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ABSTRACT This paper presents a simulation-based environment for verification of static task scheduling
methodology in a time predictable system. Different types of processed tasks are distinguished and presented
a unified system design methodology consisting of the selection of real time system configuration, task
mapping, scheduling, and generation of a sequence of task identifiers to control the interleaved pipeline.
An original Worst Case Timing Analyzer (WCTA) has been developed to automate the design process.
The methodology was introduced into the original PRET (PREcision Timed) architecture recently presented
(Antolak and Pulka, 2020), (Antolak and Pulka, 2021). The PRET system was implemented on a Virtex7
FPGA (Field Programmable Gate Array) platform. A dedicated verification environment is proposed that
allows on-line real time system monitoring, analysis of timing parameters, and comparing the results with
initial requirements and design constraints. The practical experiments presented in the paper proved the
correct operation of the author’s hardware architecture. The obtained results confirmed the validity of the
proposed scheduling method and the concept of calculating the execution times of tasks before they are
started, which allows for optimal hardware matching to the tasks to be performed.

INDEX TERMS Real-time systems, timing simulation, dynamic scheduling, multitasking, pipeline inter-
leaving, multithreading.

I. INTRODUCTION
Contemporary processors and multiprocessor systems are
capable of processing very complex software algorithms,
but they exhibit a very high degree of hardware com-
plexity. In addition, the rapid development of semiconduc-
tor technology means that these systems are clocked with
ever faster clock signals. Paradoxically, these technolog-
ical advances are causing timing predictability issues to
arise for such systems [3]. Initially, problems with proces-
sor timing predictability were solved at the software layer,
creating real-time operating systems, or so-called RTOSs
(Real-Time Operating System) [4], [5]. Unfortunately, this
approach to the problem is fraught with a great deal of
inaccuracy, since task handling is done at a very high level
of abstraction [6], [7]. Most programming languages such
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as C [8], or C++ do not give direct control over the elapsed
time of tasks [9], which, combined with a large number
of abstraction levels, allows only very rough control of
timing [10], [11], [12].

The paper discusses scheduling methodologies in the sys-
tem presented in [2]. It focused on the generation of task iden-
tifiers sequence that is the key issue of interleaved pipeline
processing of threads. We introduced a new category of tasks
with the highest priority, called strong hard timed tasks and
we adjusted the scheduling process according to the type of
task. It was shown that the appropriate order and frequency
of tasks in a core’s pipeline decides overall system efficiency
and predictability. The proposed real-time system was imple-
mented in the Verilog language, and its synthesis and imple-
mentationwere carried out in theVivado 2018.3 environment.
Full simulation of such a system consumes a huge amount of
time, and it is practically impossible to get a complete picture
of the system’s behavior. Mapping the hourly operation of
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a system implemented in an FPGA requires more than a
week of simulation. Hence, the idea of developing a dedicated
program to enable efficient time analysis of the developed
system emerged. Moreover, an offline Worst Case Timing
Analyzer (WCTA) dedicated to the designed system was
created.WCTA delivers many timing parameters that validate
the developed methodology. It was assumed that regardless
of when a task is started, it should be completed within
the deadline. The proposed WCTA analyzer is based on a
time model of the pipelined processing path with interleaved
threads. The authors presented the subsequent stages of this
processing in the paper. A series of experiments proved the
correctness of the approach.

The main contribution of this paper is:

• Proposing an Interleaving Cycle Register (ICR) of task
identifier sequences;

• Developing an extended task model;
• Dividing the task scheduling process into stages;
• Unifying the task mapping method - developing a
universal BLTS (Balanced Load Task Scheduling)
algorithm;

• Proposing amethod of task scheduling by composing the
contents of the ICR (hardware alternative for RTOS);

• Developing a pre-layout Worst Case Timing Analyzer
(WCTA) to perform a timing analysis of the designed
system, and in particular to estimate the execution times
of individual tasks;

• Final hardware validation of the system.

The paper consists of six sections. First, the related work
is briefly discussed, then the main elements of the proposed
multitask system architecture and assumed tasks model are
recalled. In the fourth section the main stages of the schedul-
ing process implemented in the methodology are described.
Section five covers the experiments and discussion of the
obtained results. The paper is summarized with the final
conclusions.

II. RELATED WORK
The idea of time-predictable systems, the PREcision Timed
machines (PRETs), was formulated and presented as early as
2007 by Edwards and Lee [13]. It assumed that such a system
should always, regardless of load, perform scheduled tasks
on time. The concept was developed by many researchers:
Thiele and Wilhelm [14] formulated a set of recommenda-
tions and guidelines to facilitate the design of time-critical
embedded systems. Ip and Edwards [15] proposed extending
the command list of RISC processors to include a DEAD-
LINE instruction to enable time-critical task control. The
CHESS (Center for Hybrid and Embedded Software Sys-
tems) [16] group at UC Berkeley, led by Prof. Edward Lee,
developed the idea of the PRET processor, and proposed,
among other things, a way to predictably access memory
by proposing a method called ‘‘memory wheel’’. Then, the
CHESS group, in cooperation with centers from Germany
(Saarland University) and Sweden (Linköping University),

developed their ideas. This work resulted in the 2010 pub-
lication [43] of the new PRET architecture that supported the
concurrent execution of programs. This architecture allowed
integrating independent components maintaining temporal
properties of tasks. This solution used threads’ interleav-
ing mechanism, scratchpad memories, and a composable
and predictable DRAM (dynamic random-access memory)
controller. Another paper from this research team [44] pre-
sented a substantial implementation of a precision-timed
machine – PTARM architecture. This architecture is based
on the ARM family processors and implements a subset of
ARMv4 microarchitecture. The PTARM solution improved
system performance by using a refined thread-interleaved
pipeline, an exposed memory hierarchy, and a repeatable
DRAMmemory controller. In 2014, the CHESS group devel-
oped a new platform for processing mixed-criticality tasks
called FlexPRET [42]. This paper distinguished hard-time
threads (HRTT) and soft real-time threads (SRTT). The Flex-
PRET architecture generated by the CHISEL tool [46] pro-
vided hardware-based isolation to HRTT tasks, while SHTT
tasks efficiently utilized available processing resources. The
authors of [42] introduced dedicated timing instructions to
ISA based on the RISC-V processors family and proposed
thread scheduler that kept control over the threads processed
by the pipeline. The entire structure was also implemented in
a FPGA device.

The paper [8] addressed the analysis of time-predictable
systems at a higher level of abstraction. The authors of this
work introduce a new lightweight and concurrent language,
PRET-C (Precision Time version of C). PRET-C, thanks to its
syntax, synchronous semantics, and very simple mechanisms
handling time, is well suited for predictable PRET archi-
tectures. The authors also proposed a hardware accelerator
for PRET-C execution over soft-core processors allowing
time-predictable execution of tasks with high efficiency. This
time-predictable architecture was called ARPRET.

Yet another interesting solution is presented in another
paper [45], in which the authors presented their own
time-predictable architecture called ARPA-MT. ARPA-MT
architecture consists of 3 main elements: the main processing
unit, two coprocessors Cop0-MEC responsible for memory
operations management and exceptions and interrupts han-
dling, and Cop2-MEC implementing and accelerating RTOS
functions in hardware. The ARPA-MT [45] structure con-
tains a very interesting 5-staged pipeline with the first two
stages (IF and ID) replicated for each thread. While the other
3 stages of the pipeline (EX, MA and WB) process different
threads that are interleaved. This solution presented inter-
esting results of hardware-software synergy while designing
real-time systems.

A group of researchers from Denmark, Austria, France,
and the US presented the new original architecture of the
multi-core processor called Patmos [17]. Then in 2015,
a group of 24 European researchers presented the T-CREST
project [3], which demonstrated a multi-core approach to
the original PRET system concept. Problems arising from
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FIGURE 1. An example of the system run.

scheduling tasks running in parallel in multicore systems
were published in [18], [19], [20], [21], [22], and [23], along
with attempts to solve them.

It is noticeable that the research carried out on time pre-
dictable systems for many years involved the analysis of very
different issues related to both hardware [12], [14], [17], [24],
[25], [26] and software [18], [19], [27], [28] development.
Researchers often look for general solutions [8], [9], butmany
works concern dedicated solutions [17], [25]. In [29] authors
provide an overview of many issues related to the design of
embedded time-predictable systems.

Authors of some papers [30], [31] analyzed the problem of
load-balanced scheduling and proposed techniques enabling
reduction of the energy consumed by the systems. In [32]
one can find a technique of the effective utilization of pro-
cessing elements in the clusters of processors with the shared
L1 cache memory based on the optimized synchronization
and communication between the system components. Some
works demonstrated the application of heuristic methods and
AI algorithms in the task scheduling process [33], [34], [35].

In the paper [1], an original real-time system solution
was proposed. It was based on thread interleaved pipeline
processing. The solution allows flexible configuration of the
pipeline and uses a set of dedicated scheduling algorithms.
In a subsequent paper [2], the problem of energy optimization
in time-predictable systemswas analyzed and the authors pro-
posed a new solution of this problem in the form of enhanced
and dedicated scheduling algorithms used for various design
goals and constraints. In the presented paper, the problem
of generating sequences of thread identifiers in the process
of scheduling tasks of different types was more thoroughly
addressed. The methodology was based on analyzing the tim-
ing conditions on a specially constructed Worst Case Timing
Analyzer (WCTA), which makes it possible at the system
design stage to accurately analyze the timing of the system.
Unlike other approaches where the authors analyze Deadline
Miss Ratio (DMR) [36], this solution does not allow any task
to exceed the deadline time.

III. OVERWIEW OF THE SYSTEM
Every task executed in the system must be completed before
its strictly defined execution time (deadline) regardless of the
system load. Such tasks are inherently asynchronous since
they can be triggered by external interrupts, the occurrence of
which is very difficult or even impossible to predict. Before

starting the system, only the number and type of tasks being
executed are known, while the number of different tasks and
the timing of their startup are unknown. Therefore, to ensure
the above assumptions, it is necessary to find themost heavily
loaded task sequence on the system and prove before system
startup that the task will be executed on time.

As an example of the application of such a system, one
can recall an automotive safety system (see the diagram
in Fig. 1). Such a system can run a cyclic task, called
every 25 µs by a hardware timer (Task Z1). This task calcu-
lates the approximate braking distance at a given speed and
weather conditions, and all operations must be completed in
less than 20 µs. Additionally, each time the driver presses
the brake, the system must calculate whether, and if so,
which wheels have skidded. To make sure that safety systems
such as ABS (Anti-lock Braking System) or traction control
react correctly, this event must be detected no later than, for
example, 10µs after the brake pedal is pressed (see Task Z2).
The wheels can also get into a skid after braking has started,
so checkingwhether the wheels have gotten into a skid should
take place all the time the brake is depressed (high state of the
signal Z2).

A. SYSTEM ARCHITECTURE
The system architecture uses the thread interleaving method
to avoid data and control hazards. In that case, there is
no need for complex forwarding and jump prediction cir-
cuits. The thread interleaving method has been extended by
the authors [1], [2] and has also been used to exchange
data between tasks. The proposed architecture is based on
pipeline processing. It can consist of 1 to 8 reconfigurable
cores. It is possible to reconfigure the pipelines, which can
contain from 5 to 12 stages [2], depending on application
requirements. As described in [2], the basic five stages of
the pipeline can be expanded to include sub-stages. Thus,
the IF (Instruction Fetch) stage can contain three sub-stages
(Select Bank and Instruction Address, Instruction Fetch,
Select Instruction); the ID (Instruction Decode) stage can be
divided into two sub-stages (Select General Purpose Register
Bank, Instruction Decode); the EXE (Execution) stage can be
expanded to three processing cycles (Shift, ALU, EXE); sim-
ilarly, the MA (Memory Access) stage can also be expanded
to three cycles (Select Bank and MEM Data Address, MEM
Data Fetch, Select MEM Data).

Interleaving threads requires the introduction of multiplex-
ers to switch task data, therefore the authors proposed to
place the multiplexers in separate stages of the pipeline. This
minimizes the impact of the number of tasks on the maximum
operating frequency of the system. The microarchitecture of
our system ismodeled after the ISA (Instruction Set Architec-
ture) of the ARM processor family. ISA was enhanced with
special timing instructions [1]:

• AD counter_number – the instruction activating the
appropriate deadline counter;

• DD counter_number– the instruction deactivating the
appropriate deadline counter;
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FIGURE 2. The structure of the core.

• SD counter_number value – the instruction loading the
value to the deadline counter (setting the deadline);

• WFD counter_number value – the instruction sus-
pending the execution of the program until the deadline
counter reaches 1.

The system structure consists of one or more cores con-
nected to a common bus. The bus is used to exchange infor-
mation between threads. The system’s cores communicate
with external peripherals via input/output ports, which are
mapped as part of the data memory of each thread. The
system’s cores communicate with external peripherals via
input/output ports, which are mapped as part of the data
memory of each thread. Every thread can have its own indi-
vidual input/output ports. In addition, each thread is started
by a corresponding individual external signal. The proce-
dure of launching a given thread can be implemented either
hardware-wise (using an external interrupt) or software-wise
by executing the corresponding instruction by another proces-
sor thread. The system architecture is based on the authors’
previous solutions [1], [2], [29]. The current implementation
of the system allows simultaneous processing of up to 255 dif-
ferent tasks, with theoretically any distribution of these tasks
between cores (the theoretical maximum number of cores is
also 255).

A configurable number of supported threads are pro-
vided for every core. Because these threads are not depen-
dent on each other, they must have their own independent
resources such as memory and register files. In order to make
the cores as compact as possible, only these independent
resources shall be additional elements dedicated to a thread.
The remaining elements of the core, such as the processing
pipeline, are shared by threads mapped and executed in a
single core. Fig. 2 presents the structure of a configurable
core. The size of a core depends on the number of threads
processed in a given core. For this purpose, a special param-
eter is defined for every core. The value of this parameter
determinates the number of register files, memory banks and
size of the multiplexors responsible for switching threads’
resources. The rest of the core is designed to be independent
of this parameter. So, the increase in resource requirements

as the number of supported threads rises is minimal. If the
system is built of several cores, some tasks can be processed
concurrently. Moreover, the configurable cores may differ in
their internal structures, so the hardware architecture of a
designed system can be adjusted to the number of processed
tasks and their timing requirements [1], [2].

B. PIPELINE CYCLE
Asmentioned in the above section, every core has a dedicated
number of assigned threads. The threads work in the inter-
leaved scheme [38]. The interleaving eliminates the impact
of the pipeline processing on the timing unpredictability.
The order and frequency of the threads being processed is
configurable to allow the best possible match between the
core and the tasks being executed. The tasks performed by
the threads are switched (interleaved) according to the order
stored in a special Interleaving Cycle Register (ICR). The
register contains threads’ identifiers, and its length is also
adjusted. With the appropriate ICR design, some threads can
be processed more frequently than others. This mechanism
allows the core to match tasks in such a way that threads with
very strict timing constraints, and those with less rigorous
constraints, can run within a single core. Fig. 3 shows an
example of the contents of the ICR in a simplified five-thread
core. ICR has a length of 6 threads and processes threads 1,
2, 3, 1, 4 and 5. Assuming that the timing requirements for
thread 1 are much stricter, this thread must be executed twice
as often as the other threads 2, 3, 4, and 5. Therefore, the
identifier of this thread appears more frequently in the ICR.
The entire sequence is repeated from the beginning of the
system’s operation until it is shut down.

FIGURE 3. An example of ICR content.

To reduce the relationship between the number of threads
processed by a single core, the maximum frequency of the
clock, and to simplify the inspection of timing predictabil-
ity of the system, the pipeline can be extended with addi-
tional stages, but one needs to remember that a core with
an extended pipeline must process the appropriate number of
threads [38].

C. TYPES OF THE PROCESSED TASKS
In the designed system, all tasks are of the hard
type [39], [40], which means that no thread is allowed to miss
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FIGURE 4. Various types of the processed tasks.

completion before its deadline time. The scheduling process
calculates the maximum and minimum execution time for
each task, which under certain conditions is always less than
the deadline time. To facilitate the scheduling process, 3 types
of tasks were introduced. They differ in the way they access
the data exchange bus:

1) NCT: independent tasks that do not cooperate with one
another;

2) CT: cooperating tasks in which the time of data
exchange fluctuates between a certain minimum and
maximum values;

3) CTHM: cooperating tasks with a fixed data exchange
time.

The latter category of tasks (CTHM) allowsminimizing the
difference between the maximum and minimum execution
time of a task at the expense of higher system load (fewer
such tasks can be assigned to a single core of the system).

Moreover, another special group of tasks denoted by SHT
(Strong Hard Timed) was introduced into the scheduling
process. Only tasks in theNTC or CTHMcategory can belong
to this group of tasks (Fig. 4). STH tasks have the highest
priority during the scheduling process (especially since the
proportion of such tasks is relatively small). Introducing such
a priority minimizes the difference between the maximum
and minimum execution time for such a task.

D. MODEL OF TASKS
The task model was extended [2] with two new parameters
(flags) related to the new types of tasks introduced. Thus, the
model of a given task unambiguously indicates its type and
processing. Finally, the assumed model of the task processed
in the proposed system is the following:

Ti = {Ci,Mi,Di,CTHMi,SHTi} (1)

where:

Ci number of standard (without Mi) instruc-
tions of i-th task;

Mi number of memory access instructions that
refer to the data of other threads;

Di maximum acceptable execution time
(deadline) of i-th task;

CTHMi flag (valid for Mi > 0) indicating whether
i-th task is of type CT (‘0’) or CTHM (‘1’);

SHTi flag indicating whether i-th task is strong
hard timed (‘1’).

FIGURE 5. Main stages of the tasks’ scheduling process.

The previously defined TFi (Task Frequency) parame-
ter [1], [2] which allows determining the requirement for
computational power for each task, was also remodeled.
Changes introduced into the micro-architecture of the system
made it necessary to modify the TFi parameter. Its final
version is presented by equation (2):

TFi[MHz] =

Ci +Mi ·
[

Mdur
Minindistance

]
+ 2

Di[µs]
(2)

where:

Mdur number of clock cycles required to exe-
cute an instruction of data exchange with
another thread;

Minindistance interleave depth corresponding to the min-
imum allowed distance between pipeline
stages processing the same task in a given
moment of time.
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IV. TASKS’ SCHEDULLING PROCESS
The proposed tasks’ scheduling procedure consists of several
steps (Fig. 5). Before starting, it is necessary to complete
a preliminary, preparation stage of the scheduling process,
during which we determine all the necessary parameters
describing the tasks (1) and calculate the task frequency TFi
parameter for every task (2).

The first stage of the scheduling procedure is called task
mapping. During this stage tasks are assigned to processing
cores, Usually, a balanced load of cores is sought, i.e., that
the sum of TFs for all cores is as close as possible. In this
stage the minimum theoretical operating frequency of each
core (Fsysj) should also be estimated.
The second stage is called task arrangement. During this

step of the scheduling process, based on TFi parameters, the
sequences of tasks’ identifiers are created. Each sequence is
stored in the appropriate ICR of a given core. The length of
the ICR and the sequence are selected so as to process each
task at the appropriate frequency,

The initial simulation stage runs a special application
(the WCTA developed by the authors) that estimates several
factors of the system. First, the maximum number of clock
cycles necessary to complete a task is calculated for every
task mapped in a given core. Then, based on the frequencies
Fsysj determined in the task splitting phase, the maximum
execution time of each task is calculated. If the maximum
execution time of any task is greater than its Di time, a new
frequency of the core (Fszej), in which the task is located,
is calculated. This frequency is calculated based on the max-
imum number of clock cycles needed to execute the task and
its deadline (Di) time.

The fourth stage is frequency determinationwhich selects
the system frequency Fszemax common for all cores as a max-
imum value among Fszej. This solution will enable potential
further communication between tasks allocated in different
cores.

During the last step, the final simulation of the entire
system is carried out. All cores operate at the same frequency
Fszemax. The simulation results provide a wide range of
information, the most relevant of which seems to be data on
the maximum and minimum execution time for each task.

Each stage of the task scheduling process is discussed in
more detail below.

A. TASKS MAPPING
Depending on the design requirements, constraints, andmany
other factors, the task mapping process can be carried out in
several ways.

In a case, when the number of resources required for
the implementation of the system has to be minimized, one
should aim to minimize the number of cores processing
the tasks. This strategy is represented by ‘Methodology1’ in
Fig. 6. As our previous research [2] has shown, this approach
does lead to some reduction in resources (in the extreme case
to a single core with pipelined processing), but as a result, the

FIGURE 6. Various strategies of tasks mapping.

frequency of the clock signal must be increased significantly.
This is because as the number of cores is reduced, the number
of concurrent tasks decreases. In turn, raising the frequency of
the system results in a significant increase in dynamic power
consumption.

Another strategy, shown in Fig.6 as ‘Methodology 2’, is to
reduce the energy consumed by the system. In this case, the
designer should aim to increase the number of cores as much
as possible. This would result in greater parallelization of
calculations, i.e., multiple tasks could be performed simul-
taneously, and this, in turn, would enable the system clock
frequency to be reduced. This will result in a reduction of
power consumption. The disadvantage of this solution is the
increased demand for hardware resources. In addition, note
that there is an important limitation on the minimum number
of tasks processed by the core pipeline [1], [2]. This limitation
is a direct result of the thread interleaving [38] used. It should
be noted that the task arrangement algorithm responsible for
creating sequences of thread identifiers (implemented at the
next scheduling stage) gives better results when the number
of processed tasks is relatively large. Therefore, it is essential
to find the optimal number of system cores. Other strate-
gies tend to achieve a trade-off between energy consumption
and resource utilization. These strategies are analyzed in the
example presented in section V.

However, the starting point is the task mapping algorithm.
The previous paper [2] presented two algorithms BLIS II and
STODER II. The algorithms were responsible for selecting
the appropriate system structure, the number of cores, and
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FIGURE 7. Block diagram of BLTS algorithm.

assigning tasks to these cores. The algorithms were presented
on different optimization goals (methodologies). Here, based
on further research and experiments, the modified approach
using a single task mapping algorithm called BLTS (Bal-
anced Load Task Scheduling) was presented. BLTS (Fig. 7)
is designed for all types of tasks, including newly introduced
SHT-type tasks. The algorithm has been adapted to the current
version of the system architecture [2], in which the value of
the Mdur parameter is independent of the number of working
cores. The algorithm assigns tasks to the appropriate cores,
based on such information as:

1) Fmax – the maximum operation frequency of the
system. It depends on the system implementation
technology;

2) CN – the number of cores that depends on the selected
optimization methodology (Fig. 6);

3) Types of tasks and their TFi parameters.
As it was mentioned above, before starting the algorithm,

a set TF containing the TFi parameters of all tasks should
be determined. Additionally, when performing these calcula-
tions, the elements of the TF matrix are ordered and further
operations are performed on the sorted TFsorted vector.

In general, it is assumed that the number of system cores
is known before the BLTS algorithm starts. This is true for
the first two methodologies: MINRES and MAXPRO. When
it is necessary to reduce the cost of the system and minimize
the required resources (MINRES), then the number of cores
CNMINRES should be selected according to the formula (3):

CNMINRES ≥

⌈∑N
i=1 TFi
Fmax

⌉
(3)

In the case of theMAXPROmethodology, when the energy
consumed by the system is minimized, which is equivalent to
minimizing the operating frequency, the number of cores is
maximized. However, the number of working cores is limited
by a condition related to the minimum distance expressed in
cycles of pipelined processing between consecutive instruc-
tions of the same task Minindistance. In practice, the number of
cores CNMAXPRO handling N tasks will be determined from
the relation (4):

CNMAXPRO ≥

⌈
N

2 · Minindistance

⌉
(4)

In contrast, the third SFERA methodology proposed in the
paper [2] is an intermediate solution, in which the cost of
the system with specific energy constraints is to be reduced.
Unfortunately, in this case, it may be necessary to perform
iterative calculations (Fig. 8). Usually, the procedure starts
from taking a certain number of cores, resulting from the
assumed initial system cost. After the mapping (BLTS algo-
rithm), the power consumed by the system must be esti-
mated. If the imposed constraints are not met, the number of
cores must be increased and the entire procedure should be
repeated (Fig. 8).
The mapping procedure (Fig. 7) starts from assigning SHT

tasks to the cores (step A: of the algorithm). In the optimal

FIGURE 8. SFERA methodology for scheduling tasks in the regime of
efficient energy dissipation with a small amount of resource utilization.
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case, each core should perform at most only one SHT task.
If it turns out that the number of SHT tasks exceeds the
number of cores, then in the next step (task arrangement),
we should increase the values of their task’s frequencies TFi
accordingly or freeze the TWi time window value for each
SHT task.

Then the procedure of pre-assignment of tasks to cores
is performed (steps B1-B3), during which two consecutive
tasks with maximum and minimum TFi values are alternately
assigned to successive cores. It should be noted that by oper-
ating on a vector of TFsorted, it is not necessary to search for
the maximum and minimum values each time. The first and
last elements of the TFsorted vector are taken. When all tasks
are assigned and the matrix TFsorted is empty (step C), the
procedure is terminated.

The next step (D) of the algorithm is called ‘‘Load balanc-
ing of the cores’’ and is similar to the BLIS II algorithm [2].
Namely, the relative difference between the most loaded core
and the least loaded one for a certain used percentage ratio
should be minimized.

When we obtain a system with sufficiently evenly loaded
cores, we take the appropriate frequency values (step E) and
check that all the obtained values of the operating frequen-
cies of the cores are within the acceptable operating range
(step F). If any operating frequency exceeds the permissible
value of Fmax, the number of cores must be increased and the
algorithm should be repeated from step A.

The entire procedure is presented in the example depicted
in the section describing the experiments.

B. TASKS ARRANGEMENT
This stage of task scheduling is responsible for preparing a
sequence of thread identifiers (ThID) which will ultimately
be stored in the ICR. The order of ThIDs determines the
order of tasks processed in the core pipeline. For simulation
purposes, the algorithm generates the sequence of identifiers
in ASCII code and stores it in the appropriate file. The length
of the sequence is adjusted experimentally and this parameter
is denoted by WL (Window Length). In order to ensure the
continuity of tasks’ processing so that the length of the ICR
does not determine the processing time, the register works in
a round-robin scheme.

The scheduling algorithm is implemented as a program
in C# and mimics the behavior of a digital circuit imple-
mented in hardware. Thus, this program can be transferred
into the corresponding hardware structure quickly and easily.
Each task has its own independent set of counting registers:
TCi, TWi and TTWi. The first TCi reverse counting register
(Thread Counter) stores the value corresponding to the num-
ber of the clock cycles after which i-th thread is to be loaded
into the pipeline, in order to meet its deadline. When a given
register TCi reaches 0, it means that appropriate thread must
be executed.

The second register TWi (Time Window) contains the
value representing i-th task’s period (the number of clock
cycles), i.e., the maximum period of the execution of

consecutive instructions of a given thread to meet its timing
requirements. The value of this parameter can be calculated
from the following expression (5)

TWi =
Fcorej − Fcmarg

TFi
(5)

where:

Fcorej[MHz] Theoretical operating frequency of the j-th
core of the system

Fcmarg[MHz] The system’s operating frequency margin

The Fcmarg parameter is an experimentally selected oper-
ating frequency margin of the system, and the results of
previous experiments [2] have shown that the best results are
achieved with a value of about 4-12% of the Fcorej parameter.

The decision determining which thread will be processed
by the system in the next clock cycle is made based on the
states of the TCi registers. When the algorithm is started,
the initial states of the TCi registers are calculated by copy-
ing the values stored in the TWi registers. However, there
is one exception to this rule, no two registers TCi and
TCj (i ̸= j) can contain the same value at any moment of time
(a conflict would arise). To avoid such a situation, in case
the specified value is already occupied, the nearest free lower
state is searched and written to the given TCi register.

FIGURE 9. ICR sequence generation algorithm.

The third register TTWi (Temporary TimeWindow) is used
just when conflict of TC values arise. This register holds
the value corresponding to the difference between the actual
cycle of i-th task occurrence and the cycle resulting from the
TWi value (5). The search procedure seeks to have a thread
executed as early as possible, but in a critical situation, its ser-
vice may occur later than the TWi parameter (in which case
the TTWi value is negative). The task scheduling algorithm
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strives to make the average TWi value of each task as close
as possible to the value resulting from equation (5).

Fig. 9 shows the scheme of the ICR sequence generation
procedure. In each loop of the algorithm, the value of all
TC registers is decremented. When the value of any of them
reaches 0, it means that such a thread will be processed in
the next clock cycle. Then either the value of TWi (if it is
free at the time) is assigned to this TCi counting register or a
new value is searched for, and the difference is written to the
TTWi register.

It may also occur that in a given cycle none of the counters
has reached the zero state, in which case a thread with ThID0
is added to the cycle. This identifier means that no thread
will be processed in a given cycle - it will be a so-called idle
cycle not processing any instruction. Then the WL value is
decremented and the entire cycle is repeated until the value
of the WL counter (ICR sequence length counter) reaches 0.

The discussed scheduling algorithm can also eliminate
the resulting idle cycles. If the next thread to be added to
the cycle is to be the ThID0 thread, the algorithm checks
whether it is possible to swap this address for another one.
If so, the algorithm swaps it and updates its TC and TTW
register values accordingly. This could minimize the number
of idle cycles at the expense of faster processing of some
threads. This means that this procedure may cause a larger
difference between the minimum and maximum execution
time of standard threads. Therefore, this part of the algorithm
is optional.

SHT threads are hardware threads that either have no
instructions to exchange data with other threads or execute
instructions to exchange data with other threads with a fixed
execution time (Fig. 4). This means that when SHT threads
are used, all task execution time discrepancies originating
from the system microarchitecture are eliminated. To pre-
serve these properties of SHT threads, these threads take pri-
ority in the scheduling process and always appear in the ICR
sequence at the exact moments determined by their TWvalue.
This ensures that the difference between their maximum and
minimum execution times is minimal.

Unfortunately, the scheduling of threads of this type comes
with some limitations. SHT-type threads have priority in
scheduling of threads over regular threads, but there can be
no conflict in scheduling of two threads of this type (SHT),
because one of them could not be an SHT thread. To prevent
such conflicts, the TW parameters of SHT-type threads run-
ning in a single core must be the same or must be a multiple
of the smallest TW of the SHT-type thread. (If there is a
conflict, the TW parameter of any of the SHT tasks should
be increased, which will result in faster processing.) With the
above assumption, the distances between the ThIDs of SHT
threads in the generated sequence will always be constant,
thus avoiding SHT thread conflicts.

C. INITIAL SIMULATION
The next stage of the proposed scheduling procedure is sim-
ulation. We have developed our own simulation environment

and implemented it in C# in the form of a timing analyzer
WCTA. Input data contains information about tasks (their
parameters) and the threads’ identifiers sequence (ICR) gen-
erated in the previous stage. The simulation of the configured
system is done at a high level without stepping into details at
the signal level.

During the initial simulation, the necessary information
concerning on-line cores’ timing parameters is collected. The
initial simulation also allows reporting possible errors and
suggesting the system’s frequency correction. Obtained data
shows also the spread of timing parameters. The following
steps should be performed for each core operating in the
system:

To calculate the maximum and minimum execution time
of a given task, the length of the task must be expressed by
the number of standard instructions. In the case of the not
cooperating tasks (NCT), the problem is trivial, because this
number corresponds to the Ci parameter of the task.
For CT type tasks (where Mi ̸= 0) the length of the data

exchange with another thread is expressed by Mdur param-
eter. The method of the estimation of Mdur was discussed
in [1], [2]. Mdur corresponds to the number of clock cycles
needed for the completion of the memory operation. To deter-
mine the maximum number of standard instructions (Ci)
corresponding to the data exchange operation (Mi) (in the
worst case), the entire ICR sequence should be analyzed
for the number of occurrences of the identifier of a specific
task within a time window of the length of Mdur cycles
(Fig. 10). The entire process is illustrated in Fig. 10 for
three tasks #1, #5 and #12. During the initial simulation,
a time window of Mdur clock bars is created. The first part
of the ICR sequence is analyzed in this time window. The
number of occurrences of each ThIDi identifier is stored in the
corresponding MdurInsi parameter. The time window is then
shifted by one symbol towards the end of the ICR sequence
and these values are updated as necessary. To reduce the com-
putational complexity of the algorithm, a search of the entire
time window is performed only once at the beginning, while
after each shift of the time window only the new identifier
entering the timewindow from the right side and the identifier

FIGURE 10. Finding the maximum (WCT) number of standard instructions
corresponding to the memory instruction for three tasks.
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ejected from the window from the left side are checked. As a
result, we obtain a set of MdurInsi values corresponding to
the number of standard instructions Ci, with a total execution
time equivalent to the maximum time required to exchange
data for the i-th thread. It should be noted that for tasks of
type SHT, the value MdurInsi is constant in all time windows.
Now the total maximum length of a given thread MaxIi

can be expressed by the number of standard instructions. The
following relation (6) is, in practice, strongly overestimated
(pessimistic) although it gives a 100 percent guarantee of
time predictability, since, as is well known, operations with
memory are affected by the greatest amount of uncertainty.

MaxIi = MdurInsi ·Mi + Ci (6)

where:

MaxIi The equivalent of the maximum number of
standard instructions needed to perform the
i-th task

MdurInsi Maximum number of standard instructions
needed to execute a data exchange instruc-
tion with another thread

For NCT and CTHM tasks, the number of instructions
needed will always be constant. For NCT and CTHM tasks,
the number of instructions needed will always be constant.
Thus, if MinIi denotes the minimum number of standard
instructions needed to execute a data exchange instruction
with another thread, both parameters are equal, i.e. MaxIi =

MinIi. Moreover, in particularly advantageous situations,
when the data exchange operation takes the same length of
time as the standard instruction, CT tasks can be completed
faster and MinIi = Mi + Ci.

FIGURE 11. Finding the maximum number of system ticks required to
complete the task.

In the next step of the simulation, the maximum and mini-
mum number of clock ticks needed to execute a given thread
is calculated. The sequence of ThIDs checked in the simula-
tion looks for all possible intervals in which a given task can
be completely executed from the start to the end. In the ICR
sequence, we look for substrings containing MaxIi + 1 iden-
tifiers of the i-th task for the maximum task execution time
and MinIi identifiers for the case of minimum task execution
time, respectively. Each sub-sequence must begin and end

with the identifier of the corresponding thread. In this way, the
maximum and minimum number of clock cycles required to
execute each task mapped to a given core can be determined.
The method of determining the MaxExeTicks1 parameter is
shown by the example depicted in Fig. 11. Assuming that
the MaxI1 parameter is 2, the longest sequence of job ThIDs
that begins and ends with the identifier ‘‘1’’ and contains
MaxI1 + 1 of these identifiers (3 in this example) is searched
for in the sequence of identifiers stored in the ICR. The
longest sequence (MaxExeInterval1) has a length of 18. In the
worst-case scenario, i.e., the worst possible moment to start
the task execution, the second ID is shown (marked in red).
If the length of the task is 2 instructions (MaxI1 = 2), the
task will complete as late as the point marked in green, that
is, after 17 clock cycles. Thus, MaxExeTicks1 is going to be
equal to 17.

In the best case, i.e., when the task starts at the best possible
moment, the shortest sequence starting and ending with the
identifier ‘‘1’’ and containing exactly MinI1 such identifiers
is searched. MinExeTicks1 will just be equal to the length of
this sequence.

In practice, the MaxExeTicksi and MinExeTicksi values
denoting the maximum and minimum number of the clock
cycles, respectively, needed to execute the i-th task should
be expanded by few cycles associated with the launch of the
pipeline of a given core, depending on its configuration [1].

The parameter MaxExeTicksi divided by the deadline Di
has a significant practical meaning, namely, it denotes the
minimum operating frequency of the core at which the i-th
task is predictable. Thus, the minimum operating frequency
of the core can be determined from the relation (7):

MinFreq = max
i=1,...,N

(
MaxExeTicksi

Di

)
(7)

where:

N Number of tasks mapped to the core
MaxExeTicksi maximum number of the clock cycles

needed to execute the i-th task

D. FREQUENCY DETERMINATION
If the frequency of the core calculated from the equation (5)
is higher than the frequency Fsysk determined at the stage
of mapping tasks to the k-th core, the frequency should be
updated and taken as the new value of the operating frequency
Fszek of this core, otherwise Fszek = Fsysk .
When the initial simulation of all cores is completed and

their operating frequencies determined, the final operating
frequency of the entire system should be calculated. To ensure
time predictability of all tasks, the maximum value among
Fszek should be taken. At this point, the final simulation of
the entire system can proceed.

E. THE FINAL SIMULATION
Fig. 12 presents the main window (the interface) of the simu-
lator. As with the initial simulation, the numerical parameters
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FIGURE 12. The interface of the system timing analyzer WCTA.

FIGURE 13. The verification environment.

and types of tasks (1) performed in the system are known at
the input, as well as the generated sequence of the tasks iden-
tifiers ICR. While performing the final simulation, with the
knowledge of MaxExeTicksi and MinExeTicksi parameters,
the maximum and minimum execution time for each task can
be determined, among other issues. This information is pre-
sented in columns ‘‘Max Exe Time’’ and ‘‘Min Exe Time’’,
respectively. The ‘‘MinFreq [MHz]’’ field provides interest-
ing information. Here, the simulator provides the value of the
minimum system frequency at which all tasks will fit within
their deadlines.

V. EXPERIMENTAL VERIFICATION OF THE SYSTEM
To verify and validate the proposed new time predictable
design methodology, we have developed and arranged our

own verification environment (Fig. 13). The previously pub-
lished [2] task mapping methodology was modified and
combined with the WCTA. The method was tested for a
system processing 60 randomly generated tasks from a set
of implemented programs [1]. In each case, different opti-
mization goals and different system configurations were
analyzed. All experiments were conducted using Xilinx’s
Virtex-7 XC7VX485T-2FFG1761 chip, where the entire sys-
tem was implemented.

A. STRUCTURE OF THE VERIFICATION ENVIRONMENT
The structure of the proposed verification environment is
depicted in Fig. 13. This environment enables independent
monitoring of the execution time of each task. It consists of
four main modules. The first module is an original multitask-
ing PRET system [2]. According to the established concept
of operation of the time predictable system [13], tasks are
triggered asynchronously by independent external signals.
This function is performed by the second module: the tasks’
triggering signal generator module (Pseudo-random signal
generator) implemented by means of the LFSR register.

The next module (Task execution clock counting device)
counts the number of clock cycles between the signal that
starts the task and the feedback signal coming from the
system signaling task execution. This module stores the max-
imum andminimum number of clock cycles counted since the
system startup.

Finally, the fourth module: the transmitter converts parallel
data into serial and transmits it to the external computer. The
transmission can be initialized automatically or manually.
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The transmitter can be used to transmit actual data coming
from the real-time system regarding similar parameters that
were obtained during the simulation (Fig. 12). This data is
read out using a dedicated software where it is then analyzed.

B. VERIFICATION OF THE ADOPTED SCHEDULING
METHODOLOGY AGAINST THE TIME PREDICTABILITY
REQUIREMENTS OF THE SYSTEM
A series of conducted experiments confirmed the advantages
of the adopted methodology based on the use of the WCTA.
In this section, generalized, aggregated results showing
averaged data obtained from at least one million executions
of each of the tested tasks are presented. It should be noted
that each time the test set was randomized. A more detailed

FIGURE 14. The relative difference between the maximum and minimum
execution time obtained from WCTA related to the actual maximum
execution time (mean values for various types of tasks).

FIGURE 15. The relative difference between the maximum and minimum
execution time obtained from the practical experiments related to the
actual maximum execution time (mean values for various types of tasks).

representative example showing our approach step by step is
included in the next subsection.

The tests comprised successively running three different
system configurations related to different design goals: mini-
mizing cost (MINRES), minimizing power (MAXPRO), and
aiming to meet given energy constraints while optimizing
cost (SFERA). Next, each system was operated and per-
formed the tasks assigned to the computing resources (cores)
for about one hour. Then the data acquired from the measure-
ment environment (the maximum and minimum execution
time of each task) was compared to the data acquired from
the WCTA analyzer and the deadline (Di) parameter of the
tasks. These experiments confirmed the correctness of the
concept and execution of the scheduling methodology and
no deadline was missed. Furthermore, the performance of the
task execution analyzer was verified. Each of the maximum
and minimum task execution times is within the allocation
calculated by WCTA.

Experiments have shown that the best results are obtained
for ICR sequences consisting of 2000-5000 identifiers (WL
parameter). The next three diagrams show the averaged
results obtained from a series of experiments. The complete
analysis, on the other hand, can be traced through a repre-
sentative example, which is included in the next point of this
section.

Figures 14 and 15 show the relative difference between
the maximum and minimum execution time of each type of
task related to the maximum execution time of the task (the
worst case) obtained from simulations and measurements of
the actual system, respectively.

The results obtained from the simulation are more pes-
simistic than the measurements made in the real system real-
ized in the FPGA. This is because in the analysis process, the
simulator always assumes the worst case of the task run time.
It can be seen from the graphs that the largest fluctuations in
task execution time occur for CT and CTHM tasks. A fairly
high repeatability of SHT task execution times of about 0.1%
was observed.

Fig. 16 shows the relative difference between the deadline
and the average task completion time. These charts show
how much earlier a given result can be obtained. The largest
differences reaching 44% were obtained for SHT tasks. This
is due to the fact that in the scheduling process, such tasks
are assigned the highest priority, which makes it necessary to
increase the frequency of work to meet the time requirements
for all tasks.

C. REPRESENTATIVE EXAMPLE
The following example shows the process of scheduling of
randomly selected 60 test tasks. In addition, randomization of
task parameters was carried out:Ci,Mi andDi. The following
constraints were assumed:

1) the maximum value of Ci is limited to 3000;
2) the maximum value ofMi is limited to 100;
3) the maximum value of TFi is limited to 4;
4) the probability of randomdrawing SHT task equals 5%;
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TABLE 1. Parameters of test tasks.

5) the probability of random drawing CT task equals 25%;
6) the probability of random drawing CTHM task

equals 5%.

Based on the above assumptions, 60 test tasks were gener-
ated, as shown in Table 1.

For the current implementation of the system in the Virtex-
7 FPGA chip, Fmax = 150 MHz was assumed, and this value
includes some safety margin [1], [2]. And because the total
sum of all tasks’ frequencies (TFi) is lower than Fmax, all
tasks can be allocated in a single core. We then proceeded
to determine the number of cores needed in each of the three
methodologies, with a power limit of 1W for the SFERA con-
figuration. The resulting parameters are gathered in Table 2,
with 1 core sufficient for the MINRES methodology, and
3 cores for SFERA (assumed as the initial configuration)
proving sufficient to meet the power requirements.

The obtained final tasks mapping based on these parame-
ters and taking into account the previously determined task
frequencies is shown in Table 3.

As a result of running the task arrangement procedure, ICR
sequences with appropriately selected lengths are obtained.
For example, in the case of an architecture implemented
according to the MINRES scenario, the length of the window
is 2880 and it is a multiple of the time window of the largest
SHT-type thread (TW5 = 72). The WL parameters of the
other scenarios were selected similarly. Table 4 collects these
parameters and shows the minimum operating frequencies of
individual cores and the final frequency of the entire system
obtained from the simulation process.

Then, each version of the system was implemented in
the FPGA and tested in the environment shown in Fig. 13.
During the experiments, the power consumption of the differ-
ent system configurations (Fig. 17) and the requirements for
post-implementation hardware resources (Fig. 18) were com-
pared. In the case of energy demand, the difference between
the two extreme implementations ofMINRES andMAXPRO
is about 42% for total power and almost 61% for dynamic
power, respectively.

FIGURE 16. Relative difference between deadlines and average time to
complete a task.
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TABLE 2. Number of processing cores for different methodologies.

TABLE 3. Results of tasks mapping algorithm.

The relationship between resource utilization and the com-
plexity of the structure is much more complicated. While one
can observe a certain increase in logical resources as the num-
ber of cores increases, in the case of resources responsible for
switching, this relationship is not directly proportional. The
number of multiplexers strongly depends on the number of
tasks being performed, and in some cases high-level synthesis
tools manage to achieve some optimum.

A detailed analysis of the time predictability of tasks of
different types provides very interesting conclusions. At the
same time, it should be taken into account that this analysis
is based on averaged results, i.e., each task was performed
more than a million times. Graphical representation of all
data showing the obtained timing parameters of tasks is
impossible due to the amount of data obtained. Therefore,
for greater readability, the results for the most individual
cases are presented. Example graphs are provided for NCT,
CT, CTHM and SHT tasks in Figs. 19 – 22, respectively.
The graphs show Di time (Deadline), maximum (Max S)
and minimum (Min S) task completion times calculated by
WCTA, and maximum (Max M), minimum (Min M) and
averaged (Mean M) task completion times measured in the
hardware-implemented system.

Fig. 19 shows measurements for an NCT-type task
(THID = 3). All the times are less than the Di time. It can

TABLE 4. Selected results of tasks arrangement and initial simulation of
the system.

FIGURE 17. Comparison of the energy properties of the different
implementations of the system.

FIGURE 18. Comparison of the resources used for the different
implementations of the system (post-implementation).

also be observed that this difference is varied in each scenario,
which is due to the different ICR sequences determined in the
scheduling process. In the case of this NCT task, the differ-
ences between WCTA indications and the measurements are
very small and are at the level of single µs.

In the case of the CT task (Fig. 20), a significant difference
can be observed between the maximum task execution time
calculated by the timing analyzer and the actual task execu-
tion time of the system. This is an effect resulting from the
WCET analysis performed during the simulation. Moreover,
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FIGURE 19. Results obtained for the not cooperating task (NCT) nr 3.

FIGURE 20. Results obtained for the cooperating task (CT) nr 2.

FIGURE 21. Results obtained for the cooperating task with fixed data
exchange time (CTHM) nr 1.

FIGURE 22. Results obtained for the strong hard timed task (SHT) nr 5.

with memory access operations the timing parameters are
subject to the greatest degree of imprecision.

The results obtained for the CTHM task (Fig. 21) confirm
the achievement of the optimization goal of minimizing the

difference between maximum and minimum task execution
time which, in this case, is significantly reduced compared
to CT tasks.

In the case of the SHT task (Fig. 22), the highest con-
sistency was achieved between the calculations obtained by
simulation and the results of measurements of the practically
implemented system.

In order to validate the concept of the scheduling process
using a dedicated timing analyzer, the results obtained for
all tasks are presented collectively. To make this possible,
all the times are presented in percentage with respect to the
Di parameter of each task. The diagrams show the average
execution times of each task for each system configuration
along with the range of changes (min-max), with Fig. 23
showing the data obtained from the simulation and Fig. 24
illustrating the results of measuring the real system.

The presented system adopts a completely asynchronous
mode of running tasks that depend on external factors. More-
over, tasks are not handled as a system interrupt. There-
fore, the WCET (Worst case execution time) and the BCET
(Best case execution time) are dependent on a task triggering
moment, which is completely random in a real-time system
(see Fig. 11). The authors of the survey concerning real-time
embedded systems [29] suggested a special quality measure
parameter defined as BCET to WCET ratio. It turns out
that this indicator is better the closer its value is to unity.
Fig. 25 presents the values of the quality measure index for
all the tasks analyzed in the example. The results obtained
in the process of simulating the system before launch are
much worse than the results obtained when analyzing the
operation of the system implemented in the FPGA chip. The
best quality measure values were obtained for SHT tasks,
which is consistent with the adopted scheduling strategy.
Also, for NCT tasks, the values of these coefficients are close
to unity, which is understandable because these tasks do not
require communication between threads. However, for the
actual parameters obtained from the hardware-implemented
system, all quality measure values lie above the 0.93 level
regardless of the adopted system configuration and design
goals.

D. COMPARISON TO OTHER APPROACHES
A conclusive and fair quantitative comparison with other
solutions proposed in the literature is quite difficult because
different authors highlight different indicators of their solu-
tions, there is no full access to all data, and the used FPGA
platforms are made in different technologies. Therefore, the
comparative analysis is divided into two parts: a comparison
of the components of the solutions (descriptive analysis) and
a comparison of the resources of the selected solutions. The
results of the first analysis have been gathered in Table 5,
while the results of the numerical analysis of hardware
resources are included in Fig. 26 and 27.

The proposed solution is implemented in the new family of
modern FPGA devices (implemented in 28 nm technology),
but this was not the only factor that determined the quality

VOLUME 11, 2023 46993



E. Antolak, A. Pułka: Validation of Task Scheduling Techniques in Multithread Time Predictable Systems

FIGURE 23. The average execution times of each task for each system configuration along with the range of changes (min-max)
from WCTA.

FIGURE 24. The average execution times of each task for each system configuration along with the range of changes (min-max) from the
real system implemented in hardware.
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FIGURE 25. The quality measure factors [29] obtained for all tasks in three tested configurations in the simulation (left charts) and in
the implemented system (right charts).

TABLE 5. Comparison to other approaches.

of the proposed solution. We have proposed a simple and
effective task and context switching mechanism based on the
interleaving cycle register controlling the pipeline process-
ing. The processing cycles dedicated to a given task are con-
tinuously repeated and thus, without the need of interrupts,
the task can be executed regardless of when it starts with full
timing predictability. The proposed solution mimics RTOS at
the hardware layer. In the proposed solution, it is possible to
use a single thread as an operating system thread using timing
instructions and deadline registers.

The two architectures closest to the proposed solution,
in our opinion, are ARPA-MT [45] and FlexPRET [42],

and we decided to compare the resources obtained after
implementation with these two approaches. The cited papers
provide resources for different system configurations and
different numbers of tasks, so some normalization of the
results has been introduced to make the comparison as rel-
evant as possible.

The diagram depicted in Fig. 26 contains the comparison of
resources consumed for the implementation of the presented
architectures with the averaged resources required per single
task in the ARPA-MT system [45]. That architecture [45]
used hardware support for RTOS (Cop2-OSC), while tasks
were processed in the main pipeline (Cop0). Such averaging
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FIGURE 26. Comparison of resource consumption for the entire system
implementation related to a single task.

FIGURE 27. Comparison of ‘processing’ resources (without storing
components) consumption per a single task.

can only provide a rough comparison; however, all results
indicate that our solution is more resource efficient.

Since in the FlexPRET solution [42] the data related to the
context of the tasks being processed (including register files)
are stored in memory, the information reported on resources
consumed ignores these items. Thus, in order to make the
comparison adequate, the resources needed to implement the
general-purpose registers of individual tasks in our solutions
have been neglected. A direct comparison of resources, espe-
cially with a large number of processed tasks, would give a
significantly falsified result.

VI. SUMMARY
The presented methodology allows adjusting the hardware
structure so as to minimize the energy required for the
system’s operation or the number of resources required,
whilst ensuring the critical time predictability of the system.
The proposed method of simulating task execution allows
to predict maximum and minimum task execution times
even before the system starts up. The division into different
types of tasks makes it possible to match the differences
between maximum and minimum task execution times with
the requirements of the task application.

We were able to achieve a 100% fulfillment rate of task
completion time, i.e. DMR=0% [36] for all tasks. Although

there are situations in which certain tasks may be completed
clearly before their deadlines, this situation is particularly true
for SHT tasks. For applications in secure systems, such a
situation could be critical. However, taking into account that
in our solution each task has a dedicated hardware deadline
counter, it can be used to release the data/input signals of such
a critical task.

The task processing strategy adopted in the approach,
based on thread interleaving, does not require mechanisms
for hazards control in the pipeline and other issues related to
the prediction of branches, jumps, etc.
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