN, FP, and FN correspond to true positive, true negative, false positive,

and false negative, respectively. "F1" represents the harmonic mean of precision and recall, calculated as 2x(PrecisionxRecall)/(Precision+Recall)

where Precision=TP/(TP+FP) and Recall=TP/(TP+FN). "AUC" represents the Area Under the Receiver Operating Characteristic Curve.

botnet topologies (C2 and P2P) are generated and divided
into 6 labeled datasets. Each dataset contains 960 undirected
graphs with self-loops and is composed in average of 140,000
nodes and 700,000 edges. No additional flow features are
provided in this dataset and existing works rather leverage
representation learning to learn directly embeddings from
graph topology, as done in [66] and [67] with C2 and P2P
datasets.

CTU-13 [96]: CTU-13 was delivered by CTU Univer-
sity, Czech Republic and is made of network traffic captures
containing benign traffic and Botnet attacks. Two types of
data are available for this dataset: packet-based pcap captures
(more than 850M packets) and flows captured with Argus
in Netflow format (around 20M bi-directional flows). The
dataset consists of 13 attack scenarios exploiting various
protocols, divided into 13 files. A graph can possibly be built
using the source and destination IP addresses of either the
packet or flow data. However, flow data are in practice much
more used in graph approaches due to the large size of packet-
based captures.

CIC-IDS2017 [97]: CIC-IDS2017 is a network dataset
proposed by the Canadian Institute of Cybersecurity (CIC),

VOLUME 11, 2023

composed of benign and attack network flows. For each flow,
80 features have been extracted into pcap and CSV files
using CICFlowMeter [98] for 5 days in a simulated environ-
ment. Seven types of web attacks are present in the dataset:
Brute Force, HeartBleed, Botnet, DoS, DDoS, Web Attack,
Infiltration. In each attack type, one or multiple attacks are
performed, for a total of 13 distinct labeled attacks. Each
of them is isolated based on a time range, similarly to most
other attack datasets. Experiments were conducted on the
80 original features, concluding that 8 selected features are
sufficient to achieve valuable results [97].

CSE-CIC-IDS2018 [99]: CSE-CIC-IDS2018 is a network
dataset born from a joint project between the Commu-
nications Security Establishment (CSE) and the Canadian
Institute for Cybersecurity (CIC). The data cover exam-
ples from the same seven attack types as CICIDS2017, and
CICFlowMeter was also used to extract 80 flow features that
are available in pcap format.

UNSW-NB15 [100]: This dataset was released by the
Cyber Range Lab of UNSW Canberra. Network flows were
captured in a private environment, resulting in 2,218,761
benign flows (87.35%) and 321,283 attack flows (12.65%)

49127

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

divided into 10 classes: Benign, Analysis, Backdoor, DoS,
Exploits, Fuzzers, Generic, Reconnaissance, Shellcode,
Worms. A comprehensive range of data formats are available,
including packet-based (pcap files) and flow-based (CSV,
Zeek, Argus) network logs. This dataset is known to suffer
from class imbalance and class overlap [101], meaning that
these two issues should be addressed before usage. As an
example, [102] used bagging, undersampling and synthetic
minority oversampling to tackle the class imbalance problem,
resulting in a better classification accuracy.

BoT-10oT [103]: Also developed by the Cyber Range Lab
of UNSW Canberra, this dataset was created by simulating
a network environment and running multiple botnet attacks
on it. Both packet- and flow-based data are captured and
made public in pcap, Argus and CSV file formats. The pcap
files store around 70GB of packet-based data and CSV files
store 16.7GB of flow-based data. The overall dataset contains
477 benign flows (0.01%) and more than 3.6M attack flows
(99.99%). Four categories of attacks are present in the dataset,
including DDoS, DoS, OS and service scan, as well as key-
logging and data exfiltration, for a total of 10 labeled attacks.

ToN-1oT [104]: ToN-IoT is another dataset created by the
Cyber Range Lab of UNSW Canberra. It is composed of
3 categories of datasets: Telemetry of IoT and IIoT sensors,
Windows and Ubuntu OS metrics and Network traffic. These
data were captured from a simulated and realistic network.
For NIDS applications, the provided network dataset lever-
aged Zeek to capture 796,380 benign flows (3.56%) and
21,542,641 attack flows (96.44%), along with 44 flow fea-
tures extracted from Argus and saved in CSV files. Nine
attacks are represented: DoS, DDoS, backdoor, injection,
MITM, password, ransomware, scanning and XSS.

NF-datasets [105]: NF-BoT-1oT, NF-ToN-IoT, NF-CSE-
CIC-IDS2018 and NF-UNSW-NB15 have been introduced
as part of a standardization process that aims to use Net-
Flow as the default standard for NIDS datasets (NF- prefix
stands for NetFlow). Indeed, all four initial datasets have few
features in common, making the benchmark of ML methods
impossible on each of them. The authors therefore propose a
new version of these datasets, using only 8 NetFlow features
(12 by considering source and destination IP addresses and
ports) instead of the original dissociated features. All the
standardized datasets are then merged in order to create a
global dataset named NF-UQ-NIDS. The nProbe tool [106]
was used to convert the original pcap files from datasets
into CSV files storing the NetFlow v9 features. Hereafter are
described the statistics of the standardized datasets:

o NF-UNSW-NBI15: 1,550,712 benign flows (95.54%)
and 72,406 attack flows (4.46%) divided into 10 classes:
Benign, Fuzzers, Analysis, Backdoor, DoS, Exploits,
Generic, Reconnaissance, Shellcode, Worms.

o NF-BoT-IoT: 13,859 benign flows (2.31%) and 586,241
attack flows (97.69%) divided into 5 classes: Benign,
Reconnaissance, DDoS, DoS, Theft.

o NF-ToN-IoT: 270,279 benign flows (19.6%) and
1,108,995 attack flows (80.4%) divided into 10 classes:

49128

Benign, Backdoor, DoS, DDoS, Injection, MITM, Pass-
word, Ransomware, Scanning, XSS.

o NF-CSE-CIC-IDS2018: 7,373,198 benign flows
(87.86%) and 1,019,203 attack flows (12.14%) divided
into 7 classes: Benign, Brute Force, Bot, DoS, DDoS,
Infiltration, Web Attacks.

o NF-UQ-NIDS: 9,208,048 benign flows (76.77%) and
2,786,845 attack flows (23.23%) divided into all previ-

ous classes.))
The same authors also provided a second version of these

datasets (with -v2 suffix) [88] that integrates a total of 43 flow
features instead of the original 12.

CIC-Darknet2020 [107]: CIC-Darknet2020 is a network
dataset used for VPN and Tor applications classification,
developed by the Canadian Institute for Cybersecurity. It is
composed of 77 flow features extracted with CICFlowMeter
from 134,348 attack scenarios (84,67%) and 24,311 benign
activities (15,33%), divided into 9 categories: Benign, Audio-
Stream, Browsing, Chat, Email, P2P, Transfer, Videao-
Stream, VOIP.

LANL-2015 [108]: The Los Alamos National Lab (LANL)
dataset is made up of 58 consecutive days of data gath-
ered from the Los Alamos National Laboratory’s internal
computer network. The dataset is composed of 5 types of
data: red-team activities, network flows, process start and
stop events, window-based authentication events, and DNS
lookups. A typical APT campaign produced 1,648,275,307
events across 17,684 Windows machines, including 305 com-
promised computers and 749 harmful events. With this
dataset, graphs can be built thanks to the use of either network
flows or authentication data events.

DARPA OpTC [109]: DARPA OpTC contains more than
17 billion network-based and host-based events following
APT-like scenarios, generated in an enterprise network by
DARPA, where 3 attack scenarios are represented: power-
shell empire staging, data exfiltration and malicious soft-
ware upgrade. All samples follow the eCar format, which
is an extension of MITRE’s CAR data model [110], where
events are identified in temporal space using a 3-tuple (object,
action, fields), inspired from object-oriented programming.

CSIC 2010 [111]: The CSIC 2010 dataset is composed of
36,000 normal and 25,000 attack HTTP/1.1 requests gener-
ated from an eCommerce website developed in the Informa-
tion Security Institute of CSIC. Multiple types of attacks are
present in the dataset, such as SQL injection, buffer overflow,
information gathering and XSS. A graph can be built based
on the HTTP requests, where two nodes are the host and
destination URLs and where an edge represents a request.

ISCXIDS2012 [112]: Initiated by the Information Secu-
rity Centre of Excellence (ISCX) at the University of New
Brunswick, this dataset is composed of 7 days of network
activity monitoring from a simulated realistic environment
where normal bahaviors and attack scenarios happen on spe-
cific days. Multiple kinds of attacks are present: network
infiltration from inside, HTTP DoS, DDoS with IRC Botnet,
SSH BruteForce. Roughly 125,000 attack packets and 2.1M

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

benign packets are recorded. For each day, a pcap file can be
downloaded. Multiple standard features are available, includ-
ing packet payload and total number of bytes sent or received.

PicoDomain [113]: PicoDomain is a light-weight dataset
containing network flows captured with Zeek in a small-size
network environment with multiple departments and Win-
dows Active Directory. The attack campaign was registered
during 3 days and follows the Mandiant Attack Lifecycle
(MAL), which comprises multiple cyclic phases appearing
during adversarial campaigns. This dataset aims to be com-
pact (~ 220MB of Zeek logs) and useful for small analysis
research projects, where small computation time and memory
consumption are required.

IV. HOST INTRUSION DETECTION

Host intrusion detection aims to monitor and analyze the
internals of a system, looking for suspicious behaviors. In this
section, we show that there are multiple ways to model host
data as graphs and we review the state-of-the-art works that
leverage these graph representations with GNNs for host
intrusion detection. We also present host-based datasets at the
end of the section.

A. HOST GRAPH REPRESENTATIONS

Host machines are the source of many system data that can
be modeled as a graph. These input data could be for instance
captured from the Operating System (OS) logs and applica-
tion events [114], [115] but may also be captured from the
network traffic generated by the host [116], [117]. Monitor-
ing host data is usually straightforward as a sensor needs
to be placed directly on the host machine, without requir-
ing a strategic position like in the monitoring of network
traffic. However, managing the installation and maintenance
of host data monitoring tools can be challenging in large
companies as a remote or a physical access to the machines
may be required, inducing privacy and scaling issues. How-
ever, the low-level and fine-grained information provided by
host-based analysis is fundamental to the detection of most
attacks that cannot be handled by network intrusion detection
systems.

Effective graph representations are thus fundamental to
build models able to detect complex attacks that take place
at the host level. In this section, we present two data repre-
sentations commonly used in host-based detection, which are
also illustrated in Figure 5.

Provenance Graph: Provenance graphs are abstract rep-
resentations of the origin and evolution of data for a
given system. They are usually made of system entities
as nodes (e.g. processes, files, sockets, threads) and inter-
actions between those entities as edges (e.g. system calls,
authentications, user events), making their graph struc-
ture compatible with various graph learning techniques.
Such graph representations capture important relationships
between system events, which facilitates the discovery of
malicious events that are temporally distant [118]. These
advantages have made the provenance graphs more and more
used in recent threat detection research works [119], [120].

VOLUME 11, 2023

In such graphs, the direction of edges is especially important
because it gives an important insight into a system event.
For instance, cmd.exe forking word.exe is less suspi-
cious than word.exe forking cmd . exe [121]. In order to
improve compatibility between data provenance tools, multi-
ple data models such as Open Provenance Model [122] and
W3C-PROV [123] have been released. In these two examples,
provenance data is represented as a directed acyclic graph
(DAG). CamFlow [124] is a tool that creates such provenance
graphs that can be used in downstream ML tasks.

System Call Graph: System calls are low-level functions
used for the communication between programs and the oper-
ating system’s kernel. Sequences of system calls can be
monitored on a host device, and transformed into graphs to
represent the sequential relations between calls.

A wide variety of host-based data monitoring tools is
publicly available and leveraged in research (e.g. Windows
and Linux event logs, CamFlow [124], Sysmon [125], auditd
[126]). On top of CamFlow, Flurry [127] is a framework that
captures both kernel-level and user-level data to build prove-
nance graphs for downstream graph representation learning
experiments.

192.168.32.9 /home / user / file. csv

a) il
connect /
\,/ bin / hash/

process

™

clone

erecute

 umep—> Mmemory

write

/usr / bin / chrome /
process

b) ((execve() }>{ uname() |>{ brk() |
open() |«—{ mmap()

FIGURE 5. Examples of provenance graph (a) and system call graph (b).

B. GRAPH-BASED HOST INTRUSION DETECTION

In this section, we review the state-of-the-art papers regard-
ing host intrusion detection based on GRL and GNNs.
We notably show that a majority of works model host systems
using heterogeneous provenance graphs, where the goal is
to predict abnormal nodes or graphs. We also demonstrate
that some works prefer leveraging other data sources such
as system calls, authentication requests and network flows
for other classification tasks. A summary of the host-based
papers studied in this section is provided in Table 3.

1) PROVENANCE GRAPH-BASED HOST INTRUSION
DETECTION

Provenance graphs are useful data structures for learning
representations. In existing literature, graph representation
learning is succesfully applied to learn embeddings from
these graphs, in an attempt to detect malicious system

49129

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

TABLE 3. State-of-the-art papers for host-based intrusion detection with GRL.

Data Graph type Classification Learning Models Year Paper
Heterogeneous Node Unsupervised Random Walk, word2vec 2019 Log2vec [22]
Attributed Graph matching Supervised GCN, Attention, NTN 2021 DeepHunter [15]
Node Supervised HAN, R-GCN 2021 Lv et al. [47]
Provenance Node Semi-supervised GraphSAGE 2022 THREATRACE [48]
Graph Heterogeneous Node Supervised HAN, R-GCN 2022 APT-KGL [128]
Graph Supervised GIN, Attention 2022 PROV-GEM [129]
Graph Unsupervised GNN, Deep SVDD 2022 OC-DHetGNN [121]
Attributed Node Unsupervised NWR-GAE, Transformer, 2022 Lakha et al. [130]
VAE, Isolation forest
Syscall Graph Graph Supervised Random Walk, word2vec 2021 Hu et al. [20]
Provenance Heterogeneous Edge, Graph Self-supervised, HAN, GAT, Autoencoder 2021 Lietal. [51]
+ Flows Unsupervised

entities or advanced threats. As a first example, Log2vec
[22] extracts provenance-like data from system logs to detect
threats, with an unsupervised graph embedding approach for
anomaly detection. A heterogeneous graph is built using ten
hand-crafted rules from log entries that consist in multiple
system-level attributes. One log entry is a tuple composed of
an object (e.g. file, website, removable storage), an operation
type (e.g. logon, file operation, browser usage), a time and a
host machine. Each element can store features that will be
gathered when processing embeddings in the graph. Three
types of relations are taken into consideration while creating
the graph: causal and sequential relationships within a day,
logical relationships among days, and logical relationships
among objects. Only benign examples are required to train
the model as the goal here is to detect anomalies (i.e. sus-
picious behaviors). A custom approach based on random
walks and word2vec is used to extract the context of each
node and to construct embeddings. Using this technique,
close nodes (i.e. log entries with close relationship) will be
embedded close in the embedding space. Finally, they apply
a clustering method with threshold to separate benign and
anomalous nodes in latent space. Log2vec has been compared
to 11 baselines on the CERT dataset and 2 methods on the
LANL dataset. In both cases, Log2vec widely outperforms
the baseline methods.

DeepHunter [15] tries to hunt known threats by applying
graph pattern matching between a target provenance graph
and a query graph, that is built from Indicators Of Compro-
mise (IOCs) extracted from public Cyber Threat Intelligence
(CTI). Both graphs possess the same structure, attributes and
relations. A subject is namely associated to a process and
an object represents another system object such as a file,
a socket or a Windows registry. An attribute embedding net-
work first computes embeddings for each node attribute using
word2vec. A node embedding is then aggregated with all
its attribute embeddings using attention coefficients learned
for each attribute. The nodes of the small and noise-free

49130

query graph are then embedded using a GCN. However,
provenance graphs are more complex and noisy by nature
and the authors aggregate the information from distant nodes
using Layer-wise Dense-connected Aggregator [49] along
with attention. Graph embeddings are calculated for both
graphs with Global Context-Aware Attention, as proposed in
SimGNN [131]. Finally, the matching between the two graph
embeddings is done by leveraging Neural Tensor Network
(NTN) [132].

Another heterogeneous approach based on provenance
data is proposed by Lv et al. [47] where hand-designed
meta-paths are used by a Heterogeneous graph Attention
Network (HAN) to extract useful semantic information,
as explained in section II-C6. Here, a meta-path represents
a sequence of system events like two processes reading a
sensitive file or two processes accessing the Internet. HAN is
used as the encoder to build embeddings from the heteroge-
neous graph and classification is done at node-level to detect
malicious processes. Online attack detection is also possible
based on the embeddings, by inferring on sampled areas of
the heterogeneous graph.

THREATRACE [48] is a real-time intrusion detection
framework also based on provenance graphs. Each node is
a system entity (e.g. file or process) and an edge is a system
call associated with a timestamp identifying the event time.
The model is inspired by GraphSAGE to aggregate the nodes
and to build the embeddings. However, only benign examples
are required here. The idea is to learn normal behaviors to
detect anomalous ones in embedding space, without requiring
anomalous examples. A total of 7 state-of-the-art algorithms
are used as baselines, where 3 are anomaly-based host threats
detectors such as Unicorn [118], ProvDetector [133] and
StreamSpot [134], and 4 are anomalous log detectors like
Log2vec [22] or DeepLog [135]. On the StreamSpot, Uni-
corn and DARPA TC datasets, THREATRACE outperforms
all methods, especially in terms of false positive and false
negative rates.

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

For the detection of advanced APT attacks, APT-KGL
[128] samples a subgraph around a new incoming node to
gather the embedding information already computed by a
GNN in previous iterations. This technique makes it possible
to infer new system entities in a reasonable time as only a
subgraph is considered. A new incoming node is aggregated
with its local subgraph using the propagation rule of the
relational graph convolutional network (R-GCN) [136]. The
new node embedding is thus aggregated in this way:

(+1) L 0,0), (1)
W =0 DD mwg)hj +Wo'h” |, (30)
reR jeN; "1

where hgl) is the embedding of node i at layer [, N/ denotes
the neighbors of node i under relation r € R, with R the
set of relation types. W, and Wy are trainable weights.
This model is trained using cross-entropy loss after applying
softmax to all final embeddings. Due to the complexity of
finding real-life APT scenarios, the authors introduce a mod-
ule responsible for creating synthetic attack graph samples
by extracting threat knowledge from public CTIs and Tactics
Techniques and Procedures (TTPs). The graphs are generated
from threat reports written in natural language by domain
experts and are then embedded into real benign provenance
graphs to enhance the authenticity of data. Multiple evalua-
tion strategies are compared on private data and on the public
DARPA TC dataset. On the private dataset, the model is out-
performed by CONAN [137], a state-of-the-art APT detection
method based on hand-designed rules. However, APT-KGL
outclasses other baselines by a large gap on DARPA TC
despite a relatively low precision (i.e. high number of false
positives).

PROV-GEM [129] first pre-processes host-level data col-
lected with CamFlow in order to build a unified embedding
framework for detecting anomalous behaviors in provenance
data. Nodes, edges, and their provenance types are standard-
ized using W3C-PROV labels [138], resulting in a heteroge-
neous graph with 3 node types (agent, entity, activity) and
multiple edge types (e.g. wasDerivedFrom, used, wasGen-
eratedBy). A Locality Sensitive Hashing technique (TLSH
[139]) converts the high-dimensional variable-length vectors
generated by CamFlow into a fixed-length space of lower
dimension that preserves the features’ information. After
this normalization step, message-passing is applied by using
a similar update function as GIN [140]. To deal with the
heterogeneity of the graph, the authors propose to aggregate
neighbors based on the 3-tuple representing the source node
type, edge type, destination node type. Such a structure is
called a relation type and is defined as r = (¢, té””, t,)
where r € R, the set of all relation types.

PEN @, r) =MLP* [A$D 4 > af=D) 3D
ueN®,r)

where NV (v, r) is the neighborhood of node v on relation r and
hl‘f_l is the embedding of node v at previous layer. To take

VOLUME 11, 2023

into account all relation types, a new node embedding rep-
resentation is obtained by concatenating the representations
computed for all relations types:

7k = CONCAT (qbf N (v, 7)) | Vr e R) Gy,

Semantic attention is applied on top of the embedding process
in order to learn attention coefficients for each relation type:
d* = softmax (wk. tanh (Wk fz’j)) , (33)

where al‘f represents the relation attention coefficients, wk

and W¥ are respectively a trainable relation attention matrix
and a traditional weight matrix. The final node embedding is
computed using a simple dot product as follows:

s (34)

The given model is evaluated on the graph classification task
by only aggregating the 1-hop neighborhood and by using
as readout function a sum along all node embeddings. The
loss is computed with binary cross entropy and experiments
were done on StreamSpot and Unicorn datasets, where both
original methods are outperformed. However, no other GNN-
based methods were compared here.

Huang et al. [121] push the host-based intrusion detection
task further by introducing an unsupervised method that con-
siders multiple modalities at node- and edge-level. An het-
erogeneous directed graph is built from system interactions,
where nodes are processes or files and edges are events
such as a process accessing a file or a process forking other
processes. Every process is uniquely identified using the PID
and the command that invoked it, and the file is identified by
its path. A different aggregation function is implemented for
each node type, namely the parent process, the child process
and the accessed file. Node embeddings are then computed
using a custom aggregation that preserves the direction of
edges:

HF = W [H,-IH,H,IJ,HéJ“],H}H] ’ (35)

where H IIJH is the embedding of the process at next layer,
H I.ZH is the embedding of the parent process, H ;, is the embed-
ding of the current process node, Hé“ is the embedding of
the child process node, H Ilﬁl is the embedding of the accessed
file. The directionality is preserved by concatenating the
embeddings in a precise order, starting from the parent pro-
cess to the accessed file. Finally, a deep SVDD model [141]
is leveraged to compute a global score based on the graph
embedding (obtained via mean-pooling), and a local score
based on node embeddings. Considering these two scores in
the loss allows the model to detect attacks from both local and
global areas in the graph. The proposed model outperforms
other baselines such as GCN and GraphSAGE. However, the
experiments are done only on a private enterprise dataset.

2) SYSTEM CALL GRAPH-BASED HOST INTRUSION
DETECTION

System calls (syscall) offer a fine-grained representation
of the running host system, which can be structured as a

49131

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

graph. In reference [20], a random walk-based approach is
proposed to detect host intrusions from system call traces.
The graph is built from a sequence of system calls captured
from local computers, where a node represents a syscall
and the sequential relation between two syscalls is an edge.
Only the topology of the graph is leveraged here, no fea-
tures are used. Node embeddings are computed with ran-
dom walk and word2vec. The intrusion detection is here a
graph classification task, and the authors use a hierarchical
pooling method in order to learn hierarchical representations.
Indeed, traditional pooling operations are inherently flat and
do not learn hierarchical representations of graphs. This lim-
itation is especially problematic for the graph classification
task, where all embeddings are generally reduced into a
fixed-size graph embedding for downstream classification.
In hierarchical pooling, the dimension reduction of the graph
is done layer after layer and the pooling process may be
differentiable and jointly learned with the neural network.
For instance, DiffPool [142] is a differentiable hierarchical
pooling technique where the graph is coarsened by clustering
nodes after each layer. A mapping function is learned to map
each node to a cluster at the next layer, until the dimension
is sufficiently reduced for downstream graph classification.
A similar technique is used in this work, where the graph
is pooled successively until getting a final node embedding
capturing the whole graph information. Multiple alternatives
of random walk and embedding methods are benchmarked
on the ADFA-LD dataset, with a MLP or kNN as back-end
classifier.

3) HYBRID HOST AND NETWORK INTRUSION DETECTION

Although rarely evoked in current graph-based intrusion
detection works due to the lack of real-world datasets, some
researchers are interested in leveraging hybrid approaches,
where both host- and network-level data are taken into
consideration when building the graph. To our knowledge,
Li et al. [51] are the first authors to propose a graph deep
learning method that leverages both kinds of data to detect
complex attacks such as APTs. They propose a framework
that comprehensively captures the behaviors of the full APT
lifecycle by building an Intrahost Provenance Graph (IPG)
to capture host-based features, and an Interhost Interactive
Graph (IIG), that models all network-based communications
among hosts. The IPG is created using a similar heteroge-
neous graph as in previous works (i.e. interactions between
process, file or socket), whereas the IIG represents the hosts
as nodes and the edges are either network flows, authenti-
cation requests or DNS lookups, with heterogeneous feature
vectors. Both graphs are trained using different methods as
the graph structure and the semantic is not the same in
both cases. First, the embeddings of the IPG are trained
using a similar method as HAN (see Section II-C6) to deal
with the heterogeneity of the graph with meta-paths that
are aggregated together with attention. The resulting graph
embeddings are then fed into a deep autoencoder for unsu-
pervised anomaly detection. The goal is to compress the input
graph into a latent space and learn to reconstruct it using the

49132

low-dimension embeddings. By training the model to decode
normal graphs, the malicious graphs will be decoded with
different embeddings that may be detected in downstream
anomaly detection tasks. Specifically, the model is trained
using Mean Squared Error (MSE) loss, where the />-norm
is leveraged to measure the reconstruction error between
the reconstructed embeddings and the actual graph embed-
dings hg. The anomaly is then measured by a score that can
be compared to a threshold value or used as a ranking of the
most suspicious hosts:

s(hg) = ||Dec(Enc(hy)) — hg||2. (36)

Concerning the IIG, the graph is made of uniform nodes but
heterogeneous edges, thus a specific method is implemented
to deal with multiple edge features. The authors propose
an alternative to GAT, that considers the edge features by
learning an attention coefficient for specific feature channels.
For a given P-dimensional edge feature tensor E,, between
two nodes v and u, the p-th feature channel is denoted as
EP,. The attention score €b, for the edge (v, u) on the feature
channel p is measured as in GAT but also multiplied by
the p-th feature channel. The normalized attention score is
computed in Eq. 38 using softmax along all neighbors of
starting node v:

eb, = a’ ((Wh),, Wh,DE?,, (37)
po_ exp(o(€h))

o -)
M YN exp(o(€))))

where a is the weight attention vector, h; is the embedding
of a given node i and W is a weight matrix. N'(v) and o are
respectively the neighborhood of node v and the LeakyReLU
activation function. A final node embedding £, is obtained by
aggregating neighboring node embeddings, edge features and
corresponding attention score, for all feature channels, in this
way:

(38)

> oW, EL) | . (39)
ueN)

P
=150

where ||[{):1 is the concatenation operation along the P
edge feature dimensions. The IIG model is trained in a
self-supervised fashion using negative sampling by maxi-
mizing the anomaly score of edges between the malicious
hosts discovered in the IPG and by minimizing the anomaly
score of benign edges. Thus, the loss takes into consider-
ation the predictions of both IPG and IIG models. These
two methods have respectively been evaluated separately on
the StreamSpot and LANL datasets. However, the complete
architecture using both models has not yet been experimented
due to the lack of datasets.

4) HOST-BASED DATASETS

The extensive research that was undertaken in HIDS over
the last decade led to the emergence of large datasets that
researchers can leverage to build various representations for
downstream tasks. In this section, we describe the datasets

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

that were leveraged in the studied papers, also summarized in
Table 4.

DARPA TC [143]: DARPA TC dataset was created as
part of the DARPA Transparent Computing program, that
aimed to develop technologies to record and preserve the
provenance of systems for security and system research.
More precisely, multiple experiments involving APT attacks
have been conducted by the DARPA and the recorded prove-
nance system logs are, since then, publicly available. In most
approaches studied here, the data are transformed into prove-
nance graphs and the interactions between entities is learned
with graph representation learning.

StreamSpot [144]: This dataset hosted on GitHub [145]
is composed of 6 * 100 system call flow graphs derived
from 5 normal behavior scenarios and 1 attack scenario. The
normal behavior graphs are represented as benign syscall
flows of activities such as checking emails in Gmail, brows-
ing CNN.com, downloading files and watching videos on
YouTube. The attack scenario is made of malicious syscall
flows from a drive-by download attack triggered from a
malicious URL browsing that exploits a victim host and gains
root access. The dataset is by default graph-oriented, meaning
that it has been designed with the aim to be used as graph
structures and in a real-time environment. Multiple node
types exist such as socket, file or memory, whereas edges
represent actual system calls like read or fork.

Unicorn [118]: The Unicorn dataset consist of SC-1 and
SC-2 datasets, that are created in a private lab environment
following the cyber kill chain model. The system provenance
was captured with CamFlow during benign and attack activi-
ties and over the course of three days. Therefore, provenance
graphs can be intuitively built from these datasets.

BETH [146]: The BETH dataset provides more than
8 million data points collected from 23 honeypots in a net-
work. Attacks have been conducted and both network and
kernel-level host data were collected, labeled into benign,
unusual and evil classes. A graph can be built using the inter-
actions between events and processes available in logs [130].

ADFA-LD [147]: A host intrusion detection dataset based
on Linux system calls that was developed by the Aus-
tralian Defence Force Academy. All data were gathered
from hosts with normal background behaviors such as web
browsing or LaTeX document editing. A total of 5,925
examples are present in the dataset, already separated into
train/validation/attack sets, including 7 classes: Benign,
Hydra-FTP, Hydra-SSH, Adduser, Java-meterpreter, Meter-
preter, Web shell.

CERT [148]: The CERT Insider Threat Test Dataset is a
synthetic insider threat dataset provided by Carnegie Mellon
University [149]. In the last v6.2 release version, five scenar-
ios are proposed such as a user logging into another account
and searching for files, a user working after hours, etc. Five
types of entities exist in the dataset: LDAP, device, email, http
and logon with four to five features such as id, date, user,
pc, url. More than 135M operations with 101.4GB of data
are recorded from the activity of 4,000 users with 46 distinct
roles.

VOLUME 11, 2023

V. ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

The use of ML algorithms in intrusion detection is presenting
new possibilities for defense, but also new risks. Studies have
demonstrated that these learning models can be susceptible to
adversarial attacks, which manipulate input data in order to
make it harder for the model to detect threats. To better under-
stand the challenges posed by adversarial attacks on graph
based intrusion detection, in this section, we will review the
existing literature on this topic.

A. BACKGROUND ON ADVERSARIAL ATTACKS AGAINST
INTRUSION DETECTION

Adversarial attacks refer to the act of introducing small
changes to data with the intention of deceiving a detection
model, leading it to produce inaccurate results that bene-
fit the attacker. These changes are designed to be unde-
tectable by humans. In computer vision, this objective is
relatively easy to achieve by modifying a small number of
pixels [150]. However, for intrusion detection, the efficacy
of adversarial attacks is highly dependent on the specific
domain, and what works well in one domain may not work in
another [151], [152].

Adpversarial attacks can target both the training and testing
phases of the ML model. During training, an attacker may rely
on poisoning attacks to modify the training data to influence
the detection performance of the model. Formally, given a
training dataset D = {(x1,y1), ..., (xn, y»)} and a model
f, the attacker seeks to modify D to obtain a new dataset
D' = {(x],y1). ..., (x}, yn)}, where x| ~ x; for all i, such that
the performance of f on D’ is degraded or manipulated in a
specific way. This can be achieved, for instance, by injecting
new samples or by flipping the labels of some examples [153].

In contrast, during inference (i.e., when the model is
already trained), an attacker may leverage evasion attacks to
modify the input data and deceive the model. Precisely, given
an input sample x and a model f, the attacker seeks to find
a perturbed sample x” such that f(x") # f(x) and x’ ~ x.
The goal of evasion attacks is to cause the model to misclas-
sify malicious samples as legitimate. Evasion attacks can be
particularly challenging to detect and defend against, as they
can take many forms and can be customized to the specific
model and scenario. Authors in [154] demonstrated that by
altering the payload size of packets and decreasing the packet
rate, attackers can create adversarial examples against an
NIDS implemented on a Software-Defined Network (SDN)
for a DDoS attack. Another approach [152] involves applying
legitimate transformations, such as dividing a packet into
multiple packets or modifying the delay between packets,
to mislead the NIDS while preserving the underlying network
protocols.

B. GRAPH-BASED ADVERSARIAL ATTACKS

Adversarial attacks on graph-based models such as GNNs
involve manipulating the graph representation of data to
mislead the model’s predictions. Developing robust defense
mechanisms has thus become a necessity for the use of
these models in real-life scenarios. Furthermore, as the threat

49133

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

TABLE 4. Datasets used by each host-based paper.

Paper Datasets

Performance

Log2vec [22]
DeepHunter [15]
Lvetal. [47]
THREATRACE [48]
APT-KGL [128]
PROV-GEM [129]

CERT, LANL 2015
DARPA TC
DARPA TC, Private

DARPA TC, Private

StreamSpot, Unicorn

OC-DHetGNN [121] Private
Lakha et al. [130] BETH
Hu et al. [20] ADFA-LD

Lietal. [51]

StreamSpot, Unicorn, DARPA TC

StreamSpot, LANL 2015

93%, 91% AUC
95.1-100% AUC
83.14%, 95.3% macro-F1
99%, 93-95%, 69-95% F1
87.04%, 97.8% macro-F1
97%, 89% F1

96.3% AUC

93.2%, 95.1% AUC
95.55% AUC

98%, 83% F1

landscape is constantly evolving, ongoing research is neces-
sary to keep up with the development of more advanced and
sophisticated attacks.

In paper [155], a novel approach is introduced to generate
Hierarchical Adversarial Attacks (HAA) in order to specif-
ically target GNN-based IDSs in Internet of Things (IoT)
networks. The proposed method uses a saliency map tech-
nique [156] to identify critical features that can be modified
with minimal perturbations. Additionally, a hierarchical node
selection algorithm based on random walk with restart is
employed to select the most vulnerable nodes with high attack
priority. This adversarial attack works in black-box scenario,
meaning that only the output prediction is known by the
attacker. The proposed HAA method is evaluated using the
UNSW-SOSR2019 dataset [157], and results show that it
can reduce classification precision by more than 30%. The
findings suggest that this approach is an effective strategy
for implementing level-aware black-box adversarial attacks
against GNN-based IDSs in IoT environment.

The authors of paper [54] presented in Section III-Bl,
verify the robustness of their GNN model against flow-based
adversarial attacks. They notably modify flow-level features
to test the robustness of each system, such as increment-
ing the packet size of attack-related flows, or increasing
the inter-packet arrival times, to serve traffic at lower rates.
After experiments, the authors claim that their proposed
GNN-based NIDS is more robust than traditional ML-based
NIDS for several reasons. Indeed, traditional flow-based
ML-based NIDS can be highly vulnerable to variations in
individual flow features, as these methods solely rely on
flow-level features to detect attacks. However, GNN-based
NIDSs are able to capture the structural flow patterns of
attacks, which remain unchanged even after altering flow
features. This allows the model to remain robust in the face
of such adversarial attacks. As a result, the proposed GNN
model achieves similar accuracy to state-of-the-art ML-based
NIDS, but benefits of a more robust prediction against various
attacks.

In THREATRACE [48] (see Section IV-B1), the robust-
ness of the GraphSAGE-based model is evaluated against

49134

adversarial attacks on host-based intrusion detection. These
attacks aim to evade the detection of malicious nodes by
finding a small perturbation on the node’s features, that is
constructed with edges between the node and its neighbors.
During the attacks, the feature should thus evade detection
while keeping the original malicious function intact. Attacks
are developed using optimization-based evasion, that are
designed to find the optimal perturbation while minimizing
the cost. The authors evaluate the robustness of the model
using two settings: one considers that the attacker knows
the training data, and the other assumes the attacker knows
the model. In both cases, THREATRACE maintains a stable
false negative rate against these optimization-based evasion
attacks, which further demonstrates the robustness capabili-
ties of GNN-based detection systems.

V1. DISCUSSION AND FUTURE DIRECTIONS

Representing host and network data as graphs results in
interesting proprieties that seem promising for cybersecurity
applications. Graph representation learning techniques such
as GNNs are strong candidates to leverage these graphs and
learn robust representations that can detect complex attacks
and transcend obfuscation techniques. Indeed, the literature
reviewed in Section V-B demonstrates the robustness of
GNN-based IDS faced with adversarial attacks, thanks to the
robust structure of graphs, challenging to be bypassed by
attackers. Furthermore, in Sections IIT and IV, we showed that
in most cases, these GNN models outperform traditional ML
algorithms and usually surpass deeper models based on DL,
which manifests the powerful faculties of GNNs for intrusion
detection.

Despite relatively poor existing literature compared to
other domains, applications of GNNs to cybersecurity, and
especially intrusion detections, holds great promise. Conse-
quently, we provide future directions to improve research in
this area and to further democratize the use of GNNs in attack
detection applications.

o We think that the temporal dimension of attacks is a

key element to consider for their detection. Indeed, all
intrusions take place on a given system spread over

VOLUME 11, 2023

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

time, and the temporal distance between events should
also be learned by the model in order to further pro-
file the behavior of attackers. Future research could
focus on the incorporation of temporal information
in the input data, in order to fully leverage powerful
structures such as spatio-temporal graphs and dynamic
graphs.

Obtaining labeled samples from real-life attacks such
as APTs remains a main bottleneck in the development
of robust detection systems based on ML. For this rea-
son, we think that future research should focus on self-
supervised techniques, where the inherent structure of
graphs can be leveraged for self-training, or weakly-
supervised learning, where even noisy attack behaviors
could be considered. Unsupervised methods based on
anomaly detection could also be further explored, but we
believe that they are not sufficient for attack detection,
as an anomaly is not necessarily an attack, leading to a
large number of false positives.

As justified by current literature, the representation of
network- and host-based systems as graphs is espe-
cially concentrated around two graph structures, which
are respectively network flows (leveraged by ~78% of
network papers studied in this survey) and provenance
graphs (~58% of host papers). Consequently, other data
such as network sessions and system calls could be
further explored, in an attempt to obtain more effi-
cient graph representations for the detection of specific
attacks.

Although most papers focus on the innovation of new
models, we believe that important efforts should also
be dedicated to the development of large datasets that
represent real-life scenarios. Indeed, we showed that
a number of works achieve near-perfect detection per-
formance on either small noise-free datasets or on pri-
vate enterprise data. However, intrusion detection is a
hard problem and datasets employed for their detec-
tion should be larger and contain various examples in
order to achieve reliable performance on a variety of
unseen attacks. We therefore think that larger datasets
are required to continue the constant progress in this
field.

Finally, it is important to note that there is a gap between
the research implementations presented in papers and
the actual applications in production environments.
Scaling GNN classifiers to large graphs can present
significant challenges, as the graph may no longer fit
into memory, and computation time can become infea-
sible. To address these engineering issues, researchers
have proposed graph sampling methods to divide the
graph into manageable batches and distribute the train-
ing across multiple workers [57]. Additionally, model
interpretability is a critical concern for many appli-
cations, including those in cybersecurity [67], [158].
Despite their importance, these topics remain less dis-
cussed in current literature and represent areas for future
research.

VOLUME 11, 2023

VIi. CONCLUSION

The recent surge of interest in graph machine learning, in par-
ticular GNNs, has led to a plethora of applications across
various domains. Although the use of GNNs in intrusion
detection is relatively new, existing research has demon-
strated that representing systems as graph structures offers
properties that can enhance the accuracy of detection models.
In this paper, we provide knowledge on the extraction of
graph structures along with the training of GNN models for
downstream classification tasks on both network-based and
host-based intrusion detection. We comprehensively review
and categorize the state-of-the-art approaches and the datasets
used, highlighting the potential of GNNs in generating effi-
cient embeddings for robust detection of various types of
intrusions. Finally, we discuss the challenges that may arise
when using GNNs in intrusion detection and propose direc-
tions for future research.

REFERENCES

(11

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, ‘A detailed inves-
tigation and analysis of using machine learning techniques for intrusion
detection,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 686-728,
1st Quart., 2019.

M. Alkasassbeh and M. Almseidin, ‘“Machine learning methods for
network intrusion detection,” 2018, arXiv:1809.02610.

H. Liu and B. Lang, “Machine learning and deep learning methods for
intrusion detection systems: A survey,” Appl. Sci., vol. 9, no. 20, p. 4396,
Oct. 2019.

A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
learning aided static malware analysis: A survey and tutorial,”
in Cyber Threat Intelligence. Cham, Switzerland: Springer, 2018,
pp. 7-45.

D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning
for detection and classification of malware: Research developments,
trends and challenges,” J. Netw. Comput. Appl., vol. 153, Mar. 2020,
Art. no. 102526.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,
Jul. 2006.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, ““Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, no. 12, pp. 3371-3408, 2010.

Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” Handbook Brain Theory Neural Netw. vol. 3361, no. 10,
p. 1995, Apr. 2015.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep
learning based attack detection for cyber-physical system cybersecurity:
A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp.377-391,
Mar. 2022.

Y. Wu, D. Wei, and J. Feng, ““Network attacks detection methods based on
deep learning techniques: A survey,” Secur. Commun. Netw., vol. 2020,
pp. 1-17, Aug. 2020.

V.-A. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran,
and D.Phung, ‘“ReGVD: Revisiting graph neural networks
for vulnerability detection,” in Proc. IEEE/ACM 44th Int.
Conf. Softw. Eng., Companion (ICSE-Companion), May 2022,
pp. 178-182.

C. Lin, Y. Xu, Y. Fang, and Z. Liu, “VulEye: A novel graph neural
network vulnerability detection approach for PHP application,” Appl.
Sci., vol. 13, no. 2, p. 825, Jan. 2023.

Y. Zhang, C. Yang, K. Huang, and Y. Li, “Intrusion detection of
industrial Internet-of-Things based on reconstructed graph neural net-
works,” IEEE Trans. Netw. Sci. Eng., early access, Jun. 21, 2022, doi:
10.1109/TNSE.2022.3184975.

49135

http://dx.doi.org/10.1109/TNSE.2022.3184975

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

49136

R. Wei, L. Cai, L. Zhao, A. Yu, and D. Meng, “DeepHunter: A graph
neural network based approach for robust cyber threat hunting,” in Proc.
Int. Conf. Secur. Privacy Commun. Syst. Cham, Switzerland: Springer,
Sep. 2021, pp. 3-24.

M. R. Norouzian, P. Xu, C. Eckert, and A. Zarras, “Hybroid: Toward
Android malware detection and categorization with program code and
network traffic,” in Proc. Int. Conf. Inf. Secur.,, Cham, Switzerland:
Springer, 2021, pp. 259-278.

C. Liu, B. Li, J. Zhao, Z. Zhen, X. Liu, and Q. Zhang, “FewM-
HGCL: Few-shot malware variants detection via heterogeneous graph
contrastive learning,” IEEE Trans. Depend. Secure Comput., early access,
Oct. 1, 2022, doi: 10.1109/TDSC.2022.3216902.

F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks:
A review of algorithms and applications,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 4, no. 2, pp. 95-107, Apr. 2020.

R. Paudel and H. H. Huang, “Pikachu: Temporal walk based dynamic
graph embedding for network anomaly detection,” in Proc. NOMS
IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2022, pp. 1-7.

Z. Hu, L. Liu, H. Yu, and X. Yu, “Using graph representation in host-
based intrusion detection,” Secur. Commun. Netw., vol. 2021, pp. 1-13,
Dec. 2021.

B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph
AIS,” in Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses (RAID),
2020, pp. 257-268.

F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Nov. 2019, pp. 1777-1794.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701-710.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 855-864.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representation
learning with rich text information,” in Proc. 24th Int. Joint Conf. Artif.
Intell., 2015, pp. 1-7.

C. Tu, “Max-margin deepwalk: Discriminative learning of network rep-
resentation,” in Proc. 1JCAI, 2016, pp. 3889-3895.

Z. Yang, W. Cohen, and R. Salakhudinov, ““‘Revisiting semi-supervised
learning with graph embeddings,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 40-48.

G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Dynamic network embeddings: From random walks to temporal
random walks,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018,
pp. 1085-1092.

F. Béres, D. M. Kelen, R. Pilovics, and A. A. Benczir, ‘“Node embed-
dings in dynamic graphs,” Appl. Netw. Sci., vol. 4, no. 1, pp. 1-25,
Dec. 2019.

Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive repre-
sentation learning in temporal networks via causal anonymous walks,”
2021, arXiv:2101.05974.

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017, arXiv:1709.05584.

P. Velickovic, W. Fedus, W. L. Hamilton, P. Lid, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. ICLR, vol. 2, no. 3, 2019,
p. 4.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 29, 2016, pp. 3844-3852.

(2021). How to Get Started With Graph Machine Learning. Accessed:
Feb. 20, 2023. [Online]. Available: https://gordicaleksa.medium.com/
M. Gori, G. Monfardini, and F. Scarselli, “°A new model for learning in
graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., Jul. 2005,
pp. 729-734.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, Jan. 2009.

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 1263-1272.

P. Battaglia, “Interaction networks for learning about objects, rela-
tions and physics,” in Proc. Adv. Neural Inf. Process. Syst., 29, 2016,
pp. 4509-4517.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘“Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

'W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1025-1035.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

J. Zhao, X. Liu, Q. Yan, B. Li, M. Shao, H. Peng, and L. Sun, “Automat-
ically predicting cyber attack preference with attributed heterogeneous
attention networks and transductive learning,” Comput. Secur., vol. 102,
Mar. 2021, Art. no. 102152.

J. Zhao, Q. Yan, X. Liu, B. Li, and G. Zuo, “Cyber threat intelligence
modeling based on heterogeneous graph convolutional network,” in
Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses (RAID), 2020,
pp. 241-256.

M. Lv, C. Dong, T. Chen, T. Zhu, Q. Song, and Y. Fan, “A het-
erogeneous graph learning model for cyber-attack detection,” 2021,
arXiv:2112.08986.

S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “THREATRACE: Detecting and tracing host-based threats
in node level through provenance graph learning,” IEEE Trans. Inf.
Forensics Security, vol. 17, pp. 3972-3987, 2022.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Het-
erogeneous graph attention network,” in Proc. World Wide Web Conf.,
May 2019, pp. 2022-2032.

E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-E: A
self-supervised network intrusion detection system based on graph neural
networks,” Knowl.-Based Syst., vol. 258, Dec. 2022, Art. no. 110030.
Z.Li, X. Cheng, L. Sun, J. Zhang, and B. Chen, “A hierarchical approach
for advanced persistent threat detection with attention-based graph neural
networks,” Secur. Commun. Netw., vol. 2021, pp. 1-14, May 2021.
(2023). HTTPS Encryption on the Web Google Transparency Report.
Accessed: Dec. 23, 2022. [Online]. Available: https://transparencyreport.
google.com/https/overview ?hl=en

T. Radivilova, L. Kirichenko, D. Ageyev, M. Tawalbeh, and V. Bulakh,
“Decrypting SSL/TLS traffic for hidden threats detection,” in Proc.
IEEE 9th Int. Conf. Dependable Syst., Services Technol. (DESSERT),
May 2018, pp. 143-146.

D. Pujol-Perich, J. Suarez-Varela, A. Cabellos-Aparicio, and
P. Barlet-Ros, “Unveiling the potential of graph neural networks
for robust intrusion detection,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 49, no. 4, pp. 111-117, Jun. 2022.

L. Chang and P. Branco, “‘Graph-based solutions with residuals for intru-
sion detection: The modified E-GraphSAGE and E-ResGAT algorithms,”
2021, arXiv:2111.13597.

F. Harary and R. Z. Norman, “Some properties of line digraphs,” Ren-
diconti del Circolo Matematico di Palermo, vol. 9, no. 2, pp. 161-168,
May 1960.

1. J. King and H. H. Huang, “EULER: Detecting network lateral move-
ment via scalable temporal link prediction,” ACM Trans. Privacy Secur.,
Mar. 2023.

Zeek is a Powerful Network Analysis Framework That is Much Different
From the Typical IDS You May Know. Accessed: Nov. 12,2023. [Online].
Available: https://github.com/zeek/zeek

(2022). Openargus Home. Accessed: Nov. 12, 2022. [Online]. Available:
https://openargus.org

Wireshark Download. Accessed: Nov. 12, 2023. [Online]. Available:
https://www.wireshark.org/download.html

Cisco/Joy: A Package for capturing, Analyzing Network Flow Data,
Intraflow Data for Network Research Forensics, and Security
Monitoring. Accessed: Nov. 12, 2022. [Online]. Available: https://
github.com/cisco/joy

VOLUME 11, 2023

http://dx.doi.org/10.1109/TDSC.2022.3216902

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Splunk | The Key to Enterprise Resilience. Accessed: Nov. 12, 2022.
[Online]. Available: https://www.splunk.com

Snort Network Intrusion Detection and Prevention System. Accessed:
Nov. 12, 2022. [Online]. Available: https://www.snort.org

Home Suricata. Accessed: Nov. 12, 2022. [Online]. Available:
https://suricata.io

J. Zhou, Z. Xu, A. M. Rush, and M. Yu, “Automating botnet detection
with graph neural networks,” 2020, arXiv:2003.06344.

B. Zhang, J. Li, C. Chen, K. Lee, and I. Lee, “A practical botnet traffic
detection system using GNN,” in Proc. Int. Symp. Cyberspace Saf. Secur.
Cham, Switzerland: Springer, 2021, pp. 66-78.

W. Weng Lo, G. K. Kulatilleke, M. Sarhan, S. Layeghy, and M. Portmann,
“XG-BoT: An explainable deep graph neural network for botnet detection
and forensics,” 2022, arXiv:2207.09088.

J. Carpenter, J. Layne, E. Serra, and A. Cuzzocrea, “Detecting botnet
nodes via structural node representation learning,” in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2021, pp. 5357-5364.

J. Zhao, X. Liu, Q. Yan, B. Li, M. Shao, and H. Peng, “Multi-attributed
heterogeneous graph convolutional network for bot detection,” Inf. Sci.,
vol. 537, pp. 380-393, Oct. 2020.

A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and
I. Refanidis, “A graph neural network method for distributed anomaly
detection in IoT,” Evolving Syst., vol. 12, no. 1, pp. 19-36, Mar. 2021.
W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann,
“E-GraphSAGE: A graph neural network based intrusion detection sys-
tem for IoT,” in Proc. NOMS IEEE/IFIP Netw. Oper. Manage. Symp.,
Apr. 2022, pp. 1-9.

Y. Yang and L. Wang, “LGANet: Local graph attention network for peer-
to-peer botnet detection,” in Proc. 3rd Int. Conf. Adv. Comput. Technol.,
Inf. Sci. Commun. (CTISC), Apr. 2021, pp. 31-36.

J. Lan, J. Z. Lu, G. G. Wan, Y. Y. Wang, C. Y. Huang, S. B. Zhang,
Y. Y. Huang, and J. N. Ma, “E-minBatch GraphSAGE: An industrial
Internet attack detection model,” Secur. Commun. Netw., vol. 2022,
pp. 1-12, Jul. 2022.

Y. Li, R. Li, Z. Zhou, J. Guo, W. Yang, M. Du, and Q. Liu, “GraphD-
DoS: Effective DDoS attack detection using graph neural networks,” in
Proc. IEEE 25th Int. Conf. Comput. Supported Cooperat. Work Design
(CSCWD), May 2022, pp. 1275-1280.

Y. Cao, H. Jiang, Y. Deng, J. Wu, P. Zhou, and W. Luo, “Detecting and
mitigating DDoS attacks in SDN using spatial-temporal graph convolu-
tional network,” IEEE Trans. Depend. Secure Comput., vol. 19, no. 6,
pp. 3855-3872, Nov. 2022.

S. Govindaraju, W. V. R. Vinisha, F. H. Shajin, and D. A. Sivasakthi,
“Intrusion detection framework using auto-metric graph neural network
optimized with hybrid woodpecker mating and capuchin search optimiza-
tion algorithm in IoT network,” Concurrency Comput., Pract. Exper.,
vol. 34, no. 24, Nov. 2022, Art. no. €7197.

F. Liu, Y. Wen, Y. Wu, S. Liang, X. Jiang, and D. Meng, ‘“MLTracer:
Malicious logins detection system via graph neural network,” in Proc.
IEEE 19th Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Dec. 2020, pp. 715-726.

Y. Fang, C. Wang, Z. Fang, and C. Huang, “LMTracker: Lateral move-
ment path detection based on heterogeneous graph embedding,” Neuro-
computing, vol. 474, pp. 37-47, Feb. 2022.

X. Sun and J. Yang, “HetGLM: Lateral movement detection by dis-
covering anomalous links with heterogeneous graph neural network,” in
Proc. IEEE Int. Perform., Comput., Commun. Conf. (IPCCC), Nov. 2022,
pp. 404-411.

G. Li, M. M’/uller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs
go asdeep as CNNs?”” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9267-9276.

G. Li, M. Miiller, B. Ghanem, and V. Koltun, “Training graph neural
networks with 1000 layers,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 6437-6449.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNEx-
plainer: Generating explanations for graph neural networks,” in Proc.
Adv. Neural Inf. Process. Syst., 32,2019, pp. 9244-9255.

J. Layne and E. Serra, “Inferential SIR-GN: Scalable graph representa-
tion learning,” 2021, arXiv:2111.04826.

I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intru-
sion detection systems: Taxonomy, solutions and open issues,” Inf. Sci.,
vol. 239, pp. 201-225, Aug. 2013.

VOLUME 11, 2023

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

P. W. Battaglia, “‘Relational inductive biases, deep learning, and graph
networks,” 2018, arXiv:1806.01261.

B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “PeerRush: Mining
for unwanted p2p traffic,” in Proc. Int. Conf. Detection Intrusions Mal-
ware, Vulnerability Assessment, Berlin, Germany: Springer, Jul. 2013,
pp. 62-82,2013.

MAWI Working Group Traffic Archive. Accessed: Jul. 2, 2023. [Online].
Available: http://mawi.wide.ad.jp/mawi/

M. Sarhan, S. Layeghy, and M. Portmann, “Towards a standard feature
set for network intrusion detection system datasets,” Mobile Netw. Appl.,
vol. 27, no. 1, pp. 357-370, Feb. 2022.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” 2017,
arXiv:1709.04875.

Hping3(8) Linux Man Page. Accessed: Oct. 1, 2023. [Online]. Available:
https://linux.die.net/man/8/hping3

X. Song, M. Mao, and X. Qian, “Auto-metric graph neural network
based on a meta-learning strategy for the diagnosis of Alzheimer’s dis-
ease,” IEEE J. Biomed. Health Informat., vol. 25, no. 8, pp. 3141-3152,
Aug. 2021.

C. Finn, P. Abbeel, and S. Levine, ‘“Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1126-1135.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Proc. Adv. Neural Inf. Process. Syst., 26,2013, pp. 3111-3119.

Y. Dong, N. V. Chawla, and A. Swami, ‘“metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 135-144.

(2009). The CAIDA Anonymized Internet Traces Dataset.
Accessed: Jul. 2, 2023. [Online]. Available: https://www.caida.org/
data/passive/passive_dataset.xml

S. Garcfa, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical comparison
of botnet detection methods,” Comput. Secur., vol. 45, pp. 100-123,
Sep. 2014.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘“Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108-116.
(2017). Applications | Research | Canadian Institute for Cybersecurity
| UNB. Accessed: Jul. 2, 2023. [Online]. Available: https://www.unb.
ca/cic/research/applications.html

(2018). IDS 2018 | Datasets | Research | Canadian Institute for
Cybersecurity | UNB. Accessed: Jul. 2, 2023. [Online]. Available:
https://www.unb.ca/cic/datasets/ids-2018.html

N. Moustafa and J. Slay, “UNSW-NBI15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1-6.
Z.Zoghi and G. Serpen, “UNSW-NB15 computer security dataset: Anal-
ysis through visualization,” 2021, arXiv:2101.05067.

C. Wheelus, E. Bou-Harb, and X. Zhu, “Tackling class imbalance in
cyber security datasets,” in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI),
Jul. 2018, pp. 229-232.

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the Internet of Things for
network forensic analytics: Bot-IoT dataset,” Future Gener. Comput.
Syst., vol. 100, pp. 779-796, Nov. 2019.

N. Moustafa, “A new distributed architecture for evaluating Al-based
security systems at the edge: Network TON_IoT datasets,” Sustain. Cities
Soc., vol. 72, Sep. 2021, Art. no. 102994.

M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Netflow
datasets for machine learning-based network intrusion detection sys-
tems,” in Proc. Int. Conf. Big Data Technol. Appl., Int. Wireless Internet
Conf. Cham, Switzerland: Springer, 2021, pp. 117-135.

nProbe: An Extensible NetFlow v5/v9/IPFIX Probe for IPv4/v6.
Accessed: Feb. 20, 2023. [Online]. Available: https://www.ntop.org/
products/netflow/nprobe/

A. H. Lashkari, G. Kaur, and A. Rahali, “DIDarknet: A contemporary
approach to detect and characterize the darknet traffic using deep image
learning,” in Proc. 10th Int. Conf. Commun. Netw. Secur., Nov. 2020,
pp. 1-13.

49137

IEEE Access

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

[108]

[109]

[110]

[111]

[112

[113

[114]

[115

[116]

[117]

[118]

[119]

[120]

[121

[122

[123

[124]

[125

[126

[127]

[128]

[129]

[130]

[131]

49138

A.D. Kent, “Cyber security data sources for dynamic network research,”
in Dynamic Networks and Cyber-Security. Singapore: World Scientific,
2016, pp. 37-65.

R. Arantes, C. Weir, H. Hannon, and M. Kulseng, “Operationally
transparent cyber (OPTC),” IEEE Dataport, to be published, doi:
10.21227/edq8-nk52.

(2022). Data Model | MITRE Cyber Analytics Repository. Accessed:
Jul. 2, 2023. [Online]. Available: https://car.mitre.org/data_model/

C. T. Giménez, A. P. Villegas, and G. A. Marafién, “Http data
set CSIC 2010,” in Information Security Institute of CSIC (Span-
ish Research National Council), vol. 64, 2010. [Online]. Available:
https://www.tic.itefi.csic.es/dataset/

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘“Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion
detection,” Comput. Secur., vol. 31, no. 3, pp. 357-374, May 2012.

C. Laprade, B. Bowman, and H. H. Huang, “PicoDomain: A compact
high-fidelity cybersecurity dataset,” 2020, arXiv:2008.09192.

D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Col-
lecting high-fidelity whole-system provenance,” in Proc. 28th Annu.
Comput. Secur. Appl. Conf., Dec. 2012, pp. 259-268.

D. Tariq, M. Ali, and A. Gehani, “Towards automated collection
of application-level data provenance,” in Proc. TaPP, vol. 12, 2012,
p. 16.

A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, ‘“Differential
provenance: Better network diagnostics with reference events,” in Proc.
14th ACM Workshop Hot Topics Netw., Nov. 2015, pp. 1-7.

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in Proc. 23rd ACM Symp. Operating Syst.
Princ., Oct. 2011, pp. 295-310.

X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “UNICORN:
Runtime provenance-based detector for advanced persistent threats,”
2020, arXiv:2001.01525.

M. Zipperle, F. Gottwalt, E. Chang, and T. Dillon, “Provenance-based
intrusion detection systems: A survey,” ACM Comput. Surv., vol. 55,
no. 7, pp. 1-36, Jul. 2023.

Z.Li, Q. A. Chen, R. Yang, Y. Chen, and W. Ruan, “Threat detection and
investigation with system-level provenance graphs: A survey,” Comput.
Secur., vol. 106, Jul. 2021, Art. no. 102282.

Z. Huang, Y. Gu, and Q. Zhao, “One-class directed heterogeneous graph
neural network for intrusion detection,” in Proc. 6th Int. Conf. Innov.
Artif. Intell. (ICIAI), Mar. 2022, pp. 178-184.

(2010). The Open Provenance Model. Accessed: Dec. 23, 2022. [Online].
Available: https://openprovenance.org/opm

(2013). PROV-Overview. Accessed: Dec. 23, 2022. [Online]. Available:
https://www.w3.org/TR/prov-overview

(2018). CamFlow: Practical Whole-System Provenance for Linux.
Accessed: Dec. 23, 2022. [Online]. Available: https://camflow.org
(2023). Sysmon Sysinternals | Microsoft Learn. Accessed:
Dec. 23, 2022. [Online]. Available: https://learn.microsoft.com/en-
gb/sysinternals/downloads/sysmon

Auditd(8): Audit Daemon Linux Man Page. Accessed: Dec. 23, 2022.
[Online]. Available: https://linux.die.net/man/8/auditd

M. Kapoor, J. Melton, M. Ridenhour, T. Moyer, and S. Krishnan, “Flurry:
A fast framework for provenance graph generation for representation
learning,” in Proc. 31st ACM Int. Conf. Inf. Knowl. Manage., Oct. 2022,
pp. 4887-4891.

T. Chen, C. Dong, M. Lv, Q. Song, H. Liu, T. Zhu, K. Xu, L. Chen,
S.Ji,and Y. Fan, “APT-KGL: An intelligent APT detection system based
on threat knowledge and heterogeneous provenance graph learning,”
IEEE Trans. Depend. Secure Comput., early access, Dec. 26, 2022, doi:
10.1109/TDSC.2022.3229472.

M. Kapoor, J. Melton, M. Ridenhour, S. Krishnan, and T. Moyer, ‘“PROV-
GEM: Automated provenance analysis framework using graph embed-
dings,” in Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2021, pp. 1720-1727.

B. Lakha, S. L. Mount, E. Serra, and A. Cuzzocrea, ‘““Anomaly detection
in cybersecurity events through graph neural network and transformer
based model: A case study with BETH dataset,” in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2022, pp. 5756-5764.

Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “SimGNN:
A neural network approach to fast graph similarity computation,”
in Proc. 12th ACM Int. Conf. Web Search Data Mining, Jan. 2019,
pp. 384-392.

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

R. Socher, D. Chen, C. D. Manning, and A. Ng, “‘Reasoning with neural
tensor networks for knowledge base completion,” in Proc. Adv. Neural
Inf. Process. Syst., 2013, pp. 926-934.

Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter, and H. Chen, ““You are what you do: Hunting
stealthy malware via data provenance analysis,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2020, pp. 1-17.

E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 1035-1044.

M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285-1298.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. V. D. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” in Proc. Eur. Semantic Web Conf. Cham, Switzerland: Springer,
2018, pp. 593-607.

C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Cheng, Y. Chen,
S. Cheng, and X. Chen, “A practical real-time APT detection system with
high accuracy and efficiency,” IEEE Trans. Depend. Secure Comput.,
vol. 19, no. 1, pp. 551-565, Jan. 2022.

P. Groth and L. Moreau, “PROV-overview. An overview of the PROV
family of documents,” World Wide Web Consortium, Apr. 2013.

J. Oliver, C. Cheng, and Y. Chen, “TLSH—A locality sensitive hash,”
in Proc. 4th Cybercrime Trustworthy Comput. Workshop, Nov. 2013,
pp. 7-13.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?”” 2018, arXiv:1810.00826.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Miiller, and M. Kloft, “Deep one-class classification,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 4393-4402.

Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4805—4815.

(2023). Transparent Computing. Accessed: Jun. 2, 2023. [Online]. Avail-
able: https://www.darpa.mil/program/transparent-computing

X. Han, “Streamspot dataset, Harvard dataverse,” Harvard Univ.,
Cambridge, MA, USA, Tech. Rep., 2018, doi: 10.7910/DVN/83KYJY.
(2016). Sbustreamspot/Sbustreamspot-Data: Datasets Used in the
StreamSpot Experiments. Accessed: Jun. 2, 2023. [Online]. Available:
https://github.com/sbustreamspot/sbustreamspot-data

K. Highnam, K. Arulkumaran, Z. Hanif, and N. R. Jennings, “BETH
dataset: Real cybersecurity data for anomaly detection research,” TRAIN-
ING, vol. 763, pp. 1-8, Jan. 2021.

G. Creech and J. Hu, ““A semantic approach to host-based intrusion detec-
tion systems using contiguousand discontiguous system call patterns,”
IEEE Trans. Comput., vol. 63, no. 4, pp. 807-819, Apr. 2014.

J. Glasser and B. Lindauer, ““Bridging the gap: A pragmatic approach to
generating insider threat data,” in Proc. IEEE Secur. Privacy Workshops,
May 2013, pp. 98-104.

(2020). Insider Threat Test Dataset. Accessed: Jun. 2, 2023.
[Online]. Available: https://kilthub.cmu.edu/articles/dataset/
Insider_Threat_Test_Dataset/12841247/1

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828-841, Oct. 2019.

G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and M. Cola-
janni, “Modeling realistic adversarial attacks against network intrusion
detection systems,” Digit. Threats, Res. Pract., vol. 3, no. 3, pp. 1-19,
Sep. 2022.

M. J. Hashemi, G. Cusack, and E. Keller, “Towards evaluation of NIDSs
in adversarial setting,” in Proc. 3rd ACM CoNEXT Workshop Big DAta,
Mach. Learn. Artif. Intell. Data Commun. Netw., Dec. 2019, pp. 14-21.
M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in Proc. 13th Int. Conf. Artif. Intell. Statist., JMLR Workshop
Conf., 2010, pp. 405-412.

J. Aiken and S. Scott-Hayward, ““Investigating adversarial attacks against
network intrusion detection systems in SDNs,” in Proc. IEEE Conf. Netw.
Function Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2019,
pp. 1-7.

X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, and K. I.-K. Wang, “Hier-
archical adversarial attacks against graph-neural-network-based IoT net-
work intrusion detection system,” IEEE Internet Things J., vol. 9, no. 12,
pp- 9310-9319, Jun. 2022.

VOLUME 11, 2023

http://dx.doi.org/10.21227/edq8-nk52
http://dx.doi.org/10.1109/TDSC.2022.3229472
http://dx.doi.org/10.7910/DVN/83KYJY

T. Bilot et al.: Graph Neural Networks for Intrusion Detection: A Survey

IEEE Access

[156] M. Ahmadi, M. Hajabdollahi, N. Karimi, and S. Samavi, ‘“Context-aware
saliency map generation using semantic segmentation,” in Proc. Electr.
Eng. (ICEE), Iranian Conf., May 2018, pp. 616-620.

[157] (2019). Data Collected for ACM SOSR 2019/Attack and Benign
Data. Accessed: Feb. 20, 2023. [Online]. Available: https://iotanalytics.
unsw.edu.au/attack-data.html

[158] H. He, Y. Ji, and H. H. Huang, “Illuminati: Towards explaining graph
neural networks for cybersecurity analysis,” in Proc. IEEE 7th Eur. Symp.
Secur. Privacy (EuroS&P), Jun. 2022, pp. 74-89.

TRISTAN BILOT received the M.Sc. degree in
computer security and systems from the EPITA
Engineering School, France, in 2022. He is cur-
rently pursuing the Ph.D. degree with the ROCS
Team (LISN), Université Paris-Saclay. He is also
a Research Scientist with Iriguard as part of his
thesis. At EPITA, he was jointly with LSE on
the applications of graph machine learning to the
detection of phishing websites. Between 2019 and

? 2022, he gained professional experience by work-
ing as a Software Engineer and a Data Engineer apprentice within the retail
corporation Carrefour. His current research interests include the applications
of deep learning and graph representation learning to cybersecurity.

NOUR EL MADHOUN received the joint master’s
degree in networks/computer science from Sor-
bonne Université and Télécom ParisTech, in 2014,
and the Ph.D. degree in cybersecurity/computer
science from Sorbonne Université, in 2018. She is
currently an Associate Professor in computer sci-
ence, cybersecurity, and blockchain and the Head
of the Engineering Cycle “Digital Security and
Networks”” at ISEP - Engineering School in Paris.
She is also an Associate Researcher at Sorbonne
Université/LIP6 and Université Paris Saclay/LISN. At Sorbonne Université,
she became an ATER in 2017. In 2018, she gained industry experience
through working as a Post-Doctoral Researcher on blockchain and smart-
contract technologies at Orange Labs. From 2019 to 2020, she joined ISEP -
Engineering School in Paris, as an Associate Professor in cybersecurity and
blockchain in addition to overseeing the engineering cycle “Digital Security
and Networks”. From 2020 to 2022, she joined, EPITA - Engineering
school in Paris, as an Associate Professor in cybersecurity and blockchain.
From 2020 to 2022, she joined with EPITA and the Engineering School in
Paris as an Associate Professor in cybersecurity and blockchain. Her current
research interests include network security, machine learning, deep learning,
cryptographic protocols and blockchain, and smart-contracts technologies.

VOLUME 11, 2023

KHALDOUN AL AGHA received the Graduate
degree from CentraleSupelec and the Ph.D. degree
in computer science. He is currently a Full Pro-
fessor with Paris-Saclay University. He led several
international projects on mobile networks and was
an invited professor in Japan, Spain, and Chile.
He co-founded EIT Digital, a pan-European com-
munity that aims to support digital innovation.
From 2010 to 2013, he directed the action line on
digital cities. He is also the Co-Founder of Green
Commumcauons a company that proposes edge computing solutions to
reduce the internet carbon footprint.

ANIS ZOUAOUI received the engineering
degree from Ecole Nationale des Sciences de
I’'Informatique (ENSI), Tunisia, in 2003, and the
M.B.A. degree from the University of Liverpool,
in 2010. As an expert in bytecode instrumen-
tation, profiling, and performance engineering.
He has extensive experience working on source
code audits for performance and security optimiza-
tion. In 2010, he founded Adservio, a technology
company that has since been recognized among
Deloitte fast 50 in France (2015 and 2016), financial times’ top 1000 fast-
growing companies in Europe, since 2017. He received the Seal of Excel-
lence from the European Commission, in 2019, and was awarded the IT Night
innovation Trophy for Co-Construction for a Machine Learning Project.
In 2022, he co-founded Iriguard as a subsidiary of Adservio, specializing in
cybersecurity services. Committed to innovation, Iriguard invests heavily in
research and development, with a particular focus on the applications of deep
learning and graph representation learning within the cybersecurity domain.

49139

