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ABSTRACT This paper proposes an intelligent stethoscope system that synchronously displays the elec-
trocardiogram (ECG) and heart sound. The instrument, which accelerates auscultation, can be used for
the diagnosis of valvular heart disease (VHD) for clinical physicians. The whole system with ECG patch
and stethoscope includes four parts, namely, an analog front-end circuit for bio-signal acquisition, a heart
sound-classifying integrated circuit with convolution neural network (CNN), a user-friendly application that
synchronously displays the heart sound and ECG signals, and a cloud server with heart murmur detection
algorithm for human study. In this system, three algorithms are used in processing both ECG and heart
sound signals. The first algorithm is a synchronized algorithm, which can align heart sound and ECG
signals simultaneously. The second algorithm is a heart sound-classifying algorithm that can distinguish
the first (S1) and the second (S2) heart sound in heart sound signals for identifying the systolic and diastolic
phases. The accuracies of the algorithm applied to normal heart sound and heart murmur are 100% and
96.7%, respectively. The third algorithm is heart murmur identification, which can detect systolic murmur
and has a macro f1 score of 92.5%. The three algorithms proposed are beneficial for physicians in the
diagnosis of VHD. After the establishment of the whole system, a CNN-based classification algorithm is
also implemented with a 0.18 um standard CMOS process for the demonstration of the edge computing.
The machine learning techniques are implemented on the chip to accelerate the classification process.

INDEX TERMS Bio-signal acquisition, cardiac auscultation, electrocardiogram, heart sound, machine
learning, application software, edge computing, stethoscope, murmur identification.

I. INTRODUCTION
The official statistics of the World Health Organization show
that cardiovascular diseases (CVD) are the primary causes of
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death in 2019 [1], and they can be attributed to unhealthy
lifestyles. Approximately 15% of elders suffer from valvu-
lar heart disease (VHD) [2], and 10% of congenital heart
disease cases are caused by congenital valvular defects [3].
Severe VHD is life-threatening and affects patients in
their entire lifetimes. VHDs are commonly caused by
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FIGURE 1. Association between the visualized heart sound and the ECG
signal.

degeneration, rheumatic fever, congenital defect, and infec-
tion. These diseases are detected by collecting the bio-signal
of a person for a long-time trace. Among all kinds of bio-
signals, electrocardiography (ECG) is the most significant
signal for monitoring cardiac electric activity. It is commonly
used by doctors in CVD diagnosis. To preliminarily diagnose
VHD, doctors generally perform auscultation.

Figure 1 shows the association between the visualized heart
sound and the ECG signal. The first heart sound (S1), which
appears near the R peak of the ECG signal, is produced
when the atrioventricular valves close after the atriums eject
blood into the ventricles. The second heart sound (S2), which
appears at the end of the T wave, is generated by the closing
of the aortic and pulmonary valves after the ventricles pump
blood into the artery. The interval from S1 to S2 is the
duration of ventricular contraction, called systole. The period
from S2 to S1 is the time interval of ventricular relaxation,
called diastole. The time interval of diastole is usually longer
than that of systole because the blood needs more time to flow
back to the heart.

Mitral regurgitation (MR) and aortic stenosis (AS) are the
two common systolic heart murmurs. MR is produced by the
abnormal closing of the mitral valves. Blood refluxes from
the left ventricle to the left atrium during ventricular contrac-
tion, and the best auscultation area for MR is the mitral area.
AS originates from the abnormal opening of aortic valve.
AS indicates that blood is forced to eject through a tiny path.
The intensity of AS is different from that of MR. Its intensity
initially increases, and then decreases during systole. The best
auscultation area for AS is the aortic area.

Since the valve condition is closely related to heart sounds,
doctors can preliminarily diagnose VHD with a stethoscope.
The stethoscope can collect heart, lung, and vascular flow
sounds from the four areas for auscultation, namely the
aortic, pulmonic, tricuspid, and mitral areas [4]. Although
auscultation can be used for the diagnosis of VHD, doctors
must have outstanding listening ability, rich clinical experi-
ence, the ability to distinguish the locations of S1 and S2
rapidly and accurately, and capability of identifying systole
and diastole murmurs during a cardiac cycle. These issues
are crucial to auscultation, but junior physicians who are not
well-trained cardiologists may have difficulties in learning
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FIGURE 2. Structure of the proposed intelligent stethoscope system.

the skill of auscultation. Moreover, the diagnosis of heart
sound is subjective. Even for the considerable experience
of cardiologists, they are prone to express their views on
heart sound through subjective words. Therefore, modern
electronic stethoscopes [4] have become powerful tools for
auscultation. Electronic stethoscopes can convert the analog
signals of acoustic sounds into digital data for computer
processing. Through years of hard work on heart sound signal
processing [5], [6], [7], [8], [9], auscultation with computer-
aided engineering has attracted research interest. However,
the methods for real-time signal processing are complex, and
signal quality is prone to be affected by environmental noise.
Other causes, such as distinct sound level, age, and body
type, influence the accuracy of auscultation. Therefore, valid
identification through a heart-sound-only algorithm is hard to
achieve.

In this work, the proposed system can visualize the heart
sound signal and synchronize it with the ECG signal, thus
facilitating diagnosis through auscultation. Considering that
the relationship between heart sound and ECG signals can
contribute to distinguish S1 and S2 in heart sound signals
by the ECG-assisted heart sound classification algorithm, the
proposed system can achieve the telemedicine of auscultation
and be used for clinical diagnosis. The main contributions
of this paper can be summarized as follows. The proposed
system includes hardware and software. A digital filter is
developed to simulate the effect of the tube of a traditional
stethoscope, and thus the tube can be removed. A synchro-
nization algorithm is designed to synchronize the ECG and
heart sound signals. An ECG-assisted algorithm and a heart-
sound-only algorithm are proposed to classify S1 and S2.
A wavelet-based algorithm is designed to detect heart mur-
murs. Additionally, clinical trials and reviews are conducted
to evaluate the proposed system.

The rest of this paper is organized as follows.
Section II introduces the hardware implementation of the
proposed intelligent stethoscope, including heart sound and
ECG acquisition circuits. Section III discusses the detailed
algorithms of bio-signal synchronization, heart sound clas-
sification, and heart murmur detection. The implementation
and measurement results of the prototype are introduced in
Section IV. Section V describes the chip design of heart
sound classifying algorithm. The measurement results of
the chip are illustrated in Section VI. The comparison with
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TABLE 1. Main specifications of the prototypes.

Stethoscope ECG Patch
Power 3.7 V Li-lon battery (CP1654 A3)
Operating 33V
voltage
MCU Arm Cortex-M4 built in the nRF52840 module
Sampling 2kHz 500 Hz
rate
Resolution 16 bits 12 bits
Gain 10 kV/I provided by the 300 V/V provided by the

TIA INA

Frequency 20-300 Hz 0.02-150 Hz
band

state-of-the-art works is provided in Section VII. Finally, the
conclusion is presented in Section VIII.

Il. HARDWARE IMPLEMENTATION

Unlike conventional electronic stethoscopes [10], [11], [12]
or ECG monitoring devices [13], [14], [15], [16], the pro-
posed system is equipped with both the ECG and heart sound
sensors, as shown in Figure 2. The system contains five
blocks, namely, an ECG monitoring device (ECG patch),
a heart sound monitoring device (stethoscope), a smart device
application (APP) with a graphical user interface (GUI),
a server for training CNN algorithm, and a chip with a
heart-sound-only classifying algorithm. The ECG patch and
stethoscope, each has a Bluetooth low-energy (BLE) module,
can collect ECG signals from the human chest and heart
sound signals at the required auscultation locations, respec-
tively. To perform ECG-assisted heart sound classification,
the acquired ECG and heart sound data are transmitted to the
smartphone for processing and display. In addition, a heart
sound classifying chip is implemented for the scenario where
the additional cost and setup process of the ECG patch are
not desired by the users. Moreover, if the smartphone is con-
nected to the internet, the CNN parameters for the classifying
chip can be renewed according to the revised coefficients
from a cloud server with training algorithm. In this section,
the design issues of the stethoscope and ECG patch are
introduced.

A. STETHOSCOPE

As shown in Figure 2, the stethoscope consists of a 3M™
Littmann® Master Cardiology™ stethoscope’s head, an
analog front-end (AFE) circuit, an nRF52840 Bluetooth
module with a built-in microcontroller unit (MCU), and a
self-designed firmware. The commercial stethoscope’s head
confirms the quality of heart sound input to the AFE. The
AFE circuit, which contains a POM-2738L microphone,
a trans-impedance amplifier (TIA), a high-pass filter, and a
low-pass filter, is responsible for converting and processing
the heart sound to a voltage signal. The output signal of the
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FIGURE 3. Frequency spectrum of the white noise sound measured with
and without the tube.

AFE is sampled by the analog-to-digital converter (ADC)
embedded in the Bluetooth module with a frequency of 2 kHz
and 16-bit resolution.

The TIA in the AFE circuit is used to convert the current
signal to voltage signal, because the output of the electret
microphone is the current. The low-pass filter and high-pass
filter are implemented with third-order Sallen-Key topology
to remove out-of-band noise. The main specifications of the
proposed stethoscope are summarized in Table 1. Consider-
ing that the latex tube used in a traditional stethoscope is no
longer required for the proposed stethoscope, the frequency
spectrum of the heart sound measured with the proposed
stethoscope differs from that with the traditional stethoscope.
Therefore, the frequency response model of the traditional
stethoscope’s tube is analyzed and implemented by a digital
filter, called a tube filter, to process the heart sound signals
and make the resulting signals fit in with the conventional
characteristics of auscultation with stethoscope’s tube for the
convenient listening of cardiologist. To build the tube filter,
a white noise sound is applied to the diaphragm, and the
microphone of the proposed heart sound measuring circuit
is placed at the earpieces or output terminal of stethoscope’s
head to measure the signals with or without the tube, respec-
tively. By comparing the frequency spectrum of the signals,
as shown in Figure 3, the tube is found to enhance the heart
sound signal at the frequencies of approximately 140 Hz
and 280 Hz in the desired frequency range of 20-300 Hz.
Therefore, a 1000-tap finite impulse response filter is devel-
oped as the tube filter by Wiener-Hopf method to simulate
the effect of the tube. The tube filter is implemented in the
smart device and the cardiologists are not required to adapt
their hearing between traditional and proposed stethoscopes
on the diagnosis.

B. ECG PATCH

Figure 2 also shows the block diagram of the ECG patch,
which consists of an AFE circuit, a Bluetooth module with
MCU, and a self-designed firmware. Conventional Ag/AgCl
electrodes are used to stick the ECG patch on the body and
sense the ECG signal. The AFE circuit contains a high-pass
filter, an instrumentation amplifier (INA), and a low-pass
filter. Considering that ECG signals are measured with a
two-electrode configuration, a simple passive high-pass filter
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FIGURE 4. Flow chart of the synchronization algorithm for heart sound
and ECG data.

is used to reduce the motional artifact. The INA is imple-
mented to provide gain and convert the differential signal to a
single-ended signal. The low-pass filter is implemented with
second-order Sallen-Key topology to filter out undesirable
high-frequency signals. After processing by the AFE, the
ECG signal is sampled with a 500-Hz sampling rate and
processed by the ADC with 12-bit resolution in the Bluetooth
module. The main specifications of the proposed ECG patch
are shown in Table 1.

Ill. SOFTWARE DESIGN

A. ALGORITHM FOR SYNCHRONIZING ECG AND

HEART SOUND SIGNALS

S1 and S2 can be identified accurately, and systolic and
diastolic heart murmurs can be distinguished by developing
an algorithm with inputs of synchronous ECG and heart
sound signals based on the relationship between PQRST
waves and systole/diastole phases. However, considering that
the devices used to measure ECG and heart sound signals
are independent, the bio-signals are unsynchronous because
of wireless transmission and BLE package loss. Accord-
ingly, a synchronization algorithm should be designed. In the
synchronization algorithm, the characteristic, in which the
sampling rate of heart sound signal is four times larger than
that of ECG signal, is used as the index to synchronize
the ECG and heart sound signals. Whenever the software
receives the data package with BLE, the algorithm checks
the quantitative relationship between ECG and heart sound
signals. For unsynchronized relationship, the heart sound data
are regarded as golden data and compared with the ECG data.
If the heart sound data are lost, extra ECG data are omitted.
If ECG data are lost, the quantity of ECG data is increased
with an interpolation method. Figure 4 shows the flow chart of
the synchronization algorithm for heart sound and ECG data,
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FIGURE 6. Heart sound with wavelet analysis: (a) Normal heart sound.
(b) Systolic heart murmur, MR.

where Ng is the number of ECG data, and Ng represents the
number of heart sound data. Considering that the sampling
rate of a heart sound signal is designed to be four times
larger than that of an ECG signal, four times the quantity of
NEg should be equal to Ny for the alignment of both signals.
Tolerance is associated with a delay of 0.1 s between ECG and
heart sound signals and can be redefined in clinical trials.

B. S1 AND S2 ECG-ASSISTED HEART

SOUNDS CLASSIFICATION

The classification algorithm is designed for distinguishing
S1 and S2 in heart sound signals, and it consists of three
steps. First, the R peaks of ECG signals are detected using
the algorithm illustrated in Figure 5. Next, the heart sound
peaks are recognized according to the energy of heart sound
and the comparison with a defined energy threshold, which
can be customized by a software. The energy of heart sound
is calculated based on the formula of Shannon energy [17]
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FIGURE 8. Measurement scenario of the proposed system.

shown in (1) and normalized to a range between 1 and —1.
Shannon Energy = —x? x log x? Q)

Finally, the heart sound peaks are classified as S1 or S2 based
on the occurrence timing of R peak in the synchronized ECG
signal. Taking the occurrence timing of the ECG R peak as
a reference, the valid timing ranges for classifying the heart
sound peaks as S1 or S2 are shown in (2) and (3).

S1:—40 — 120 ms )
2 : 220 — 400 ms 3)

C. HEART MURMUR DETECTION

After S1 and S2 are detected, heart murmur should be further
recognized for diagnosing the VHDs. The detection algo-
rithm is designed to focus on recognizing the systolic mur-
mur, because it commonly occurs on patients. The wavelet
transform in [18] is used to analyze the characteristics of
heart sounds. The result reveals that the frequency of murmur
is higher than the frequencies of S1 and S2. Therefore, the
murmur can be distinguished from normal heart sounds based
on wavelet transform. Figure 6(a) shows that signals barely
appear between S1 and S2 in the level 3 detail of normal heart
sound. By contrast, in Figure 6(b), signals fill up the systolic
phase of the heart sound because of the presence of MR
murmur. In comparison with other levels of the wavelet trans-
form, level 3 detail shows a clearer murmur than level 1 and 2
detail and a lower amplitude of S1 than level 4 detail.
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Therefore, level 3 detail is chosen for identifying heart mur-
murs. After the S1 and S2 peaks are recognized, the timing
range of murmur detection, which is the systolic phase, can
be defined. The proposed algorithm combines the wavelet
transform with the timing range of murmur detection to reach
automatic murmur detection. The average energy of level 3
detail in the timing range of murmur detection is compared
with an energy threshold to detect whether a heart murmur
exists. If the average energy is greater than the threshold,
a heart murmur is found. In contrast, the heart sound is normal
if the average energy is lower than the threshold.

IV. IMPLEMENTATION AND MEASUREMENT

RESULTS OF THE PROTOTYPES

A. STETHOSCOPE AND ECG PATCH

Figure 7(a) shows the printed circuit board (PCB) of the

proposed stethoscope. The PCB contains an AFE circuit

mentioned in Section II, a BLE module, an area for battery,

a switch, and a charging circuit. The PCB, the battery, and the

traditional stethoscope’s head are integrated with a shell as a

prototype, which is shown as the stethoscope in Figure 8. The

diameter of the proposed stethoscope is less than 65 mm.
The AFE and the BLE module for the ECG patch are

implemented on two PCBs, as shown in Fig. 9(b). The PCBs

can be combined with a battery and packaged as the prototype
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TABLE 2. Accuracy of heart sound classification algorithm applied to
normal heart sound.

Item True False Accuracy
S1 187 0 100%
S2 187 0 100%

Total 374 0 100%

TABLE 3. Accuracy of heart sound classification algorithm applied to
heart murmurs.

Item True False Accuracy
S1 459 6 98.7%
S2 440 25 95%
Total 899 31 96.7%
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FIGURE 11. Heart murmur detection: (a) Normal heart sound. (b) Systolic
heart murmur, MR.

ECG patch, which is shown as the ECG patch in Figure 8, for
24-hour ECG acquisition on the chest. The length of the ECG
patch is 85 mm. Figure 8 shows the measurement scenario of
the proposed system, which is similar to that of our previous
work [19], but the wireless stethoscope and the ECG patch
are independent.

As mentioned in Section II, the frequency response of latex
tube is modeled with the digital filter in APP. Figure 9 shows
the measurement results before and after filtering. The first
row in Figure 9 shows that S1 and S2 are not clear in the raw
heart sound signals, which is not filtered by the analog filters
on the PCB. Especially, S2 mixes with low-frequency noise
and becomes more difficult to be automatically distinguished
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TABLE 4. Result of heart murmur detection.

. . Actual
Confusion Matrix Murmur Normal Precision
. Murmur 420 8 98.1%
Predicted o rmal 33 179 84.4%
Recall 92.7% 95.7%
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FIGURE 12. GUI of APP.

with the algorithm. The second row presents the clear S1
signal after analog filters with noise removal, but the signal
is insufficiently sharp and cannot be used in distinguishing
signals when murmur occurs. The third row shows the data
processed by the digital filter, which are clear and suitable
for heart disease identification because of the enhanced S1
and S2 signals.

B. ST AND S2 HEART SOUND CLASSIFICATION AND
HEART MURMUR DETECTION

Figure 10 shows the result of the application of heart sound
classification on the clinical trial data. The segments between
the dotted lines indicate valid ranges of S1, while solid
lines indicate valid ranges of S2. These lines are deter-
mined based on the ECG R peak and the specifications in
(2) and (3). Tables 2 and 3 list the detection accuracy of the
proposed heart sound classification algorithm when applied
to normal heart sound signals and heart murmurs, includ-
ing AS and MR. The data are collected from the clinical
trial of 18 patients without atrial fibrillation irregular beats
in National Cheng Kung University Hospital (NCKUH).
The NCKUH Institutional Review Board approved this
research (IRB No. B-BR-107-008), and all the patients par-
ticipating this clinical trial have provided their informed
consents.

After locating S1 and S2, the algorithm further calcu-
lates level 3 detail data through wavelet analysis and checks
whether murmur energy exceeds the defined threshold.
Figure 11 shows the difference between the wavelet analysis
results of normal heart sound and MR. The confusion matrix
of heart murmur detection is provided in Table 4. The algo-
rithm can achieve a precision of 98.1% and recall of 92.7%
for heart murmur detection.
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FIGURE 13. Normalized normal heart sound signals of a subject
measured on different auscultation sites: (a) mitral area, (b) tricuspid
area, (c) pulmonary area, and (d) aortic area.

C. GRAPHICAL USER INTERFACE (GUI)

The GUI is shown in Figure 12. The top channel presents
the visualized heart sound waveform, and the bottom channel
displays the ECG signal. The GUI makes the S1 and S2 of
the top channel easily distinguished. Several function buttons
are listed at the bottom for the control of reviewers. The top
of the interface has a block, which can be controlled by the
reviewers and shows the auscultation location for assisting
the cardiologists in further off-line analysis.

D. HUMAN STUDY

In this work, the data are collected from 44 patients by using
the proposed intelligent stethoscope system in NCKUH. The
process of the clinical trial includes the following steps. First,
the ECG patch and stethoscope are powered-up, and the ECG
patch is attached to the patient with Ag/AgCl electrodes.
Second, the self-designed APP is connected to the ECG patch
and the stethoscope through Bluetooth. Then the received
ECG and heart sound data are recorded and processed in
APP. Finally, the physician places the stethoscope on the
patient and diagnoses by observing the waveforms shown
on the smart device and listening to the heart sound played
with earphones. Data from 26 patients are used for testing
the Bluetooth firmware and tube filter design. Data from the
18 remaining patients are used for the analysis of heart sound
with the proposed algorithms. These 18 data can be separated
into three groups. The first group contains five data with
AS. The second group contains seven data with MR, and the
third group contains six data with normal heart sound. Aus-
cultation site influences human study intensively and should
be accounted for. Figure 13 shows the heart sound signals
collected using the proposed intelligent stethoscope system
on four different sites. The result reveals that the heart sound
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FIGURE 14. Wavelet analysis of MR on different auscultation site:
(a) Mitral area (b) Tricuspid area.

signals measured on the mitral area has the largest amplitude
ratio of S1 to S2, and the ratio gradually decreases according
to the auscultation sites, as shown in Figures 13(a)—(c). More-
over, considering that the heart sound signals measured on
the aortic area is generally small, the noise becomes obvious
after normalization. In addition to S1 and S2, heart murmurs
are also related to auscultation sites. According to the data of
heart sound, the murmur of MR collected on the mitral area
is louder than that collected on the tricuspid area, as shown
in Figure 14. Moreover, the characteristic of MR, which is a
holo-systolic murmur, can be found in the result of level 3
detail. This condition is beneficial for the identification of
MR. Figure 15 shows that the loudest AS murmur occurred
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FIGURE 15. Wavelet analysis of AS on different auscultation site:
(a) Aortic area (b) Mitral area.

in the aortic area, and the graph for the detected murmur
has a diamond shape, as shown in Figure 15(a). These char-
acteristics can be used in identifying the heart murmur of
AS. As a result, the proposed intelligent stethoscope system
preserves the characteristics of heart murmurs and can be
used in diagnosing systolic heart murmur. In comparison
with the commercial medical machines used in tissue doppler
imaging, the proposed system provides a lighter and cheaper
solution.

V. CHIP DESIGN OF HEART SOUND

CLASSIFYING ALGORITHM

The computation load of a smart device can be reduced
using an edge computing method that transfers a part of the

VOLUME 11, 2023

Kernel Length : 10 Kernel Length : 5

7 Pooling Length : 3
e 1
0 —
[0] 0] “ []
0] 1| 10|
0] |0 1o
0] 12 10
0] 12 10
0] 19 10
3314 o]l 1084 (O] 36 {UO]
o] 0] (0]
0] 0] 0]
0] 10} (0]
o] ||
E : :
: (o] (o]
@ Global AVG.
lConvolutionJ lMan( ponlingJ lConvolution“Leaky ReLU“ Pooling L Dense |
FIGURE 16. Data flow of CNN classification.
Piece® Piece®
165 165 165 165
Pt A
1 T T
05+ [l Il i
ok I A\ q
e
05+ Il 4
& 52
1 L L L ‘
0 01 02 03 04 05 06

FIGURE 17. 331-point data pieces for CNN input.

computing load from the smart device to the hardware. There-
fore, a heart sound classifying chip is implemented. The
chip can classify heart sounds without the assistance of ECG
signals. The block diagram of ideal intelligent stethoscope
system with the chip is illustrated in Figure 2.

In [20] and [21], artificial neural networks are used for
the classification of heart sounds, but their algorithms are
complex for hardware implementation. In this work, a light
artificial intelligent (AI) model, which is a one-dimension
convolutional neural network (CNN) [22], is realized. The
CNN model has good performance and is a good tool for
feature extraction. It facilitates hardware implementation
compared with a recurrent neural network [23] and long
short-term memory model [24]. Other models, such as deep
neural networks [25], [26] and support vector machines usu-
ally involve complex pre-processing steps, which are not
suitable for hardware implementation.

A. CHIP IMPLEMENTATION WITH CNN MODEL

The cost of hardware implementation can be reduced using
a CNN model that is not too complex. Figure 16 shows that
the CNN model used in the classification algorithm consists
of six layers, including two convolutional layers, one max-
pooling layer, one leaky rectified linear unit (ReLU) layer,
one global average (AVG.) pooling layer, and one dense
layer. The first layer is the convolutional layer with a kernel
filter. The kernel length is 10 with a stride of 3. The second
layer is the max-pooling layer with a length of 3, making
the layer retain the biggest point every three points. The
third layer is the second convolutional layer, which includes
25 kernel filters, and the kernel length is 5 with a stride of 2.
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Therefore, the third layer generates the output data with a
size of 16 x 25. In the fourth layer, the coefficient of leaky
ReLU is initially set to 0.001, but it is slightly adjusted to
17210 for hardware implementation. The fifth layer is the
global average pooling layer, where the mean of the data in
each feature map is calculated. As a result, the length of each
feature map is shrunk to 1. Because the data are already one-
dimensional and can be directly processed by the dense layer,
the flattening step is not performed. The detailed formula of
each layer and the principle of operation are discussed in [26].

The input of the CNN model is generated by the algo-
rithm by pre-processing the raw heart sound data with two
steps. First, the algorithm identifies heart sound peaks based
on Shannon energy. Afterward, the algorithm divides the
heart sound data into 331-point data pieces, including the
data of the detected heart sound peak and 165-point data
before and after the heart sound peak point, as shown in
Figure 17. The dataset for the CNN model collected through
clinical trials includes 3868 S1 peaks, 3747 S2 peaks, and
4671 noise peaks. The dataset is split into the training and the
testing set with a ratio of 7:3. Afterward, the CNN model is
trained by using the categorical cross-entropy loss function
and the Nadam optimizer. The batch size and the number of
epochs are set to 128 and 120, respectively. The proposed
CNN model has a low hardware requirement. The model
involves 239 parameters, and the model generates approx-
imately 1,000 data points during operation. Therefore, the
model can be implemented with integrated circuits.

B. CHIP IMPLEMENTATION

Figure 18 shows the structure of the heart sound clas-
sifying chip, which includes a universal asynchronous
receiver/transmitter (UART) module for transmission, a CNN
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TABLE 5. The testing result of the CNN model in the cloud server.

Actual
Confusion Matrix
Noise S1 S2 Precision
Noise 1344 10 9 98.6%
Predicted S1 3 1117 50 95.5%
S2 1 14 1138 98.7%
Recall 99.7% 97.9% 95.1%
TABLE 6. The testing result of the CNN model on the chip.
Actual
Confusion Matrix
Noise S1 S2 Precision
Noise 1357 5 1 99.6%
Predicted S1 65 1080 25 92.3%
S2 72 15 1066 92.5%
Recall 90.8% 98.2% 97.6%

150mm

1.5

FIGURE 20. Chip microphotograph.

module for classification, and a static random access memory
(SRAM) for data storage. The operation of the chip is also
shown in Figure 18. The hardware is idle until an instruction
is input through the UART. Once the instruction is received,
the hardware enters the kernel mode to update CNN parame-
ters or classifying mode for the classification of heart sound
signals. The calculation performed in the hardware is based
on fixed-point binary numbers. The size of input parameters
and data is 16 bits, in which the input parameters are inter-
preted with 4-bit integers and 12-bit decimals, and the data are
interpreted with 16-bit integers. In the SRAM, considering
that the calculation with the fixed-point binary numbers is
less accurate than the use of floating-point binary numbers,
the data width is set to 32-bit for reducing calculation error.

VI. MEASUREMENT RESULTS OF THE CHIP
As shown in Figure 19, a UART module, CP2102, is used
to establish communication between the chip and computer
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TABLE 7. Comparison of stethoscope system with state-of-the-art works.

2019[27] 2020[28] Eko[29] 2021[9] 2022[30] This work
Measured signal Heart sound Heart sound H;irit E(():u(?d Heart sound Heart sound Heart sound and ECG
. Hardware_ None Yes Yes None None Yes
implementation
Filters for heart 20-200 Hz or
sound 0-3k Hz 30-200 Hz 20-2000 Hz None None 20-300 Hz and tube filter
Wireless BLE 4.2 BLE 5.0 BLE 4.2 None None BLE 5.0
protocol
Human trial No No Yes None None Yes
Datasets for . . a PhysioNet" . .
algorithm None None Not available PhysioNet' and MESDB® NCKUH clinical trials
Classification ECG-assisted  Heart-sound-only
Jeatt None None Not available 95.9% 98.3%
precision

96.7% 92.4%

#2016 PhysioNet/CinC Challenge [31]
®Michigan heart sound and murmur database [32]

for the renewal of the CNN parameters on the chip and
monitoring the classification result of heart sound signals
with the MATLAB. Tables 5 and 6 show the measurement
results in the cloud server and on the chip. The F1 scores of
the results are 96.7%—-99.1% for Table 5 and 95%—95.2% for
Table 6. The slight difference can be attributed to the error of
fix-point calculation performed with the hardware.

The Al chip is fabricated in a 0.18-um standard CMOS
process with a maximum operation frequency of 1.152 MHz
corresponding to the UART baud rate of 115,200. The
power consumption of the chip is 93 uW. Figure 20 shows
the microphotograph of the AI chip with dimensions of
1.51 mm x 1.50 mm. The SRAM occupies approximately
one-third of the chip area, and the remaining area is occu-
pied by digital circuits. Although more than 1,200 variables
are required for the proposed CNN model, the space of
some variables are reusable. Hence, a SRAM with size of
1,024 x 32 bits is sufficient.

VIl. COMPARISON WITH STATE-OF-THE-ART WORKS

Table 7 shows the comparison between the proposed stetho-
scope system and the state-of-the-art works [27], [28], which
can only acquire heart sound signals and cannot distinguish
the locations of S1 and S2 from the heart sound signals. The
proposed system can visualize both heart sound and ECG sig-
nals, thereby allowing convenient diagnosis. Although Eko’s
product [29] displays the heart sound and the ECG signals,
its measured ECG signals are unstable because Eko’s product
integrates the measurement devices of heart sound and ECG
into a single shell. Therefore, the characteristics of ECG sig-
nals change according to the auscultation site. Moreover, the
adopted BLE 5.0 protocol has a higher energy efficiency than
BLE 4.2 and other older versions of Bluetooth protocol. Addi-
tionally, only the proposed intelligent stethoscope system
builds the frequency response model of the latex tube. Conse-
quently, the properties of measured heart sounds are similar
to those measured with the traditional stethoscope, and the
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characteristics of the heart murmurs are clear for assisting the
diagnosis of cardiologists. In comparison with [9] and [30],
which focus on the algorithms, the proposed ECG-assisted
algorithm shows a comparable performance. Additionally,
the light CNN algorithm on the chip shows the potential to
assist physicians in real-time classifying the heart sounds
without the ECG patch. Compared with these state-of-the-art
works, the proposed system is more complete.

VIIl. CONCLUSION

The present work has four main contributions. First, the pro-
posed stethoscope system simultaneously measures the ECG
and heart sound signals with independent devices, thus facil-
itating the auscultation and shortening the time of learning
auscultation. Moreover, the combination of measured signals
provides an accurate method for the detection of S1 and S2,
which are important for both localizations of systolic and
diastolic phases and heart murmur detection. Second, the
usage of tube filter simulates the effect of latex tube in a tradi-
tional stethoscope and can recover the traditional waveforms
from the signals measured with the digital stethoscope. Third,
according to the analysis of the data collected in clinical trials,
including the characteristics of heart sound signals measured
on different auscultation sites and the results of wavelet anal-
ysis, the proposed system can provide enough evidence for
the diagnosis of MR and AS. Fourth, the integrated circuits
design of the classification algorithm reduces the computa-
tion effort of the smart device and shows the potential of
VHD detection locally. In terms of the performance of pro-
posed algorithm, the accuracy of ECG-assisted heart sound
classification applied to normal heart sound signals reaches
100%, and the classification accuracy for the heart sound
signals with heart murmur reaches 96.7%. The confusion
matrix of heart murmur detection reveals a macro F1 score
of 92.5%. The CNN-based heart sound classification imple-
mented in the cloud server and on chip shows F1 scores of
96.7%-99.1% and 95%-95.2%, respectively. In comparison
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with the state-of-the-art research and products, the proposed
stethoscope system provides a more complete solution for
the digital stethoscope. Moreover, in the proposed system,
the independent measurement devices for the ECG and the
heart sound provide flexibility for usage. Future works should
improve the heart murmur detection algorithm to detect more
kinds of heart murmur, and it should be integrated on chip to
fit the concept of edge computing.
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