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ABSTRACT The prerequisite for underwater vehicles to accomplish various underwater tasks is to obtain
real-time position information about themselves in the underwater environment using internal or external
sensors, which is known as underwater positioning and navigation technology. This paper presents a
general review of underwater vehicle positioning and navigation technology and illustrates the importance
of underwater terrain-aided navigation technology. It also summarizes its general structure and describes
the principles and functions of each component. The paper mainly analyzes various mainstream methods
applied to underwater terrain-aided navigation, focuses on terrain suitability analysis and terrain matching
algorithms, which play a central role in the analysis. Additionally, the research progress of terrain-aided
navigation technology is described, and the research methods of terrain suitability analysis, terrain matching
navigation, and the latest technology applications are compared. Some shortcomings of the current underwa-
ter terrain-aided navigation technology are presented, and future research directions are foreseen to provide
a basis for subsequent research.

INDEX TERMS Underwater vehicles, underwater localization and navigation, terrain matching, dimension-
ality reduction, recursive Bayesian estimation, maximum likelihood estimation.

I. INTRODUCTION
From a flat boat to a giant ship, and from the development
of water routes to underwater diving, human beings have
been exploring the ocean. With the continuous development
and breakthrough of sensor technology, control science, and
artificial intelligence, the Autonomous Underwater Vehi-
cle (AUV) has been used to explore the ocean. In recent
years, countries worldwide have increased their investment in
research. The navigation and positioning system is a crucial
part of the AUV, as it confirms the vehicle’s position and
reaches the target point. Unlike on land and in the air, electro-
magnetic waves have serious attenuation problems in water.
Therefore, the Global Navigation Satellite System (GNSS),
which has high positioning accuracy and is frequently used
on land and air, cannot be extended for use underwater [1].
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Finding a navigation and positioning method that is passive
and autonomous, with high positioning accuracy and good
concealment, is the focus of AUV research and a significant
challenge. The terrain-aided navigation system has gradually
become the main research direction for AUV positioning and
navigation due to its advantages of passive autonomy, wide
navigation range, high positioning accuracy, and strong anti-
interference. The main contributions of this paper are the
following three points:

1) Previous review-type papers on terrain-aided naviga-
tion have either been less comprehensive or simpler [2],
[3] for technical application methods, and rarely pro-
vide comprehensive inductive discussions. This paper
provides a general overview of terrain-aided navigation
systems, summarizes the methods for each component,
and provides a detailed discussion that provides the
basis for subsequent research.

47510 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8982-9349
https://orcid.org/0000-0002-4275-8771
https://orcid.org/0000-0002-4310-4446
https://orcid.org/0000-0002-7264-7351
https://orcid.org/0000-0001-8580-4806


G. Fan et al.: Survey of Terrain-Aided Navigation Methods for Underwater Vehicles

2) This paper provides a comprehensive summary and
generalization of the principles and methods involved
in terrain suitability analysis. It divides the meth-
ods for characterizing the inherent feature informa-
tion of regional physical fields in a dimensionality
reduction manner into feature extraction methods for
invisible characterization and feature selection meth-
ods for explicit characterization. The suitability region
is classified into direct classification methods and clas-
sification methods for pattern recognition fields, high-
lighting the latest research directions represented by
data-driven approaches.

3) This paper defines terrain matching algorithm as an
optimization problem to solve the similarity between
matching data, comprehensively summarizes and com-
pares various terrainmatching algorithms, and provides
an in-depth analysis of terrain matching algorithms
based on statistical theory from the direction of algo-
rithm optimization, which provides a reliable reference
for future research.

The general framework of the paper is described below.
Section II describes several major navigation and positioning
methods, analyzes and compares the characteristics of each
navigation and positioning method, and points out the impor-
tance of terrain-aided navigation technology. Section III
describes the components of the terrain-aided navigation sys-
tem, presenting the functions of each unit individually and
analyzing the main methods and their characteristics. Con-
sidering that the suitability analysis of the terrain matching
area and the terrain matching algorithm are the core of the
terrain-aided navigation system, these two parts are sepa-
rately described in Sections IV and V, respectively. Finally,
Section VI summarizes the paper.

II. UNDERWATER NAVIGATION METHODS
Underwater navigation and positioning mainly involve sev-
eral navigation methods such as Inertial Navigation Sys-
tem (INS), Acoustic Navigation System (ANS), Geophysical
Aided Navigation System (GANS), Simultaneous Localiza-
tion and Mapping (SLAM) and Multi-AUVs Collaborative
Navigation (MACN). These methods are briefly described
below.

A. INERTIAL NAVIGATION SYSTEM
The basic principle of INS is to obtain the position direction,
rotational angular velocity, and acceleration of the underwater
vehicle using the 3-axis gyroscope, 3-axis accelerometer,
and Doppler Velocity Log (DVL). It then integrates time to
deduce the current position [4]. For short-range AUVs, INS
can achieve navigation and positioning more accurately by
itself. However, over time, the accumulated error of INS will
gradually increase, leading to deviation from the target posi-
tion. Therefore, when using INS as the primary navigation
unit, other navigation and positioning systems must be used
as auxiliary units to correct INS’s positioning error in time.

B. ACOUSTIC NAVIGATION SYSTEM
The principle of ANS is to use the transmission time of
acoustic signals and their phase difference to determine the
position of the underwater submersible, which is more accu-
rate than the inertial navigation system. Based on their differ-
ent baseline lengths, ANS can be divided into three types:
long baseline (LBL), short baseline (SBL), and ultra-short
baseline (USBL) as shown in Figure 1. Sture et al. [5] used the
ultra-short baseline acoustic positioning system to help one or
more underwater vehicles achieve more accurate navigation.

All three navigation types require the deployment and cali-
bration of the base array, which is time-consuming and labor-
intensive. Furthermore, their navigation ranges are influenced
by the acoustic base array, which is not conducive to naviga-
tion across the entire sea.

FIGURE 1. Schematic diagram of 3 kinds of Acoustic Navigation System.

C. GEOPHYSICAL AIDED NAVIGATION SYSTEM
GANS uses the relative positions of observable geophysi-
cal features to obtain the AUV’s own positioning [6]. The
positioning method is defined by the inertial system, and
then the data matching algorithm is used to match the geo-
physical measurements acquired by the sensors with the pri-
ori geophysical database to obtain the real-time position of
the underwater submersible, update the positioning error of
the INS, and thus estimate the position of the AUV itself.
Zhang et al. [7] proposed a navigation path that relies on
the surrounding geomagnetic environment, uses the heading
angle predicted by the geomagnetic gradient to constrain the
navigation path, and improves the evaluation function based
on the principle of simultaneous convergence of multiple
parameters, thus improving the reliability and accuracy of
navigation.
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D. SIMULTANEOUS LOCALIZATION AND MAPPING
SLAM is also a hot topic of current research. In an
unknown environment without the assistance of an acoustic
marker base array and without a priori geophysical database,
researchers have attempted to allow vehicles to autonomously
create maps using sensors such as sonar and cameras to
collect information about the surrounding environment and
to implement localization and navigation based on this [8],
[9]. This approach is still essentially a physical environment-
based navigation method [10], a method that uses geo-
physical information from the surrounding environment to
achieve autonomous navigation and localization. Li et al. [11]
successfully implemented real-time position correction for
SLAMsystems using forward-looking sonar (FLS) images by
solving the problems of data association, key frame selection,
and outlier rejection.

E. MULTI-AUVS COLLABORATIVE NAVIGATION
The MACN approach solves this problem better in the
case where the underwater vehicles are loaded with low
sensor accuracy and a single robot cannot accomplish the
navigation task. MACN can effectively reduce the accu-
racy error of the inertial guidance system and improve the
intelligence and efficiency of multiple AUVs to accom-
plish tasks that are difficult to be accomplished by a sin-
gle submersible [12]. There are 2 types of MACN, namely
parallel and primary-secondary, depending on their structure.
The primary-secondary approach is cheaper and more accu-
rate than the parallel approach, which makes it the main-
stream approach for MACN. Allotta et al. [13] designed a
primary-secondary MACN system in which multiple AUVs
are equipped with low-cost inertial guidance units and depth
sensors, only one of which has a high-precision DVL, and
the DVL-equipped primary AUV is used to determine the
positions of other secondary AUVs. position and communi-
cate with the mother ship through GPS to obtain the specific
position of each AUV. Chen et al. [14] proposed two new
fault-tolerant control techniques for leaderless multi-AUV
systems and lead-following multi-AUV systems, which make
each AUV exchange information with its neighboring AUVs,
i.e., a distributed consensus control strategy to tolerate infor-
mation transmission failures of multiple AUV systems.

Several underwater positioning and navigation methods
are analyzed and compared in Table 1.

The INS cannot meet the long-endurance and high-
precision navigation and positioning requirements due to the
inherent defects of the system. ANS has higher position-
ing accuracy, but it cannot be applied to a wide range of
navigation and positioning tasks due to the high complex-
ity of base array deployment and small deployment range.
GANS has high positioning accuracy and wide navigation
range, but it needs INS guidance to matchable area before
it can be used. Therefore, the future navigation system for
underwater intelligent robots incorporates a combination of
technologies for navigation [15]. INS has the characteristics
of passive, fully autonomous, stealthy, and all-sea navigation.

TABLE 1. Comparison of positioning and navigation methods for
underwater vehicle.

And GANS relies on external sensors that do not cause accu-
mulated errors over time, which is the best choice to avoid
INS drift problems and can correct INS errors for a long
time [16]. A geophysically assisted navigation system that
combines the features of INS passive, fully autonomous, good
stealth, and all-sea navigation with the advantages that the
external sensors of GANS do not lead to accumulated errors
over time is the future trend of underwater positioning and
navigation [17].

III. TERRAIN AIDED NAVIGATION SYSTEM
Geophysical Aided Navigation is a data-driven aided navi-
gation system that uses information from geophysical data
of the surrounding environment. Geophysical data is mainly
obtained by measuring the physical environment surrounding
an underwater vehicle using specific sensors. The types of
geophysical data include visual imaging data, sonar imaging
data, geomagnetic data, gravity data, terrain elevation data,
and others. Each of these data types has its own charac-
teristics and is suitable for positioning and navigation in
different underwater scenarios, Table 2 provides an analysis
and comparison of these data types. Visual imaging data are
more accurate [18], [19] and are often used for end-target
localization at close range, with a smaller range of application
and are only suitable for use in clear water environments, and
their effectiveness is poor in turbid waters. Sonar imaging
data is an alternative to visual imaging data [20], [21], but it
often produces blurred images and is not suitable for accurate
matching localization because most of the seabed images are
not distinctly characterized. The geomagnetic data have a
relatively large range of matching areas and low accuracy.
The measurement instruments for gravity data are relatively
expensive and large, making them unsuitable for widespread
installation on small underwater vehicles. With the improve-
ment and development of sonar rangefinder over the years,
the accuracy and range of terrain elevation data have been
greatly improved, and its small size and moderate cost make
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FIGURE 2. Overall flow chart of terrain-aided navigation system.

it suitable for ‘‘high-precision, long-range’’ underwater posi-
tioning and navigation. This paper will mainly focus on Ter-
rain Aided Navigation System (TANS).

TABLE 2. Comparison of various geophysical data.

TANS was first applied as a navigation method for land
vehicles and air vehicles. This method can provide navigation
and positioning functions very well in the absence of GNSS.
Hollowell [22] provided a TAN algorithm for helicopter nav-
igation systems using radar altimeter ground clearance mea-
surements combined with conventional navigation systems
and stored digital terrain elevation maps. A set of single-state
Kalman filters employing a multi-model adaptive estima-
tion (MMAE) technique ensures reliable position estimates
even in the face of large initial position errors. The algorithm
reduces the corrected center radial error to less than 50m.
Xian et al. [23] analyzed the isometric flight scheme and
the inertial system-based absolute altitude solution when the

barometric altimeter does not work properly. This allows for
the realization of the absolute altitude solution based on strap-
down inertial navigation system (SINS), and the simulation
results show that this solution basically meets the accuracy
requirements of the terrain matching-aided navigation sys-
tem. This method has a height error of no more than 10.52m
per unit time with gyroscopic error and accelerometer error.

Bergem [24] was one of the most early proponents, who
used the contours from multibeam sonar to match with a
pre-stored reference map to obtain an estimate of abso-
lute position. Massa et al. [25] proposed a Kalman filter-
based terrain-aided navigation method suitable for real-time
position estimation, but could not resolve the uniqueness
of the matching results. Strauss et al. [26] proposed a
terrain-referenced localization method based on matching
rough sonar data with digital elevation maps. They com-
pared two matching algorithms based on statistical and fuzzy
methods, respectively, and used the Kalman filter to predict
the position of underwater divers more accurately in simu-
lations. In the simulation experiment, this method reduces
the average error in both directions in the plane right-angle
coordinate system from 80m to 65m.Ingemar Nygren [27]
analyzed correlation-based terrain navigation using 3D sonar.
One of the most important results is the theoretical demon-
stration that the maximum likelihood estimator is optimal
under certain conditions, and that the likelihoodmeasurement
function converges asymptotically to a Gaussian probability
distribution as the number of measurement beams increases.

Terrain-assisted navigation systems have been developed
and studied by researchers in many countries as an applied
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technology in engineering. In 2016, the Institute of Industrial
Science of the University of Tokyo built an AUV called
the Highly Agile Terrain Tracker for Ocean Research and
Investigation (HATTORI) [28], equipped with a scanning
sonar for seafloor exploration with a beam frequency of
675 kHz, a maximum range of 100 m, and a beam width
of 3× 30◦. Maki et al. [28] successfully tracked 90m of rocky
terrain in 130 seconds during the 2016 experiment and 40m
of coral reef terrain in 85 seconds during the 2017 experi-
ment in two at-sea trials using this AUV. FFI developed a
HUGIN 1000 HUS AUV [29], and conducted two sea trials
in Oslofjord, where the error of terrain-matching positioning
with hydroacoustic positioning was 4m and 5mwith GPS in a
50km trip, showing the high positioning accuracy of terrain-
matching positioning. Rock et al. [30] improved MBAIR and
conducted a sea trial in 2014 at Portuguese Ledge in Mon-
terey Bay to verify the possibility of successful AUV recov-
ery using terrain-assisted navigation. The results showed
that the AUV successfully returned to the recovery point
after a four-stage test path. Zhang et al. [31] conducted an
experimental validation of the proposed improved interated
closest contour point (ICCP) algorithm at the Xin’an River
Reservoir in Hangzhou, China, equipped with an MBES
iBeam 8140 sonar sensor and a fiber optic gyroscope for
INS heading projection, using GPS for creating topographic
maps and reference paths. The experimental study shows that
the improved ICCP algorithm achieves higher positioning
accuracy than the conventional ICCP in the case of small
initial errors, and relatively better positioning accuracy in
the case of larger initial errors where the conventional ICCP
cannot match the positioning. Ding et al. [32] experimentally
validated the proposed terrain-assisted navigation algorithm
using navigation-grade SINS, bidirectional antenna real-time
kinematic global navigation satellite system (RTK-GNSS),
and multibeam bathymetry, and the experimental results
showed that the matching accuracy of the algorithm improved
by 23.97% over the ICCP algorithm.

TANS consists of three components, as shown in Figure 2,
which are the inertial navigation unit, the terrain matching
unit, and the path planning unit.

A. INERTIAL NAVIGATION UNIT
The inertial navigation unit is the basic navigation unit of
the system and provides the determination of the initial local
matching region. The range of the matching region can be
determined in two methods: the matching region determined
by the error ellipse and the matching region determined by
the INS drift.

1) THE MATCHING REGION DETERMINED BY THE ERROR
ELLIPSE
The first method requires calculating the maximum error of
the INS and defining an ellipse with the position provided
by the INS as the center of the ellipse. The search region is

then defined as a rectangular region, which is the minimum
enclosing rectangle of the ellipse region, as shown in Figure 3.

FIGURE 3. The matching region determined by the error ellipse.
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where a and b are the long and short semi-axes of the ellipse,
respectively; θ is the angle between the long semi-axis of the
ellipse and the positive north direction; σ̂0 is the expansion
factor.

Since the position error of the AUV is almost proportional
to the circular error probability (CEP) at that position [33],the
distribution of the positioning error of the INS is nearly a stan-
dard normal distribution, according to the ‘‘3σ ’’ principle,
if σ̂0 = 3.03, then the probability that the measured point
lies within the positioning error ellipse is 95%.

The error elliptic exterior tangent rectangle is calculated
as:

xm = 2
√
a2 sin2 θ + b2 cos2 θ (4)

ym = 2
√
a2 cos2 θ+b2 sin2 θ (5)

where xm and ym are the lengths of the long and wide sides of
the error elliptic exterior tangent rectangle.

2) THE MATCHING REGION DETERMINED BY THE INS DRIFT
Another method [34], [35] assumes that the drift produced
by INS since the last update is σ . This method centers on
the inertial guidance indication position with the ±3σ error
of the system as the magnitude, extract the terrain elevation
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parallel to the navigation indication path in a certain area
around the navigation position from the terrain reference map
area, i.e., the matching search area, as shown in Figure 4,
and traverse the search on the base map. Based on this,
Liu et al. [36] proposed a method to construct an adaptive
grid model to improve the average positioning accuracy to
23.6m for the situation where the regular grid model uses
equidistant dissection of the terrain. This method results in
a less detailed description of complex terrain areas and an
overly cumbersome description of simple terrain areas.

FIGURE 4. The matching region determined by the error rectangle.

B. TERRAIN MATCHING UNIT
The terrain matching unit first performs a suitability analysis
of the matching area based on the prior terrain elevation
database. Then, it uses the terrain data acquired by the sonar
sensors and the prior terrain database as inputs for the ter-
rain matching algorithm to estimate the true position of the
vehicle.

1) DIGITAL ELEVATION MODEL
Due to the unique characteristics of the underwater envi-
ronment, obtaining high-resolution underwater topographic
images is very challenging. Therefore, sonar rangefinders
and Digital Elevation Model (DEM) are commonly used to
acquire topographic elevation data for topographic matching,
and the position of the AUV is estimated based on the match-
ing results. The DEM is a special grid data model that can
represent continuous spatial undulation changes. The position
of each grid is represented by a 2D vector expressed by
latitude and longitude coordinates, with the elevation value
being the attribute value of each grid. The grid size is called
spatial resolution [37]. The DEM is particularly suitable for
constructing underwater terrain elevation models and for ter-
rainmatching navigation because of its ease of storage, updat-
ing, propagation, and automatic computer processing, as well
as its multi-scale characteristics, which make it suitable for
various quantitative analyses and 3D modeling [38].

2) TERRAIN MATCHING ALGORITHM
Terrain matching algorithms can be classified into direct
image matching-based approach, image feature point-based

approach, and sensor-measured terrain elevation data-based
approach, depending on the data used. Currently, most ter-
rain matching algorithms are implemented based on DEM.
According to different matching methods, they can be further
classified into correlation-based approach, approach based on
extended Kalman filtering, approach based on direct proba-
bility criterion, and approach based on image matching [3].
Terrain suitability analysis and terrain matching algorithms
are the core components of the terrain matching unit, and
these aspects will be discussed separately in Sections IV
and V of this paper.

3) TERRAIN DEPTH SOUNDER
The seafloor topographymeasurement mainly consists of two
parts, as in Figure 5, if h1 denotes the depth from sea level
measured by pressure transducer, h2 denotes the measured
depth from sonar transducer, then the absolute water depth
value H can be expressed as:

H = h1 + h2 (6)

Sonar sensors are mainly used to derive seafloor elevation
values by transmitting and receiving sound waves returned
from the seafloor and calculating the phase angle and delay
time between them [39]. Additionally, the underwater sound
velocity is related to various factors such as temperature and
salinity of seawater. Therefore, only considering these factors
together can result in more accurate measurement of seafloor
topographic elevation values. Kamolov et al. [40] investi-
gated the application of the fuzzy c-means (FCM) clustering
algorithm on crowdsourced bathymetry and obtained more
accurate results, with an average absolute error of 1.67 m and
an average value of 2.09 m between its predicted depth and
the real data.

FIGURE 5. Schematic diagram of underwater topographic bathymetry.

Sonar sensors can be classified as single-beam sonar
sensors, DVL sonar sensors, side-scan sonar sensors, and
multi-beam sonar sensors. DVL sonar sensors are sensors
that use the Doppler effect to measure Vehicle’s velocity
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and are generally not used directly for topographic elevation
measurements. Side-scan sonar sensors do not provide bathy-
metric data, but rather provide a relatively high-resolution
acoustic image of the seafloor, which can be interpreted as
a monochromatic representation of the physical properties of
the seafloor [41].

Both single-beam and multibeam sonar sensors are
used to measure topographic elevation values directly, and
single-beam sonar achieves a ‘‘point-line’’ measurement
range in the case of continuous measurements. Compared
with single-beam sonar, multibeam sonar is a qualitative
leap, multibeam sonar sensors form hundreds of irradiated
footprints in the strip area perpendicular to the ship’s direc-
tion of travel [42], thus further forming a ‘‘line-surface’’
measurement range, as shown in Figure 6. Multi-beam sonar
has a high resolution compared to single-beam [43], and
therefore, multi-beam sonar sensors have been routinely used
to measure large areas of the seafloor [44].

FIGURE 6. Comparison of measurement ranges of single-beam sonar
sensor (a), multi-beam sonar sensor (b).

Multi-beam bathymetric systems are integrated systems
composed of several subsystems. They generally consist of
four parts: the acoustic subsystem, data acquisition subsys-
tem, data processing subsystem, and peripheral auxiliary
equipment. These are responsible for tasks such as acous-
tic wave transmission and reception, data correction, data
conversion, and comprehensive data processing, respectively
[45]. Coherent research has mechanically solved the problem
of limited resolution in multibeam bathymetry, caused by the
number of beams [46], greatly improving the resolution of
multibeam bathymetry data.

C. PATH PLANNING UNIT
AUV path planning can be implemented based on terrain
suitability analysis and sonar detection sensors in five steps:
environmental information acquisition, underwater environ-
ment modeling, global path planning, underwater situational
awareness, and local path planning [47]. The first three steps
rely on the suitability analysis of a priori terrain maps, while
the last two steps depend on the detection of sonar sensors
to achieve path planning with accurate localization, shortest
distance, and real-time obstacle avoidance.

The current path planning algorithms mainly include
heuristic optimization algorithms and machine learning algo-
rithms. The ideas behind heuristic optimization algorithms
are derived from long-term observation and practice of phys-
ical and biological phenomena, as well as the summary
and generalization of natural phenomenon [48], including
Genetic Algorithm (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), Firefly Algorithm (FA),
A∗ algorithm, RRT∗ algorithm, etc. Due to the limited space,
the principles of some of these algorithms are given as exam-
ples. The particle swarm algorithm originated from the study
of bird feeding behavior, in which birds search for food
randomly, not knowing where their current position is from
the food, the simplest and most effective search strategy is
to search the area around the bird that is currently closest to
the food. The simplest and most effective search strategy is
to search the area around the bird that is currently closest to
the food and constantly adjust the state of the particles to
find the food and reach the global optimum [49]. The basic
principle of the ant colony algorithm is that ants release
pheromone in the process of searching for food. Combined
with the property of its volatilization, the pheromone con-
centration of the shortest path is higher than other paths as
time increases, Yan et al. [50] proposed a good information
matrix that differentially distributes the initial pheromone
concentration, avoiding blind search, reducing the search
range, and shortening the search time. Compared with the
traditional ant colony algorithm, this algorithm reduces the
planned path from 40.28km to 38.63km, and the number of
iterations to convergence is reduced from 155 to 68. Cong
et al. [51] compared four different path planning methods:
genetic algorithm, A∗ algorithm, RRT∗ algorithm and ant
colony algorithm, taking into account the terrain complexity
and the motion characteristics of the autonomous underwater
vehicle, they verified that all four algorithms could provide a
reliable path for the TANS.

Machine learning algorithms view the path planning prob-
lem as a Markovian decision process with penalties or
rewards in constant trial to optimally update the path. Sun
et al. [52] proposed a 3D path planning for AUVs using
hierarchical deep Q networks (HDQN) combined with priori-
tized experience replay, which divides the path planning task
into three layers to achieve dimensionality reduction of the
state space and solve the dimensional disaster problem. Patle
et al. [53] applied the fuzzy algorithm as a fuzzy function to
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a mobile robot navigation system. They set up two parallel
rules, the first to classify the metric and the second to set up
an optimal decision. The fuzzy function provides the robot
the ability to decide the choice of paths and rank them. The
paths consist of roots, and a new path can be set up for
the target using the roots and their affiliation functions. The
algorithm controls the error rate to within 5%. Kahn et al.
[54] proposed a self-supervised learning-based mobile robot
navigation system that can be trained with automatically
labeled non-strategic data collected in a real environment
without any simulation or human supervision. This system
can be improved as more data is collected to continuously
optimize the path. The algorithm achieved a successful arrival
rate in experiments that is nearly 40% higher than conven-
tional algorithms. Li et al. [55] constructed an Occupancy
Grid Map (OGM) for path planning. It is a grid mapping in
which each grid is assigned a unique value using a specific
potential function. In each step, the unsearched neighboring
grid with the smallest value is selected. When the vehicle
detects an obstacle, it resets all grid values that are not 1
(the grid occupied by the obstacle will be assigned a value
of 1). Using this resettable OGM, the vehicle will search for
an alternative path to approach the target point while avoiding
collisions with the obstacle.

There are many kinds of path planning methods, and they
are widely used, mature, and selectable. For a terrain-aided
navigation system, it is enough to choose the appropriate
method according to the data and algorithm. Therefore, this
paper will not discuss this in-depth.

IV. SUITABILITY ANALYSIS
Suitability, also known as navigability, is a physical concept
used to reflect the richness of a region’s inherent geophysical
fields (e.g., topography, geomagnetism, gravity) containing
navigational information features. It is a property inherent to
any finite region that reflects the ability of a region to pro-
vide planar position information along a particular directional
profile [56]. The terrain suitability analysis is based on the
terrain feature parameters derived from the terrain elevation
values, and the terrain suitability analysis is a prerequisite for
TANS, which is based on the pre-acquired DEM. The purpose
of terrain suitability analysis is to find the suitable adaptation
area for terrain matching algorithm, which is roughly divided
into two parts: the extraction and selection of features and the
selection of the adaptation area using the processed terrain
features.

A. EXTRACTION AND SELECTION OF TERRAIN FEATURES
Terrain features aremetrics used to characterize the geometric
relationship between terrain elevation data and its similarity.
The more obvious terrain features that can be found in a
region, the better the adaptation performance and the higher
the accuracy of terrain matching. The basic terrain adap-
tation features include elevation mean, elevation standard
deviation, slope standard deviation, correlation length, corre-
lation coefficient, kurtosis coefficient, skewness coefficient,

cumulative gradient mean, Feche information, terrain rough-
ness, abundance coefficient, terrain entropy, etc. [57].
Because all these parameters characterize the terrain features
of the terrain elevation map from different perspectives, it is
difficult to describe the adaptation performance of this region
in a more comprehensive way using a single feature parame-
ter for terrain feature characterization. If all these parameters
are used to characterize the terrain features, any point of the
feature parameters will be a very high-dimensional feature
vector, which is not conducive to the subsequent calculation,
and there are redundant relationships among these feature
parameters, which will also cause a waste of computational
resources. Therefore, it is necessary to reduce the dimension-
ality of these feature parameters.

Dimensionality reduction is a method to solve dimen-
sional catastrophes and other irrelevant properties in
high-dimensional spaces [58], which is divided into linear
and nonlinear dimensionality reduction. Principal Compo-
nent Analysis (PCA) is a linear dimensionality reduction
method, which reduces dimensionality by retaining low-order
principal components and ignoring high-order principal com-
ponents through linear transformation. In contrast, Roweis
et al. [59] proposed a method to recover the global nonlinear
structure from a local linear fit, achieving a better nonlinear
dimensionality reduction. Feature dimension reduction is a
process of selecting a low-dimensional feature set from an
initial high-dimensional feature set to optimally reduce the
feature space according to certain evaluation criteria [60],
which is divided into two ways: feature extraction and feature
selection.

1) FEATURE SELECTION
Feature selection (FS) is the process of selecting some fea-
tures from the original data feature set based on the rele-
vance and redundancy of the features so that they satisfy
specificmetrics, and is an explicit expression of the integrated
features. The selected features are a subset of the origi-
nal features, hence it is also called feature subset selection
[61]. This process of selecting can also be seen as a grad-
ual merit-seeking process, which contains elements such as
merit-seeking strategies, evaluation metrics, and stopping
conditions. The optimization strategy is mainly based on
heuristic algorithms, such as [62], which uses genetic algo-
rithms to select high-performance synthetic features from the
synthetic feature space by performing selecting, crossover
and variation operations onmultiple randomly generated syn-
thetic feature trees individuals using the effectiveness evalua-
tion value as a metric. The evaluation metrics are the basic
indicators for judging the performance of regional fitness.
The matching probability is the most commonly used metric
[63], and its formula is defined as follows:

PCMd (CMA) =

∑
p∈CMA CMM (p)

NCMA
(7)

where CMA is the candidate matching area;CMM is the
matching degree of a point p in the CMA, and CMM(p)= 1 if
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the match is successful, and CMM(p) = 0 if the match
fails; PCM is the matching probability; d denotes the square
matching area of a given size in the neighborhood of point p;
NCMA is the total number of matches in the CMA area.

Numerous studies have been conducted by scholars to
investigate the matching performance of terrain features in
regions to be matched. Wang et al. [64] fused a hierarchi-
cal statistical significance detection method and a frequency
domain decorrelation significance detection method to cre-
ate a fused terrain feature map, and then matched the map
using normalized cross correlation (NCC) to quickly select
landmark points. This method achieved a correct matching
rate of 73.9%-88.3% in actual terrain matching experiments.
Zhang et al. [65] constructed a BP neural network to establish
themapping relationship between input terrain feature covari-
ates and matching performance, thereby achieving automatic
classification of the matching area with a classification rate
of around 90%, more than 10% higher than traditional classi-
fication methods. Teng et al. [66] used terrain entropy and
terrain variance entropy as terrain features to analyze the
matching performance of a region, this method uses the
joint criterion and fuzzy criterion to calculate the weight of
entropy (criterion) in the cost function, and the path planning
time in the experiment was 16.606 seconds, with a matching
error in each matching region of less than 10 meters. Li et al.
[67] combined the shortest arc law in spherical geometry
with attitude control theory in space andmarine environments
to propose a new geodesic-based measurement method that
reduces the radius of the search matching region. The search
matching time was reduced from 9.84 seconds to 1.29 sec-
onds (about 7.6 times) with high matching efficiency.

2) FEATURE EXTRACTION
Feature extraction (FE) is a process of reducing the high
dimensionality of the feature vector by creating new features
that depend on the original input feature set. This is done to
provide an implicit representation of the integrated features.
The new features created maintain the original relative dis-
tance between the features without losing a large amount of
information during the feature transformation [68]. Among
the latest research directions on FE, data-driven terrain nav-
igation is increasingly becoming a hot topic of interest. This
approach takes data as the input of the model, learns from the
data, and optimizes the model in continuous iterations, which
makes the FE capability of the model increase and gradually
converge the model to the realistic state [69] . The process
schematic is shown in Figure 7. Most of the data-driven FE
methods are based on deep learning algorithms that are cur-
rently very widely used in the field of artificial intelligence.
This method avoids the limitations of manually designed
features, and its FE performance is closely related to the
training data set and model structure.

In recent studies, more and more researchers are focusing
on this approach. References [70], [71] used deep learn-
ing networks to extract sonar image features, trained using

FIGURE 7. Flow chart of feature extraction based on data-driven.

images generated by FLS simulators, and tested the model
using images from real detections to verify the effective-
ness of the method to achieve underwater navigation. Zhang
et al. [72] proposed a new data-driven framework for tem-
plate matching of underwater topographic images, which
introduces contrast learning algorithms to terrain match-
ing to achieve data enhancement by simulating grayscale
and texture differences between images, enabling self-
supervised end-to-end learning without additional data anno-
tation. Although the matching time of the model is slightly
longer compared to the traditional SSD and NCC, the match-
ing accuracy reaches up to 98%, which cannot be achieved by
other traditional methods. Contante et al. [73] proposed a new
deep neural network (DNN) architecture that predicts robot
position and self-motion by processing image sequences to
compute relative pose predictions while providing a measure
of uncertainty about these estimates. Cohen et al. [74] pro-
posed an end-to-end deep learning approach to estimate the
velocity of an AUV instead of a traditional filter, using only
INS and DVL, which improved the effectiveness by 66-87%
over the traditional model-based approach. Melo et al. [75]
proposed a data-driven particle filter, where sonar sensors
are limited and cannot be modeled. The method learns from
previous data to obtain an approximate estimated distribution,
and it has relatively high accuracy and efficiency with a 40%
lower data resampling frequency and 17% less running time
than the traditional method.

Both FE and FS are methods for processing terrain data,
and Table 3 summarizes and compares these two methods.

With the significant improvement in computer computing
power, the rapid development of artificial intelligence tech-
nology, and the continuous enhancement of sensor measure-
ment accuracy, there is an increasing trend towards using a
data-driven approach in FEmethods to handle terrain data and
its matching algorithm. As a result, this method has gradually
become a research hotspot.

B. TERRAIN REGION CLASSIFICATION
The purpose of terrain area classification algorithm is to
classify the area to be matched in the DEM into suitable
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TABLE 3. Comparison of feature extraction and feature selection.

and non-suitable areas, which is a prerequisite for path plan-
ning and helps to improve the accuracy of terrain matching.
It can be roughly divided into two methods. The first is the
direct classification method (DCM), which involves classify-
ing using a salient feature or combination of features, setting
a suitable threshold value, and dividing the fitness region
based on it. Wang et al. [76] achieved the division of terrain
suitability areas and non-suitability areas by quantifying the
terrain suitability features. Xu et al. [77] proposed navigation
coefficients based on gray fuzzy theory for multi-feature
parameter fusion and used it as the basis for terrain adaptation
domain selection.

Another approach is implemented based on classification
methods in the field of pattern recognition (PRCM), which
can be divided into supervised and unsupervised classifi-
cation according to the type of data and into linear and
nonlinear classification models based on the type of model.
Since terrain features are nonlinear and manual labeling is
too costly, the current mainstream approach is unsupervised
classification using nonlinear classificationmodels. Cao et al.
[78] used Gabor wavelet features of images and fused the
image fitness parameters, then combined with the support
vector machine (SVM) classification method to transform
the matching probability estimation problem of any region
within the image into the classification problem of pixels
in the region to be estimated, and measured the matching
performance of each region in the navigation baseline map
from a quantitative perspective. The prediction probability of
this method is within 5% of the actual probability error in
more than 80% of the total, and the prediction estimation is
good. Liu et al. [79] transferred the geomagnetic matching
problem to statistical pattern recognition and analyzed it
from the perspective of pattern recognition. They proposed
an SVM-based matching algorithm, which greatly improved
the matching accuracy. This method improved the match-
ing rate by 74.43% and 52.86% in comparison experiments
with Mean Square Deviation (MSD) method in two regions,
respectively.

Since terrain features are nonlinear and manual labeling
is too costly, the current mainstream approach is unsuper-
vised classification using nonlinear classification models.
It will be very interesting in future research if combined with

TABLE 4. Comparison of terrain area classification methods.

data-driven feature extraction-based methods for terrain area
classification.

V. TERRAIN MATCHING ALGORITHM
The terrain matching algorithm is the core of TANS, and
its performance directly determines the accuracy of TANS,
which is key to successful navigation. The terrain matching
algorithm is based on the terrain elevation value or the terrain
features derived from it, upon which the real-time terrain
elevation data measured by the sonar sensor is matched with
the underwater digital terrain database to estimate the current
position of the vehicle. The workflow of the algorithm is
shown in Figure 8.

The terrain matching algorithm is essentially an opti-
mization problem that aims to solve the similarity between
matching data, with the ultimate goal of finding the match-
ing data with optimal similarity. Therefore, terrain matching
algorithms are mainly divided into two categories: methods
based on sequential data correlation and methods based on
statistical theory, according to the different research methods.

A. METHOD BASED ON SEQUENTIAL DATA CORRELATION
The method based on coherent data correlation (CDCM) is
used to find thematching point that has the highest correlation
with the real-time elevation data. This is achieved by calcu-
lating the similarity between the real-time terrain elevation
data and the area to be matched through a continuous search
or iterative process to realize the positioning correction of
INS. The methods mainly include Terrain Contour Match-
ing (TERCOM) and ICCP algorithms [80].

TERCOM involves searching and matching real-time ter-
rain elevation data with a terrain elevation database and
calculating the correlation by a certain similarity metric.
The resulting position of the correlated extreme point is
the current position of the vehicle [81]. There are many
ways to measure similarity, including Euclidean Distance,
Manhattan Distance, Cross Correlation (COR), Mean Abso-
lute Difference (MAD), Mean Square Error (MSE), Cosine,
Terrain Entropy, Hausdorff Distance, and so on. Xu et al.
[82] proposed the Hausdorff distance between the real-time
bathymetry sequence and the search sequence on the topo-
graphic map of the seafloor as the metric of spatial curve
matching, and gave the approximate real position of the vehi-
cle through simulation. The algorithm rapidly reduced the
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FIGURE 8. Block diagram of terrain matching algorithm flow.

50% Circular Error Probability (CEP) from 2500m to 250m
and kept the navigation stable in the simulation experiment.
According to the basic principle of TERCOM, Rao et al. [83]
proposed the terrain bathymetric slope sequence as a terrain
feature parameter, and theoretically proved that the larger its
mean value is, the smaller the matching error is and the better
the matching navigation performance is. References [84],
[85] introduced the particle swarm optimization algorithm
into the matching area search, used the function that is related
to normalized product as the particle fitness function, and
compared the similarity between the baseline submap and
the real-time map profile by the maximum metric value of
the fitness. The simulation results showed that the algorithm
was better than the traditional TERCOM algorithm. In [86],
a moving least squares (MLS) method is used to reflect the
curvature of the MLS surface at each water depth point,
and a local curvature binary identification (LCBD) method
descriptor is proposed to describe the shape of the local MLS
surface. The points satisfying the LCBD case are divided into
the set of sampling points, after which a GA is introduced
to replace the traditional traversal method (TM) from the
underwater a priori graph to search for the optimal estimated
position of the vehicle. This method improves the matching
localization efficiency over the conventional method by more
than 80% at 7 localization points.

The basic idea of ICCP is to measure the topographic
elevation data Hi of the point in real time based on a certain
position i of the indicated place of the INS, find the nearest
point on the isobath with depth Hi near it for each point,
rotate and translate the measurement path to minimize the
sum of squares of the distances between the set of points
on the path after translation and the set of nearest points
found, and repeat this process iteratively until the distance
reaches a set threshold or the maximum number of itera-
tions, then the calculation is finished [87]. Chen et al. [88]
used Hausdorff distance to calculate the position error and
particle swarm optimization algorithm to optimize the ref-
erence route. They proposed an improved ICCP algorithm
to enhance the positioning accuracy and robustness of the
algorithm, which reduced the mean value of the error from
83.2m to 14.4m for the trajectory position indicated by INS.

Wang et al. [89] proposed an improved multi-path parallel
ICCP algorithm based on multibeam bathymetry data col-
lected by multibeam echosounder. The algorithm selects data
points located at the center and both sides of the edge of
the strip sounding data, a total of three paths, to effectively
solve the matching dispersion problem caused by the large
initial error. Simulation results verify the effectiveness of
the multi-path parallel ICCP algorithm, where the matching
error between the matching trajectory and the real path of the
algorithm is less than 100 m, even with an initial error of INS
up to 1200 m.

Compared with TERCOM, ICCP has the process of rota-
tion and translation, resulting in higher positioning accuracy.
However, it is extremely sensitive to the error of the initial
position, while TERCOM is not. Therefore, [35] divided the
matching process into two stages, first using TERCOM for
coarse matching and later using ICCP for finematching. Sim-
ulation results show that after using this algorithm, when the
initial position error of INS is 4.46km, the average matching
error of each point still converges to 206.94m, achieving a
high matching accuracy. Therefore, the direction of future
research should be to combine the advantages of both TER-
COM and ICCP methods, taking into account the tolerance
for initial position errors and the requirements for positioning
accuracy.

B. METHOD BASED ON STATISTICAL THEORY
The method based on statistical theory (BSTM) assumes
that terrain features have some definite form of probability
distribution and achieves the estimation of the probability dis-
tribution parameters by computing a specific criterion on the
sample data. Statistics offers two approaches to this problem,
namely, the maximum likelihood estimation method advo-
cated by the frequentist school and the Bayesian estimation
method advocated by the Bayesian school.

In the following, the principles of these two methods and
their applications in terrain matching are described.

1) RECURSIVE BAYESIAN ESTIMATION
Bayesian theory was first proposed by the British mathemati-
cian Thomas Bayes in 1763. After more than 200 years of
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development, it has become a crucial theory in the field of
statistics and plays an important role in artificial intelligence,
information technology, finance, and other fields. The main
idea of Bayesian estimation is to assume that the sample
parameters follow a prior distribution, and then calculate the
posterior distribution of the parameters based on the observed
data [90].

Recursive Bayesian estimation (RBE) is a generalization
of Bayesian estimation and an optimal estimation method for
data. The application of RBE in filter estimation is extremely
widespread. For linear systems, the Kalman filter is a spe-
cial instance of RBE, which is an optimal estimation algo-
rithm for linear systems. Many scholars at home and abroad
have studied its application in terrain-matching navigation.
Reference [91] proposed a navigation filter to update the
state estimation by range or position measurement using
the positioning system on the support ship. The algorithm
reduced the maximum position estimation error from 1317m
to 76m compared to DR. Xu et al. [92] proposed a method to
add conditional constraints and confidence evaluation to the
ExtendedKalman Filter (EKF) to filter the localization values
of the USBL, making the filtering results more robust and
smooth. Li et al. [93] used a combined topographic match-
ing algorithm based on ICCP and Kalman filtering, using
underwater depth measurements, digitally stored topographic
maps, and SINS output to generate position estimates for
AUV. They used the output of TAN as the observation of
the Kalman filter and used the filtering results to correct
the output of SINS with feedback to obtain a more accurate
indication of the ICCP algorithm trajectory. In the simulation
experiments, the algorithm controls the matching position
error always below 50m.

Since terrain features are nonlinear, terrain matching nav-
igation can be considered as a nonlinear state-optimal esti-
mation problem. Therefore, a nonlinear improvement of the
Kalman filter is required to deal with nonlinear systems, such
as terrain features. Currently, the most commonly used algo-
rithm in terrain matching is the SITAN algorithm proposed
by Sandia Laboratories in the 1970s [94]. It mainly consists
of two stages, search mode, and tracking mode, to achieve
coarse matching and fine matching of TANS, respectively.
Essentially, it is a route correction method that uses the
extended Kalman filter. However, it requires linearization of
the terrain height matching model and a linear minimum
variance estimation criterion. Since the TERCOM algorithm
matches terrain elevation values only after measuring a dis-
tance, which is poor in real time, while SITAN is extremely
sensitive to initial position errors although it is a real-time
position estimation, [95] used the TERCOM algorithm for
coarse matching in the search phase and the SITAN algorithm
in the tracking phase to obtain a higher positioning accuracy.
The search time of this algorithm is 0.281s, which is much
smaller than the 1.023s of the inertial terrain aided navigation
algorithm (BITAN) II. It consistently keeps the positioning
error within 100m in the offline phase. Yang et al. [96] used
the quadratic interpolation (QI) method and the VBmethod to

derive the predicted error covariance matrix and the measure-
ment noise matrix. The Kalman filter was improved by non-
linearization to estimate the state vector and the observation
vector more accurately. Reference [97] proposed a mapping
matching method based on the sliding window iterative near-
est contour point (ICCP) algorithm, combining ICCP with
SITAN to improve the matching navigation accuracy, which
reduces the longitude error by nearly 60% and improves the
overall matching accuracy by 50.3%.

However, these evolutionary filters may exhibit poor per-
formance, such as filter scatter, when the topographic random
linearization error or initial uncertainty is large. Particle fil-
ters (PF) or prime point filters (PMF) addresses this problem
much better by adopting a more sophisticated approach to
deal with highly nonlinear estimation problems [98]. Taking
PF as an example, the basic principle is briefly explained
[99]: the reference position and weights contained in each
particle are initialized using the initial position of the vehicle
and the error of the INS. The position of each particle at
the next moment is calculated using the equation of motion,
and the corresponding reference depth is obtained with the
help of the DEM. The weights are corrected according to
the difference between the measured depth and the reference
depth. The position of the navigator is estimated by the
particle swarm information. Repeating the above position
recursion and weight update process, the estimation of full
trajectory can be completed. Nordlund et al. [100] proposed
the marginalized particle filter MPF. They used the PF to
estimate the nonlinear part and the Kalman filter for its
linear part. This greatly reduced the number of samples, mak-
ing the applied MPF computationally easy to handle. Long
et al. [101] proposed an algorithmic framework consisting
of acquisition mode, tracking mode, and mode control logic.
It first uses TERCOM for coarse localization to reduce the
initial position error range, followed by fusion filters for
precise localization. The fusion filters include particle filter
and Kalman filter, which estimate the nonlinear and linear
parts of the measurement data respectively, improving the
real-time positioning accuracy of the system with an initial
positioning error of 100m, which is smaller than the 150m of
BITAN II. Claus et al. [102] used a particle filter to localize
the AUV and calculated the particle weights based on the
terrain complexity. In [103], the PF uses the computational
solution of the EKF to propagate the particles during range
measurement updates, and fuses the position updates back
into the EKF solution. In the EKF and PF, state estimation
and range measurements can be used as inputs to a devia-
tion estimator for calculating speed and time synchronization
deviations, and in experiments, the algorithm reduces the
position root-mean-square error from 51m to 27m.

2) MAXIMUM LIKELIHOOD ESTIMATION
RBE is a continuous filter with large energy dissipation for
multibeam sonar sensors, and the prior probability of the
algorithm is difficult to solve with large initial uncertainty,
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FIGURE 9. Block diagram of the structure of the terrain matching algorithm based on statistical theory.

TABLE 5. Summary and comparison of terrain matching algorithms.

which makes it unsuitable for long-duration diving mis-
sions of underwater vehicles. Therefore, the RBE degen-
erates to the maximum likelihood estimation (MLE). The
maximum likelihood estimation utilizes discrete measure-
ments of multiple sonar pulses to accomplish localization
rather than long continuous measurements from a multi-
beam sonar sensor, which is simpler and more effective in
practice [98].

Based on the above advantages, Chen [104] proposed an
underwater terrain matching localization method based on
maximum likelihood estimation, introduced the Fisher crite-
rion to constrain the pseudo-peaks appearing in the likelihood
function of flat terrain regions. He also proposed a Bayesian
one-Fisher estimation method with the maximum directed
feature parameter as the basis for quadratic discrimination,
effectively eliminating the pseudo-peak points and enhancing
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the recognition rate of terrain features. Reference [98], which
used multibeam echo sounder to obtain bathymetry data and
used maximum likelihood estimation algorithm to match the
real-time bathymetry with the analysis of the reference digital
map, and the measurement beam of multibeam sonar in the
simulation experiment was 10 × 21, and the Circular error
was minimum 0.2m. In [32], the maximum likelihood esti-
mation was used to achieve coarse matching by searching
the surface terrain averaging factor to improve the matching
efficiency under the assumption that the matching residuals
obey Gaussian distribution. In the fine matching stage, inertia
constraints were established to help determine the optimal set
of matching reference points and match weight constraints
were used to reduce the contribution of remote matching
points in the overall cost function. The algorithm improved
thematching accuracy in the root mean square errors (RMSE)
by 66.54% over ICCP in the experiment on the lake.

The maximum likelihood estimation method always finds
the maximum value of the likelihood function in a given
topographic dataset, and uses it as the best estimate.When the
dataset is large enough with certain regularization conditions,
the maximum likelihood estimation has a Gaussian proba-
bility density function (PDF) and is asymptotically optimal.
However, compared to Bayesian estimation, the maximum
likelihood estimation lacks the regularization term and is
often not the optimal estimate. Additionally, the integral cal-
culation in RBE is complicated, making it difficult to com-
pute posterior probabilities. A more appropriate approach
is to use an approximate method, such as the maximum a
posteriori probability (MAP), to find the posterior probability
by approximating the computation of the RBE. This method,
while less accurate than the traditional recursive Bayesian
algorithm, greatly improves computational efficiency and
is more compatible with practical engineering applications.
Figure 9 shows the structural relationship between them.

Thus, in future research, we can introduce a regularization
term equivalent to the prior probability in the maximum like-
lihood estimation to obtain the maximum a posteriori proba-
bility estimate. This approach has been successfully applied
in current deep learning algorithms, which are very popular in
artificial intelligence. In these algorithms, the loss function is
the target of model optimization, and the optimized posterior
estimate is obtained by introducing the regularization term in
the learning process.

Table 5 summarizes and compares all current mainstream
terrain matching algorithms, providing a comprehensive ref-
erence for future research.

VI. CONCLUSION
This paper provides an overview of the framework of under-
water terrain-aided navigation techniques, discussing the
working principles of component units and comparing the
characteristics of various research methods, including their
advantages and disadvantages. Innovative discussions focus
on the methods involved in terrain suitability analysis and ter-
rain matching algorithms, using the ideas of dimensionality

reduction to analyze terrain features and statistics to predict
terrain matching results. These methods are summarized in
a way that is useful for scholars who are new to this field,
as well as those who have already studied it.

Although many TANS methods have been validated by
numerous researchers, the following methods still require
improvement:

1) Most of the current optimization for feature selection
and matching algorithm parameters focuses on heuris-
tic optimization algorithms. However, there are many
other excellent optimization algorithms in the field of
artificial intelligence, and it is interesting to try using
these algorithms for feature selection and parameter
tuning.

2) In terms of feature reduction for fitness analysis, fea-
ture selection methods are mostly used to form a com-
posite feature with fixed parameters and then classify
the region to be matched using a classifier. However,
feature extraction methods are less applied. Future
work should focus on feature dimensionality reduc-
tion using a data-driven approach based on the model
for autonomous learning and variable parameter fea-
ture extractionmethods. Combining this with nonlinear
models for unsupervised classification will be a hot
spot and difficult area for future research.

3) Topographic matching of terrain features using RBE
requires integration of the posterior probability den-
sity, a process that is usually difficult to achieve. The
maximum likelihood estimation lacks a regularization
term compared to Bayesian estimation and is often not
the most optimal estimate. Therefore, future research
should try to introduce a regularization term equivalent
to the prior probability in the maximum likelihood esti-
mation to obtain the maximum a posteriori probability
estimate.
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