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ABSTRACT Unmanned Surface Vehicles (USV) have gained significant attention in military, science, and
research applications in recent years. The development of new USV systems and increased application
domain of these platforms has necessitated the development of new motion planning methods to improve the
autonomy level of USVs and provide safe and robust navigation across unpredictable marine environments.
This study proposes a feedback motion planning and control methodology for dynamic fully-and under-
actuated USV models built on the recently introduced sparse random neighborhood graphs and constrained
nonlinear Model Predictive Control (MPC). This approach employs a feedback motion planning strategy
based on sparsely connected obstacle-free regions and the sequential composition of MPC policies. The
algorithm generates a sparse neighborhood graph consisting of connected rectangular zones in the discrete
planning phase. Inside each node (rectangular region), an MPC-based online feedback control policy
funnels the USV with nonlinear dynamics from one rectangle to the other in the network, ensuring no
constraint violation on state and input variables occurs. We systematically test the proposed algorithms in
different simulation scenarios, including an extreme actuator noise scenario, to test the algorithm’s validity,
effectiveness, and robustness.

INDEX TERMS Nonlinear model predictive control, feedback motion planning, sampling-based motion
planning, unmanned surface vehicles.

I. INTRODUCTION human errors, studies regarding automation of surface vehi-
There has been an increasing trend in using autonomous cles focusing on motion planning applications is a currently
systems in the maritime industry. According to the Annual attractive research area.

Overview of Marine Casualties and Incidents (2020), The main goal of robotic motion planning is to drive the
between 2014 and 2019, 44% of the casualties with ships agent from the start configuration to the goal configuration
are due to navigational casualties, which include accidents while obeying the constraints coming from the environment
resulting from contact, collision, and grounding/stranding. Of and the agent itself. In motion planning applications, the algo-
1801 accident events that occurred between 2014 and 2019, rithm’s success mainly depends on its capability to handle
54% of them were attributed to human erroneous action [2]. obstacles and dynamics. Even though motion planning is one

In order to decrease the accident rates that are attributed to of the most popular fields in robotics with a vibrant history,

safe and robust motion planning is still an active research

The associate editor coordinating the review of this manuscript and area open to advancements. Most motion planning algorithms
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waypoints. Feedback control methods are later utilized in this
dominant class of planning strategies to follow these trajec-
tories (or waypoints). On the other hand, some researchers
implemented trajectory-free motion planning concepts rather
than a trajectory-based approach. A typical method in this
class segments the map with connected sub-regions. After
that, the real-time planner and motion controller aims to drive
the robot to the goal region while respecting the constraints
coming from these regions [3], [4], [5]. Instead of directly
following a pre-defined trajectory, this approach relaxes the
“constraints” by increasing the possible movement area for
the robot.

Model Predictive Control (MPC) is an effective tool
for forcing the constraints implemented on the system for
the feedback control phase. Since real-world problems are
highly nonlinear, a considerable amount of research has been
devoted to extending the usage of MPC to constrained non-
linear systems for motion control applications [6], [7], [8],
[9]. As opposed to the linear case, the infinite horizon prob-
lem for nonlinear systems cannot be solved numerically, and
reducing the horizon may cause undesired system behaviors.
In order to address this issue, Michalska and Mayne [10]
proposed a hybrid MPC framework that replaces the terminal
constraint with a terminal region. When the nonlinear system
reaches this region, another controller is employed, and as a
result, the system is guaranteed to be asymptotically stable.
However, to guarantee the stability of the system, a global
optimization problem is required to be solved. Chen and
Allgower [11] on the other hand, use an infinite horizon
approach and calculate a penalty term for the final state to
bound the infinite horizon cost. They establish the bound by
controlling the nonlinear system with fictitious linear state
feedback in the predetermined terminal region.

MPC offers a framework that can handle multiple-input
multiple-output (MIMO) systems and force constraints for
states and inputs, making it an effective instrument in
collision-free motion planning applications. With an increas-
ing demand for the utilization of autonomous surface vessels
in the military, search and rescue, transportation and explo-
ration, the literature regarding the control of USVs started
to flourish in the last few decades [12]. Several works in
literature employ MPC for USV control [13], [14], [15], [16],
[17], [18], [19]. Zhao et al. [13] propose an improved MPC
framework with the inclusion of global course constraints and
an event-triggered mechanism. In [14], researchers propose
a finite control set model predictive control for collision
avoidance problems.

This paper proposes a trajectory-free, sampling-based
feedback motion planning algorithm to handle arbi-
trary obstacle configurations for fully- and under-actuated
autonomous surface vehicles. We specifically focus on devel-
oping a robust motion planning and control methodology
for USV systems and thus we tested our approaches in
the presence of unpredictable process noise. The algorithm
consists of three phases. The algorithm first generates a graph
structure in the obstacle-free region by creating connected
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rectangular nodes. Then, graph-search algorithms is deployed
to find the “optimal” discrete path on the graph in the
second phase. Inside each node (region), an MPC controller
is responsible from driving the robot to the next node that
is determined by the search algorithm in the second phase.
In conclusion, via sequential composition of MPC control
policies, the whole algorithm can drive the robot to the goal
location.

A preliminary version of this work reporting early results
was presented by Karagoz et al. [5]. The current article is a
significantly improved version with the following qualities:
(i) Karagoz et al. [5] tested the algorithm only with a (2DOF)
toy model, whereas in this paper we adopted more compre-
hensive motion models that can capture realistic full- and
under-actuated USV system dynamics (ii) the performance
of the algorithm in the presence of extreme process noise is
evaluated to test the robustness of the methodology, (iii) the
algorithm is modified in order to recover from failures caused
by noise, and (iv) MPC and graph search costs are modified
to increase the performance of the proposed algorithm.

The remainder of this paper is organized as follows.
Section II provides fundamentals regarding the dynamic
modeling of a USV and nonlinear MPC concept. Section III
summarizes the MPC-Graph algorithm. Section IV and Sec-
tion V give details regarding the implemented robot mod-
els and simulation environments and report the obtained
results. Section VI proposes future directions for further
improvements.

Il. PRELIMINARIES AND BACKGROUND

A. UNMANNED SURFACE VEHICLE DYNAMICS

Compared to unmanned ground vehicles (UGV), unmanned
surface vehicles (USV) are exposed to different environment
dynamics due to their application medium. Since USVs oper-
ate in a sea/ocean environment, on top of rigid body dynamics
also, added mass and damping terms should be considered in
a USV model. Let = [x y ¥]7 € R? x S denote the pose
vector, where x and y are the world-fixed reference frame
coordinates and v is the heading angle, let v = [u v r]” €
R3 denote the velocity vector of the dynamic model where
u and v are linear velocities, called surge and sway, and r
is the angular velocity. As usual, the equation § = J(¥)v
defines the relationship from body reference frame to world
fixed reference frame where J (1) is in the form of

cos(yy) —sin(y) O
JW)=|sin(y) cos(y) O]. (D
0 0 1

Fig. 1 details out the abovementioned coordinate systems as
well as a schematic for the USV model.

In our simulations, we use the 3 DOF horizontal plane
model presented in [20]. The formulation is as follows,

Mv+Cw)y+Dyyw=r1 (2a)
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FIGURE 1. Schematic for the USV model. X-Y and u-v denote the
world-fixed and body fixed reference frames, respectively.

where
M =Mz + Mprp (2b)
C(v) = Ca(v) + Cgp(v) (2¢)
D(v) =D; + D,(v) (2d)

In (2a) the general formulation for the USV dynamics is given
where M, C(v), D(v) are inertia, Coriolis/centripetal, damp-
ing matrices and t is the thruster force vector, respectively.
A body moving in a liquid medium, transports some of the
surrounding liquid by its motion. As a result, it is observed
that the body weighs more compared to its original weight.
In order to compensate this effect, added mass terms M 4
and C4(v) are included in (2b) and (2¢). The damping effect
is given in (2d) where D; and D, (v) denote the linear and
nonlinear damping matrices, respectively. The subscript RB
in (2b) and (2c¢) stands for rigid body terms. The matrices in
(2a)-(2d) is represented as

(m 0 0 X;, 0 0
Mrp=|0 m O, Ma=1|0 Y, Y|,
|0 0 I 0 Yy N;
[ 0 0 Yiv+ Yir
CA = O O — AU )
| —Yiv—Yir  Xuu 0
0 0 —my X, 0 0
Cre=10 0 mu (D;j=10 Y, Y, |,
| mv —mu 0 0O N, N,
_X|u|u|u| 0 0
D, = 0 Y vl 0 3)
B 0 0 N|r|r|r|

where m is the mass and I, is the moment of iner-
tia of the vehicle perpendicular to the horizontal plane,
{Xiu Y, Y, Ni’}, {Xlls Yy, Y, Ny, Nr} and {Xlulua Y\v\w Nlrlr}
are added mass, linear damping and nonlinear damping
parameters, respectively. These parameters are scalar con-
stants that do not change over time.

B. MODEL PREDICTIVE CONTROL
For the control of the nonlinear USV systems, we use the
approach presented in [11]. The work of Chen and Allgower
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is applicable to both stable and unstable systems, and with
the inclusion of terminal region and terminal cost matrix,
the algorithm guarantees asymptotic closed-loop stability.
The objective cost function comprises two parts: an integral
square error calculated over a finite horizon and a quadratic
terminal cost term as in the linear case.

The optimization problem of MPC can be formalized as
follows:

1+T,
J(x(1). u()) = / (Il + 1013 e
t

+ 1% + TH)II (4a)

subject to x = f(x, u) (4b)
u(r) e U,t €t,t+Tp) (40)
x(t+Tp) € Q. (4d)

where x(-) is the state vector, u(-) is the input vector to
the system defined by a set of nonlinear differential equa-
tions, f(x(-), u(-)) and 7}, is prediction horizon. Q and R
are positive-definite and symmetric cost matrices for state
and input variables, respectively. We obtained the terminal
state penalty matrix P and terminal region 2 based on the
procedure proposed by Chen & Allgdwer [11]. First, the
Jacobian linearization of the system at the origin is calculated,

x = Ax + Bu (5)

where A = (9f/0x)(0, 0) and B = (9f/9u)(0, 0). Provided
that (5) is stabilizable, a linear state feedback u = Kx can be
obtained and by substituting u in (5),

X = (A + BK)x (©6)

the obtained matrix Ak = A + BK is asymptotically stable.
The related Lyapunov equation takes the following form,

(Ax +«DTP +P(Ak + «I) = —Q* (7
where,
Q" = Q+K'RK € R (8)

admits a unique positive-definite and symmetric solution P.
In (7), « is chosen such that it satisfies the following condi-

tion,
K < —Amax(AK) Kk € [0, 00). 9

After determining the terminal state penalty matrix P, the pro-
cedure continues with determination of the terminal region.
Provided that, there exists a constant o € (0, 00), a region
Qg in the neighborhood of « is defined as follows,

Qy = {x e R"x"Px < a}. (10

such that Vx| € Q, infinite horizon cost J°,

J®(x),u) = / (Ix®1g + @) z)dt (11)
t

1
starting from x(#;) = x; and controlled by u = Kx is bounded
from above as follows,

J®(x1,u) < x! Px;. (12)
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With the inclusion of an upper bound to the infinite horizon
cost, the asymptotic stability of the system is guaranteed.

ill. MPC-GRAPH

The proposed MPC-Graph algorithm executes three succes-
sive phases to sample the arena and navigate the robot: graph
generation, graph search, and motion control. The graph
generation phase takes the map as input and then samples
the obstacle-free areas with overlapping rectangular regions
until the predefined termination condition is satisfied. After
completing the graph generation phase, Dijkstra’s algorithm
executes to search the obtained neighborhood graph for the
shortest available path from any node to the goal node. The
motion control phase takes the determined nodes as input and
navigates the robot to the goal configuration while respecting
the constraints coming from the states and system inputs.

A. GRAPH GENERATION

The MPC-Graph framework starts its execution by sampling
the free space. After guaranteeing the sampled point g,4nqg
is in the region unobstructed and not covered by previously
sampled rectangular nodes, then a new node Nodey, is gener-
ated and expanded around g;4nq, see Fig. 2. Note that these
nodes can be in different geometric shapes such as square [4],
circle [3], [21], rectangle [5]. In this work, we use rectangular
nodes due to their compliance with MPC and to achieve a
more sparse graph structure [5].

Then, Node, is added to the graph, and edges are created
between this node and the neighboring nodes overlapping
with it. Node generation and expansion process continue until
the defined termination condition is satisfied.

In the algorithm, we implemented the condition presented
in [22] which mainly estimates the quality of the coverage of
the sampled space. Let Cg. denote the set of configurations
in the obstacle-free region and u be de Lebesgue measure in
Cfree and B be the union of the nodes

B = U Nodey,,

k
then the implemented termination condition in (13), implic-
itly determines estimates for the expression p(B)/u(Cree)-
For that purpose, statistics collected from randomly taking
samples to find a new configuration in Cpe,. \ B is analyzed.
The implemented termination condition is formalized as fol-
lows,

m> In(1 — P.) 1

Ino
where m is the number of successive failures followed by the
first success, P, and « are user-determined parameters that
affect the density of the coverage of the map. A more detailed
information about the derivation of (13) is presented in [22].
After satisfying the termination condition, the algorithm con-
tinues with the graph search phase to find the optimal route.
The computational time regarding this stage is presented in
detail in our previous work [5] which gives results for several
different maps.

13)
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FIGURE 2. Generation of a node: (a) initial map of the arena, (b) a square
node is generated, (c) square node is expanded in discrete steps along
directions indicated as 1 and 2. A more detailed information about the
node generation is presented in [5].

center
i+1

FIGURE 3. Visualization of edge cost parameters. The subscripts i and
i + 1 stand for parent and child node, respectively. Dark gray region A;
shows the overlapping area.

B. GRAPH SEARCH
After the termination condition given in (13) is satisfied,
the algorithm continues by searching the obtained graph, G,
with Dijkstra’s search algorithm to find the optimal discrete
planner. The search algorithm returns a policy, Po, that gives
the order of the nodes robot should pass to reach the goal.
The constructed graph has an edge between two nodes if
they have an overlapping area. We calculate the edge cost as
follows,

COStedge = ||centery; — refi|l2

+ l[center,,, — refilla + /% (14)
1

where center is the intersection point of the diagonals of the
corresponding node. The area of the intersection region which
is indicated with a dark gray color in Fig. 3 is denoted as A
and the center of this region is given as ref. ||-||» refers to the
I norm, i.e. Euclidean distance. We include the reciprocal of
the intersection area as a parameter for the edge cost since
larger areas provide smoother behavior for the robot. In our
simulations we used weight « for the reciprocal of the inter-
section area which is set as v = 1. Thus, Dijkstra’s search
algorithm chooses a route in favor of larger intersection areas.
Fig. 3 visualizes the parameters given in (14).

C. MOTION CONTROL

The last phase of the proposed MPC-Graph algorithm is
motion control. At this stage of the algorithm, with the
previously determined policy Po, MPC navigates the robot
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Yw

w Lw
FIGURE 4. Representation of world W, target 7~ and robot frames R
with the past, current and next nodes.

from an arbitrary node to the GoalNode in discrete time
steps. The motion control phase aims to safely and smoothly
navigate the robot from its CurrentNode to the NextNode with
the established policy Po while forcing the state and input
constraints. It is important to note that, as long as the robot
stays inside the sampled rectangular regions, it is guaranteed
that collisions with obstacles are avoided. In order to simulate
the physical limits for the robot, we implemented velocity
and acceleration constraints. We adopted the quasi infinite
MPC [11] approach to guarantee stability of the system
whose Jacobian linearization is stabilizable.

The node that the robot is currently in is denoted as the
CurrentNode, and the target node that the robot is traveling to
is called the NextNode. The reference point, ref;, robot aiming
to reach is chosen to be the centroid of intersection for that
region, [Xy.f yreﬁ]T = Centroid(CurrentNode N NextNode).
After determining the centroid, by taking that point as the
origin, a target reference frame 7; is placed. In order to deter-
mine the orientation of that frame, a hypothetical vector v;
starting from the previous reference point ref;_; and ending
at the target reference point ref; is constructed. The angle 6;
between the world frame V and Vf is taken as the orientation
for the target frame. Fig. 4 illustrates world W, target 7; and
robot frames R.

After defining the necessary frames for the algorithm, the
following transformation matrices are constructed,

[cos® —sinf® O Xref
™ — sinfd  cos@ 0 yur
710 0 1 0|’
. 0 0 0 1
[cosyy —sinyy 0 x
w | siny cos Y 0 vy
T = 0 0 1 0 (15
| 0 0 0 1

where, T}” € SE(3) s the pose of the target frame with respect
to world frame and T} € SE(3) is the pose of the robot frame
with respect to world frame. By using the matrices given in
(15), we calculate the pose of the robot frame with respect to
target frame T. € SE(3) as

T = (T) ', (16)
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FIGURE 5. (a) Robot arrives to an unsampled region. (b) A new node is
generated in the unsampled region which is indicated with dark grey
color. (c) Robot follows the red route by using the newly created region.

By using the transformation matrix T, we calculate the
position vector of the robot with respect to the target frame
Qrr = [Xer Yir 1/},,]T. In cost function (4a), we use q, for robot
states. This approach aims to overlap the target frame with a
body-fixed robot frame. Using MPC, we calculate the optimal
finite-horizon input sequence that satisfies the constraints and
navigates the robot towards the origin of the target frame.

When robot enters the intersection area, the NextNode
becomes the new CurrentNode and the new NextNode is
determined by checking the next element in policy Po. It is
important to note that for every new region the robot enters,
the state constraints coming from the boundaries of the
rectangular nodes are re-calculated. This process executes
recursively until the robot arrives at the node, which includes
the goal point ggq. In the goal region, ggoq becomes the
reference point, and NextNode is no longer applicable.

Due to unpredictable effects such as process noise, the
robot may end up in an unsampled region or another node
different from its CurrentNode. For the former case, the last
position of the robot is treated as the sampled random point,
qrand, and fed to the node generation function. This newly
generated node is inserted into the previously obtained graph,
G, and taken as the new CurrentNode for the robot. Then,
Dijkstra’s search algorithm is executed to generate a new
policy. These steps are given in lines 11-19 of Algorithm 1.
An illustration of this resampling procedure is presented in
Fig. 5.

For the latter case, the obtained graph is searched in order
to determine the possible CurrentNode, which ensures the
minimum cost route according to (14). After determining the
CurrentNode, a new route is obtained using the previously
generated policy, Po. These steps are given in lines 21-23
of Algorithm 1. A complete procedure of the motion control
phase is summarized in Algorithm 1.

IV. ROBOT MODELS

A. FULLY ACTUATED USV MODEL

For the fully actuated USV model, we implement the outlined
model illustrated in Fig. 6(a) that consists of four thrusters
which generates the indicated force vector, F, F», F3 and
F4. With this outlined model, the force vector 7y, takes the
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Algorithm 1 Motion Control
1: CurrentNode < StartNode()

2: NextNode < Po.Next(CurrentNode)

3: ref < Centroid(CurrentNode N NextNode)

4: while g4, not reached do

5: if g; € GoalNode then

6: ref < qgoal

7: else if g; € NextNode then

8: CurrentNode < NextNode

9: NextNode < Po.Next(CurrentNode)

10: ref <— Centroid(CurrentNode N NextNode)
11: else if g, € UnsampledRegion then

12: q: < UniformRandConf()

13: Node; < GenerateRectRegion(g;)

14: Node; < Expand(Node;)

15: G.InsertNode(Node;)

16: Po = DijkstraAlgorithm(G)

17: CurrentNode < Node;

18: NextNode < Po.Next(CurrentNode)

19: ref < Centroid(CurrentNode N NextNode)
20: else
21: CurrentNode <— SearchNodes(G, g;)
22: NextNode < Po.Next(CurrentNode)
23: ref < Centroid(CurrentNode N NextNode)
24: end if

25: u; < MPC(q;, ref , CurrentNode)
26: end while

form of

(F1 + Fr — F3 — Fy)sina
(F1 + F3 — Fy — Fy)cosa . (17
(F1 + F4 — F> — F3)(sina + cosa)b/2

Tfa =

With the oriented placement of the thrusters with respect to
the body, the vehicle can generate a force vector in direction
v as opposed to the differential model. In the implementation,
we adopted the parameters given in [23] for inertia, damping,
and added mass terms. The state vector and the input vector
for the model takes the form q = [x y 6 u v r]’ and u =
[F1 Fy F3 F4]7, respectively.

In the simulations we discretize the continuous nonlinear
dynamics of the system and uniform synchronous sampling
of measurements with a sampling frequency of f; = 10 Hz(or
T; = 0.1s). We navigate the vehicle throughout the map
with quasi-infinite horizon MPC. The finite horizon length
is T, = 1.5s, which gives us enough degrees of freedom in
enforcing the state and input constraints. We choose the state
and input matrices Q = diag(5,5,5,2.5,2.5,0.2) and R =
diag(0.1, 0.1, 0.1, 0.1), respectively. After determining the
cost matrices, by following the procedure presented in [11],
we obtain the state feedback gain K and the terminal penalty
matrix P.
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(b)

FIGURE 6. Placement of thrusters for (a) fully actuated USV model and
(b) differential USV model.

We implemented the following state and input constraints
to the system,

AilxyI" <B; (18a)
—1rad/s <r <1rad/s (18b)
—15m/s <u<15m/s (18c¢)

—20N <F{,F>,F3,F4 <20N (18d)

Equation (18a) is calculated for each node on the path.

B. DIFFERENTIAL USV MODEL

For the differential USV model with two thrusters, we imple-
ment the model illustrated in Fig. 6(b). With this model, the
force vector t,, takes the form of

Fi+F
‘[ua = 0 . (19)
b(F1 — I?)

For the differential USV model, the placement of thrusters
prevents the generation of a force vector in the v direction.
In the implementation, we adopted the parameters given
in [24] for inertia, damping, and added mass terms. The state
vector and the input vector for the model takes the form
q=[xy0uvr]l andu = [F| F»]7, respectively.

In the simulations, we discretize the continuous nonlinear
dynamics of the system and uniform synchronous sampling
of measurements with a sampling frequency of f; = 10Hz
(or Ty = 0.1s). The linearized system at the origin is
not stabilizable for the under-actuated model, so the termi-
nal region and terminal cost matrix cannot be calculated.
In order to control the system and predict its future behavior,
we selected the finite horizon length as 7, = 9s. It is
six times larger than the horizon length used for the fully
actuated USV model. We choose the state and input matrices
Q = diag(5,5,10,2.5,2.5,0.2) and R = diag(0.1,0.1),
respectively.
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FIGURE 7. (a) A total of 114 nodes are generated in node generation phase. (b) The calculated optimal route consists of 14 nodes. (c) Green curve
indicates the trajectory followed by the robot. Pink points represent the calculated reference points. Red arrows show the calculated target frame
T orientations in positive x; direction. (d) Applied thruster input forces F;, F,, F5, F; to the system. Dark dashed lines indicate upper and lower
constraints for the input. (e) Surge speed v and angular rate r of the robot. Black and green dashed lines correspond to the constraints for surge

speed and angular rate, respectively.

We implemented the following state and input constraints
to the system,

Ailx yI" < B; (20a)
—2rad/s <r <2rad/s (20b)
—05m/s <u<3m/s (20c¢)

—20N <F,F, <20N (20d)

Equation (20a) is calculated for each node on the path.

V. SIMULATION RESULTS

This section reports the simulation results obtained from
implementing the MPC-Graph algorithm. We implemented
our algorithm on MATLAB and performed simulations on a
laptop with Intel 17 2.4 GHz processor running Windows OS.

A. FULLY ACTUATED USV MODEL
1) PERFORMANCE WITHOUT PROCESS NOISE
In this simulation scenario, we used a map that consists
of 4 obstacles. In the graph generation phase, a total of
114 nodes are generated. In order to show the ability of the
controller to force the constraints coming from the boundaries
of the rectangular nodes, we replaced the goal node with a
smaller square region. After executing Dijkstra’s search algo-
rithm, the optimal route consists of 14 nodes. Fig. 7(a) and (b)
visualizes the obtained rectangular regions and the node-set
that constitutes the followed route by the robot, respectively.
Fig. 7(c) shows the route followed by the robot and the cal-
culated reference points with target orientations. Red arrows
are the positive x; directions for the target frames 7. The
figure points out that the robot obeys the constraints coming
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from the boundaries of the sampled rectangular regions. Even
in the smaller goal region (~ 24 times smaller concerning
the average size of the nodes in Po) robot approaches to goal
point smoothly by considering the dynamics and the imposed
constraints on the system.

Plot presented in Fig. 7(d) shows the forces Fy, F», F3, Fa
calculated in the motion control phase. In order to simulate
a realistic system, we set upper and lower bounds 20 N
and —20 N for the input forces, respectively. Dashed black
lines in the figure indicate these constraints. Furthermore,
we also added velocity constraints to the system. For the surge
speed u, we set upper and lower constraints as 1.5 m/s and
—1.5 m/s, respectively. For the angular rate r, we set upper
and lower constraints as 1 rad /s and —1 rad /s, respectively.
In Fig. 7(e), the imposed constraints on surge speed and
angular rate are indicated with black and green dashed lines,
respectively. It can be inferred from the figures that MPC can
force both state and input constraints successfully. CPU time
of MPC for each is at average tcpy = 0.021s.

2) PERFORMANCE IN THE PRESENCE OF PROCESS NOISE

We also analyzed the performance of the MPC-Graph algo-
rithm in the presence of process noise. To this end, we added
noise (SNR=1) to the calculated thruster forces, u
[F1 Fp F3 F41T and performed Monte-Carlo experiments
(# simulations 1000) on the same map with the same
nodes. We determine the thrusters’ input saturation limit as
F = 25 N. From 1000 Monte-Carlo experiments, in 8 of
them robot failed to reach the goal location due to process
noise. Failures include the cases in which the robot ends up
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FIGURE 8. Obtained trajectories from Monte-Carlo experiments in the presence of process noise. (a) Successful trajectories ended up in goal
point. (b) Red trajectory indicates the followed route in the presence of process noise. Dashed blue trajectory indicates the followed trajectory

without the process noise. (c) Plots show the calculated forces and applied forces on each thruster. Black dashed lines indicate the saturation
limits for the thrusters.
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FIGURE 9. (a) Satellite view of Pearl Harbor is presented. (b) Node generation phase. As a result 255 nodes are generated. (c) Graph search
phase determines the shortest route consisting of 21 nodes. (d) Green curve indicates the trajectory followed by the robot. Orange points
represent the calculated reference points. Red arrows show the calculated target frame 7~ orientations in positive x; direction. (e) Applied
thruster input forces F;, F, to the system. Dark dashed lines indicate upper and lower constraints for the input. (f) Surge speed u and
angular rate r of the robot. Black and green dashed lines correspond to the constraints for surge speed and angular rate, respectively.

outside the limits of the arena or inside the obstacles. Fig. 8(a)
visualizes the successful attempts for reaching the goal point.

If the robot ends up in a different node than the
CurrentNode due to process noise, the algorithm generates
another route considering the previously determined policy

Po.In Fig. 8(b), red and dashed blue trajectories indicate the
routes followed by the robot in the presence of process noise
and without noise, respectively. Fig. 8(c) shows the thruster
forces and process noise applied on each thruster. Even in
the presence of high-level noise, in 99.2% of the experiments
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FIGURE 10. Obtained trajectories from Monte-Carlo experiments in the presence of process noise.
(a) Successful trajectories ended up in goal point. (b) Red trajectory indicates the followed route in
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process noise. (c) Plots show the calculated forces and applied forces on each thruster. Black

dashed lines indicate the saturation limits.

fully actuated USV model reaches the goal location. Results
indicate that MPC is an effective controller for handling high
noise scenarios.

B. DIFFERENTIAL USV MODEL

1) PERFORMANCE WITHOUT PROCESS NOISE

In this simulation scenario, we used the map of Pearl Har-
bor. Graph generation phase constructed a graph structure
consisting of 255 nodes and Dijkstra’s search algorithm find
the optimal route that consists of 21 nodes. Fig. 9(a) and (b)
visualize the satellite view of Pearl Harbor and obtained
rectangular regions, respectively. Fig. 9(c) and (d) illustrate
the node-set robot navigates in and path followed by the
robot, respectively.

We set the upper and lower bounds 20 N and —10 N
for the input forces, respectively. In order to restrict the
backward motion of the vehicle, we set the lower limit for
the thruster forces to be —10 N. Velocity constraints for the
system are 3 m/s and —0.5 m/s for the surge speed u and
2 rad/s and —2 rad/s for the angular rate r, respectively.
Figures 9(e) and 9(f) show the calculated forces Fp, F» and
surge speed-angular rate of the vehicle throughout the sim-
ulation. It is important to note that the linearized differ-
ential USV model is not stabilizable. Thus, it is not pos-
sible to determine a terminal region and a terminal cost
matrix for this system. Although the stability is not guar-
anteed for the differential USV model, with the adjusted
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MPC parameters, the controller can drive the system to the
goal location while obeying the imposed constraints. CPU
time of MPC for each iteration for this model is at average
tcpy = 0.28s.

2) PERFORMANCE IN THE PRESENCE OF PROCESS NOISE
For the simulation scenario with noise, we performed Monte-
Carlo experiments (# simulations = 1000) on the same map
with the same nodes and plotted the trajectories followed
by the robot. The process noise (SNR=1) is applied to the
calculated thruster forces u = [F F 2]T which have an input
saturation limit of F =25 N.

From 1000 Monte-Carlo experiments, in 29 of them robot
failed to reach the goal location. Fig. 10 (a) visualizes the
successful attempts to reach the goal point. In Fig. 10(b), red
and dashed blue trajectories indicate the routes followed by
the robot in the presence of process noise and without noise,
respectively. Fig. 10(c) shows the thruster forces and process
noise applied on each thruster. Even in the presence of high-
level noise, in 97.1% of the experiments differential USV
model reaches the goal location.

VI. CONCLUSION

This study presents a feedback motion planning and control
methodology for dynamic fully- and under-actuated USV
models, utilizing sparse random neighborhood graphs and
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constrained nonlinear Model Predictive Control (MPC). The
proposed approach enables safe and robust navigation in
marine environments by providing an autonomous motion
planning strategy that ensures no constraint violation on state
and input variables. The algorithm generates a sparse neigh-
borhood graph consisting of connected rectangular zones in
the planning phase, and inside each node, an MPC-based
online feedback control policy funnels the USV with nonlin-
ear dynamics from one rectangle to the other in the network.
The effectiveness and robustness of the proposed algorithm
is systematically tested in different simulation scenarios,
including an extreme actuator noise scenario, and the results
demonstrate the validity and effectiveness of the proposed
approach. The execution time of the MPC for each iteration
provides a bottleneck for the algorithm. For the fully actuated
model, the average CPU time is 0.021s which is strictly lower
than the sampling time. We believe that with the indicated
CPU time, the proposed algorithm can also be applicable to
real-time. However, there are still several directions for future
research that can be explored to further enhance the proposed
approach.

Firstly, although the proposed algorithm showed promis-
ing results, the under-actuated model’s performance can be
further improved. One potential approach to achieve this is
to investigate the use of different control techniques that
can guarantee the under-actuated model’s stability while still
ensuring obstacle avoidance and robustness.

Secondly, the simulation results showed that the main
drawback of using an MPC-based controller is the high com-
putational cost. Hence, it is important to further decrease the
CPU time of the algorithm to make it more practical and
applicable in real-world scenarios. This can be achieved by
exploring the use of different and more efficient solvers, such
as embedded optimization solvers [25], computational opti-
mization techniques [26], or efficient MPC formulations [27].

Furthermore, as USVs become more widely used in dif-
ferent applications, it is essential to consider more complex
scenarios with multiple USVs and dynamic obstacles. Thus,
future research can focus on developing multi-agent motion
planning and control methods that can handle multiple USVs
navigating in a shared environment and avoiding collisions
with each other and dynamic obstacles.

Another potential avenue for future work is to develop a
corridor-based method to increase the robustness of the algo-
rithm, especially for the cases where narrow tunnels exist.
Several works in literature implement corridor-based meth-
ods for docking applications of USVs [28] and safe trajectory
planning for autonomous dispatch on flight deck [29] which
show promising results and can be further implemented for
safe trajectory planning for USVs.

The proposed algorithm provides a promising approach for
improving the autonomy level of USVs and ensuring safe and
robust navigation across unpredictable marine environments.
However, further research is needed to address the limitations
and enhance the proposed approach’s effectiveness and prac-
ticality in real-world scenarios.
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