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ABSTRACT Arrhythmias are conditions characterized by a faster, slower, or irregular heart rhythm. Some
of them may be harmless and brief, but others can lead to sudden cardiac arrest. Thus, procedures that
safely restore a normal heartbeat are a matter of interest. Laboratory experiments have evidenced that
some arrhythmia exhibit nonlinear deterministic behavior, which justifies the need to build mathematical
models for heartbeat description. The study of these models may contribute to a better understanding of
arrhythmias mechanism and new heartbeat control treatments. This paper addresses a model-based tracking
control method for heart rhythm regulation in a cardiac model. Since there is no consensus on the equations
describing the heart dynamics, we leverage a nonlinear oscillator that is able to reproduce a variety of
electrocardiogram-like waveforms when adjusting a parameter. First of all, the nonlinear system under study
is represented as a Takagi-Sugeno fuzzy model. Due to its multiple local linear systems structure, tracking
control design conditions for both nominal and uncertain slave systems are formulated as linear matrix
inequalities. The simulation examples show that the proposed feedback control framework can restore the
heart rhythm dynamics from a non-desirable situation to the normal behavior given by the reference system,
which reveals a proof of concept to use tracking control techniques to suppress pathological behaviors.

INDEX TERMS Chaotic dynamics, robust tracking control, synthetic ECG signals, Takagi-Sugeno fuzzy
system.

I. INTRODUCTION
According to World Health Organization reports [1], cardio-
vascular diseases are the leading cause of death globally,
taking an estimated 17.9 million lives each year. The term
arrhythmia refers to a group of abnormalities in the heart rate
or heartbeat pattern due to electrophysiological changes or
congenital conditions [2]. Some of the most common arrhyth-
mias are bradycardia, premature beats, atrial fibrillation,
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and ventricular tachyarrhythmias, to name but a few [3].
These last disorders may cause a sudden cardiac arrest,
which can lead to death without prompt life support [4].
Treatments for arrhythmias are divided into drug and non-
drug therapies, and depending on the type and severity of the
irregular heartbeat, non-drug treatments can include radio-
frequency ablation, electrical cardioversion, and implantable
electronic devices (IEDs) [5]. IEDs, such as pacemakers and
cardioverter-defibrillators, are essential to allow patients to
live a normal lifestyle with their arrhythmias. A pacemaker
emulates the function of the sinoatrial (SA) node, which is
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the natural pacemaker of the heart, by generating a periodic
stimulus that helps the heart beat at a normal pace and rhythm.
In contrast, cardioverter-defibrillators deliver a high-energy
short-duration electric shock to restore the normal rhythm
when an anomaly is detected [6]. Despite their success at
saving lives, IEDs also present limitations associated with
the lack of feedback, inappropriate shocks caused by an
error in the diagnosis, and myocardial necrosis as a result
of defibrillation [7]. In this regard, a major challenge is to
optimize the way these cardiac devices operate [8]. From
a dynamical system perspective, experimental studies have
suggested that some arrhythmia may emerge from nonlinear
deterministic dynamics (see [9], [10] and reference therein).
This fact has served as the motivation to build mathematical
models that describe the heartbeat dynamics at a macroscopic
level [11], [12], [13], [14], [15], [16], [17], [18], which have
paved the way to implement control methods to suppress
pathological rhythms associated with chaotic behavior and
nonlinear deterministic dynamics [19], [20].

There is a vast body of literature on control methods to
deal with the regulation of cardiac rhythms. The pioneering
work by Garfinkel et al. effectively stabilized a cardiac
arrhythmia induced by a drug in rabbit ventricles through
electrical stimulation at irregular times [21]. Later, the
authors of [22] investigated a simple control to resynchronize
the depolarization of the sinoatrial and atrioventricular node
oscillators represented by a switching mathematical model
in order to induce the faster oscillator to run slower and
the slow oscillator to run faster. The approach in [23]
applied an extended time-delayed feedback control method
to stabilize unstable periodic orbits in a mathematical model
described by a set of three-coupled modified Van der Pol
oscillators. Along similar lines, Lounis et al. [24] addressed
the problem of chaos control in cardiac rhythm dynamics by
applying a high-order control method to a cardiac conduction
model. Under this strategy, ventricular fibrillation related
to chaotic behavior is converted to periodic oscillations by
stabilizing unstable periodic orbits. Christini and Collins have
applied chaos control to suppress a pathological nonchaotic
condition (period-2 rhythm) in a cardiac model. To do so,
they stabilized the model on an unstable period-1 fixed
point. Additionally, they can prevent the period-doubling
bifurcation into alternans by tracking the 1-period rhythm
in its unstable regime [25]. Boroujeni et al. [26] presented a
nonlinear spatio-temporal delayed feedback control strategy
to stabilize alternans of cardiac tissue modeled by a nonlinear
partial difference equation. Recent works have considered
multivariable control (MIMO) schemes, for instance, the
proposal in [27] synchronized two identical non-autonomous
nonlinear oscillators, represented in both integer-order and
fractional-order forms, via an adaptive control law, while the
research in [28] utilizes an observer-based smooth sliding
mode controller to regulate the heart rate with bradycardia.
A novel neural network-based backstepping approach to
achieve pacing-rate control, with the potential for dual-sensor
pacemaker applications, was given in [29]. Reference [30]

covered the regulation of heartbeat fluctuations with a
fuzzy fractional-order proportional-integral-derivative con-
troller for a pacemaker. A similar work has been proposed
in [31], whose main approach is to design a fractional-
order PID controller through a particle swarm optimization
algorithm for a cardiac pacemaker model in order to regulate
the heart rate of a pathological condition. Lastly, other efforts
consider the combination of fuzzy logic and conventional
PID control to design fuzzy proportional-integral-derivative
(FPID) controllers which allow determining the pacing
rate of cardiac pacemakers in order to achieve matches
between real and desired heart rates [32]. All of these
works have notably contributed to the application of control
techniques to the regulation of heart rhythm and rate.
Nevertheless, these problems remain a challenge from both
the medical and engineering perspectives. This work focuses
on the design of a multivariable feedback controller for the
tracking problem of a nonlinear oscillator in a master-slave
framework. Both master and slave systems will make use
of a Takagi-Sugeno fuzzy representation of the dynamical
model introduced in [33], which is capable to generate a
range of electrocardiogram (ECG) waveforms when varying
an intrinsic parameter of the system. Since the core of the
Takagi-Sugeno fuzzy is a multiple linear systems structure,
design conditions will be expressed in terms of linear
matrix inequalities (LMI), which can be efficiently solved
by semidefinite programming tools. The first approach in
this article will tackle the tracking problem of two ECG
oscillators, where a parallel distributed compensation (also
known as PDC) law is used to cancel the mismatching term
between the pair of models and stabilize the error dynamics.
On the other hand, the novelty of the second approach is to
consider a parametric uncertainty in the intrinsic parameter
that allows generating a variety of ECG signals, and the
tracking control objective is achieved by a robust control
strategy alongside the feedback stabilization of the reference
model. The two approaches assume that the master and slave
systems are equipped with different membership functions
and the discrepancy brought by them will be mitigated in a
L2-norm fashion.

The main contributions of this work are listed as follows.
• Representation of an ECG nonlinear oscillator as a
Takagi-Sugeno fuzzy model. To the best of our knowl-
edge, the analysis of nonlinear oscillators representing
cardiac dynamics has not been performed using the
model-based fuzzy control.

• Implementation of a chaos control method to avoid
pathological heart rhythm. Undesirable behaviors are
suppressed by introducing a multivariable feedback
controller for the tracking problem of a nonlinear
oscillator in a master-slave framework. The fact that a
variation on a parameter of the model is responsible
for having normal or abnormal dynamical behaviors
motivates the use of a robust tracking scheme.

• Formulation of novel control design conditions for the
robust tracking control of an uncertain slave system.
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The multiple linear subsystems structure of the Takagi-
Sugeno fuzzy model lets us formulate the conditions as
LMI expressions, which can be efficiently solved by a
variety of toolboxes.

• Presentation of a conceptual proof that could assist in
the improvement of cardiac devices by showing that it is
possible to avoid the onset of pathological heart rhythms
through the implementation of chaos control methods.

After this introduction, the paper will be structured in the
following manner. Section II will discuss the mathematical
background for this research. Then, the construction of the
Takagi-Sugeno fuzzy model of the ECG nonlinear oscillator
will be given in Section III. LMI conditions for the tracking
problem and the robust scheme control of the uncertain ECG
systemwill be derived in Section IV andV, respectively. Both
sections will give simulation results to validate the proposed
framework.

II. BACKGROUND
In the present section, we will briefly summarize the
necessary background for this work. As for our setting, bold
letters will be read as matrices and vectors, and scalars
otherwise. Moreover, the standard notation will be used for
operations. Although the state variables x(t), control input
vector u(t), output y(t), and disturbance w(t) depend on time,
we will omit their time dependence for the sake of ease.

A. TAKAGI-SUGENO FUZZY REPRESENTATION
Consider a nonlinear system with an external bounded
disturbance w of the form{

ẋ = f (x) + g(x)u+m(x)w,

y = k(x), (1)

where x = [x1, x2, · · · , xn]T is the state vector, u ∈ Rn×1

is the control input vector, y is the output, f (x) ∈ Rn×1,
g(x) ∈ Rn×n and m(x) ∈ Rn×1 are vector-valued functions
and k(x) is a scalar function. The application of the sector
nonlinearity approach [34] leads to the following Takagi-
Sugeno fuzzy model{

ẋ =
∑zr

i=1 hi(x){Aix+ Biu+ Eiw},

y =
∑zr

i=1 hi(x)C ix.

Clearly, the previous equation is a blending of zr linear
systems weighted by the membership functions hi(x) which
are non-negative and satisfy the property

∑zr
i=1 hi(x) = 1.

Therefore, Ai ∈ Rn×n are the state matrices, Bi ∈ Rn×1

are the input matrices, Ei ∈ Rn×1 are the disturbance input
matrices and C i ∈ R1×n are the output matrices. For more
details on the theoretical foundations of Takagi-Sugeno fuzzy
models, we refer readers to [35].

B. DISTURBANCE ATTENUATION
A method to measure the effect of an external disturbance
on the dynamics of the system (1) is by using the L2-norm

defined as ∫ tf

0
k(x)T k(x)dt ≤ γ 2

∫ tf

0
wTwdt.

Here, γ > 0 is the attenuation factor and tf denotes the
final time. The system meets the L2-norm if the following
inequality holds true.

−V̇ (x) − k(x)T k(x) + γ 2wTw ≥ 0,

where V (x) : Rn
→ R becomes a Lyapunov function for the

system.

C. SCHUR COMPLEMENT
Let L, M and N > 0 be matrices of appropriate sizes. The
inequality L−MTNM > 0 is equivalent to[

L MT

M N−1

]
> 0,

and vice versa [36].

D. YOUNG’s INEQUALITY
Let M and N be matrices of appropriate sizes. From
the inequality (M1 − N1)T (M1 − N1) + (M2 − N2)T

(M2 − N2) ≥ 0, it can be concluded that

MT
1M1+NT

1N1 +MT
2M2 + NT

2N2

≥ MT
1N1 + NT

1M1 +MT
2N2 + NT

2M2,

which is a reformulation of Young’s inequality [37].

III. TAKAGI-SUGENO FUZZY REPRESENTATION OF THE
ECG NONLINEAR OSCILLATOR
This section deals with the construction of a Takagi-Sugeno
fuzzy model representation of the ECG nonlinear oscillator
proposed in [33], whose output resembles electrocardiogram
waveforms corresponding to both normal heartbeat and a
variety of arrhythmias. Firstly, consider the following fourth-
order unforced nonlinear system

ẋ1 = τ
(
x1 − x2 − ζx1x2 − x1x22

)
,

ẋ2 = τ
(
ηx1 − 3x2 + ζx1x2 + x1x22 + β(x4 − x2)

)
,

ẋ3 = τ
(
x3 − x4 − ζx3x4 − x3x24

)
,

ẋ4 = τ
(
ηx3 − 3x4 + ζx3x4 + x3x24 + 2β(x2 − x4)

)
. (2)

Here, the former pair of equations can be thought of as
a model of the sinoatrial (SA) node, which is the heart’s
natural pacemaker. In contrast, the latter pair of equations
are related to the dynamics of the atrioventricular (AV) node.
Throughout this paper, we will use the scale factor τ = 7
which corresponds to a normal heartbeat of approximately
80 beats per second [33]. By setting ζ = 1.35 and β = 4,
the variation of the parameter η leads to the generation of a
variety of ECG-like signals, which are the linear combination
of the states given by yECG = Cx, where x = [x1 x2 x3 x4]T

is the state vector and C ∈ R1×4 is the output matrix. Table 1
summarizes parameters η, matrices C and the corresponding
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ECG signal generated by the nonlinear oscillator (2). For
more details about this model and its parameters, we refer
readers to [33]. In order to construct a Takagi-Sugeno fuzzy
model, state-space representation (2) is rewritten as follows

ẋ = τ


1 − z1(x2) −1 0 0
η + z1(x2) −7 0 4

0 0 1 − z2(x4) −1
0 8 η + z2(x4) −11

 x, (3)

with z1(x2) ≡ 1.35x2 + x22 and z2(x4) ≡ 1.35x4 + x24 being
the premise variables. The next step is to use the sector
nonlinearity approach [34] to construct a fuzzy model that
exactly represents the ECG nonlinear oscillator within a local
sector. In order to express the premise variables as a fuzzy
blending, we define them as

z1(x2) = z1µ11(x2) + z1µ12(x2),

z2(x4) = z2µ21(x4) + z2µ22(x4).

Here, µij(·) ≥ are membership functions satisfying

µ11(x2) + µ12(x2) = 1, µ21(x4) + µ22(x4) = 1,

and, within the local sectors x2 ∈ [−10, 10] and
x4 ∈ [−10, 10], the maximum and minimum values of the
premise variables are given by

z1 = max
x2∈[−10,10]

z1(x2) = 113.5,

z1 = min
x2∈[−10,10]

z1(x2) = −0.455625,

z2 = max
x4∈[−10,10]

z2(x4) = 113.5,

z2 = min
x4∈[−10,10]

z2(x4) = −0.455625.

Therefore,

µ11(x2) =
z1(x2) − z1
z1 − z1

, µ12(x2) = 1 − µ11(x2),

µ21(x4) =
z2(x4) − z2
z2 − z2

, µ22(x4) = 1 − µ21(x4).

Finally, nonlinear system (2) can be represented by the four-
rule Takagi-Sugeno fuzzy model

ẋ = τ

4∑
i=1

hi(x)Aix, (4)

with the following state matrices Ai

A1 =


1 − z1 −1 0 0
η + z1 −7 0 4

0 0 1 − z2 −1
0 8 η + z2 −11

 ,

A2 =


1 − z1 −1 0 0
η + z1 −7 0 4

0 0 1 − z2 −1
0 8 η + z2 −11

 ,

FIGURE 1. ECG signal for a normal heartbeat generated by the
Takagi-Sugeno fuzzy model (4) using the parameters summarized in
Table 1.

TABLE 1. Some synthetic ECG signals and their corresponding tuning
parameter η and matrix C.

A3 =


1 − z1 −1 0 0
η + z1 −7 0 4

0 0 1 − z2 −1
0 8 η + z2 −11

 ,

A4 =


1 − z1 −1 0 0
η + z1 −7 0 4

0 0 1 − z2 −1
0 8 η + z2 −11

 ,

and the membership functions for the defuzzification process
become

h1(x) = µ11(x2)µ21(x4), h2(x) = µ11(x2)µ22(x4),

h3(x) = µ12(x2)µ21(x4), h4(x) = µ12(x2)µ22(x4), (5)

which also satisfy the property
∑4

i=1 hi(x) = 1. Figure 1
depicts a waveform generated by the Takagi-Sugeno fuzzy
model (4) that corresponds to a normal heartbeat pattern.
On the other hand, Figure 2 illustrates waveforms made by
the Takagi-Sugeno fuzzy model (4) for four typical irregular
heartbeats.

IV. MODEL-BASED TRACKING CONTROL
This section presents LMI conditions for the model-
based tracking problem of two ECG nonlinear oscillators
represented as Takagi-Sugeno fuzzy models. To this end,
we assume that all the states are measurables. Consider the
following forced system

ẋ = τ

4∑
i=1

hi(x)(Ai + Aη)x+ τBu. (6)
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FIGURE 2. ECG signals generated by the Takagi-Sugeno fuzzy model (4)
using the parameters summarized in Table 1. Clockwise from top left:
sinus tachycardia, atrial flutter, ventricular flutter, and ventricular
tachycardia.

In the same way as [27], this proposal uses a multiple input
control with matrix B = I and u = [u1 u2 u3 u4]T . Moreover,
Aη ∈ R4×4 is a mismatching matrix expressed as follows

Aη =


0 0 0 0
δη 0 0 0
0 0 0 0
0 0 δη 0

 .

On the other hand, the reference model is given below.

ẋr = τ

4∑
i=1

hi(xr )Aixr , (7)

with xr ∈ R4×1 being the reference state vector. Note
that matrices Ai in both the reference (7) and forced (6)
systems share the same parameter η, and the inclusion of the
mismatching matrix Aη in (6) makes the tuning parameter
be η + δη. Furthermore, membership functions hi(xr ) take
the same form as in (5), with the difference that they depend
on the state vector xr . The purpose of the tracking control
problem is to design a PDC control law of the form

u = v−

4∑
i=1

hi(xr )Fier . (8)

Here, Fi ∈ R4×4 and er = x − xr . The former term
on the right-hand side in the previous equation can be seen
as a nominal controller that compensates for the mismatch
between the slave system (system to be controlled) (6) and
themaster (referencemodel) (7), while the latter matrices will
asymptotically stabilize the origin of the following tracking
error system

ėr = τ

4∑
i=1

hi(x)(Ai + Aη)x+ τBu− τ

4∑
i=1

hi(xr )Aixr

= τ

4∑
i=1

hi(x)Aix+ τAηx+ τBu− τ

4∑
i=1

hi(xr )Aixr

+ τ

4∑
i=1

hi(xr )Aix− τ

4∑
i=1

hi(xr )Aix

= τ

4∑
i=1

hi(xr )Ai(x− xr ) + τAηx+ τBu

+ τ

4∑
i=1

(
hi(x) − hi(xr )

)
Aix

= τ

4∑
i=1

hi(xr )(Aier + Aηx) + τBu+ wr , (9)

where

wr = τ

4∑
i=1

(
hi(x) − hi(xr )

)
Aix.

Note that the mismatching term wr can be regarded as a
disturbance [38] that vanishes as

(
hi(x) − hi(xr )

)
→ 0 at

t → ∞ when using the feedback control law (8). Therefore,
the goal is to design a controller that not only stabilizes the
zero equilibrium of the error dynamics (9) but also mitigates
the effect of the disturbance wr in an L2-norm fashion, that
is to say, ∫ tf

0
eTr erdt ≤ γ 2

∫ tf

0
wTr wrdt. (10)

Theorem 1: The origin of the tracking error system (9)
is asymptotically stable if, for a given γ > 0, there exist
a vector v ∈ R4×1, a 4 × 4 symmetric matrix X > 0 and
matricesM1, M2, M3, M4 ∈ R4×4 such that the following
conditions−τ (AiX − BM i + XATi −MT

i B
T ) −I X

−I γ 2I 0
X 0 I

 > 0, (11)

hold true for all i ∈ {1, 2, 3, 4}. Moreover, the PDC controller
(8) withFi = M iX−1 renders theL2 gain of the tracking error
system less or equal than γ at wr ̸= 0.

Proof: The substitution of u given by (8) in (9) leads to
the expression

ėr = τ

4∑
i=1

hi(xr )
{(
Ai − BFi

)
er + Aηx+ Bv

}
+ wr . (12)

Consider a quadratic Lyapunov function V (er ) = eTr Per ,
whose time derivative along the trajectories must satisfy the
inequality below to meet the performance (10).

− τ

4∑
i=1

hi(xr )
{
eTr P

[(
Ai − BFi

)
er + Aηx+ Bv

]
+

[
eTr

(
Ai − BFi

)T
+ xTATη + vTBT

]
Per

}
− eTr Pwr − wTr Per − eTr er + γ 2wTr wr ≥ 0. (13)

Since B is invertible, the mismatching term Aη can be
cancelled by

v = −B−1Aηx. (14)
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FIGURE 3. Time evolution of the control result with the PDC law (8)
acting at t > 10. From top to bottom: ECG signal (sinus tachycardia) of the
slave system, reference signal, and error (difference of the actual ECG and
reference signals).

Hence, obtaining the inequality below.

− τ

4∑
i=1

hi(xr )
{
eTr P

(
Ai − BFi

)
er

+ eTr
(
ATi − FTi B

T )
Per

}
− eTr Pwr − wTr Per

− eTr er + γ 2wTr wr ≥ 0, (15)

which can be written in a matrix form as follows[
eTr wTr

] [
−τ

∑4
i=1 hi(xr )�i − I −P

−P γ 2I

] [
er
wr

]
≥ 0, (16)

with �i = P(Ai −BFi)+ (Ai −BFi)TP. Previous inequality
reduces to the problem of checking the positivity of the inner
matrix ∀i ∈ {1, 2, 3, 4}. Matrix multiplication below converts
bilinear terms into linear ones.[

P−1 0
0 I

] [
−�i − I −P

−P γ 2I

] [
P−1 0
0 I

]
, (17)

which is equal to[
−τ (AiX − BM i + XATi −M iBT ) − X2

−I
−I γ 2I

]
, (18)

when definingX = P−1 andM i = FiP−1. The application of
the Schur complement to convert X2 into linear terms brings
the final expression given by (11), completing the proof.
Corollary 1: When the mismatching term Aη = 0, the

tracking problem (9) reduces to the synchronization problem
of two identical oscillators. Thus, PDC control law (8)
becomes

u = −

4∑
i=1

hi(xr )Fier . (19)

A. EXAMPLE
In this subsection, an illustrative example will verify our
proposed model-based tracking control conditions for the
ECG nonlinear oscillator. In order to calculate the feedback
gains matrices, the tuning parameter is set to η = 3, which

corresponds to the normal heartbeat, in both the slave (6) and
master (7) systems. As for the mismatching matrix Aη in (6),
δη = −0.152 is set. It is important to note that by using this
setting, the tuning parameter in the state matrices Ai + Aη of
the slave system (6) becomes η = 2.848, which corresponds
to the parameter that generates a sinus tachycardia signal.
Therefore, we used the vector C for the sinus tachycardia
in the slave system, and the vector C for the normal rhythm
in the reference model (see Table 1). LMI conditions in
Theorem 1 were feasible with the following matrix X

X =


1.2558 0.0670 −0.0188 −0.0561
0.0670 3.2172 −0.0590 0.4017

−0.0188 −0.0590 1.2765 0.1010
−0.0561 0.4017 0.1010 3.1010

 ,

and feedback gains matrices Fi

F1 =


−73.9849 22.9868 1.9229 −3.6366
53.2478 11.1942 2.8962 2.5186
1.8514 −3.7518 −75.3314 24.3878
2.8571 2.7428 51.4754 9.0461

 ,

F2 =


−73.9775 22.9238 1.0604 −3.2589
53.2709 10.9961 0.1977 3.7000
1.3525 0.5897 40.6248 −1.5296
2.8123 3.0671 −0.7483 7.0324

 ,

F3 =


41.1970 −0.9669 1.3488 0.5518
−0.5326 9.9364 2.8603 2.7243
0.9863 −3.3969 −75.3227 24.3260
0.2856 3.7971 51.5011 8.8613

 ,

F4 =


41.2044 −1.0300 0.4863 0.9296
−0.5096 9.7385 0.1620 3.9054
0.4875 0.9446 40.6334 −1.5915
0.2410 4.1210 −0.7227 6.8477

 . (20)

Figure 3 shows the simulation result of the tracking control
applied to the ECG nonlinear oscillator. The simulation
starts with an open-loop configuration, therefore, the slave
system is generating an ECG signal that resembles a sinus
tachycardia waveform. Starting at t = 10 s., the PDC control
law (8) with (14) and the feedback matrices (20) acts to
achieve tracking of the normal heartbeat signal. In order to
evaluate the difference of the ECG output signals, we have
switched the vector C of the slave system to the one for the
normal heartbeat for t > 10 s. Figure 4 depicts the states of
both the slave and the reference systems, the tracking error,
and the control input signals u = [u1 u2 u3 u4]T .

V. ROBUST TRACKING OF THE ECG NONLINEAR
OSCILLATOR
A pillar of Theorem 1 is the cancellation of the mismatching
matrix Aη by the feedback controller. Note that a variation
on the parameter δη might compromise the stability of the
closed-loop system. For this reason, the present section deals
with the tracking control of a Takagi-Sugeno fuzzy ECG
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FIGURE 4. Time evolution of the control result with the PDC law (8) acting at t > 10. Left column: states of the slave system
(solid blue line) and master system (dashed-dotted red line). Center column: tracking error er = x− xr . Right Column: control
inputs.

FIGURE 5. Block diagram of the overall robust tracking control scheme in Theorem 2.

oscillator with uncertainties given as

ẋs = τ

4∑
i=1

hi(xs)(Ai + 1A)xs + τBsus. (21)

Here 1A = 1ηX T
1 Y1 + 1ηX T

2 Y2 is the matrix of
uncertainties and X 1 = [0 1 0 0], Y1 = [1 0 0 0], X 2 =

[0 0 0 1], Y2 = [0 0 1 0]. Note that this configuration
includes uncertainty in the tuning parameter expressed as η+

1η. Furthermore, the uncertainty satisfies the norm-bounded

constraint |1η| < φ, where φ is the upper bound. Similar
to other approaches to designing a model-based reference
tracking control (see [38], [39], [40], [41], [42] and references
therein), a stable reference model is required. However,
matrices A2, A3 and A4 in the Takagi-Sugeno fuzzy model
(4) at η = 3 possess at least one positive eigenvalue, and
therefore, the system is unstable. Whereas the approaches
in [38], [39], and [42] use an arbitrary chosen stable reference
systemPx =

∑zr
i=1 Aix + r to track the reference input r,

note that in our scheme shown in Fig. 5, system (7) generates

VOLUME 11, 2023 47229



J. Moreno-Sáenz et al.: Takagi-Sugeno Fuzzy-Model-Based Tracking Framework to Regulate Heart Rhythm Dynamics

a reference signal and using Theorem 1, both (6) and (7)
systems are synchronized resulting in the feedback stabilized
Takagi-Sugeno fuzzy system below.

ẋ = τ

4∑
i=1

hi(x)Dix+ r, (22)

where Di = Ai − BFi and r = τ
∑4

i=1 hi(x)BFixr . For the
sake of simplicity, feedback gain vectors Fi are calculated for
a PDC law (19) that stabilizes the equilibrium of the error
dynamics (9) of two identical oscillators with η = 3 (that is
to say, Aη = 0) and sharing the same membership functions.
Next, the control law to achieve robust tracking is given as
follows

us = −

4∑
i=1

hi(x){Fsi e+ K s
ix}. (23)

With this in mind, the error equation e = xs − x leads to the
following dynamics

ė = τ

4∑
i=1

hi(x)
{(
Ai + 1A

)
xs − Dix− BsFsi e

− BsK s
ix

}
+ w− r,

= τ

4∑
i=1

hi(x)
{(
Ai + 1A− BsFsi

)
e+

(
Ai + 1A

− Di − BsK s
i
)
x
}

+ w− r. (24)

In the same way as in Section IV, the disparity term
w = τ

∑4
i=1

(
hi(xs)−hi(x)

)
Aixs will be seen as a disturbance.

Expressing (24) as an augmented system gives

ės = τ

4∑
i=1

hi(x)(3i + 13)es + Ews. (25)

Here,

3i =

[
Ai − BsFsi Ai − Di − BsK s

i
0 Di

]
,

13 =

[
1A 1A
0 0

]
,

es =

[
e
x

]
, E =

[
I −I
0 I

]
, ws =

[
w
r

]
.

Given this setting, the theorem below will provide conditions
to guarantee that the tracking error dynamics (25) will be
stable even in the presence of variations on the tuning
parameter η as long as they are within the norm-bounded
constraint.
Theorem 2: The zero equilibrium of the tracking error

system (25) is asymptotically stable if, for a given
γ > 0 and |1η| < φ, there exist a symmet-
ric matrix 9 = diag(91, 92) > 0, matrices
M s

1, M s
2, M s

3, M s
4, Ns

1, Ns
2, Ns

3, Ns
4 ∈ R4×4, a matrix

G ∈ R8×8 and α < 0 such that LMI conditions (26) and (27)
are feasible for all i ∈ {1, 2, 3, 4}.−τH

{
39
i

}
− τG −E 9

∗ γ 2I 0
∗ ∗ I

 > 0, (26)

G− φ2X 91YT
1

92YT
1

91YT
2

92YT
2

∗ ∗ I 0
∗ ∗ ∗ I

 ≥ 0. (27)

Then the synchronization vectors become Fsi = M s
i9

−1
1 and

K s
i = Ns

i9
−1
2 .

Proof: In this proof, we leverage a quadratic
Lyapunov function of the form V (es) = eTs 9−1es where
9−1

= diag(9−1
1 , 9−1

2 ) and 9−1
1 , 9−1

2 ∈ R4×4 are
symmetric matrices. Here, we aim at designing a controller
that not only stabilizes the equilibrium but also mitigates the
discrepancy of the two models expressed as the disturbance
ws in an L2-norm fashion. Therefore, the time derivative
along the trajectories of the Lyapunov function candidate
must satisfy the inequality below.

τ

4∑
i=1

hi(x)eTs
{
9−1(3i + 13) + (3i + 13)T9−1}es

+ eTs 9−1Ews + wTs E
T9−1es + eTs es − γ 2wTs ws ≤ 0.

(28)

Previous inequality can be rewritten in the following matrix
form

4∑
i=1

hi(x)
[
es
ws

]T
×

[
τH

{
9−1(3i + 13)

}
+ I 9−1E

∗ −γ 2I

] [
es
ws

]
≤ 0. (29)

From now on, the notation H {χ} = χ + χT is adopted, and
the asterisk signifies the transpose operation on the respective
symmetric entry. Since condition (29) involves a single fuzzy
summation, it is required to test for positive definiteness of
the inner matrices for all i =∈ {1, 2, 3, 4} to guarantee the
satisfaction of previous inequality. Therefore[

−τH
{
9−13i + 9−113

}
− I −9−1E

∗ γ 2I

]
≥ 0, (30)

multiplying both sides by diag(9, I) gives[
−τH

{
3i9 + 139

}
− 92

−E
∗ γ 2I

]
≥ 0, (31)

which is converted into the convex condition below thanks to
the Schur complement.−τH

{
39
i + 139

}
−E 9

∗ γ 2I 0
∗ ∗ I

 ≥ 0, (32)
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where

39
i =

[
Ai91 − BsM s

i Ai92 − Di92 − BsNs
i

0 Di92

]
,

139
=

[
1A91 1A92

0 0

]
. (33)

Rewriting inequality (32) as follows−τH
{
39
i

}
−E 9

∗ γ 2I 0
∗ ∗ I

 −

τH
{
139

}
0 0

∗ 0 0
∗ ∗ 0

 ≥ 0. (34)

Hence,

H
{
139

}
= H

{ [
1ηX T

1
0

] [
Y191 Y192

]
+

[
1ηX T

2
0

] [
Y291 Y292

] }
. (35)

After the application of Young’s inequality, it yields

H
{
139

}
≤ 1η1

T
η

[
X T

1
0

] [
X 1 0

]
+ 1η1

T
η

[
X T

2
0

] [
X 2 0

]
+

[
91YT

1
92YT

1

] [
Y191 Y192

]
+

[
91YT

2
92YT

2

] [
Y291 Y292

]
≤

[
91YT

1
92YT

1

] [
Y191 Y192

]
+

[
91YT

2
92YT

2

] [
Y291 Y292

]
+ φ2X , (36)

with 1η1
T
η ≤ φ2 and

X =

[
X T

1
0

] [
X 1 0

]
+

[
X T

2
0

] [
X 2 0

]
. (37)

As a relaxation tool [43], we introduce a symmetric matrix G
that meets the inequality below.

G− φ2X −

[
91YT

1
92YT

1

] [
Y191 Y192

]
+

[
91YT

2
92YT

2

] [
Y291 Y292

]
≥ 0, (38)

which can be transformed into a linear condition using the
Schur complement, leading to the condition (27). Finally−τH

{
39
i

}
− τH

{
139

}
−E 9

∗ γ I 0
∗ ∗ γ I


≥

−τH
{
39
i

}
− τG −E 9

∗ γ I 0
∗ ∗ γ I

 > 0. (39)

Thus, this completes the proof.

FIGURE 6. Time evolution of the control result with the PDC law (23)
acting at t > 10. From top to bottom: atrial flutter, ventricular tachycardia,
and ventricular flutter.

Remark 1: Note that conditions in Theorem 2 are infea-
sible if the reference model is not stable. This fact can be
demonstrated from (32). Such inequality holds true if the
leading principal matrix −τH

{
39
i + 139

}
is positive

definite [44]. After applying the Schur complement, it results
that −

(
τDi92 + τ9T

2Di
)−1

> 0. Therefore, no matrix
92 > 0 exists for Hurwitz unstable matrices Di [45].

A. EXAMPLE
This subsection uses an example to test the LMI conditions
for the tracking problem of a system with uncertainties.
Firstly, two identical oscillators were synchronized with
η = 3 by Corollary 1. The matrices computed from the
feasible solution are shown below.

F1 =


−15.9017 12.1813 3.1258 −0.2290
57.3039 13.9682 9.1387 2.0499
2.9002 −0.0972 −18.6787 11.3502
8.3063 2.4562 51.2844 11.0632

 ,

F2 =


−15.8838 12.1433 2.3042 −0.0420
57.3905 13.6135 1.9598 3.6824
2.4856 2.7668 89.5897 −0.9896
8.1797 2.4180 −1.3650 10.7383

 ,

F3 =


91.6433 0.8991 2.4866 2.3410
0.1160 14.5034 9.0873 1.8189
2.0733 0.0839 −18.6575 11.3152
1.6677 3.8816 51.3961 10.7680

 ,

F4 =


91.6519 0.8625 1.7090 2.5131
0.1991 14.1470 1.8313 3.4738
1.7022 2.9311 89.6020 −1.0235
1.4754 3.8649 −1.2587 10.4428

 .

Consequently, the control system (22) becomes stable. The
next step is to calculate the feedback gains matrices, to do so,
let us set η = 3, Bs = I and 1η = −0.882 implying that
φ2

= 0.676. It is worth mentioning that this 1η covers all
the different values of η stated in Table 1. The solutions for
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FIGURE 7. Time evolution of the control result with the PDC law (23) acting at t > 10. Left column: states of the
slave system at η = 2.178 (solid blue line) and reference system (dashed-dotted red line). Center column: tracking
error e = xs − x. Right column: control inputs.

Theorem 2 are given by

91 =


2.5428 0.0451 0.0113 −0.0159
0.0451 3.2580 −0.0066 0.1361
0.0113 −0.0066 2.5798 0.0524

−0.0159 0.1361 0.0524 3.2209

 ,

92 =


2.4746 −0.3797 0.0004 −0.2936

−0.3797 10.1289 −0.3052 1.2633
0.0004 −0.3052 2.5196 −0.2270

−0.2936 1.2633 −0.2270 10.6051

 ,

the matrices Fsi , K
s
i and G are as shown in the equation at the

top of the next page,

Fs1 =


3.6377 19.2354 0.1049 1.5238
15.5412 45.0849 0.5123 5.4943
0.0502 1.3535 3.6242 18.0721
0.5017 5.4571 15.0631 41.4109

 ,

Fs2 =


3.0031 19.2893 0.3181 1.0660
15.6093 44.8612 0.8417 4.9667
0.5887 0.8264 51.8755 −0.6056
0.1196 4.3968 −0.9214 27.6843

 ,

Fs3 =


52.3208 −0.2419 0.6133 0.8210
−0.5512 30.0239 0.1529 4.5805
0.2771 0.9691 3.0254 18.1473
0.8494 5.0597 15.1471 41.2216

 ,

Fs4 =


52.0488 −0.2560 0.3498 0.3724
−0.5470 29.3206 0.4689 3.5681
0.3453 0.4211 51.6095 −0.6029
0.4822 3.5096 −0.9094 27.0159

 ,

K s
1 =


0.3749 1.7717 0.2254 0.6077
2.3301 4.1656 0.4737 1.2428
0.1766 0.5041 0.2448 1.4057
0.3800 1.0722 2.1265 3.6206

 ,

K s
2 =


0.4334 1.8293 −0.0048 0.3582
2.4222 4.3252 −0.0530 0.7618
0.1230 0.3527 4.4483 0.2482
0.4532 0.9098 −0.2961 0.0964

 ,

K s
3 =


4.4800 0.3213 0.1545 0.3578

−0.2642 0.5816 0.5515 1.0782
0.0011 0.3405 0.2971 1.4551

−0.0260 0.7404 2.2106 3.7668

 ,

K s
4 =


4.6661 0.3133 0.0004 0.1751

−0.2590 0.5894 0.0203 0.5563
0.0020 0.2092 4.6273 0.2338
0.0319 0.5329 −0.2916 0.0968

 .

The tuning parameter of the slave system is firstly set to
η = 2.52 and then to η = 2.178 for running the simulations.
Notice that the former configuration matches with the atrial
flutter waveform setting and the latter matches with both
the ventricular tachycardia and ventricular flutter setting (see
Table 1). Figures 6 illustrates the simulation result of the
robust tracking control applied to an ECG nonlinear oscillator
with the above configurations. Over the first 10 seconds, the
slave system is operating in an open-loop way and the robust
tracking controller (23) takes action starting at t = 10 s. For
the sake of comparison, we have switched the output vectors
C of the slave system to that for the normal heartbeat for
t > 10 s. Finally, the states of both the slave system (with
η = 2.178) as well as the reference system, the tracking error,
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G =



8.6293 0.0246 0.1659 0.3436 −7.4473 1.0281 −0.3638 −0.4755
0.0246 3.2989 0.3768 −0.2200 −1.3630 −0.1969 −0.5344 −0.1499
0.1659 0.3768 8.2581 −0.1432 −0.3263 −0.5419 −6.8164 1.3727
0.3436 −0.2200 −0.1432 3.3928 −0.4533 −0.1784 −1.1415 −0.0261

−7.4473 −1.3630 −0.3263 −0.4533 18.3184 −2.4746 0.5690 0.9512
1.0281 −0.1969 −0.5419 −0.1784 −2.4746 1.4768 1.0612 −0.4340

−0.3638 −0.5344 −6.8164 −1.1415 0.5690 1.0612 17.2585 −3.1545
−0.4755 −0.1499 1.3727 −0.0261 0.9512 −0.4340 −3.1545 1.6509


.

and the output signals are shown in Figure 7 placed at the top
of the previous page.

Compared to other works that use multivariable control
such as the adaptive scheme to synchronize a pair of identical
autonomous cardiac conduction models in [27], and the rate
regulation of a bradycardia ECG signal in [28], our approach
deals with a model based-tracking control method to restore
the dynamics of an uncertain nonlinear oscillator from an
abnormal situation (arrhythmia-like waveform) to normal
behavior as shown in Figure 6. Some studies focused on the
stabilization of unstable periodic orbits (see [23], [24]) have
successfully suppressed undesired chaotic behavior that may
be associated with cardiac pathologies. The results in [24]
show that their method is effective for a specific undesired
behavior. On the other hand, this proposal is able to handle
a variety of unwanted dynamics within the norm-bounded
conditions. Finally, the multiple linear subsystem form of
the Takagi-Sugeno fuzzy model allows for a discretization
as in [22], with the difference that our method proves the
stability of the closed-loop system.

VI. CONCLUSION
In this work, we presented an LMI design procedure for the
model-based tracking control for an ECG nonlinear oscillator
described in a Takagi-Sugeno fuzzy form. The profile of the
synthetic ECG waveform depends on an intrinsic parameter
denoted as η. Firstly, the cancellation of the discrepancy
between the slave and master systems by a PDC control
law to achieve the tracking objective was considered. In a
second approach, the assumption that the variation on the
parameter η is an uncertainty in the slave system led to a
robust tracking control procedure to deal with this problem.
Our results demonstrated the effectiveness of the proposed
strategies to achieve model-based tracking control for the
ECG nonlinear oscillator in both a nominal and an uncertain
slave system configuration. This reflects the possibility of
suppressing undesirable behaviors in a cardiac model and
restoring a normal rhythm by using control techniques.
Compared with the methods in [22], [23], [24], [27], and [28],
the proposed Takagi-Sugeno fuzzy representation leads to
simple LMI design conditions. Moreover, with the inclusion
of parametric uncertainty in the tuning parameter η in
Theorem 2, the proposed robust tracking controller can deal
with a variety of undesired arrhythmias. Despite the fact that
the ECG signals are generated by a phenomenological model.
This mathematical description leads to the first level of

validity and reliability for testing unconventional solutions
and opens new ways to gain an understanding of the studied
system. We are certain that our work provides significant
conceptual proof that could assist in the improvement of
cardiac devices. Future work is to obtain a discrete-time
Takagi-Sugeno fuzzy model of the system (4) and then
derive conditions for the design of a state observer. Note
that the nature of discrete-time models will lead to a simple
implementation on embedded platforms. A current limitation
of our framework is the rate regulation, which represents
a different control objective for a follow-up study. Finally,
we will address the model-based robust tracking control
scheme to a more comprehensive heart model such as those
given in [16], [17], and [18].
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