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ABSTRACT Joystick is the most common wheelchair controlling interface, however, it might not be
applicable for cases of severely disabled people, for example quadriplegic users. The few solutions currently
available on the market, such as the four switches on the headrest, the sip-n-puff, or the tongue drive system,
can be cumbersome to use, while they offer limited control to the user. For such cases, a vision-based head-
controlled wheelchair is a unique alternative solution, which despite its benefits, has not been equally well
studied. In this work, we propose and evaluate a novel method for operating an Electric PoweredWheelchair
(EPW) via head movements in a non-invasive way. This is based on computer vision techniques and Deep
Learning to estimate accurately the orientation of the user’s head. It allows calibration for individual users
and driving in a continuous navigation space as opposed to the discrete commands imposed by alternatives
such as head switches. Our approach enables the design of an efficient and cost-effective solution utilising a
simple RGB camera that captures the user’s face orientation. Our system is implemented and tested real-time
on an EPW using its existing commercial controller, while it can work with any commercial controller
the manufacturer allows interfacing with (i.e., a direct plugin). Performance is evaluated through trials
conducted with healthy participants. The results (96% successful track completion) show that our head
driving system can be reliably used as an alternative solution to the conventional joystick interface, with only
a small trade-off in travelling time and distance (reduction by 9.4% and 21% respectively). The participants’
experience in terms of mental and physical load, subjectively assessed following the trials, suggests relatively
low mental and physical demand imposed by our system. Users also expressed high confidence in the
system’s performance indicating trust to the safety aspects of our implementation. Analysis of our findings
and experimental observations provide a new knowledge base for potential system improvements and future
designs.

INDEX TERMS Head-controlled wheelchair, spinal cord injury, assistive technologies, head tracking,
robotic wheelchair, gesture-based control.

I. INTRODUCTION
Loss of personal mobility due to spinal cord injury is
a major challenge in the lives of affected individuals.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

According to a wide study conducted in the U.S. [1],
about 45% of Spinal Cord-Injured (SCI) people end up
with incomplete quadriplegia, and 13.3% end up with com-
plete quadriplegia, rendering all four limbs paralyzed. While
motorized wheelchairs have been instrumental in promot-
ing independence among disabled individuals, traditional
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FIGURE 1. Our developed head-controlled robotic wheelchair.

interaction interfaces such as joystick control are not applica-
ble for quadriplegics who have lost hand function. Due to the
unique nature of quadriplegia, tracking head movements has
drawn the attention of researchers as an alternative solution
to operating a wheelchair. However, the literature reveals that
this area is understudied, with only a few successful practical
implementations of head gesture-based control.

Previous research can be broadly classified into two
approaches: invasive and non-invasive. Invasive approaches
require contact with the user’s head, such as tilt and
accelerometer sensors [2], [3], which can limit their move-
ment range or cause discomfort. Non-invasive approaches,
on the other hand, use computer vision techniques for
image-based head pose estimation [4] or head gesture recog-
nition [5], enabling contact-free operation of the wheelchair.

In this study, we present a novel non-invasive method that
relies on visual head pose estimation for controlling a com-
mercial Electric Powered Wheelchair (EPW) through head
movements. Our approach improves upon existing methods
by using a state-of-the-art neural network and fast, accurate
facial landmark detection to perform robust face detection
and head pose estimation. Furthermore, we have designed
a calibration process that allows for customization of each
individual’s range of motion and a control logic that enables
users to maintain full control over the wheelchair. Our system
allows for continuous control, which is not present in other
works.

Our main contributions include:
1) Designing a vision-based, non-intrusive, cost-efficient

system for controlling a wheelchair through head
movements, relying only on a simple web camera.

2) Improving upon existing methods by using a state-of-
the-art neural network and fast, accurate facial land-
mark detection for robust face detection and head pose
estimation.

3) Designing a calibration process for customization of
each individual’s range of motion and a control logic
for maintaining full control over the wheelchair.

4) Allowing for continuous control, which is not present
in other works.

5) Evaluating the system’s effectiveness in a real-world
scenario with healthy human participants.

The rest of this paper is organized as follows.
Section II presents a literature review of existing head-
controlled wheelchair methods. Section III describes our
approach for estimating head position and controlling the
wheelchair. Sections IV-A and IV provide details on the hard-
ware setup of our wheelchair and the experimental protocol
we followed, respectively. In Section V, we present trial
results and a discussion of our findings. Lastly, Section VI
summarizes our work and proposes future directions for
building upon and further improving our novel system.

II. RELATED WORKS
Head-controlled wheelchairs are a key assistive technology
for people suffering with motor disabilities in their four
limbs. Following the distinction between invasive and non-
invasive approaches made in section I, a broader classifi-
cation of methods can be made between sensor-based and
vision-based. In this chapter, we explore the most prominent
sensor-based and vision-based head-controlled wheelchair
studies.

A. SENSOR-BASED APPROACHES
Due to their simplicity and reliability, sensor-based tech-
niques have been the focus of hands-free wheelchair con-
trol. Currently, the conventional method used by quadriplegic
patients for wheelchair control is the sip-and-puff system [6],
which allows basic control through a plastic tube mounted
on the wheelchair. This system, even though low-cost and
easy to use, has been reported to feel cumbersome, awkward
and very slow. An alternative proposal to the sip-and-puff
is the Tongue Drive System (TDS) [7], which detects the
tongue motion by using a magnet and magnetic sensors. This
system, however, requires the tongue to be pierced, which can
be quite uncomfortable, and also allows a limited number
of commands. Other methods that have been explored by
the research community rely on tracking the head position,
which has been achieved with a diversity of sensors including
accelerometer, tilt sensors, touch switches, or ultrasounds.

As one of the first sensor-based head-controlled
wheelchairs, [8] introduced a powered wheelchair steering
technique with the aid of head movements, derived by ultra-
sonic range measurements. In this study, they have mapped
the head orientation, estimated by two ultrasound sensors,
into four discrete commands; right, left, moving forward
and stop. Another contactless sensor-based approach, [9]
explored the performance of a head-controlled EPW, where
the motion was recorded by an array of four infrared LEDs
and a camera. The number of infrared LEDs in the vision
of the camera (installed at the back of the user’s head,
on the head rest) change according to the yaw angle of
the user’s face, and the discrete commands of turning right
and left are derived from the number of LEDs that are
within the camera’s field of view. Reference [10] utilized an
interface with mounted proximity infrared sensors, to track
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the eyeball motion of a user and detect intentional blinks
and eye motions, which are mapped to driving commands
for the wheelchair. Using inertial sensors is another method
of deriving the head orientation for controlling EPWs, and
it is explored in several studies. Reference [11] is such an
example, that used a MPU 6050 triple axis accelerometer
and a gyroscope for monitoring the user’s head motion and
ultimately controlling a prototype EPW. However, no actual
experiments verifying the effectiveness of the proposed
method are presented. The authors embedded the accelerom-
eter on the visor of a cap that needs to be worn by users.
Similarly, [12] used an accelerometer to get the head position
feedback before feeding that signal to an Arduino board to
process the data and control a toy car, instead of a wheelchair.
As an another example of sensor-based techniques, [13] used
a gyroscope, attached on the user’s head by a headband, for
steering a real wheelchair. The proposed model has limited
accuracy, whereas the accumulative error caused by the inte-
gration of the gyroscope output (known as the drift problem)
has been considered negligible. Some other sensor-based
approaches are presented in [2], [3], and [14], where tilt
sensors were utilized for X and Y displacement detection,
which was then translated to discrete wheelchair move-
ment commands. The effectiveness of the tilt sensor-based
approach in [3] was verified through trials run on Spinal
Cord Injured (SCI) patients, by performing some basic tests
like travelling in a straight line or measuring the braking
distance after sending a stop command. Another direction
of sensor-based methods in wheelchair control focuses on
the use of the Electroencephalography (EEG) technique [15],
[16], [17]. This approach, however, depends on using an
electrode cap placed on the user’s scalp for acquiring the brain
signals, and faces important challenges, like a small signal-
to-noise (SNR) ratio and multiple different noise sources
which corrupt the main signal. It is currently considered very
challenging to design and implement such a system, that is
also reliable, accurate and flexible.

The methods presented above, usually comewith a number
of drawbacks. Installing the sensors, as well as maintaining
them, due to the high probability of getting damaged, can
incur high costs. Furthermore, the inconvenience, or thewear-
ing discomfort, caused to the users by solutions such as the
TDS, head switches, devices attached to the user’s head etc.,
is as another important drawback. Finally, the majority of
the existing approaches operate with a discrete set of moving
commands, thus, limiting the amount of available control to
the user.

B. VISION-BASED APPROACHES
Vision-based approaches for powered wheelchair control are
much rarer compared to sensor-based approaches. The most
widely explored vision-based approach is based on eye-
tracking, where a number of different methods have been pro-
posed for implementing it in a robust manner [18], [19], [20],
[21]. Such methods typically work with capturing images of

an eye, and using image processing techniques (e.g., Hough
transform) to track the position of the eye pupil and then
map it to a control direction for the wheelchair. One major
shortcoming of such an approach is the limited reliability of
tracking the eye pupil. Results can greatly vary depending on
the quality of the image, the size or the colour of the pupil, the
lighting conditions and the use of glasses or contact lenses.
Furthermore, eye gaze control can be quite taxing to its user,
since it requires constant eye movement and focus, which can
cause dizziness or similar symptoms.

Despite eye-tracking, other methods utilizing cameras and
computer vision algorithms have also been used on head-
controlled wheelchairs, however, their number is limited. One
such method is proposed in [5], where the head position
is estimated with the aid of a Kinect and three landmarks
on the head, by utilizing the optical flow technique. The
estimated position is then mapped to four discrete commands
for steering a wheelchair. However, the proposed method was
only tested in controlling a pointer for following the path on a
screen. Hu et al. [22] proposed a head gesture based interface
for controlling a wheelchair, by using a combination of Viola-
Jones [23], a well known face detection algorithm based on
Haar features, and the Camshift algorithm for face detection
and template matching for classifying the face posture. The
reliability of these algorithms, though, is limited for such an
application (Viola-Jones is not as effective detecting tilted or
turned faces, while Camshift has poor accuracy). In a similar
manner, [24] used a Haar cascade classifier for face and
eyes detection, estimating their position to generate control
commands for the wheelchair’s motors. Notwithstanding the
fast speed of the Haar classifier, it requires careful tuning,
while it is known for high false positive detection rates and
for being sensitive to the lighting conditions. No validation
experiments were conducted for the aforementioned studies.

Other works propose using additional inputs, like mouth
movements [25] or eyewinking [26] alongwith the head posi-
tion. However, this approach results in added complexity and
discomfort using the system, while it allows more room for
errors both from the system and the user side. Some studies
including [25], [27], that have demonstrated their proposed
systems in real world scenarios, provide implementations
on laptops mounted on the wheelchair, which can harm the
practical viability of a system that demands a low-power
and mobile solution. Furthermore, in these works there is
absence of subjective metrics and overall user experience
evaluation, which is vital for assessing the actual usability of
such systems.

A different type of approach is presented in [28], where
the authors proposed an active vision approach, and instead
of using a frontal camera pointing at the user’s face they
use an on-head camera. Halawani et. al used SIFT (Scale-
Invariant Feature Transform) points to monitor head motion,
and by comparing interest points extracted from consecutive
image frames they obtain themovement direction in a discrete
manner and steer the wheelchair in a real-world scenario.
This method relies on identifying and matching stable and
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FIGURE 2. The system’s flowchart.

repeatable points in different images, and even though it is a
vision-based approach, it requires contact between the user
and the camera (being installed on their head), which might
cause inconvenience similar to sensor-based approaches.

C. OUR CONTRIBUTION
Exploring the literature on head-controlled wheelchairs
reveals that very few of the proposed solutions have been put
into real use. Namely, the sip-and-puff, TDS and eye-gaze
technologies are the ones being used today by quadriplegic
patients. Sip-and-puff and TDS are invasive methods, that
can be burdensome to use for prolonged periods of time,
while they offer limited control freedom. Eye-gaze, though
vision-based and non-invasive, also does not allow fine con-
trol, while it can be unreliable and taxing to the user. Other
works based on computer-vision are quite rare, and are usu-
ally sensitive to environmental conditions (including vary-
ing illumination, indoor and outdoor environments, cluttered
backgrounds, and shadows [29]), or their effectiveness has
not been explored in depth by being applied to a real system
and tested with human subjects.

In this study, we present a vision-based, non-intrusive,
cost-efficient system for controlling a wheelchair via head
movements, only relying on a simple web camera. We have
designed a system that robustly performs face detection and
head pose estimation, improving upon similar existing meth-
ods [22], [24], by combining a state-of-the-art neural network
and a fast and accurate facial landmark detector. We have
also designed a calibration process that allows customization
to each individual’s range of motion and a control logic
which allows users to maintain full control over a powered
wheelchair. Furthermore, the control can be done in a con-
tinuous manner, something that is not present in other works.
The system has been deployed on a commercial wheelchair
and its effectiveness has been evaluated on a real world
scenario with healthy human participants.

III. METHODOLOGY
A robust head-controlled wheelchair requires two important
elements; a reliable head pose estimation algorithm and a

robust translation of the orientation to commands for the
robotic wheelchair. Therefore, our method consists of two
main modules, one for estimating the head orientation (pitch
and yaw), and another one for translating the derived ori-
entation to velocity commands, before passing them to the
control module of the EPW. For the head pose estimation
step, we propose the use of ‘‘YOLO’’ (You Only Look Once),
a widely-used Convolutional Neural Network (CNN), along
with a facial landmark detector, where the head pose would be
calculated with respect to the output of these two blocks (see
next section for more info). For mapping the output of the
head pose estimation to moving commands for the robotic
wheelchair, we experiment both with discrete control com-
mands (predetermined velocity values for turning), as well
as continuous control commands (turning is a linear function
of the head’s yaw). A detailed explanation will be provided
in the rest of the chapter, where we present the methodology
behind our approach.

A. HEAD POSE ESTIMATION
For estimating the head orientation, in the pitch and yaw
dimensions, we utilize two modules combining machine
learning and more traditional computer vision techniques.
The first module is responsible for detecting the head of a
person within an image, whereas the second one is used to
approximate the orientation of the detected head. For head
detection we utilized the well-known YOLOv3 network [30],
which is a fast and efficient Fully Convolutional Neural
Network (FCNN), capable of detecting multiple objects in
almost real-time. YOLO uses a feature pyramid network to
detect objects at different scales and resolutions. This, along
with data augmentations during training, makes YOLO more
robust to environmental factors, such as different lighting
conditions and levels of blur, compared to other face detection
methods, like Viola Jones.

To improve performance in detecting faces on the
wheelchair’s onboard processor, we used mini-YOLOv3,
a smaller version of the full YOLOv3 network that was
retrained for this specific task. Mini-YOLOv3 was chosen
for its smaller size and faster frames per second (fps) com-
pared to the full YOLOv3 network. Despite its smaller size,
mini-YOLOv3maintains comparable accuracy to the original
network, and is particularly effective in detecting the closest
face to the camera. Other studies have also demonstrated the
effectiveness of mini-YOLOv3 as a real-time object detector
for embedded applications [31]. The implementation used,
‘‘DarknetROS’’ [32] was chosen because it is compatible
with ROS (Robot Operating System), which serves as the
backbone of the overall system.More information about ROS
is provided in Section IV-A1.

The detected face is then passed on to the second module,
which uses computer vision techniques in order to locate
the facial features contained in the image. For this, we used
the facial landmark detector included in the ‘‘Dlib’’ library,
which is an implementation of the work done in [33], that
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FIGURE 3. Left - The detected face (red bounding box) and the calibration
boundaries, against which the nose tip position (red circle) is checked.
The orange bounding box indicates the limits of the neutral zone, and the
blue the limits of the maximum motion in both directions, as calibrated
by the user (see Sec. III-B) Right - FT: The threshold for initiating forward
movement BT: The threshold for initiating backward movement TT: The
threshold for initiating turning LM: The interval at which the horizontal
nose tip position is linearly mapped to angular velocities (only in
continuous mode) MT: The threshold beyond which the maximum
allowed turning speed is set.

learns an ensemble of randomized regression trees to detect
landmarks on a face image. The particularmethodwas chosen
for its proved effectiveness and high speed [34], vital for
achieving real-time processing times. From those features,
we choose to locate the tip of the nose, the position of which
provides a good approximation of the head’s orientation. The
nose position is given in x and y coordinates of the given
frame, but since the bounding box of the face is of variant
size (depending on the distance of the face to the camera),
the head orientation is calculated as percentages of the nose’s
location in the image relative to the current frame’s size (rows
x columns). Naturally, the vertical coordinate changes along
with the pitch movement of the head, whereas the horizontal
with the yaw movement as shown in Figure 4.

1) SMOOTHENING THE INPUT
Here, it is important to mention that instead of directly using
the current pitch and yaw values for moving the EPW, a mov-
ing average is computed using the sliding window method
for the past k frames. This makes the implementation much
more robust for two reasons: Firstly, it prevents the transla-
tion of noisy estimates to immediate driving commands, and
secondly, it allows space for the user to make errors, like for
example sudden tweaks of the head, without instantaneously
altering their driving course. Of course, the size of the win-
dow is adjustable and dependent both on the hardware (fps of
the head detection) and also the preference/capability of the
individual user, and therefore needs to be tuned accordingly.
For example, given the last k pitch measurements, the current
smoothed pitch value would be given by: p̄n =

1
k

∑k
i=1 pi

For the next moving average calculation, and in order to
save processing time, the calculation can be simplified by
reusing the previous moving average. A new pitch value pn+1
comes into the window, whereas the oldest value pn−k+1
drops out, thus we get: p̄n+1 = p̄n +

1
k (pn+1 − pn−k+1).

B. HEAD POSE TO CONTROL OF THE ROBOTIC
WHEELCHAIR
After the extraction of the values corresponding to the pitch
and the yaw of the head, we apply a control script which
is responsible for translating those values to velocity com-
mands, as well as implementing the control logic to oper-
ate the EPW. Here, it is important to mention that in the
case where either the camera loses the user’s face, or in
the exceptional case that there is no valid face detection or
pose estimate, no control command will be issued to the
wheelchair, bringing it to a halt.

A valid head pose can be translated in either a discrete
or a continuous manner, where in the first case the discrete
mode (DM) maps the pitch values to three regions (‘‘moving
forward’’, ‘‘moving backward’’, ‘‘neutral’’), and likewise the
yaw values to three regions (‘‘turning right’’, ‘‘turning left’’,
‘‘neutral/inactive’’). In the second case, the continuous mode
(CM) retains the same mapping for the pitch, but uses a
linear mapping for the yaw values to angular velocities. For
a differential drive system the linear velocity and the angular
velocity can be expressed as follows:

vx =
vR + vL

2
ω =

vR − vL
l

, (1)

where vx is the platform body’s linear velocity,ω is its angular
velocity, vR,L are the drive wheel velocities (right and left
respectively) and l is the axial distance between the two drive
wheels.

Below, we further explain both modes and the control flow
of our system, which is also summarized in Figure 2.

1) DISCRETE CONTROL
Before sending commands to move the robotic wheelchair,
a calibration phase needs to first take place. In the calibration
phase, the user is given some fixed time to set their ‘‘neutral
zone’’, which is defined by the maximum and minimum
values of the pitch and yaw estimates, when the user moves
their head very slightly in all directions, while seated in their
neutral/comfortable straight position. The neutral zone can
be visualized as a virtual box around the user’s nose, where,
while the nose remains there, no velocity commands are being
sent to the EPW.

After the calibration is complete, we enter the driving
phase, duringwhich the current orientation is checked relative
to the neutral zone. When the pitch value exceeds the upper
bound of the neutral zone in the vertical direction, the linear
velocity vx of the EPW is set to a predefined positive value,
and remains so as long as the vertical position does not exceed
the lower bound of the neutral zone. If the latter happens,
then the linear velocity is set back to zero, unless it remains
there for a set amount of time, in which case ‘‘reverse’’ is
enabled, setting the linear speed to a predefined negative
value. Reverse can then be cancelled by again exceeding the
upper vertical bound.

Similarly, we set the angular speed ω of the EPW to a
predefined positive or negative value, when the yaw value
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FIGURE 4. Visualization of the head control process.

exceeds the right or left boundaries (in the horizontal direc-
tion) of the neutral zone respectively. The difference when
turning, is that the head position needs to remain either
right or left, and beyond the neutral thresholds, to maintain
a non-zero angular speed. This is done purposely to make
turning more responsive, as well as easily cancelable simply
by moving the head back to the neutral position. When the
linear velocity is set to zero, the user can turn their head right
or left to make the EPW rotate on the spot towards the desired
direction.

2) CONTINUOUS CONTROL
With ‘‘continuous control’’ we refer to producing continuous,
instead of constant values, for controlling the angular speed
of the EPW. In this mode, the linear speed again remains
constant as previously described. The control process for
continuous mapping is similar to the discrete one, with two
important differences. Firstly, we add an additional step in
the calibration phase, where the user has to also set their
maximum (comfortable) range of motion in the yaw direc-
tion, in order to obtain another boundary in the horizon-
tal direction outside the neutral one. Given this additional
boundary, we can now map any right or left head move-
ment that exceeds the neutral zone, to a continuous value
between a minimum one (a fraction of the maximum angular
speed, ωmin = α · ωmax , α ∈ [0, 1)), up to the maximum
allowed one (ωmax) when the head is at (or exceeds) the
edge of the outer boundary. For example, in the case of a
right turn of the head, and given the calibrated right neu-
tral boundary nbr , the far right boundary br , and the esti-
mated yaw value y, the angular velocity mapping is described
below:

ω(y) =


0, if y ≤ nbr

ωmin +
ωmax − ωmin

br − nbr
(y− nbr ),

if y > nbr and y ≤ br
ωmax , otherwise.

(2)

The same calculation also applies for a left turn, but
checked in respect to the left calibrated boundaries and
mapped to negative angular speeds. A graphic depiction of
the above process is provided in Figure 3.

IV. EXPERIMENTAL TRIALS
A. WHEELCHAIR SETUP
In order to test the performance of both approaches, we run a
set of experimental tests on a real EPW, in which the behav-
ior of users, models and wheelchair has been extensively
explored.

1) WHEELCHAIR COMPONENTS
The wheelchair that was used for our experiment is a Spectra
XTR2 model (Figure 1), which was modified accordingly
for compatibility with the Robot Operating System (ROS),
a framework that was chosen to enable interconnectivity
between the different components of the system. Programs
that use the ROS framework are termed as ‘‘ROSNodes’’, and
multiple nodes can be running in parallel and independently.
Nodes can communicate between them through the use of
‘‘topics’’ that carry messages, and by using the standard
TCP/IP protocol. In our case, each of the main processes
of the system (i.e., head detection, head pose estimation,
head pose to EPW commands) was written as a ROS node,
to be able to receive and/or pass messages from/to ROS
topics. The sensors of the system, as well as the EPW’s
controller, also make use of the same framework (e.g., the
web camera passing the images it captures to a ROS topic or
the controller receiving commands as messages from another
ROS topic).

The basic processing unit of the EPW is a UDOO board,
which is connected to the main sensors of the wheelchair
(e.g., encoders), as well as the control unit through the
joystick controller (a DX2-REM550/551 Advanced Joystick
Remote model). A NVIDIA Jetson Xavier board was also
connected to the UDOO, via Ethernet to allow ROSmessage-
passing, and in order to execute the higher level, computer
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FIGURE 5. The wheelchair’s hardware setup.

vision tasks. A simple web camera (any camera that can
provide images with a resolution higher than 416×416 pixels,
which is the standard input resolution for YOLOv3, is accept-
able) is streaming the captured images to the Xavier, which
processes them as described in Section III and produces a
velocity command. The resulting command is in turn passed
to the UDOO board and ultimately to the EPW’s control
module to move the wheelchair. The hardware layout, along
with connections between the components, is presented in
Figure 5, while a visualization of the mapping of head move-
ments to control commands, as well as the virtual joystick that
is displayed as feedback to the user, are shown in Figure 4.

2) ENCODERS
A pair of incremental rotary encoders was also utilized (one
encoder per driving wheel), in order to calculate odometry
data (defined as the use of motion sensors to determine the
robot’s change in position over time) and be able to visualize
the trajectory executed by the wheelchair throughout the
trials. Below, we present the equations that were used, based
on the differential drive kinematics, in order to derive the
velocity and the displacement of the EPW via the encoder
information.

For a full revolution of the wheel, the encoder performs a
certain number of ‘‘ticks’’ (tpr ). Given that information, along
with the radius (r) of our drive wheels, we can then calculate
the distance that corresponds to each of those ‘‘ticks’’ as

mmsper .tick =
2πr
tpr

. (3)

By measuring the difference in ‘‘ticks’’ between two con-
secutive measurements of an encoder (dticks), and from the
kinematic equations that describe a differential drive plat-
form (shown in Eq. 1), it is possible to calculate the robot’s
displacement and change in heading from the following
equations:

dxy =
mmsper .tick

2
· (dticks.right + dticks.left ) (4)

FIGURE 6. The experimental route layout.

and

dth =
mmsper .tick

l
· (dticks.right − dticks.left ). (5)

B. EXPERIMENTAL PROTOCOL
In this study, we recruited 14 healthy people to participate
in the experimental tests. We run three experiments per par-
ticipant, where they were asked to navigate the wheelchair
through the designed track (as shown in Figure 6) in the
following modes: (i) using the manufacturer’s standard joy-
stick interface (ii) using the head-control method in DM (iii)
using the head-control in CM. The age of the participants
ranged between 21 and 56 years old. During the experiments,
an emergency button was connected to the wheelchair for
safety reasons. This button would disconnect the main power
in case of an emergency. The participants were also instructed
to use the joystick (which would override the remote head
commands) only in the event of a potential collision, but not
for correcting the trajectory of the wheelchair. Before each
trial, every participant was provided with three opportunities
to calibrate the system.

The participants were given up to 15 minutes to familiarize
themselves with the setup as well as the driving behaviour
of the EPW, and also a 2 minute break between the differ-
ent experimental rounds, in order to minimize the effect of
tiredness or any other unwanted factors. An interview was
conducted after the trial to gauge the participant’s satisfaction
with the system and to collect some subjective measurements.
The participants were asked to provide a number between one
and five (1-5), stating their experience with using a powered
wheelchair.1

For the sake of performance evaluation, the trajectory,
number of collisions, travelling time and travelling distance
were recorded throughout the trial runs. The number of col-
lisions, as well as the travelling time, were recorded by the
researchers overviewing the trials, whereas the trajectory and
the travelling distance were extracted from the odometry data
derived from the pair of encoders installed at the EPW’s
wheels (see Sec. IV-A2). The performance of the participants

1Some of the participants were members of the research teams work-
ing in the area of assistive technologies, therefore having experience with
wheelchairs, despite being non-disabled.
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FIGURE 7. The trial trajectories as recorded from the odometry.

TABLE 1. Participant trial results in the three driving modes.

has been evaluated qualitatively and quantitatively and is
discussed in the following chapter.

V. RESULTS AND DISCUSSION
We have evaluated the participants’ performance in each of
the three modes with a set of evaluation metrics as:

• Mean and standard deviation of traveling time
• Mean and standard deviation of traveling distance
• Number of collisions
• A number of subjective measurements inspired by the
Nasa Task Load Index [35] (only in head-control mode)

The summary statistics of the travelling distance, travelling
time and the number of collision are presented in Table 1.
For gaining a better insight of the participants’ performance
in each mode, the travelling trajectories, constructed from the
recorded odometry, are also presented in Figure 7.

A. ANALYSIS OF THE RESULTS
For the 14 participants a total of 28 distinct runs were con-
ducted using our head control system (2 modes per partic-
ipant) and another 14 using the standard joystick interface,
making a total of 42 runs. For a fair comparison, the com-
mands issued from the joystick were limited to match the
maximum allowed velocities of the head control mode. Out of
the 28 head-controlled runs, 27 were successfully completed,
whereas there was 1 case where the participant could not
complete the trial, due to poor calibration of the system
(‘‘reverse’’ could not be activated). As stated in the study
protocol (Section IV-B), each participant had up to three tries
to successfully calibrate the system.

Comparing the discrete versus the continuous translation
of the head pose estimation to moving commands, our obser-
vation revealed that the continuous performed slightly better,
in terms of completion times, but also shorter trajectories
and smaller number of collisions. This can also be verified
visually by comparing the resulting trajectories between Fig-
ure 7b (discrete) and Figure 7c (continuous). This result was
expected, and is accounted to the finer control (or greater
resolution) for turning that the continuous implementation
allows. However, our observations revealed that the CM per-
formed better for some participants, while for others the DM
was the better option, especially for the ones who had no prior
experience with using an EPW. To explore this observation
further, we split the completion times of the participants into
two groups; one with the absolute amateurs in wheelchair
driving (1), and the other with the rest of the participants
that had little to much experience (2-5). On those groups
we performed a two sample t-test (Welch’s t-test, alpha level
of 0.05) and found a statistical significance in completion
times when using the CM (p = 0.045). On the other hand,
a significant trend was not found for the respective test in the
DM (p = 0.41).
Furthermore, we run a correlation analysis between the

participants’ self-reported wheelchair experience and the
users’ performance in terms of completion times. The met-
ric that was used was the Pearsons correlation coeffi-
cient (PCC) [36], which is an interpretable measure of lin-
ear correlation between two sets of data. We obtained the
scores of −0.19 and −0.46 for the discrete and continuous
mode respectively. The negative correlation shows an inverse
relationship between completion times and experience (the
more experience the shorter the completion times), with the
correlation in the DM being small, and in the CM being
moderately high. This is an indication, that having no prior
experience with driving a wheelchair does not greatly affect
the performance in the DM, but does affect the performance
in the CM, making it possibly a better option for experienced
users. It is logical that the DMworks better for inexperienced
users because it allows more room for mistakes. In contrast,
the CMmay be more difficult to use because it is more sensi-
tive to horizontal headmovements, but it also has the potential
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FIGURE 8. Trajectories of an experienced vs an inexperienced user of head control in DM and CM. The experienced user takes better advantage of the
CM, managing to perform sharper and more accurate turns compared to the DM. On the other hand, the inexperienced user has a more ‘‘shaky’’
performance in the CM, thus performing worse than the DM which has a more predictable behaviour.

to perform better than the DM since it allows for finer control.
Figure. 8 shows an example of recorded trajectories by an
experienced and an inexperienced user, which highlight the
results presented above.

To compare the performance between the joystick and
head-control modes, we conducted pairwise statistical com-
parisons using the completion times of the participants.
We first compared the joystick and head-control in discrete
mode using a two-sample t-test (Welch’s t-test, alpha level of
0.05). The analysis showed a significant difference between
the two modes (t(24.67) = −6.04, p < 0.001), with the
joystick mode having significantly shorter completion times.
We then compared the joystick and head-control in continu-
ous mode using the same statistical test. The results revealed
a significant difference between the two modes (t(18.12) =

−4.58, p < 0.001), with the joystick mode again having
significantly shorter completion times. Furthermore, in the
DM we have an increase of 10.4% for the trajectory length
compared to the joystick, whereas in the CM we have an
increase of 9.4%. These findings suggest that the joystick
mode offers better performance than the head-control modes,
which is in line with our expectations due to the easier use and
better accuracy of the joystick. However, it is worth noting
that the head-control modes were not significantly inferior
to the joystick mode, indicating that they could serve as a
viable alternative for individuals who struggle with operating
a joystick.

Looking at the statistics of the collisions that occurred
during the head-control runs, we observe high standard devi-
ations (2.07 in DM, 2.44 in CM). The people that got accus-
tomed to the system, drove with a good level of control
and had no to very few collisions. On the other hand, some
participants were unable to adjust to the system within the
allotted time of 15 minutes. This was due to either failing to
calibrate the system properly or getting nervous during the
trials. As a result, they lost control and crashed multiple times
before completing the course.

B. SUBJECTIVE MEASUREMENTS
Despite the objective measurements that were recorded and
analyzed, we are also interested in evaluating the participants’
experience of using our system. For that purpose, we utilized
measurements of the NASA Task Load Index (NASA-TLX),
a widely used, multidimensional assessment tool that rates
perceived workload in order to assess a system’s effective-
ness. More specifically, the measurements that we used are:

• Mental demand - How mentally demanding was the
task?

• Physical demand - How physically demanding was the
task?

• Performance - How successful were you in accomplish-
ing what you were asked to do?

• Frustration - How insecure, discouraged, irritated,
stressed, or annoyed were you?

The participants were asked to provide their own evalu-
ation on the above categories on a scale of 1-20, 1 being
‘‘Very low’’ and 20 being ‘‘Very high’’, in order to assess
their overall experience with using our head control system
(not differentiating between the two modes). The results are
presented in Table 2.

Overall, we can see that the participants reported a low
physical demand (mean of 5.6), but higher mental demand
and frustration (9.3 and 7.1 respectively), although still
reasonably low. The physical demand has a low standard
deviation (3.9), indicating agreement of the participants,
whereas the deviation increases when it comes to the mental
demand (5.2) and frustration (5.5), showing that the task was
less taxing for some of the participants, but more taxing to
others. This result also agrees with our observation of the
previous section, since running a correlation analysis between
the experience and the frustration and the mental demand of
the participants resulted in a PCC of -0.34 and -0.29 respec-
tively, indicating an effect of the experience on the perceived
effort of the users. On the contrary, a PCC of -0.13 between
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TABLE 2. Participants’ subjective measurements results.

experience and physical demand shows a weak correlation of
how the users’ physical comfort was affected by experience.
Additionally, calculating the PCC between mental demand
and the number of collisions, results in 0.04 in DM and
0.44 in CM. These results reveal that the mental demand that
was experienced by the participants was mostly accounted to
the CM, rather than the DM, for which the correlation was
negligible. On the other hand, the participants reported a high
evaluation of their own performance (15.0), with the lowest
deviation (2.8), implying that overall they felt confident with
their ability of using our system successfully for the task they
were given.

C. DISCUSSION
The results of the conducted trials showed that the
non-disabled participants were able to successfully use the
head-controlled system and complete the designed track,
demonstrating the effectiveness of the system in matching the
use of a standard joystick controller. Although the joystick
proved to be a faster and more accurate means of control,
the head-controlled system was not far behind, especially
given the difficulty difference between the tasks and the lim-
ited experience of the participants with the head-controlled
system.

In terms of the head-controlmode, the comparison between
the continuous and discrete modes showed that the contin-
uous mode performed slightly better in terms of smoother
and more accurate control, particularly for users with more
experience in driving a wheelchair. However, this was not
the case for all participants, and the discrete mode may be
a better option for inexperienced users as it provides more
room for error. The statistical comparisons performed in the
study support these findings, with a significant difference in
completion times between the continuous and discrete mode
for users with some experience in wheelchair driving, and a
moderate negative correlation between completion time and
experience for the continuous mode.

Furthermore, the comparison with the joystick control
mode revealed that head-control with either the continuous
or discrete mode can produce comparable results, albeit with
slightly longer completion times and trajectory lengths. How-
ever, the absence of collisions during joystick runs indicates
that joystick control remains themost reliable and safe option.

Calibration of the head-controlled system was found to be
an essential factor in successful runs, with good calibration
allowing full control of the wheelchair within a reasonable

range of head movement. More work will need to be done
on this aspect to ensure more consistent calibration results,
as for example adding more visual cues to guide the user,
while an additional step that allows users to set their desired
velocity ranges would provide better customization. Changes
in user posture, which can occur due to factors such as fatigue
or differences in terrain, can have a considerable impact on
the accuracy of the calibrated system during use. To address
this, a dynamic re-calibration process during driving would
be a valuable addition, allowing the system to adapt to
such changes, leading to a more comprehensive and resilient
solution.

The reports of the participants revealed that the most
demanding part of the experiment was the calibration/training
part, where they needed to familiarize themselves with the
system and build confidence in using it. However, given the
low reported physical demand and the potential reduction
of mental demand and frustration with more experience, the
head-controlled system may be a realistic and appropriate
option for usage by actual wheelchair users. Further research
and experimentation will need to be conducted to verify this
hypothesis.

In conclusion, the choice between the continuous and
discrete mode of head-control for an electric powered
wheelchair depends on the user’s level of experience in
wheelchair driving. The continuousmode offers finer control,
which leads to better performance in terms of completion
time, trajectory length, and collisions for experienced users.
However, the discretemodemay be a better option for inexpe-
rienced users as it provides more room for error. It is essential
to consider the user’s experience and training in choosing the
appropriate control mode to optimize the performance and
safety of electric powered wheelchair driving.

VI. CONCLUDING REMARKS
The purpose of our study was to develop a vision-based head-
controlled wheelchair and evaluate its performance in real-
world experiments. We combined a deep-CNN for detecting
the face of interest in a stream of camera frames with a
facial landmark detector to estimate the head pose, which
was then translated into moving commands for a robotic
wheelchair. We conducted experiments that required partic-
ipants to complete a routing task, and both quantitative and
qualitative analyses were performed to evaluate the system’s
performance and the participants’ experience.

The results showed that our system had a 96% success rate
in completing the task and was a viable alternative to the
conventional joystick interface. Participants reported feeling
confident in their performance with the system while experi-
encing relatively low mental and physical load. Our findings
revealed the operational characteristics of the system and
identified factors contributing to its performance, including
control frequency, calibration process, and user experience.

The control frequency of the system was addressed by
achieving an overall frequency of around 30Hz, which
proved adequate to smoothly control our EPW. The use of
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mini-YOLOv3 played a crucial role in this, as when using the
full YOLOv3 instead, we only achieved a frequency of∼5Hz,
which significantly affected the final performance of the
system at a preliminary testing stage. The calibration process
was found to be sensitive and not very intuitive for some
users, however, building more experience with the system
makes the process easier and more effective over time, which
in some cases was not possible to be achieved within the short
training time provided in the experiment. We are confident
that adding more visual cues to guide the calibration process
will greatly improve its robustness, and therefore, the driving
performance.

Reversemovement is supported by our design, but it should
be combined with the feed of a rear-view camera to make it
fully usable. Alternative filtering methods could be used to
translate head position to velocity commands, and combining
the output of our system with a collision avoidance module
would ensure safe navigation.

Our study has shown promising results for the use of a
vision-based head-controlled wheelchair, but further testing
is needed with real powered wheelchair users, especially
quadriplegics, in a clinical trial setting to verify its effec-
tiveness for the target population. Overall, our system has
the potential to improve the mobility and independence of
wheelchair users, and we believe that our findings will con-
tribute to the development of more effective and customizable
systems in the future.
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