IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 March 2023, accepted 1 May 2023, date of publication 11 May 2023, date of current version 18 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3275439

== RESEARCH ARTICLE

FLScalize: Federated Learning Lifecycle
Management Platform

SEMO YANG "', JIHWAN MOON™", JINSOO KIM*2, KWANGKEE LEE"?2,
AND KANGYOON LEE“!, (Member, IEEE)

! Department of Computer Engineering, Gachon University, Seongnam-si 13120, South Korea
2Innopia Technologies Inc., Seongnam-si 13217, South Korea

Corresponding author: Kangyoon Lee (keylee @ gachon.ac kr)
This work was supported in part by the Commercializations Promotion Agency for Research and Development Outcome (COMPA) Grant

funded by the Korean Government (MSIT) through the Future Research Service Development Support under Grant 2022-1-SB4-1, and in
part by the National Research Foundation of Korea (NRF) Grant funded by MSIT under Grant NRF-2022R1F1A1069069.

ABSTRACT Federated learning (FL) that can train using machine learning methods without moving data
have attracted interest owing to the focus on data privacy. Several FL platforms and frameworks are being
developed with various open datasets. However, FL has not yet been fully utilized in real-world projects;
instead, centralized ML models are still being used for Al. Since FL is composed of numerous clients
and executed, it is necessary to manage the lifecycle such as model deployment and status management to
multiple clients in order to operate FL. This study proposes FLScalize to enable Al researchers to apply their
own custom data and models to FL environments and to deploy and manage the FL lifecycle. Researchers
who develop these models should be able to easily and conveniently apply custom data and models developed
in a centralized environment to FL environments, deploy and train multiple clients, and manage the lifecycle
of the entire FL process. FLScalize can be used to simulate system heterogeneity and data heterogeneity,
both of which are FL issues that occur in real FL environments. Furthermore, FLScalize provides a manager
component that continuously manages the FL client and server required for real-world FL tasks and realizes
an FL lifecycle management implementation that enables continuous integration, deployment, and training.

INDEX TERMS Federated learning, heterogeneous simulation, lifecycle management, platform.

I. INTRODUCTION

Federated learning is a machine learning (ML) technique in
which multiple clients holding their own local data coop-
erate with each other under the management of a central
server or service provider [1]. This enables performing local
model-based learning with client-owned datasets without
sharing data, thereby protecting the privacy of data producers
and providers. Various frameworks and platform environ-
ments have been developed for FL, including Flower [2],
FedScale [3], FATE [4], PyShift [5], and EasyFL [6]. Cur-
rently, studies are investigating the use of FL in fields such as
medicine [7], imaging [8], industry [9], and natural language
processing [10]. However, studies are mostly focusing on

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal

improving the performance of FL algorithms; meanwhile,
studies on FL operation management for real-world tasks are
lacking. Since FL involves a large number of clients and is
executed across them, it is crucial to handle various aspects
of its life cycle, including model deployment and status
management, to ensure proper functioning of FL. In addi-
tion, because Al model researchers mainly study centralized
ML Al they need an environment in which they can easily
study and apply FL. In this light, the present study proposes
the FL operation to allow researchers to easily apply and
deploy custom data and models and to manage their lifecycle
in an FL environment. Existing MLOps provides functions
for data management, model design, training, application,
and deployment by setting up automation pipelines [11].
MLOps affords advantages such as continuous integration
and deployment (CI/CD) of data and models that are applied

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

47212

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0002-8615-028X
https://orcid.org/0009-0005-3605-200X
https://orcid.org/0000-0002-6523-7426
https://orcid.org/0000-0001-5382-6912
https://orcid.org/0000-0003-3078-6166
https://orcid.org/0000-0002-0026-2284

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

IEEE Access

FL Operations
Existing MLOps Experiment Tracking
Model Build
Data Data Data Baseline
Collection Labeling Versioning_' Model
Model .
Evaluaon € Model Train
FL Server FL Clients l
Global Model GlobalModel | | gcal Models
Local Model Update/Transfer Data Processing/
. . >
|—> Weights Aggregation ™}, Local Model Train — |
Clients Global ModelBuild/ Local Model Local Model
Participation Evaluation Weights Transfer FLRequest Evaluation
Global Model T_ LocalModel |
Versioning Versioning
Management & Monitoring
FLClient | [FLServer | [Model Performance

FIGURE 1. Configuration diagram of FL operation that manages the FL lifecycle by extending the existing

MLOps concept.

in several fields [12]. MLOps only considers the automation
pipeline for data, modeling, and deployment without consid-
ering the clients, the most important element of FL. In an
FL environment, hundreds of thousands of clients can be
configured, and therefore, data and models must be deployed
to numerous clients. Furthermore, in an FL environment, the
online/offline and training status of multiple clients and the
server status must be managed, and lifecycle management is
required to execute various FL tasks and to operate FL stably.
As existing MLOps does not support these functions, it was
extended to design and implement an FL operation, as shown
in Fig. 1. Our FL operation concept is to manage the entire FL
process of creating a global model by deploying and training
the local model created in the experimental environment.
Table 1 shows a comparison between the FL operations and
the existing MLOps.

This study proposes FLScalize for Al researchers who
develop centralized models in FL environments. It allows
the easy and convenient application of custom data and
models, deployment across multiple clients, and lifecycle
management.

TABLE 1. Comparison of existing MLOps and FL operations.

Existing MLOps FL Operations

Data Collect & Processing ©) O
Model Management @) o
Multi Deployment X O
Client/Server Status X o)

Management

VOLUME 11, 2023

FLScalize makes the following contributions.

1. Easily application of data and models to the FL envi-
ronment: Custom data and models can be easily applied to
various FL task environments. The data and model applica-
tion parts of FL are configured in a format similar to that of
the centralized environment to provide an FL experimental
and development environment for Al researchers.

2. Manager component that checks the status of FL client
and server: A manager component that continuously checks
and manages the status of the FL client and server is con-
figured. Several FL clients need to identify the online/offline
and training status to participate in FL rounds, and they
must continuously manage them through the client manager.
Likewise, the FL server must manage the online/offline and
aggregation status through the server manager.

3. Continuous integration/deployment/training: For each of
the various FL tasks, the latest versions of the FL client and
server can be integrated and deployed easily, and FL rounds
can be performed periodically.

4. Providing simulation environments for two categories
of FL that occur in the real world: It is possible to simulate
heterogeneous system and data, the two biggest issues in
various FL tasks. System heterogeneity simulations can be
performed by configuring the system resource environment
differently for each client. In addition, each client can have
different data by receiving an ID for each client, and data
heterogeneity for IID and non-IID cases can be simulated by
using the data partition function.

5. FL lifecycle management applicable to real projects:
We provide the four functions mentioned above by support-
ing the simulation of FL tasks that can occur in the real
world. FLScalize can manage an automated and reliable
FL lifecycle.

47213

IEEE Access

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

TABLE 2. Comparison of FLScalize with existing FL frameworks and platforms. FLScalize can easily apply data and models and continuously manage FL

lifecycle by adding manager component and Cl/CD/CT functions.

TFF FATE FedScale EasyFL FLScalize
Simple application of data and model v v v @) ©)
FL client/server management X X X X O
Heterogeneous system and data v v v @) ©)
Multi-client CI/CD/CT X v X X
FL lifecycle management X v X

v': Limited support

The rest of this paper is organized as follows. Section II
introduces the FL research background, framework, and
platform and reviews MLOps-related research. Section III
presents the system architecture of FLScalize and the oper-
ation processes of all components. Section IV introduces the
experimental environment of FLScalize. Section V presents
the experimental results obtained with the experimental setup
described in Section IV. Finally, Section VI summarizes this
study and suggests future research directions.

Il. RELATED RESEARCH

FL is a distributed learning method that allows multiple
clients to train an ML model without moving data to the
control of a central server, thereby ensuring data privacy [13].
Federated averaging (FedAvg) is the standard aggregation
algorithm that is used most widely in FL. Ongoing FL stud-
ies have proposed FedProx [14] that considers heteroge-
neous network conditions and the FedAdagrad, FedYogi, and
FedAdam algorithms that provide adaptive federated opti-
mization [15]. FLScalize is implemented based on the Flower
framework that supports the connection function between the
FL client and server.

A. FL PLATFORMS AND FRAMEWORKS

Various platforms and frameworks have been developed for
studying FL [16]. TensorFlow Federated (TFF) is an FL
framework that provides only basic FL functions based on
TensorFlow [17]; however, a separate system must be built
to apply custom data and models to FL tasks. FATE uses
Kubernetes and Docker to deploy an FL environment [4];
however, its complex system design makes it difficult to use
in practice, and only FL libraries belonging to the platform
can be used. FedScale [3] and EasyFL [6] can easily simulate
FL with a few code lines; however, functions for continuous
integration, deployment, and training are not supported and
managed. Therefore, existing platforms and frameworks suf-
fer from some disadvantages.

FLScalize aims to overcome these advantages by imple-
menting FL client and server based on the Flower framework.
Flower has better FL client and server scheduling capabil-
ities than those of other FL platforms, and it can perform
FL rounds by simply connecting the server and multiple
clients [2]. However, it only supports an FLL communication

47214

function and does not support the lifecycle function to man-
age FL operations. In this light, FLScalize extends the Flower
framework function to enable the easy application of custom
data and models to an FL environment, unlike in the case of
other FL platforms, as shown in Table 2. Further, it enables
FL simulations by configuring various FL task environments
that can occur in the real world. It supports a manager com-
ponent that can continuously manage and track the FL client
and server and provide FL lifecycle management that enables
continuous integration (CI), continuous deployment (CD),
and continuous training (CT) functions for the latest version
of the data and models.

B. KUBERNETES

MLOps aims to serve models accurately and reliably by creat-
ing a pipeline to deliver ML models [18]. To create a pipeline,
CI, CD, and CT functions are supported. FLScalize creates
CI, CD, and CT pipelines in the Kubernetes environment to
support FL environments that can occur in the real world.

1) FEATURES OF KUBERNETES

Containerizing and running various applications can be
complex as many containers are deployed across multiple
servers (nodes). Kubernetes can solve these problems by
providing a method for scheduling and deploying containers,
thereby enabling scaling by managing the status and lifecy-
cle of the entire cluster [19]. Implementing container-based
applications using Kubernetes affords the following
advantages [20], [21], [22]:

o Scalable: Kubernetes enables defining and deploying
complex containerized apps on clusters of multiple
servers (nodes). Additionally, container health can be
automatically monitored and maintained while scaling
the application.

« Portable: Because container apps are isolated on multi-
ple nodes, they can remain portable when using Kuber-
netes. It is possible to move from a local machine
to a production environment while maintaining consis-
tency across on-premises, hybrid, and multiple cloud
environments.

« Extensible: Developers and enterprises from a huge
open source community can actively add extensions and

VOLUME 11, 2023

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

IEEE Access

Local Weights

T Training l Save

=0 &

New Global Model

Condition

l Save t

Global Model

Continuous
Integration/Deployment

Continuous
Iyl Code Repo b Federated Learning
O

S

FL Researcher

1
1

FL

Manager

Data/Model/Code

FIGURE 2. Design and architecture of FLScalize including expanded components
necessary for managing the FL lifecycle for stable FL task operation.

plug-ins to add security, monitoring, management, and
other features.

FLScalize provides an FL environment that can occur in
the real world in a Kubernetes cluster environment consisting
of multiple nodes to create multiple scalable container apps
and to support efficient and portable operation management,
and it provides an automated FL operating environment in
which CI, CD, and CT functions are added to enable extensi-
ble FL lifecycle management.

2) Cl/CD

The CI/CD pipeline automates the following steps: (1) build,
(2) test, (3) release, (4) deployment, and (5) validation and
compliance [23]. Automation tools that support CI and CD
include Spinnaker [24], Jenkins X [25], Tekton [26], and
Argo CD [27]. ArgoCD supports GitOps-style deployment.
When desired settings are changed and pushed to Git, the
status of the Kubernetes cluster is automatically synchronized
with that defined in Git [27]. In other words, the applica-
tion is automatically deployed in the desired status to the
designated target environment. Because it enables code ver-
sion management, previously deployed codes can be reused.
FLScalize connects to ArgoCD-based Git to provide CI and
CD operations.

3) CT

The CT automates and repeats the process of training new
data and deploying new models. It manages the performance
of the model by providing a continuous training environ-
ment [28]. Airflow is an open source application that sequen-
tially guarantees the execution order of tasks and supports
the creation, scheduling, and monitoring of workflows [29].
FLScalize provides the CT function that can continuously
perform FL tasks using Airflow.

To create the FL lifecycle management platform, the CI,
CD, and CT pipeline in the FL environment is required.
FLScalize provides CI, CD, and CT functions in the Kuber-
netes environment by using open source applications.

VOLUME 11, 2023

lll. FLSCALIZE SYSTEM DESIGN AND ARCHITECTURE
FLScalize is configured to easily apply custom data and
models to FL environments that can occur in the real world.
It also provides a manager component that manages the FL
client and server and can perform CI, CD, and CT functions
centered on the latest code connected to Git. FLScalize can
perform system and data heterogeneity simulations with this
function. Fig. 2 shows the composition of all components of
FLScalize.

A. FL CLIENT AND FL SERVER

The FL client participating in the FL round and the FL server
that creates the FL round task are implemented based on the
Flower framework, and they communicate with each other
through gRPC [2]. In the FL client, as shown in Fig. 3,
data_load and model_build functions can be created to enable
Al model researchers to easily apply their custom data and
models to the FL environment. To apply custom data, the
client_data module was configured. It supports the function
of loading client data and adds a data partition function to
hold different data for each client ID. In addition, data het-
erogeneity can be simulated by configuring IID and non-IID
cases. When applying a custom model, the model structure,
optimizer, and loss function to be used in the client_model
module can be set. Finally, as shown in Fig. 4, custom FL
can be performed by creating a model using the custom data
added in Fig. 3 in the app module of the FL client.

The FL server creates FL rounds by setting the initial global
model, hyperparameters, and aggregation algorithm. For each
round, the FL client sends the weights of the local model to
the FL server, and the FL server creates a global model by
aggregating several local weights and sends it back to the
FL client. By repeating this process as many times as the set
number of rounds, the FL client performs local training with
the local model and the FL server creates the global model.
The local model, which is the model that is trained on the data
from each individual client, is stored and managed on each
client. The global model is stored and managed according

47215

IEEE Access

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

to the implementation of FL on the server. This means that
the server is responsible for managing the global model and
ensuring that it is up to date with the latest local models from
each client.

def data_load(all_client_num, _client_num, datasel, skewed, skewed_spec, balanced):

if dataset == 'cifar10"
{X_train, y_train), (X_test, y_test) = tf.keras. datasets.cifar10.I0ad_data()
client_data module
#1IDMNon-ID Parttion
(X_train, y_train), (X fest, y_test) = data_partilion(X train, y_train, X_fest, y_test, skewed,
skewed_spec, balanced, FL_client_num, al_client_num, datasel)

return {X_train, y_train), (X _test, y_test)

def madel_buid():
medel VGG16 = f keras.applications VGG16(weights = ‘magenet, include_top = Falseinput_shape = (32323))

for layer in model_VGG 16 layers:
layer.trainable = False client_model module

% = f keras layers.Fatten(){model_VGG16.output)

x = tl keras.layers.Dense(4096, activation="relu’)(x)

x = tf keras layers Dense(1000, activation="relu){x}

predictions = I keras layers Dense(10, activation = ‘softmax’}(x)

madel = if_keras.Model(inputs = model_VGG16.input, outputs = predictions)
odel. L . optimizer=tf k i

_rate=0.001), metrics= 1}

return model

FIGURE 3. Example of easily creating custom data and custom model in
client_data module.

#Load Client Custom Data
‘async def flower_client_start():
logging.nfo('FL learning ready)
global status

data mete
all_clent total client number

dataset = ‘fashion_mnist’ # dataset

skewed = False # data parliion1: Each client has only one class (or twothree classes)
skewed_spec = ‘skewed_one’

balanced = False # data partition2: Each clientis randomly distributed in different sizes

Client Data

(x train, _train), (x_test, y_test) = client_data data_load(all_client num, status.FL_client_num, dataset, skewed, skewed_spec, balanced)
Load Client Custom Local Mod
def build_model(dataset):
if dataset == Gifar10

model = client_model.model_cnn()

elif dataset == ‘mnist:
model = client_model.model_ResNet50()

elif dataset == fashion_mnist':
model = client_modelmodel VGG16()

return model

FIGURE 4. Example of applying custom data and models in the FL client’s
app module.

B. CLIENT MANAGER AND SERVER MANAGER

As shown in Fig 5, the client manager and server manager
play the role of managing FL client and server, respectively.
The client manager continuously checks the online and train-
ing status of the FL client and the online status of the FL
server. To reliably check the status of each component, the
client manager continuously checks the status of the FL client
and server through asynchronous API communication. The
server manager checks whether the FL server has started the
FL round and transfers the status information of the FL server
to the client manager. Further, it manages the version of the
global model created for each FL round. The client manager
receiving the information from the server manager transfers
a trigger to participate in the FL round to the FL client and
manages the FL round participation.

C. ci/cb

ArgoCD, which provides GitOps CI/CD functions, is used to
deploy the latest versions of the FL client, client manager,
and server manager. As shown in Fig. 6, the client pod that
group the FL client and client manager containers, and server
manager pod are created by connecting the Git repo of each

47216

Client Server

FL Client

FL Server
Local Training Server
S = o D
- 0 [
- = FL Client Online
Local Model FL Client Training Ofobel Model versi (Gichel Mo
Generation/Storage FL Server Online

FIGURE 5. Communication between the FL client manager and the FL
server manager.

component with ArgoCD. Two categories of FL simulation
environments are provided by configuring the FL client envi-
ronment that can occur in the real world. First, a system
heterogeneity simulation environment can be implemented
by setting resources such as the CPU, GPU, and Memory in
the client pod. In addition, the number of clients can be easily
set by duplicating clients, and an ID is given to each client so
that each client can hold different data. In other words, the
simulation environment supports data heterogeneity. In this
way, an FL environment that can occur in the real world can
be configured for various FL tasks.

. Git Git Git
Git Repo Repo Repo

Server Manager FL Client Client Manager

Poll Code

Poll Code Poll Code

ArgoCD

FL Client

Server Manager Client Manager

Deploy Deploy

Server . Client
POd Fl:Cllent

FIGURE 6. Process that supports CI/CD using ArgoCD linked with Git.

D. CONTINUOUS FEDERATED LEARNING

Airflow can create multiple tasks by supporting workflow
functions that support scheduling and monitoring. In addi-
tion, it recognizes the latest version of code that is con-
tinuously updated in conjunction with Git. FLScalize uses
Airflow to create various FL tasks, continuously deploy the
latest version of the FL server pod, and execute FL rounds.
As shown in Fig. 7, client pods in the online status receive
start information from FL server pods and participate in
FL rounds, thereby enabling continuous federated learning
(CFL) to be performed.

Airflow Pod

Global
Model

Deploy FL Server

FL Client

Local
Model

Ly

| APl
Pod

Server APl Client
Manager Manager

FIGURE 7. Process that connects the FL server Git repository using Airflow
to continuously update and deploy the latest FL server code, enabling CFL.

| Poli code

FL Server

VOLUME 11, 2023

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

IEEE Access

check_client_online

check_server_online
start_client_training
=> Asynchronous

FL Client Client Manager

Start
[Get] check_client_online
client online: False
client training: False

........................ >
FL Client Start ':
[Get] check_client_online

client online: True
_____ client training: False |

[Get] start_client_training
D

client online: True
client training: True

Data Load &
Local Model Build

Server Manager

FL Server

Client Manager

Connect FL Server

[Get] check_server_online
3 o >

server onile: False

DT P e A SR

[Get] check_server_online
R

server onile: True

D et A

Server Manager
Start

[Put] update_server_online
server online: True
global model version

2 FL Server Start
:| Init Global Model

Waiting for
Client Connection

Transfer Hyperparameter (Local Epoch, Batch Size,

‘al Step, Round)

Local Model
Training & Save

Transfer Local Model Weights

Transfer Global Model

Aggregate &
Global Model Save

[Get] fail_client_train ¥
FL Server

Connection Close

Repeat as many rounds

| End of FL Round

[Get] finish_client_train
client online: True
client training: False

server onile: False

PR

[Get] check_server_online

[Get] finish_client_round

global model version

[Put] fininsh_server_round
server online: False

FIGURE 8. FL lifecycle process of FLScalize for component communication configuration, API and status flow.

E. FLSCALIZE LIFECYCLE MANAGEMENT
COMMUNICATION PROCESS

FL client, client manager and server manager are connected
to each git repo and continuously integrated and deployed
through ArgoCD. In addition, the FL server periodically cre-
ates rounds of FL tasks through airflow to perform continuous
federated learning. When each component is distributed like
this, each component of FLScalize communicates as Fig. 8.
Table 3 describes the API functions of FLScalize.

1y

2)

3)

4)

The client manager continuously checks the online
status of the FL client and server through asynchronous
API communication. Asynchronous API communica-
tion was used to solve the problem of inconsistency
between the status information of the FL client and
server.

If the FL client and server are started, the online status
is returned as True, and the FL server transmits the
global model version to the server manager. However,
if the FL server is not online, FL cannot be executed.
The FL server also creates an init global model and
waits until all the clients that will participate in the FL
round are connected.

When the client and server online status is True and the
client training status is False, the client manager sends
a trigger to the FL client to participate in the FL round.

VOLUME 11, 2023

5)

6)

7

8)

The FL client creates a local model and loads the data
to be trained. The hyperparameter information of the
local model is received from the FL server, and local
training is performed based on it.

The FL client performs local training for each round,
saves the local model, and delivers the updated local
weights to the FL server. The FL server creates and
stores a global model by aggregating the local weights
of clients participating in FL rounds. This is repeated
for the set number of rounds.

If an FL client encounters an error during a round
(power, Internet, etc.), the FL client terminates the
connection with the FL server. If specific clients lose
communication with the server for some reason, FL is
performed with the rest of the clients excluding the
disconnected clients. If the minimum number of par-
ticipating clients required for the FL round set by the
server is not met, the server continues to wait. How-
ever, the FL is forcibly terminated according to the set
timeout.

When the FL round is successfully completed, the
FL server transmits the termination API to the server
manager, and the FL client notifies the client manager
that local training has been completed. The client man-
ager receives the successfully completed global model

47217

IEEE Access

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

version information from the server manager that man-
ages the global model version.

9) The next FL task proceeds in the same way as above
when only the FL server is started. As long as the FL
client is not terminated, it automatically participates in
FL rounds by the client manager and can manage the
FL lifecycle.

TABLE 3. API function definition of each component of FLScalize.

Request

Component API Name Description
Client . . Check online status of FL
check_client_online .
Manager - - Client
Client . Check online status of FL
check server_online
Manager = - Server
Client start_client_training Trigger FL (;ll.ent.s FL round
Manager - - participation
Client . . Transfer FL Client’s FL end
finish_client_round
Manager - - to Server Manager
FL Client fail client_train Error while participating in
— — FL round
FL Client finish_client_train Complete successfully FL
- - round
. Transfer online information
FL Server update_server online of FL. Server
finish_server_round Transfer offline information
FL Server - -

of FL Server

TABLE 4. Specifications of servers used in experiment.

Server Name CPU GPU
D Server Intel i9-9900KF NVIDIA®2080Ti (2)
(8core)
E Server Intel Xeon Silver 4214R 111 A®3090Ti (2)
(12core)
X Server Intel 9-10980XE NVIDIA®3070Ti (2)
(18core)

As such, FLScalize additionally configures the client and
server manager components to continuously check the status
of the FL client and server and to support the CFL function.
In addition, because local models and global model that are
created for each FL round can be managed, it is possible to
check and track which model version has better performance.
Furthermore, lifecycle management for the entire FL process
is possible.

IV. EXPERIMENTAL ENVIRONMENT SETUP

FLScalize offers an FL lifecycle environment that effectively
manages the status of both FL clients and servers, while
enabling seamless CI/CD/CFL workflows for real-world FL

47218

tasks. FLScalize also performs several FL tasks based on var-
ious open datasets and models. Our platform manages the FL
lifecycle by assigning system heterogeneity and data hetero-
geneity to these FL tasks. Various FL lifecycle management
experiments were conducted in the Kubernetes environment,
as described below.

A. KUBERNETES CLUSTER SERVER SPECIFICATIONS

All FL task simulations were conducted with three servers
(nodes) in one Kubernetes cluster. The three nodes have
different specifications, as listed Table 5.

TABLE 5. Dataset and model used in FLScalize experiment. Each row lists
one FL task.

Dataset Model Sample
CNN

CIFAR-10 (2Conv-12FC) 60,000

MNIST ResNet50 70,000

FASHION MNIST VGG16 70,000

B. DATASET/MODEL

The data and model shown in Table 5 were used for the
system and data heterogeneity simulations of FLScalize, and
they were set as three FL tasks. To perform data hetero-
geneity simulation, IID and non-IID partitions were divided
into client data. IID consisted of balanced data that was
distributed to each client as a dataset of the same size, and
non-IID consisted of imbalanced data, skewed data, and
imbalanced/skewed combined data. The non-IID data com-
position is described in Table 6.

TABLE 6. Partition configuration of Non-11D dataset.

Non-I1ID Description
Imbgflatzced Each client is randomly distributed in different sizes
Skewed Data ~ Each client has only one class (or two/three classes)
Imbalanced ~ Each client has only one class and is distributed in
/Skewed Data different sizes

The data partition configuration is required to implement
data heterogeneity. Dj denotes the size of the total data; Ca,
the total number of clients; and C;, the data index list of each
client. A balanced data partition holds different data for each
client and has the same data size, as shown in (1).

Dy . Dy .
BC = ek e NI wi 2sirny)
Cy Cap

An imbalanced data partition holds different data for each
client, and the size of the data held by each client is set

VOLUME 11, 2023

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

IEEE Access

randomly, as shown in (2).

Dy . D .
IBC; = {x|x € N, [rand(— x i), rand(— x (i + 1))]}
Cy Ca
2

A skewed data partition has different labels for each client,
as shown in (3). L denotes the label list of each client; Dy,
the label of all data; and DS, the list of specific labels.

DS ={D; NL;}
Dy . D .
SCi={x|xeDS,[— xi,— x (i+ 1]} 3)
Cy Cy

FLScalize can deal with data issues that can occur in
real-world FL environments by providing IID and non-IID
data partition functions for various FL tasks.

Bl v ety ©synced " °

-

oo
8!

ooocooo

FIGURE 9. Deploying and running five client pods using ArgoCD.

C. AGGREGATION ALGORITHM AND HYPERPARAMETER
FLScalize uses the FedAvg algorithm to aggregate the local
weights of multiple clients. In addition, in all experiments,
the FL hyperparameters were set as follows: 10 for the local
epoch, 32 for batch size, 32 for the evaluation step for each
client evaluation, and 20 for the round. In addition, ADAM
was used as the optimizer of the local model. The loss func-
tion used in the model is categorical crossentropy.

Hmvﬁow DAGs Securty Browse Admin Docs

DAGs

Actve @ | Paused @

DAG Owner Runs Schedule Last Run Next Run

@ fi-cifar10-dag airiow. 1 day, 0:00:00 2023-02-12, 22:54:54 2023-02-24, 09:00:00

2023-02-12, 22:56:00 2023-02-25, 01:05:00

0]
@ f-fashion-mnist-dag sctow 0] steee
0]

sene 2023-02-12, 22:56:05 2023-02-25, 01:05:00

@© f-mnist-dag atow

FIGURE 10. Creating three FL tasks (CIFAR-10, MNIST, and FASHION
MNIST) to support a workflow that creates an FL round.

V. IMPLEMENTAION AND RESULT

To test FLScalize, the data and models listed in Table 5 were
designated as FL tasks; the manager component was applied;
and CI, CD, and CFL were performed in the system and
data heterogeneity simulation environment. This experiment
was performed to confirm that operation management for

VOLUME 11, 2023

various FL tasks was possible and to introduce an FL lifecycle
management platform.

© fl-cifar10-dag

': B caknaar a = Tas =& Landing Ti = car A peras < L]

FIGURE 11. By using Airflow, an FL task for CIFAR-10 is deployed to the
FL server that creates FL round.

A. CLIENT AND SERVER MANAGER POD DEPLOYMENT
The client pod includes the FL client and client manager
containers. As shown in Fig. 9, ArgoCD was used to deploy
client pods and to easily set the number of client pods. In this
experimental environment, the number of client pods for
each FL task was set to 5. As resources such as the CPU,
GPU, and Memory can be specified for each client pod,
a heterogenous system environment can be implemented.
In addition, by assigning a unique ID to each client pod, each
client can have a different dataset, and data heterogeneity can
be simulated using data partitions. The server manager pod
checks the status of the FL server and delivers the online
status of the FL server to the client manager; it was also
deployed using ArgoCD.

B. FL SERVER POD CI/CD AND CFL

FLScalize uses Airflow to periodically deploy and execute
FL server pods to support a workflow that creates various FL
tasks, as shown in Fig. 10. The deployed FL server pod is
executed to create FL rounds. The client pod recognizes the
start status of the FL server pod from the client manager, and
it receives a trigger to participate in FL round. This FL task is
performed as many times as the number of rounds set on the
FL server. As shown in Fig. 11, periodic and automated CFL
can be performed by setting the time for creating an FL task.

TABLE 7. Training time according to system specifications of each client
group. Each round time and local training time represent average values.

Client Each Local Total
System Round Training Time
Group . R
Time Time
CPU 1,
Group 1 Memory 2 GB 66.7 s 482s 1,346.4 s
CPU 3,
Group 2 Memory 4 GB 60.5s 443 s 1,224.1 s
CPU 1, GPU 1,
Group 3 Memory 2 GB 6l1.1s 447 s 1,243.4 s

C. HETEROGENEOUS SIMULATION

1) SYSTEM HETEROGENEITY

To compare the resource performance of FL clients that can
occur in the real world, the clients were divided into three

47219

IEEE Access

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

Local Model Performance(Ace)

Local Model Performance(Acc)

Round

(©

Local Model Performance(Acc)

(b)

Locai Model Performance(Ace)

uracy

Round

(d)

FIGURE 12. Local model accuracy performance of five clients on non-1ID data partition of CIFAR-10 dataset: (a) skewed one
class, (b) skewed two class, (c) skewed three class, and (d) imbalanced/skewed three class.

TABLE 8. Accuracy comparison of local and global model according to data heterogeneity. Local model averages performance of each client, and

performance of global model includes all labels.

CIFAR-10 FASHION MNIST MNIST
Data Heterogeneity Local Global Local Global Local Global
Model Model Model Model Model Model
1ID 91.8% 91.4% 96.6% 89.8% 95.6% 91.7%
Imbalanced 91.3% 91.1% 84.2% 80.6% 94.9% 91.5%
Skewed One Class 84.2% 81.9% 14.7% 32.1% 26.8% 13.4%
Skewed Two Class 88.6% 88.3% 25.2% 12.7% 25.9% 25.2%
Skewed Three Class 90.4% 89.7% 59.3% 55.9% 38.9% 33.6%
Imbalanced/ 89.3% 88.5% 49.1% 47.3% 29.9% 25.7%

Skewed Three Class

client groups that each consisted of five client pods but had
different resources. Based on client groups with different
resources, a system heterogeneity simulation was performed
using the CIFAR-10 dataset and CNN model, and the time
for FL execution was evaluated as shown in Table 7. Each
round time is the time for aggregating the weights of clients
for each FL round in the FL server, and the average of all
rounds is taken. The local training time is the average of the
local training value of all clients. The total time is the time for
which FL has been performed for the set round. As shown
in Table 7, Group 2 showed a difference of 6 s for each
round time, 4 s for local training time, and 122 s for total
time compared to those of Group 1 owing to the difference
in system performance. Although the GPU was allocated to
Group 3 but not to Group 2, the time cost of Group 2 was
higher as its model had fewer parameters.

As such, it is possible to check which data and model are
suitable according to the resource performance of the client

47220

by configuring the FL client resource environment that can
occur in the real world using FLScalize.

2) DATA HETEROGENEITY

To perform the data heterogeneity simulation, IID and
non-IID data partitions were constructed for the dataset in
Table 5. In addition, this FL task was created using a model
corresponding to the dataset, and the accuracy was compared
according to the data heterogeneity for each FL task. The
average of each client’s local model was calculated for eval-
uating the performance of the local model. To evaluate the
performance of the global model, a new untrained dataset was
used, and the dataset containing all labels was constructed for
evaluation. As shown in Table 8, for the non-IID case with
the data partition, the performance of the local and global
models was lower than those in the IID case. Furthermore,
even in the non-IID case, the performance deteriorated in
the presence of more severe data heterogeneity. As shown

VOLUME 11, 2023

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

IEEE Access

in Fig. 12, each client performs local training with different
classes and data sizes in a non-IID case, and the accuracy is
different for each local model of the client. In particular, in the
situation where one class is biased, the accuracy of a specific
client did not converge, and the oscillation width was larger
than that in the other skewed situation. In the case of severe
data heterogeneity, training did not work properly. When the
skewed data partition case was assigned with the Fashion
MNIST and MNIST datasets, compared to the IID case, the
performance degradation was more severe than that with the
CIFAR-10 dataset. Even with the same data heterogeneity,
the performance could vary greatly depending on the data
and model. FLScalize supports the data partition function to
handle data issues that may occur in the real world for each FL.
task. FL researchers who intend to use FLScalize can perform
the FL task they want by applying suitable data heterogeneity.

FLScalize can simulate system heterogeneity by assigning
and deploying different system performances for each client,
and it can check the time cost according to the client’s sys-
tem performance. In addition, by providing IID and non-IID
data partition environments, it enables data heterogeneity
simulations according to the dataset and evaluation of their
performance.

We incorporated the features highlighted by FLScalize in
contributions 1 to 3 in the system and data heterogeneity
simulation, and evaluated FL performance results with vary-
ing system and data configurations across clients. To effec-
tively manage the results of these FL tasks, we developed
an FL lifecycle management platform capable of tracking
and managing various FL task outcomes. An FL task envi-
ronment that can occur in the real world can be configured
using FLScalize, and custom data and models can be easily
applied to perform FL lifecycle management with CI, CD,
and CFL functions that support simulations with system and
data heterogeneity.

FLScalize simulated FL system heterogeneity by configur-
ing a cloud with servers that we own. However, due to the lim-
ited computing resources available, there may be limitations
in the extent to which our cloud environment can accurately
reflect the performance of FL in other cloud environments.

VI. CONCLUSION AND FUTURE WORK

Various FL platforms and frameworks have emerged with the
increasing focus on data privacy. However, various industries
and services lack a platform that can support FL operation
management. To introduce a platform that supports FL oper-
ation, an FL environment that can occur in the real-world
was constructed. The proposed FLScalize can easily apply
custom data and models in a centralized environment to an FL
environment and create various FL tasks. We provide an FL
lifecycle management environment that enables continuous
status management, integration, deployment, and training.
We support a manager component that continuously checks
and manages the status of FL the client and server, a mul-
ticlient resource configuration environment, and an environ-
ment that creates various FL tasks and performs FL rounds

VOLUME 11, 2023

periodically. FLScalize can be used to simulate system and
data heterogeneity as it includes these functions, and it can
manage the FL lifecycle for custom data and models for FL
tasks.

FLScalize offers several practical benefits in the imple-
mentation of FL. Firstly, it provides a structured framework
for managing the entire FL process, including model training,
deployment, and updating. This can help improve the effi-
ciency and effectiveness of FL by streamlining the workflow
and reducing the chances of errors or oversights. Secondly,
FLScalize enables better tracking and management of FL
task results, including performance metrics, data usage, and
model updates. This allows stakeholders to gain insights into
the performance of FL models and make informed decisions
about the allocation of computing resources and data. Finally,
FLScalize can improve the reliability and reliability of FL
systems by managing models and data throughout the FL
process.

FLScalize has performed FL lifecycle management in a
cloud environment by simulating system and data hetero-
geneity. However, the study has a limitation in terms of
performing FL lifecycle management in a real device environ-
ment, which requires additional supplements. Thus, further
research is needed to overcome this limitation and make
FLScalize more versatile in managing FL tasks in real-world
FL projects.

In future work, the FL lifecycle management platform
can be extended to support a real-world multiclient and
server decoupled environment, which will require additional
research on how to efficiently manage and monitor multiple
FL clients with diverse computing capabilities and security
requirements. This can involve exploring techniques for dis-
tributed training, such as federated averaging, and design-
ing secure communication protocols to protect sensitive data
exchanged between clients and the server. Additionally, the
FL operation platform can be enhanced to provide more
advanced services, such as automated hyperparameter tuning,
model compression, and continual learning, to improve the
overall performance and efficiency of the FL process. Finally,
integrating the platform with existing cloud computing and
edge computing infrastructures can provide more scalability
and flexibility for managing and deploying FL. models in real-
world scenarios.

REFERENCES

[1] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and
A. S. Avestimehr, “Federated learning for the Internet of Things: Applica-
tions, challenges, and opportunities,” IEEE Internet Things Mag., vol. 5,
no. 1, pp. 24-29, Mar. 2022.

[2] D.J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao,
L. Sani, K. H. Li, T. Parcollet, and P. P. B. de Gusmao, “‘Flower: A friendly
federated learning framework,” 2022, arXiv: 2103.08942.

[3] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “FedScale: Benchmarking model and system perfor-
mance of federated learning at scale,” in Proc. Mach. Learn. Res., vol. 162,
2022, pp. 11814-11827.

[4] FATE. Accessed: Jan. 9, 2023. [Online]. Available: https://fate.fedai.org

[5] J. Xie, K. Zhang, and A. T. Frank, “PyShifts: A PyMOL plugin for
chemical shift-based analysis of biomolecular ensembles,” J. Chem. Inf.
Model., vol. 60, no. 3, pp. 1073-1078, Mar. 2020.

47221

IEEE Access

S. Yang et al.: FLScalize: FL Lifecycle Management Platform

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

'W. Zhuang, X. Gan, Y. Wen, and S. Zhang, “EasyFL: A low-code federated
learning platform for dummies,” IEEE Internet Things J., vol. 9, no. 15,
pp. 13740-13754, Aug. 2022.

M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas, “Multi-
institutional deep learning modeling without sharing patient data: A feasi-
bility study on brain tumor segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput. Assist. Intervent., 2018, pp. 92—104.

Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen,
H. Yu, and Q. Yang, “Federated learning-powered visual object detection
for safety monitoring,” Al Mag., vol. 42, no. 2, pp. 19-27, Oct. 2021.

M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-
enhanced federated learning for industrial artificial intelligence,” IEEE
Trans. Ind. Informat., vol. 16, no. 10, pp. 6532-6542, Oct. 2020.

Y. Tian, Y. Wan, L. Lyu, D. Yao, H. Jin, and L. Sun, “FedBERT: When
federated learning meets pre-training,” ACM Trans. Intell. Syst. Technol.,
vol. 13, no. 4, pp. 1-26, Aug. 2022.

S. Makinen, H. Skogstrom, E. Laaksonen, and T. Mikkonen, “Who needs
MLOps: What data scientists seek to accomplish and how can MLOps
help?” in Proc. IEEE/ACM 1st Workshop Al Eng. Softw. Eng. Al (WAIN),
May 2021, pp. 109-112.

Y. Zhao, A. S. Z. Belloum, G. M. Da Costa, and Z. Zhao, “MLOps scaling
machine learning lifecycle in an industrial setting,” Int. J. Ind. Manuf. Eng.,
vol. 16, no. 5, pp. 143-153, 2022.

Q.Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey
on federated learning systems: Vision, hype and reality for data privacy and
protection,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3347-3366,
Apr. 2023.

T.Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Fed-
erated optimization in heterogeneous networks,” in Proc. Mach. Learn.
Syst., 2020, pp. 429-450.

S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konec¢ny, S. Kumar,
and H. B. McMahan, “Adaptive federated optimization,” in Proc. ICLR,
2021, pp. 1-38.

M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “‘Federated learning:
A survey on enabling technologies, protocols, and applications,” IEEE
Access, vol. 8, pp. 140699-140725, 2020.

I. Kholod, E. Yanaki, D. Fomichev, E. Shalugin, E. Novikova, E. Filippov,
and M. Nordlund, “Open-source federated learning frameworks for IoT:
A comparative review and analysis,” Sensors, vol. 21, no. 1, p. 167,
Dec. 2020.

1. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying DevOps
practices of continuous automation for machine learning,” Information,
vol. 11, no. 7, p. 363, Jul. 2020.

Kubernetes Community. (2022). Kubernetes: Production-Grade Container
Orchestration. [Online]. Available: https://kubernetes.io/

L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, ‘“Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Trans. Netw.
Service Manage., vol. 18, no. 1, pp. 958-972, Mar. 2021.

J. J. Barriga, J. Sulca, J. Leén, A. Ulloa, D. Portero, J. Garcia, and
S. G. Yoo, ““A smart parking solution architecture based on LoRaWAN and
Kubernetes,” Appl. Sci., vol. 10, no. 13, p. 4674, Jul. 2020.

D. Jorge-Martinez, S. A. Butt, E. M. Onyema, C. Chakraborty, Q. Shaheen,
E. De-La-Hoz-Franco, and P. Ariza-Colpas, ‘“‘Artificial intelligence-based
Kubernetes container for scheduling nodes of energy composition,” Int. J.
Syst. Assurance Eng. Manage., vol. 2021, pp. 1-9, Jul. 2021.

S. A. L. B. S. Arachchi and I. Perera, “Continuous integration and continu-
ous delivery pipeline automation for agile software project management,”
in Proc. Moratuwa Eng. Res. Conf. (MERCon), May 2018, pp. 156-161.
Spinnaker. (2022). Spinnaker: Continuous Delivery Platform for Enter-
prise. [Online]. Available: https://spinnaker.io/

X. Jenkins. (2022). Jenkins X: Continuous Delivery for Kubernetes.
[Online]. Available: https://jenkins-x.io/

Tekton. (2022). Tekton: The Kubernetes-Native Continuous Integration
and Delivery Solution. [Online]. Available: https://tekton.dev/

Ramadoni, E. Utami, and H. A. Fatta, ““Analysis on the use of declar-
ative and pull-based deployment models on GitOps using Argo CD,”
in Proc. 4th Int. Conf. Inf. Commun. Technol. (ICOIACT), Aug. 2021,
pp. 186-191.

M. M. John, H. H. Olsson, and J. Bosch, “Towards MLOps: A framework
and maturity model,” in Proc. 47th Euromicro Conf. Softw. Eng. Adv. Appl.
(SEAA), Sep. 2021, pp. 1-8.
Apache Airflow. Accessed: Jan.
https://airflow.apache.org/

14, 2023. [Online]. Available:

47222

SEMO YANG received the B.S. degree in com-
puter engineering, in 2022. He is currently pursu-
ing the M.S. degree in IT convergence engineering
with Gachon University, Seoul, South Korea.

From 2022 to 2023, he was a Researcher with
the Gachon Cognitive Computing Laboratory. His
research interests include artificial intelligence,
deep learning, federated learning, machine learn-
ing, and mlops.

JIHWAN MOON is currently pursuing the B.S.
degree in computer engineering with the Depart-
ment of Computer Engineering, College of IT
Convergence, Gachon University, Seongnam-si,
Republic of Korea. Since 2020, he has been a
Researcher with the Cognitive Computing Lab-
oratory, Gachon University. His current research
interests include federated learning, reinforcement
learning, generative model, automation, multi-
modal analysis, and digital twin.

JINSOO KIM received the B.S. degree in com-
puter engineering and the M.S. degree in IT
convergence engineering from Gachon Univer-
sity, Seoul, South Korea, in 2018 and 2020,
respectively.

From 2018 to 2022, he was a Researcher
with the Gachon Cognitive Computing Labora-
tory. He joined TVSTORM as a Development
Engineer to research healthcare signage solutions.
His research interests include federated learning
and meta-learning.

Mr. Kim received an award from the 4th University App Development
Challenge (K-Hackathon). His project received the Excellent Project Award

from the Gyeonggi Big Data Challenge.
KWANGKEE LEE received the B.S., M.S., and
Ph.D. degrees in electronics engineering from
Yonsei University, Seoul, South Korea, in 1986,
1988, and 1993, respectively.
From 1994 to 2014, he was a Technical
Researcher with the Samsung Advanced Institute
of Technology, and he was promoted to Group
Leader of the SW Platform and Next-Generation
Strategy Team. From 2016 to 2019, he was an
Industrial Convergence PD for R&BD planning
with the Ministry of Industry, Industrial Technology Evaluation and Manage-
ment Institute. From 2019 to 2022, he was the Director of the Research and
Development Team, Tivistom Company Ltd. He is currently a Researcher
with Innopia Technologies Inc. He won a proud Samsung Prize, in 2006.
He received the GSMA EMWC (M2M) Best Embedded Mobile End-to-End
Service Winner, in 2010.

KANGYOON LEE (Member, IEEE) received the
B.S. degree in electronics engineering and the
M.S. degree in computer science from Yonsei Uni-
versity, Seoul, South Korea, in 1986 and 1996,
respectively, and the Ph.D. degree in IT pol-
icy management from Soongsil University, Seoul,
in 2010.

From 2008 to 2014, he was the Director of the
IBM Korea Laboratory for Ubiquitous Computing
and the Software Solutions Laboratory. He was
promoted to the Leader of the IBM Watson Business Unit, South Korea,
in 2014. Since 2016, he has been a Professor with the Computer Engineering
Department, IT College, Gachon University. He has been the Director of the
Gachon Artificial Intelligence Technology Center, since 2016. His research
interests include cognitive computing, healthcare advisor, the IoT platform,
and industry transformation.

VOLUME 11, 2023

