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ABSTRACT Multi-view subspace clustering (MVSC) can effectively group multi-view data distributed
around several low-dimensional subspaces. Although encouraging results, most existing methods suffer
from two typical limitations, resulting in clustering performance degradation. They ignore high-order
correlations underlying the multi-view data, leading to degeneration of complementary power; in addition,
they rely on much prior knowledge (e.g., pairwise constraints) for clustering enhancement. In this paper,
a novel algorithm called Enhanced Multi-view Subspace Clustering (EMVSC) is proposed to address
both limitations. EMVSC can effectively exploit high-order correlations and optimally use limited prior
knowledge for better clustering performance. Specifically, EMVSC imposes twist tensor nuclear norm on
multi-view tensor representation constructed by stacking view-specific self-representations; in addition,
EMVSC exploits prior knowledge of pairwise constraints from whole dataset by employing constraint
propagation, which propagates limited constraint knowledge from constrained samples to unconstrained
samples. To efficiently optimize EMVSC, an extended intact augmented Lagrangian method is derived with
good convergence. Experimental results on seven standard multi-view databases demonstrate its efficacy.

INDEX TERMS Multi-view clustering, low-rank tensor representation, tensor singular value
decomposition (T-SVD), constrained clustering.

I. INTRODUCTION
Multi-view data are collected from multiple modals or
descriptors [1]. For example, a person can be identified by
modals: face, fingerprint, iris, and signature; image can be
characterized by descriptors: SIFT, HOG, and LBP; and doc-
ument can be written in languages: english, chinese, and
japanese, etc. Multi-view data possess complementary infor-
mation among views and can boost an algorithm’s learning
performance. In multi-view learning, multi-view clustering
aims to group samples with different views into clusters,
in such a way as to organize similar samples together and
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assign dissimilar ones to different groups. In general, multi-
view clustering is superior to single-view clustering since it
can well exploit the complementary information in different
views [2], [3].

Multi-view subspace clustering (MVSC) is prototype
method of multi-view clustering [4]; it can effectively group
data points which are drawn from multiple linear sub-spaces.
MVSC is derived from the fact that many real-world data
in a cluster often approximately lie in a subspace, such as
face images of a subject under varying illumination [5] and
hand-written digit images with rotations and translations [6].
MVSC methods could be generally cast as the following
three steps. One learns view-specific affinity matrices which
indicate membership among samples; then an unified affinity
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matrix is constructed, followed by applying the technique of
spectral clustering on it. Technically, most methods build on
the idea of self-expressiveness, which refers to data points
can be represented as a linear combination of others from the
same subspace.

Consider the required assumptions on correlation among
views, existingMVSCmethods can be roughly classified into
two categories. One category is pairwise-based. Typically,
Brbić and Kopriva [7] extended low-rank sparse subspace
clustering model to multi-view clustering model and carried
out two strategies (e.g., pairwise-consensus and centroid-
consensus) for pursuing multi-view consensus. Abavisani
and Patel [8] introduced another sparse and low-rank model
which focuses on learning robust common subspace repre-
sentation of views. Zhu and Peng [9] exploited the sparse-
ness structure and low-rankness structure under deep neural
network framework. For further improvement, Luo et al. [10]
well considered consistent and specific structures. While
empirical success, these methods represented correlation of
multi-views in matrix space, resulting in sub-optimal rep-
resentation. This motivated the emerge of another category
(e.g., high-order correlation based) [11]. High-order correla-
tion among views boost clustering performance and can only
be exploited by tensor representation [12]. Zhang et al. [13]
stacked self-representations into a third-order tensor, fol-
lowed by imposing an unfolding-based tensor nuclear norm
on it for pursuing low-rank structure. Albeit implement easily,
it lacks of a clear physical meaning due to the used unfolding-
based tensor nuclear norm. In addition, it puts the same
weights on all ranks of a tensor is ineffective, resulting in sub-
optimal clustering performance [14].

On the other hand, prior knowledge reveals cluster infor-
mation and can be used to improveMVSC. Building on tensor
representation, Xiao et al. [15] integrated prior knowledge
(e.g., explicit labels, semantic similarities, and weak-domain
cues) to tensor-based self-representations. Another similar
idea can be found in [16], Zhang et al. encoded prior knowl-
edge of labels as a constraint matrix and incorporated it into
tensor-based MVSC. Recently, Tang et al. [17] achieved con-
strained tensor representations by exploiting expert knowl-
edge in forms of two types of pairwise constraints: must-link
constraints (i.e., samples from the same cluster) and cannot-
link constraints (i.e., samples from different clusters). Despite
effectiveness, these methods highly depend on the amount
of prior information which is limited due to its high cost of
collection. In other words, the unlabeled samples are not well
considered, which will seriously degenerate their discrimi-
nating power, and likewise the clustering performance when
little prior knowledge is available [18].

A. MOTIVATION AND CONTRIBUTION OF THIS PAPER
Being aware of the importance of modeling the high-order
correlation and practical condition of limited prior knowl-
edge, we propose an enhanced MVSC (EMVSC) method
(see Fig. 1 for its illustration). EMVSC can effectively mine

high-order correlation and well exploit prior information for
clustering enhancement. Specifically, EMVSC resorts to the
twist tensor nuclear norm (t-TNN) [19] and constraint prop-
agation (CP) [20]. t-TNN contributes to the exploitation of
the high-order correlation, leading to better representation
than that obtained by the unfolding-based tensor nuclear
norm; CP benefits collection of prior information of whole
samples, helping EMVSC to obtain optimal clustering perfor-
mance under condition of limited prior knowledge. In addi-
tion, CP helps EMVSC obtain discriminating view-specific
representations. Technically, view-specific representation is
constrained by a view-specific pairwise constraint, which
allocates large values for data points from the same cluster
and assigns smaller values for data points from different
cluster. That is, EMVSC pulls data from the same cluster
closer and push data from the different cluster further. Our
contributions lie in three aspects:

• We propose an enhanced multiview subspace cluster-
ing method called EMVSC. Unlike previous meth-
ods, EMVSC does not require a large amount of
prior info and it can perform accurate clustering with
scarce prior knowledge. Technically, EMVSC utilizes
constraint propagation for collecting constraint knowl-
edge from whole data set. Specifically, it propagates
constraints from constrained samples to unconstrained
samples.

• To effectively optimize it, we design an extended intact
augmented Lagrangian method with good convergence.
In addition, we analysis the model and give its complex-
ity.

• We conduct experiments on seven public multiview data
sets. Moreover, we design the ablation study which
provides a more detailed and fine-grained evaluation
of the proposed techniques and their contributions,
helping other researchers understand its strengths and
weaknesses.

The rest of this paper is arranged as below. Section II
introduces related work. Section III attaches notations and
preliminaries. The proposed EMVSC, its optimization algo-
rithm and convergence analysis are presented in Section IV.
Section V provides experiments and discussion. Section VI
concludes this paper.

II. RELATED WORKS
Low-rank representation (LRR) [22] is a subspace clustering
method, assuming data lie within the union of multiple linear
sub-spaces. Its objective function is:

min
Z ,E

λ∥E∥2,1 + ∥Z∥∗,

s.t. X = XZ + E, (1)

where X is given samples, Z represents low-rank represen-
tation, E denotes error matrices, ∥ · ∥∗ and ∥ · ∥2,1 indicate
nuclear norm and l2,1−norm, respectively.
When it comes to multi-view clustering, LRR can be

directly extended to fulfill this goal [7]. The extended
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FIGURE 1. Illustration of proposed EMVSC. Given multi-view data, we aim to learning discriminating tensor representation Z∗.
Specifically, we first learn view-specific self-representations, following by stacking these representations to constructing a tensor [21],
which is restricted by both twist tensor nuclear norm [19] for exploiting complement information among views and view-specific
manifold regularization for discriminating power. Note that our regularization is prior knowledge-driven (e.g., pairwise constraint [17]);
in addition, given limited constraints we employ constraint propagation [20] for collecting constraints of whole data set.

objective function is:

min
Z (v),E

V∑
v

(∥Z (v)
∥∗ + λv∥E (v)

∥2,1)

s.t. X (v)
= X (v)Z (v)

+ E (v), v = 1, 2, . . . ,V

E = [E (1)
;E (2)

; . . . ;E (V )] (2)

where X (v) represents the v−th view data, Z (v) denotes the
v−th view’s low-rank representation, V is the number of
views, {E (V )

} is error matrix. Once obtained {Z (v)
}
V
v=1, the

affinity matrix A is calculated by: A =
1
V

∑V
v=1(|Z

(v)
| +

|Z (v)
|
T )/2. One can apply the spectral clustering method [23]

on A to get the clustering results.
Based on the above-mentioned model, existing methods

can be organized into two categories: matrix-based methods
and tensor-based methods.

A. MATRIX-BASED METHODS
These methods impose low-rank constraint on coefficient
matrix. To this end, there are two effective schemes, i.e.,
nuclear norm (NN)-based and non-negative matrix factor-
ization (NMF)-based. NN is used as a convex envelope of
non-convex rank function for exploiting low-rank property of
coefficient matrix. For example, Xia et al. in [24] imposed
the NN on a multi-view shared transition probability matrix.
NMF-based algorithms is capable of findingmeaningful clus-
tering structure for non-negative constraint imposed on coef-
ficient matrix. For example, Liang et al. [25] used NMF for
learning discriminant coefficient matrices and incorporated
graph structure of data into the new model. Liang et al. [26]
also proposed a prior knowledge-driven NMF model, using
binary label matrix to constrain multi-view representation.

B. TENSOR-BASED METHODS
While effectiveness, we observe that the matrix-based meth-
ods share the same disadvantage that ignore high-order corre-
lation among views. To address this limitation, tensor-based
methods have been investigated. For example, Liu et al. [27]
proposed a tensor framework based on high-order analogues
of the matrix SVD and PCA, in which both heterogeneous
and homogeneous information can be used to help clustering.
Zhang et al. [13] presented a multi-view subspace clustering
method, utilizing low-rank tensor constraint to exploit high-
order correlation among views. Xie et al. [21] introduced
a new 3-order tensor decomposition framework to pursuing
consistency amongmultiple views. Recently, Wang et al. [28]
proposed a tensor method which unifies tensor represen-
tation learning and consensus affinity matrix construction.
Tang et al. [17] argued that the prior information should
be well considered and that can be used to improve clus-
tering performance. Guo et al. [1] devises a new surrogate
of tensor rank, namely the tensor logarithmic Schatten-p
norm (TLSpN), which is a nearly unbiased approximation
of tensor rank and it fully considers the physical difference
between singular values by the non-convex and non-linear
penalty function, resulting in compact low-rank tensor rep-
resentation and well exploitation of high-order correlation.
Chen et al. [11] introduced a novel unified model termed
Low-rank Tensor Based Proximity Learning (LTBPL) for
multi-view clustering. Within this framework, multiple affin-
ity representations are stacked in a low-rank tensor con-
strained by the t-SVD based weighted tensor nuclear norm to
recover higher-order correlations among multiple views, and
especially the weights information of singular values corre-
sponding to multiple views is explicitly considered by assign-
ing different contributions. Similarly, Guo et al. [14] proposed
a new auto-weighted tensor nuclear norm (AWTNN) as
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a low-rank tensor approximation for better capturing the
high-order correlation. Especially, the AWTNN considers the
difference between singular values through adaptive weights
splitting during the AWTNN optimization procedure.

III. NOTATIONS AND PRELIMINARIES
Here, we attend to introduce some notations and preliminaries
used throughout this paper. For notations, we use calligraphy
letter (e.g., X ), capital letter (e.g., X ), and lowercase letter
(e.g., x) to represent tensor, matrix and vector, respectively.
A N-way tensor is a multi-linear structure in Rn1×n2×...×nN .

The Frobenius norm of X is ∥X∥F := (
∑

i,j,k |xijk |2)
1
2 , and

the l1 norm of X is ∥X∥1 :=
∑

i,j,k |xijk |.
As for preliminaries, we begin with introduction of five

block-based operators i.e., bcirc, bvec, bvfold, bdiag and
bdfold, followed by tensor singular-value decomposition
(t-SVD) [29], [30]. These operators and the t-SVD are essen-
tials for comprehensive understanding of t-SVD-based tensor
nuclear norm, which will also be described at last.

A. FIVE BLOCK-BASED OPERATORS
For X ∈ Rn1×n2×n3 , the block circulant opetator (bcirc) is
defined as:

bcirc(X ) :=


X (1) X (n3) . . . X (2)

X (2) X (1) . . . X (3)

...
. . .

. . .
...

X (n3) X (n3−1) . . . X (1)

 . (3)

The block vectorizing operator (bvec) and its opposite
operation (bvfold) are:

bvec(X ) :=


X (1)

X (2)

...

X (n3)

 , bvfold(bvec(X )) = X . (4)

The block diag operator (bdiag) and its opposite operation
(bdfold) are:

bdiag(X ) :=

X
(1)

. . .

X (n3)

 , bdfold(bdiag(X )) = X .

(5)

B. TENSOR SINGULAR-VALUE DECOMPOSITION (T-SVD)
To understand t-SVD, we need five essential definitions,
t-product, tensor transpose, identity tensor, orthogonal tensor,
and f-diagonal tensor.
Definition 1 (t-Product): M is the t-product of X ∗ Y .

M = X ∗ Y = bvfold{bcirc(X )bvec(Y)}, (6)

t-product is analogous to matrix multiplication. The differ-
ence is that t-product replaces the multiplication operation
between the elements with the circular convolution between

the mode-3 fibers, that is:

M(i, j, :) =

n2∑
k=1

X (i, k, :) ◦ Y(k, j, :), (7)

where ◦ denotes the circular convolution between two tubes.
Definition 2 (Tensor Transpose): The transpose of X ∈

Rn1×n2×n3 is X T
∈ Rn2×n1×n3 , transposing each frontal slice

of X , and then reversing the order of the transposed frontal
slices 2 through n3.
Definition 3 (Identity Tensor): I ∈ Rn1×n1×n3 is the iden-

tity tensor, whose first frontal slice is the n1 × n1 identity
matrix and all other frontal slices are zero.
Definition 4 (Orthogonal Tensor): A tensorQ is orthogo-

nal if

QT
∗Q = Q ∗QT

= I, (8)

where ∗ is the t-product operation.
Definition 5 (f-Diagonal Tensor): A tensor is f-diagonal if

each of its frontal slices is diagonal matrix. The t-product of
two f-diagonal tensors is also f-diagonal. Specifically,M =

X ∗ Y is a f-diagonal tensor, and its diagonal tube fibers are

M(i, i, :) = X (i, i, :) ◦ Y(i, i, :), i = 1, . . . ,min(n1, n2).

(9)

With these definitions, the tensor singular value decompo-
sition (t-SVD) of X is given by:

X = U ∗ S ∗ VT , (10)

where U and V are orthogonal tensors. S is an f-diagonal
tensor. We conclude the t-SVD in algorithm 1.

Algorithm 1 t-SVD [30]

Input: X ∈ Rn1×n2×n3;

Output: U,S,V;

1: Xf = FFT (X , [], 3);
2: for k = 1 : n3 do
3:

[
U ,

∑
,V

]
= SVD(X (k)

f );

4: U (k)
f = U , S(k)

f =
∑

, V (k)
f = V ;

5: end for
6: U = iFFT (Uf , [], 3),S = iFFT (Sf , [], 3),V =

iFFT (Vf , [], 3);
7: return U,S,V

C. T-SVD INDUCED TENSOR NUCLEAR NORM
Recall that t-SVD enables X to be written as a finite sum of
outer product of matrices:

X =

min(n1,n2)∑
i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T . (11)

Definition 6 (Tensor Multi-Rank [29], [30], [31], [32]):
The multi-rank of X ∈ Rn1×n2×n3 is a vector r ∈ Rn3×1

with the i-th element equal to the rank of the i-th frontal slice
of Xf .
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Based on this definition, we can define the t-SVD induced
tensor nuclear norm as:

∥X∥⊛ :=

min(n1,n2)∑
i=1

n3∑
k=1

|Sf (i, i, k)|. (12)

It is a valid norm and the tightest convex relaxation to ℓ1 norm
of the tensor multi-rank. According to the unitary invariance
of matrix nuclear norm, we have:

∥bdiag(Xf )∥∗ = ∥bdiag(Xf )∥∗ = ∥X∥⊛. (13)

Due to block circulant matrixes can be block diagonalized by
using the Fourier transform (FFT), we have:

∥bdiag(Xf )∥∗ = ∥(Fn3 ⊗ In1 )bcirc(X )(F∗
n3 ⊗ In2 )∥∗

= ∥bcirc(X )∥∗, (14)

where ⊗ is the Kronecker product, Fn is the Discrete Fourier
Transform (DFT) matrix, and In is an identity matrix. Finally,
we obtain:

∥X∥⊛ = ∥bcirc(X )∥∗ (15)

In the above equation, bcirc(X ) preserves the relationship
between entries, and ∥bcirc(X )∥∗ exploits structure informa-
tion of a tensor by comparing every row and every column of
frontal slices over the third dimension.

IV. THE PROPOSED EMVSC
As aforementioned, most previous MVSC methods suffer
from two disadvantages. Their accuracy meets the bottle-
neck when the amount of prior knowledge is limited. This
limitation is fatal since it is nontrivial to collect much prior
knowledge in practice.We address it through performing con-
straint propagation, which is a graph-based learning method.
Another disadvantage is that they fail to effectively capture
the high-order correlationship, resulting in a compromise
of complementary power and thus accuracy of clustering.
We resolve it by imposing the twist t-SVD-based tensor
nuclear norm on tensor representation, which is constructed
by stacking view-specific self-representation.

A. CONSTRAINT PROPAGATION (CP)
As for prior knowledge, we focus on pairwise constraints,
including must-connect constraint and cannot-connect con-
straint. The must-connect constraint refers to relation of one
pair of data points that belong to the same cluster, and oth-
erwise the cannot-connect constraint. Compared to explicit
label information, the pairwise constraints is relatively easy
to collect. One can obtain these connect knowledge from
three typical sources (e.g., labels of samples, domain knowl-
edge [33] and data annotations [34]). Note that one cannot
derive explicit the labels only from pairwise constraints, par-
ticularly for data with multi-class.

To collect pairwise constraints, we resort to constraint
propagation (CP). if 10% of the whole data set bring con-
straint information, CP can predict that of the rest 90%.
CP achieves this prediction by leveraging the power of

assumptions on data sets. The typical assumption is intrinsic
geometrical assumption: data points, that are close in the
intrinsic geometry of the data distribution, share the same
prior knowledge.

CP can be formulated as problem of two-class classifi-
cation. The class label is either ‘‘+1’’ (must-connect con-
straint) or ‘‘−1’’ (cannot-connect constraint). Given X =

{(xi, li)}ni=1 ∪ {xi}Ni=n+1, where n is the number of samples
with prior information, li ∈ {1, . . . ,C}, where C denotes the
number of classes andN−n is the number of samples without
prior information. The must-connect constraints and cannot-
connect constraints are MC = {(xi, xj) : li = lj, , 1 ≤ i, j ≤

N } and CC = {(xi, xj) : li ̸= lj, 1 ≤ i, j ≤ N }, respectively.
Given initial matrix of pairwise constraint P = {pij}N×N ,
which is defined as:

pij =


+1, if (xi, xj) ∈ MC
−1, if (xi, xj) ∈ CC
0, otherwise.

(16)

CP aim to obtain propagated result F = {fij}N×N . |fij| denotes
score of (xi, xj) on pairwise constraint. More concretely,
if fij > 0, fij is the similarity between xi and xj, where the
larger the value of fij is, the more xi is similar to xj, thus it is a
must-connect. If fij < 0, and the smaller the value of fij is, the
more xi is dissimilar to xj, this is known as a cannot-connect.

CP consists of the following six steps.
1) Construct a graph by defining its weight matrix W =

{wij}N×N as follows:

wij =


a(xi, xj)

√
a(xi, xi)

√
a(xj, xj)

, if xi ∈ Np(xj)

0, otherwise.
(17)

where Np(xi) denotes the p-nearest neighbor set of
the data point xj. A = a(xi, xj)N×N is the kernel
matrix defined on the data X . In particular, a(xi, xj) =

exp(−∥xi−xj∥2/t), and t denotes the bandwidth param-
eter. SetW = (W +W T )/2 to ensureW is symmetric.

2) Compute the normalized graph Laplacian matrix L =

I − D−1/2WD−1/2, where D = [dii]N×N is a diagonal
matrix with dii =

∑
jWij.

3) Iterate Fv(t + 1) = αLFv(t)+ (1− α)P for the vertical
constraint propagation until it converges, where α is
a parameter ranging from 0 to 1. The proof of the
convergence can be found in [35].

4) Iterate Fh(t + 1) = αFh(t)L + (1 − α)F∗
v for the

horizontal constraint propagation until it converges,
where F∗

v is the limit of {Fv(t)}.
5) F∗

= F∗
h is the final representation of the propagated

dual connected constraints, where F∗
h is the limit of

{Fh(t)}.
6) With the above F∗ and the original weight matrix W ,

we construct a new weight matrix W̃ = {w̃ij}N×N by
using following operation (18), which allots data from
the same cluster big weight and data from the different
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cluster small weight [20].

w̃ij =

 1 −

(
1 − f ∗

ij

)(
1 − wij

)
, if f ∗

ij ≥ 0(
1 + f ∗

ij

)
wij, if f ∗

ij < 0.
(18)

Consider the new weight matrix, we have following obser-
vations. W̃ directly encodes the constraint information of
the whole data set and indirectly respect the local geometric
information. In W̃ , if a pair of data points belong to the same
class, the corresponding weight of the edge connecting them
is given a much larger value, otherwise the weight is assigned
a much smaller value.

Once obtained W̃ , we use it to construct the prior-driven
graph Laplacianmatrix, which is used as a regularization term
to constrain the self-representation learning. That is,

φ(Z ) =
1
2

N∑
i,j=1

∥zi−zj∥2w̃ij

= tr(ZDZT ) − λTr(ZWZT )

= tr(ZLZT ) (19)

where tr(·) is the trace of a matrix and D denotes a diagonal
matrix whose entries are column sums of W , dii =

∑
jWij.

Denote L = D−W .

If input data xi and xj come from the same class and w̃ij
will be large (the definition of W mentioned above). That
means, minimizing φ(Z ) tends to have a small Euclidean
distance between zi and zj, pushing zi close to zj. Here,
we use the Euclidean distance for measuring the ‘‘dissimi-
larity’’ between self-representations of two points based on
works [7]. If xi and xj come from different classes and w̃ij
will be small. Therefore, zi and zj will be much farther.
In conclude, the minimization of φ(Z ) can produce points
with the same label appear together and points from different
classes occur much farther to each other in the obtained self-
representation.

B. TWIST TENSOR NUCLEAR NORM (T-TNN)
To exploit high-order correlation, one can resort to low-
rank tensor learning. Here, tensor learning means to stack
self-representations of views into a tensor, and then apply
tensor nuclear norm (TNN) on it. Some use the generalized
TNN (g-TNN). In fact, the g-TNN is sub-optimal since this
unfolding-based tensor nuclear norm suffers from the loss of
representation power, and thus leading to subspace clustering
performance degradation [19].

Instead, we find twist tensor nuclear norm (t-TNN), con-
taining the twist operation (TO)1 and the t-SVD based ten-
sor nuclear norm (tSVD-TNN) is optimal. We first execute
TO on the stacked tensor representation, obtaining the twist
tensor. Twist tensor is vital, and it helps to preserve the
relationship between samples [21]. Notice that g-TNN based

1The tensor twist can be achieved by using the command ‘‘shiftdim’’ in
Matlab.

methods do not involve the TO process, resulting in sub-
optimal. Once obtained the twist tensor representation for
multi-view, we impose tSVD-TNN on it for exploiting high-
order correlation among views.

Both u-TNN and tSVD-TNN are capable of exploring the
high-order correlation among views. However, tSVD-TNN is
superior to the former due to the following two facts.

1) Tensor rank is computationally intractable. In fact,
tSVD-TNN has been proven to be the tightest convex
relaxation to the l-norm of tensor multi-rank [30].

2) With the rotation process, each frontal slice of rotated
tensor exploits information among views in the Fourier
domain. By this way, tSVD-TNN optimally depicts the
complicated relationship between views [21].

C. MODEL OF EMVSC
We formulate EMVSC as

min
Z (v),E

∥Z∥−→
⊛ + α∥E∥2,1 + β

V∑
v=1

tr(Z (v)L(v)Z (v)T )

s.t. X (v)
= X (v)Z (v)

+ E (v), v = 1, 2, . . . ,V

Z = 8(Z (1),Z (2), . . . ,Z (V ))

E = [E (1)
;E (2)

; . . . ;E (V )], (20)

where∥·∥−→
⊛ is the t-TNN, Z is tensor constructed by self-

representations, Z (v) is the self-representation of view v, L(v)

is the refined graph matrix of view v, α and β are param-
eters, and E is error matrix. We construct E by vertically
concatenating the error matrices {E (V )

}. We assume natural
corruptions are always sample-specific. This assumption is
fulfilled by using the l2,1-norm.8(·) is a operation, construct-
ing the 3-mode tensor Z by merging representations Z (v).
This operation is equipped with the following equation:

8−1
(v) (Z) = Z (v), (21)

where 8−1
(v) (·) is the inverse function of 8(·) with respect to

the v-th frontal slice.

D. OPTIMIZATION ALGORITHM
To effectively solve this constrained problem, we choose
the strategy of the inexact augmented Lagrange multiplier
(iALM) [36], which reformulates a constrained problem into
an unconstrained one through the technique of auxiliary vari-
able. iALM turns complex problem into easy-solving sub-
problems.

For reformulation, we replace Z (v) and Z with auxiliary
matrix variables Q(v) and G, respectively. Then, we have the
reformulated problem:

L(Z (1), . . . ,Z (V )
;E (1), . . . ,E (V )

;Q(1), . . . ,Q(V )
;G)

= α∥E∥2,1 + β

V∑
v=1

tr(Q(v)L(v)Q(v)T )

+ (⟨Bv,Q(v)
− Z (v)

⟩ +
µ2

2
∥Q(v)

− Z (v)
∥
2
F )
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+ ∥G∥−→
⊛ +

V∑
v=1

(⟨Yv,X (v)
− X (v)Z (v)

− E (v)
⟩

+
µ1

2
∥X (v)

− X (v)Z (v)
− E (v)

∥
2
F ) + ⟨W,Z − G⟩

+
ρ

2
∥Z − G∥

2
F (22)

where Yv, Bv, and W are Lagrange multipliers; µ1, µ2, and
ρ are penalty parameters, which can be adjusted by using
adaptive updating strategy,

For optimization, we come to solve the following four sub-
problems.
Z (v)-Subproblem: With fixed E , Q(v), and G, as well as

8−1
(v) (W) = W (v) and 8−1

(v) (G) = G(v), we have the following
subproblem:

min
Z (v)

⟨Yv,X (v)
− X (v)Z (v)

− E (v)
⟩

+
µ1

2
∥X (v)

− X (v)Z (v)
− E (v)

∥
2
F + ⟨Bv,Q(v)

− Z (v)
⟩

+
µ2

2
∥Q(v)

− Z (v)
∥
2
F + ⟨W (v),Z (v)

− G(v)
⟩

+
ρ

2
∥Z (v)

− G(v)
∥
2
F (23)

We set the derivative of the above equation to zero, and
obtain the closed-form solution:

Z (v)∗
= (ρI + µ1X (v)T X (v))−1

× (X (v)T Yv + µ1X (v)T X (v)

− µ1X (v)T E (v)
−W (v)

+ ρG(v)
+ Bv + µ2Q(v))

(24)

E (v)-Subproblem: With fixed Z (v), we have

E∗
= min

E

α

µ1
∥E∥2,1 +

1
2
∥E − D∥

2
F (25)

where D is built as this way of vertically concatenating the
matrices X (v)

− X (v)Z (v)
+ (1/µ1)Yv together along column.

Its solution is:

E∗
:,i =


∥D:,i∥2 −

α
µ1

∥D:,i∥2
D:,i, ∥D:,i∥2 >

α

µ1

0, otherwise
(26)

where D:,i denotes the ith column of the matrix D.
Q-Subproblem: Given Z (v) and L(v), the closed-form solu-

tion to this subproblem is:

Q∗
= min

Q
βtr(Q(v)L(v)Q(v)T ) + ⟨Bv,Q(v)

− Z (v)
⟩

+
µ2

2
∥Q(v)

− Z (v)
∥
2
F

= (µ2Z (v)
− Bv)(2βL(v) + µ2I )−1 (27)

G-Subproblem: Given {Z (v)
}
V
v=1, we attend to the following

subproblem:

G∗
= min

G
∥G∥−→

⊛ +
ρ

2
∥G − (Z +

1
ρ
W)∥2F (28)

To solve it, we need the following Theorem 1.

Theorem 1: For τ > 0, the globally optimal solution to this
problem:

min
G

τ∥G∥−→
⊛ +

1
2
∥G − F∥

2
F (29)

can be calculated by using the tensor tubal-shrinkage
operator:

G = Cn3τ (F) = U ∗ Cn3τ (S) ∗ VT (30)

where F = U ∗ S ∗ VT and Cn3τ (S) = S ∗ J , herein, J
is a f-diagonal tensor whose diagonal element in the Fourier
domain is Jf (i, i, j) = (1 − [n3τ/S(j)

j (i, i)])+.
The proof of the above theorem can be found in [21]. For
better understanding, we conclude the optimization of G in
algorithm 2.

Algorithm 2 Optimization of G
Input: F ∈ Rn1×n2×n3; τ > 0
Output: G;

1: Ff = fft(F, [], 3); τ ′
= n3τ

2: for k = 1 : n3 do
3: [Ukf ,Skf ,V

k
f ] = SVD(X (k)

f );

4: J k
f = diag{(1 −

τ ′

S(k)
f (i,i)

)+}, i = 1, . . . , min (n1, n2);

5: Skf ,τ ′ = Skf J
k
f ;

6: Gkf = Ukf S
k
f ,τ ′Vkf ;

7: end for
8: G = ifft(Gf , [], 3);
9: return G

The Lagrange multipliers and the penalty parameters could
be updated as:

Y ∗
v = Yv + µ1(X (v)

− X (v)Z (v)
− E (v)), (31)

B∗
v = Yv + µ2(Q(v)

− Z (v)), (32)

W∗
= W + ρ(Z − G), (33)

µi = min(ηµi, µmax), i = 1, 2, (34)

ρ = min(ηρ, ρmax). (35)

Finally, this optimization is summarized in algorithm 3.

E. CONVERGENCE ANALYSIS
We extend the inexact ALM (iALM) to solve our problem.
We should note that the problem is non-smooth, it would
be not easy to theoretically prove the convergence, and it
deserves in its own right a proper study of proof, which is
of course not the focus of this paper.

In fact, iALM is only proved to be convergence when the
number of blocks is smaller than three [36]. However, our
objective function has four blocks (i.e., {Z (v)

}
V
v=1, {E

(v)
}
V
v=1,

{Q(v)
}
V
v=1, and G). Nevertheless, we believe that the convexity

of the Lagrange function could guarantee the empirical valid-
ity to some extent, verified by pioneer work [21]. We will
show this empirical convergence in Section V-E.
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TABLE 1. Characteristics of the datasets.

V. EXPERIMENTS AND DISCUSSION
The effectiveness of proposed EMVSC is evaluated with
extensive experiments. First, we go through the datasets for
test, metrics for evaluation, and related methods for compar-
ison. Second, we compare EMVSC with the state-of-the-art
algorithms and analyze the impact of parameters on cluster-
ing performance. Third, we investigate its convergence and
complexity. Fourth, we conduct ablation study and investigate
different levels of prior information.

A. DATASETS AND METRICS
We test EMVSC on seven datasets, which are about social
media, news, face image, prokaryotic species, and scene. The
characteristics of these datasets are summarized in Table 1.
Note that both Scene-15 and MITIndoor are large-scale data
sets. We briefly introduce these datasets as follows.

Algorithm 3 EMVSC

Input: X (1), . . . ,X (V ),L(1), . . . ,L(V ), α, β

Output: Clustering results C
Initialize:Z (v)

= E (v)
= Q(v)

= Yv = Bv = 0, i =

1, . . . ,V ;

G = W = 0;
µ1 = µ2 = ρ = 10−5, η = 2, µmax = ρmax =

1010, ε = 10−7
;

1: while not converge do
2: Update {Z (v)

}
V
v=1 by 24;

3: Update E by 26;
4: Update {Q(v)

}
V
v=1 by 27;

5: Obtain Z = 8(Z (1),Z (2), . . . ,Z (V ));
6: Update G via Algorithm 2;
7: Update Yv, Bv, W , µ1, µ2, and ρ by 32-35,

respectively;
8: (G(1), . . . ,G(V )) = 8−1(G);
9: Check the convergence conditions:

∥X (v)
− X (v)Z (v)

− E (v)
∥∞ < ε and

∥Z (v)
− G(v)

∥∞ < ε;
10: end while
11: Obtain affinity matrix

A =
1
V

∑V
v=1 |Z (V )

| + |Z (V )T
|;

12: Apply spectral clustering on matrix A;
13: return Clustering result C.

Politicsie2 consists of 348 Irish politicians and political
organizations belong to 7 groups in terms of their affiliation.

2http://mlg.ucd.ie/aggregation/

3sources3 is a new multi-view text dataset, collected from
three well-known online news sources: BBC, Reuters, and
The Guardian. Each story was manually annotated with one
or more of the six topical labels: business, entertainment,
health, politics, sport, technology.

Extended YaleB4 has 38 individuals, each of which has
64 near frontal images captured under different illumination.
the first ten individuals, with 640 images in total, are used in
experiments.

Prokaryotic is about prokaryotic species described with
two views [7]. One view is textual data describing prokaryotic
species. Another view constitutes the proteome composition,
encoded as relative frequencies of amino acids, and the gene
repertoire, encoded as presence/absence indicators of gene
families in a genome.

Flowers5 contains 1360 samples in total with 17 flower
categories. We use three kinds of features: color, texture, and
shape.

Scene-156 is about 15 categories, including kitchen, living
room, bedroom, etc. It contains a wide range of outdoor and
indoor scene environments [37].

MITIndoor [38] contains 67 different categories. We use
a subset of it (5360 images in total) for test. We extracted
four kinds of image features on this dataset: PHOW [39], PRI-
CoLBP [40], CENTRIST [41] and VGG-VD [42].

Following [43], five standard evaluation metrics, includ-
ing accuracy (ACC), Normalized Mutual Information (NMI),
Adjusted Rank (AR), F-score, and Precision, are used for
evaluation. Each value varies from 0 to 1. In general, the
larger the value, the better the clustering quality, and vice
versa. For each experiment, we run 10 trials and report their
average results.

B. COMPARISONS WITH STATE-OF-THE-ART ALGORITHMS
To verify effectiveness, we compare our EMVSC with eight
state-of-the-art methods, including two matrix-based meth-
ods and six tensor-based methods. All tensor-based methods
can exploit high-order correlation among views. For com-
prehensive comparison, we compare our EMVSC with one
graph-based tensor method GLTA, and three prior knowl-
edge driven tensor methods, including PMVSR, TMSRL, and
CTLR. We briefly introduce these methods as follows.

1) PMLRSSC [7], a pairwise consensus-guided multi-
view low-rank sparse subspace clustering algorithm,
which exploits pairwise correlation between views.

2) CMLRSSC [7], a centroid-driven multi-view low-rank
sparse subspace clustering, which learns common rep-
resentation of views.

3) t-SVD-MSC [21], a tensor-based multi-view low-rank
subspace clustering method, which utilizes high-order
correlation among views by using tensor nuclear norm.

3http://mlg.ucd.ie/datasets/3sources.html
4http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
5http://www.robots.ox.ac.uk/vgg/data/flowers/
6http://www-cvr.ai.uiuc.edu/poncegrp/data/
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TABLE 2. Clustering results on Politicsie and 3sources with 10% prior knowledge of pairwise constraints.

TABLE 3. Clustering results on Extended YaleB and Prokaryotic with 10% prior knowledge of pairwise constraints.

4) JLMVC [44], it exploits high-order correlation as well
as non-linear structure of views.

5) GLTA [45], it preserves high-order correlation and
local graph structure of views.

6) PMVSR [15], it extracts high-order correlation and
uses prior knowledge to constrain view-specific
representation.

7) TMSRL [16], it mines high-order correlation and
utilizes prior knowledge in terms of must-link
information.

8) CTLR [17], it exploits high-order correlation and incor-
porates pairwise constraint into view-specific represen-
tation learning.

For our proposed EMVSC, we need to tune two parame-
ters, noisy parameterα and constraint parameterβ.We empir-
ically find values in the range of [0.01, 0.03, . . . , 0.09]

and [0.1, 0.3, . . . , 0.9], respectively. More details about the
parameters analysis will be discussed in Section V-D.
For the parameters of compared methods, we keep the

same setting as that in their original papers. For PMLRSSC
and CMLRSSC, we use the strategy of sum-to-one, that is
the sum of low-rank parameter and that of sparsity parameter
is equal to one. And both are chosen from [0.1, 0.9]. As for
t-SVD-MSC, the trade-off parameters are set within the range
[0.1, 2]. As for JLMVC, the low-rank parameter and the con-
sensus parameter are set within [0.001, 0.005, 0.01, 0.05, 0.1,
0.3, 0.5, 0.7] and [0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7,
0.9, 1], respectively. As for GLTA, the number of the nearest
neighbors is 5 and the parameter of weight penalty is set as 10.
As for PMVSR, the parameter is empirically selected from
[1.1, 1.3, . . . , 2.3]. As for CTLR, the only one parameter
is selected from [10−7, 10−6, 10−5, 10−4]. For graph-based
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TABLE 4. Clustering results on Flowers and Scene-15 with 10% prior knowledge of pairwise constraints.

TABLE 5. Clustering results on MITindoor with 10% prior knowledge of
pairwise constraints.

methods, following [45], the number of k-nearest neighbor is
set at 5 in all experiments.

Recall that our methods aims to perform accurate cluster-
ing when the available prior information is limited. Consider
this motivation, we use the same lowest amount of prior infor-
mation (10%) as that in [15], [16], and [17] for experiments.
In experiments, we used the given label from data set to
construct pairwise constraint.

C. RESULTS AND DISCUSSION
From Table 2-5, we draw conclusions listed as follows.

1) The proposed EMVSC consistently achieves the best
results over all seven datasets. Take the 3sources dataset
as an example, our EMVSC improves 7.6%, 3.0%,
8.2%, 10.7%, 7.6% with respect to five measures
over the second-best method CTRL. EMVSC directly
uses limited pairwise constraint and indirectly exploit

graph structure to obtain pairwise constraint for uncon-
strained samples.

2) EMVSC is always superior to three state-of-the-
art prior-driven methods (i.e., PMVSR, TMSRL and
CTRL), which is owing to three reasons. First, EMVSC
considers both samples are with prior information and
those samples are without prior knowledge, while the
compared methods only focus samples which carry
constraints; Second, EMVSC utilizes local graph struc-
ture of data in an indirect way. Specifically, EMVSC
uses graph structure to perform constraint propagation,
whose results are then used to constrain view-specific
representation learning; Third, EMVSC obtains much
discriminating power since it pulls samples from the
same cluster closer and pushes samples from the dif-
ferent cluster farther.

3) EMVSC performs better than the state-of-the-art
graph-driven tensor method (i.e., GLTA) as well as the
kernel-guided tensor method (i.e., JLMVC), indicating
the enhancement of using prior knowledge. Specifi-
cally, EMVSC use graph structure to exploit pairwise
constraint of the whole data set which are used to con-
strain the view-specific representations. In other words,
EMVSC takes advantage of both prior knowledge and
graph structure knowledge.

4) EMVSC’s performance is better than both matrix-
based clustering methods (i.e., PMLRSSC and
CMLRSSC), intuitively showing the effectiveness of
the twist tensor nuclear norm for utilizing high-order
correlationship among views.

D. PARAMETER ANALYSIS
We analyze α with fixed β, and vice verse. The key observa-
tion is that EMVSC always performs better than the compared
methods, especially the powerful competitor t-SVD-MSC,
indicating the stability of EMVSC. For page limit, we show
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TABLE 6. Complexity and running time on seven datasets (in seconds).

TABLE 7. Accuracy comparisons among different variants on seven datasets.

FIGURE 2. Parameters tuning (α and β) in terms of accuracy on two
datasets. (a) 3sources (b) Extended YaleB.

accuracy results on two typical datasets (i.e., 3sources and
Extended YaleB) in Fig. 2. Specifically, For 3sources, α is
best set around 0.05, and β is best chosen around 0.7; For
Extended YaleB, α is best selected around 0.03, and β is best
adopted around 0.9.

E. EMPIRICAL CONVERGENCE
EMVSC has a good convergence property and converges fast
on all data sets. We show the empirical convergence results
on four data sets, including 3sources, Extend YaleB, Flowers,
and Scene-15 in Fig. 3. Following [21], we define two error
terms (i.e., reconstruction error (RE) and match error (ME)).

RE =
1
V

V∑
v=1

||X (v)
− X (v)Z (v)

− E (v)
||∞ (36)

ME =
1
V

V∑
v=1

||Z (v)
− G(v)

||∞ (37)

Consider complexity and running time, we give results in
Table 6.

FIGURE 3. Illustration of the convergence curve of EMVSC over four
datasets. (a) 3sources (b) Extended YaleB (c) Flowers (d) Scene-15.

F. ABLATION STUDY
Our EMVSC simultaneously exploits the high-order correla-
tionship among view through using the twist tensor nuclear
norm and incorporates the prior knowledge of sample in
terms of pairwise constraint. We conduct extensive abla-
tion studies to examine the effectiveness of each module
of EMVSC. The TLSpNM-MSC [1] is compared for two
reasons: (1) it relates to our work and it is the-state-of-art;
(2) In contrast to EMVSC, TLSpNM-MSC exploits high-
order-correlationship in a nonconvex way. Specifically,
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TABLE 8. Accuracy results of Extended YaleB and MITindoor with four levels of prior knowledge.

TLSpNM-MSC uses a new surrogate of tensor rank, namely
the tensor logarithmic Schatten-p norm (TLSpN), which con-
siders the physical difference between singular values by the
non-convex and non-linear penalty function.

From Table 7, we observe that our EMVSC obtains best
performance in most cases. In complex data sets (e.g., the
Scene-15 and the MITIndoor) with highly nonlinear struc-
ture, TLSpNM-MSC is superior to others. EMVSC uses the
tSVD-TNN which is the best convex surrogate of tensor rank
and it is efficient in optimization. However, tSVD-TNN is not
the best surrogate in nonlinear relationship mining.

On one hand, our EMVSC is better than ‘‘EMVSC w/o
twist operation’’. Without tensor twist operation, the self-
representations will be destroyed in Fourier domain, result-
ing in loosing of complementary information among views.
On the other hand, EMVSC is better than ‘‘EMVSC w/o
constraint propagation’’. Obviously, the process of constraint
propagation collects pairwise constraint of the whole data set.
These constraints improve the discriminating power of the
EMVSC.

G. DIFFERENT LEVEL OF PRIOR KNOWLEDGE
To reveal the influence of the level of prior knowledge on
these semi-supervised clustering methods, we conduct these
experiments with four levels on two data sets: a middle-scale
one (e.g., Extended YalB) and a large-scale one (e.g., MITin-
door). Results are recorded in Table 8.
From Table 8, we conclude that the clustering performance

increases with increasing prior information. We also observe
that our EMVSC performs best in all cases, especially when
there are limited constraints, which verifies that EMVSC
could fully exploit limited prior information through employ-
ing constraint propagation.

VI. CONCLUSION
We have presented an enhanced method for multi-view
subspace clustering, called EMVSC. EMVSC is based
on twist tensor nuclear norm and constraint propagation.
EMVSC exploits high-order correlation across views by
imposing twist tensor nuclear norm on tensor representation
constructed by stacking view-specific self-representations.
In addition, EMVSC effectively utilizes limited prior knowl-
edge by performing constraint propagation. Note that
EMVSC pulls samples belonging to the same class closer

and samples from different class farther, increasing discrim-
inating power. As a result, EMVSC can obtain satisfactory
clustering performancewhenmulti-view data arewith limited
prior knowledge of pairwise constraint. Experiments on seven
real-world databases show its efficacy.
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