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ABSTRACT Current practice in cancer treatment collects multimodal data, such as radiology images,
histopathology slides, genomics and clinical data. The importance of these data sources taken individually
has fostered the recent rise of radiomics and pathomics, i.e., the extraction of quantitative features from
radiology and histopathology images collected to predict clinical outcomes or guide clinical decisions using
artificial intelligence algorithms. Nevertheless, how to combine them into a single multimodal framework
is still an open issue. In this work, we develop a multimodal late fusion approach that combines hand-
crafted features computed from radiomics, pathomics and clinical data to predict radiotherapy treatment
outcomes for non-small-cell lung cancer patients. Within this context, we investigate eight different late
fusion rules and two patient-wise aggregation rules leveraging the richness of information given by CT
images, whole-slide scans and clinical data. The experiments in leave-one-patient-out cross-validation on
an in-house cohort of 33 patients show that the proposed fusion-based multimodal paradigm, with an AUC
equal to 90.9%, outperforms each unimodal approach, suggesting that data integration can advance precision
medicine. The results also show that late fusion favourably compares against early fusion, another commonly
usedmultimodal approach. As a further contribution, we explore the chance to use a deep learning framework
against hand-crafted features. In our scenario characterised by different modalities and a limited amount of
data, as it may happen in different areas of cancer research, the results show that the latter is still a viable
and effective option for extracting relevant information with respect to the former.

INDEX TERMS Late fusion, machine learning, multimodal learning, non-small-cell lung cancer, radiomics,
pathomics.
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approving it for publication was Hong-Mei Zhang .

I. INTRODUCTION
Nowadays, lung cancer is recognised worldwide as one of
the most common types of cancer and the leading cause of
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tumour death, despite the recent increase in the number of
treatment options [1]. There are two main types of lung can-
cer: small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). The latter, accounting for approximately
80-85% of new lung cancer cases [2], is the focus of our
study. The current clinical decision-making process relies
on multiple data sources to improve the detection and the
classification as well as the prognosis of the tumours, such as
radiology-based data (e.g. X-ray, CT scan, ultrasound, MRI
and metabolic imaging), digital pathology slides, genome
profiling and clinical data [3]. Such a variety of modalities
catch different clinical aspects of the cancer disease and can
help clinicians to pursue the paradigm of precision medicine,
i.e., tailoring the treatment to the specific patient. Indeed,
the wide variety of complementary quantitative bio-markers
extracted from the various modalities can lead to more accu-
rate diagnosis and more efficient treatment plans.

In the last decades, the artificial intelligence (AI) com-
munity has directed large efforts towards the detection and
the classification of tumours using one or more modalities.
However, only in recent years we have assisted to a growing
interest directed to the disease outcome prediction using dif-
ferent data modalities. In this respect, the emerging areas of
research are:

• Genomics: it is an interdisciplinary field of science that
focuses on genomes, highlighting the role of human
genetic variation in disease diagnosis, prognosis, and
treatment response. However, genomics biomarkers still
have limitations that hinder the possibility to collect such
data in clinical routine due to their complexity and still
high cost [4].

• Radiomics: it is based on the extraction of quantitative
features from radiology images routinely collected in
order to predict clinical outcomes or guide clinical deci-
sions using AI algorithms [5], [6].

• Pathomics: it refers to the combination of digital pathol-
ogy, omic science and AI to extract embedded infor-
mation in digitised high-resolution whole-slide images
of tissue biopsy sections to obtain quantitative bio-
markers [7].

Given the growing availability of public oncological
datasets containing paired samples from different modalities,
in the last few years researchers started to take into account
the multimodal learning paradigm. Multimodal learning
relies on the integration of heterogeneous data from mul-
tiple sources into a single machine learning framework.
Although several works use genomics, radiomics or path-
omics data alone, few works still aim to fuse these modali-
ties together [8], [9], [10], [11], [12], reporting performance
improvement. Despite the importance of radiomics and path-
omics taken individually, to the best of our knowledge, only
one work to date has combined them together into a single
machine learning framework [12]. Hence, we present here
another investigation that combines radiomics, pathomics and
clinical data together into a single multimodal late fusion
scheme to predict radiation therapy treatment outcomes for

NSCLC patients. In this work, we do not take into account
genomics data, because in clinical practice, pending the
results of ongoing studies, in patients with locally advanced
NSCLC considered for chemoradiation treatment, knowledge
of oncogene-dependent characteristics does not change the
therapeutic strategy. The late fusion scheme permits us to
combine uncorrelated data flows that vary significantly in
terms of dimensionality and sampling rates, as in our case.

To summarise, the contributions of this work are:
• We proposed a multimodal late fusion scheme taking
into account features extracted from radiomics, path-
omics and clinical data.

• We show that the integration of heterogeneous data into
a multimodal learning paradigm permits to predict the
radiation therapy treatment outcomes in lung cancer.

Furthermore, to offer a deeper analysis of multimodal learn-
ing in this context, this work provides other two contributions:

• We compare the proposed multimodal late fusion
scheme with the early fusion approach, showing that the
latter has lower performance.

• Since deep learning has shown its potential in sev-
eral healthcare applications, both in unimodal and
multimodal learning, here we compare the hand-crafted
features against the use of deep neural networks, thus
offering a complete analysis of the main different
methodologies to process our data.

The rest of this manuscript is organised as follows: sec-
tion II presents a short overview of the multimodal learn-
ing framework and its applications to oncology. Section III
introduces the materials, overviewing the multimodal data
sources available. Section IV presents the proposed multi-
modal learning framework, whilst section V and section VI
describe the experimental setup and the results respectively.
Finally, section VII provides concluding remarks.

II. BACKGROUND
In this section, we first overview the various architectures in
the multimodal learning framework, and then we summarise
the current state-of-the-art on multimodal-based learning on
oncology (section II-B).

A. MULTIMODAL LEARNING
Multimodal learning involves the integration of heteroge-
neous data from multiple sources extracted from the obser-
vation of the same phenomena or problem. Hence, the use of
multimodal data sources allows the extraction of a comple-
mentary, more robust and richer data representation, with the
aim of improving performance compared to the use of a stand-
alone modality. Although there is not any formal proof, this
intuition has brought interesting results in many applications,
medical imaging included [13].

Multimodal data integration can be performed at differ-
ent levels using three types of fusion: early, joint, and late
fusion [14], [15], respectively (Figure 1), as now described.
Early fusion, also known as data-level fusion or repre-

sentation learning, concerns the integration of raw inputs
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FIGURE 1. Model architectures for different multimodal learning frameworks. From left to right:
early or data-level fusion, joint or intermediate fusion, late or decision-level fusion.

from multiple data source modalities into a single feature
vector before passing it into a single machine learning model
(Figure 1, left panel). In the early fusion, raw input data can
be merged into an embedded space according to different
policies, such as simple concatenation, addition, pooling,
or applying a gated unit [16]. Although the promising results
achieved in several applications, how to manage one or more
missing modalities, how to handle different sampling rates
and/or the time-synchronicity between multiple data sources,
and the possible redundancies occurring while generating
very large embedded spaces are the main issues of this mul-
timodal approach.

With respect to joint and late fusion, these two combi-
nation schemes work by aggregating different classification
models. Joint fusion, also known as intermediate-level fusion
or hybrid fusion, concerns the combination of the extracted
intermediate feature vectors from trained neural networks,
one per modality, into an abstract fusion layer, also known as
a shared representation layer (Figure 1, central panel). Then,
this combined feature vector feeds a final classificationmodel
whose loss is back-propagated to the feature extracting neural
networks during training. Since the loss is back-propagated
during the training process, this fusion scheme improves the
feature representation at each iteration leading to better multi-
modal embedded feature spaces. Although joint learning is a
very flexible framework, its main issue concerns the design of
the architecture in terms of how, when, and which modalities
can be fused [15].

Let us now delve into late fusion approaches, as our pro-
posed approachworks at this level. In the early- tomid-2000s,
late- or decision-level fusion has received considerable inter-
est from the machine learning community due to its poten-
tial to improve the performance of stand-alone classifiers.
Late fusion concerns the training of independent systems,
one per modality, which are then combined by an aggre-
gation function to reduce individual error rates (Figure 1,
right panel). This aggregation function takes as input the
unimodal decision values provided by the different classifiers
that are combined according to a fusion rule (e.g. minimum,
maximum, mean, majority vote, etc.). There is a consensus
that the key to the success of late fusion is that it builds a
mixture of diverse classifiers [17], providing different and

complementary points of view to the ensemble. Definitely,
the late fusion approach is a well-suited multimodal strat-
egy when input modalities are significantly uncorrelated and
they vary significantly in terms of data dimensionality and
sampling rates [15]. These are the major reasons that led us
to explore this multimodal framework, which will be also
experimentally compared against early fusion in section VI.

B. MULTIMODAL ONCOLOGY
Nowadays, the current clinical practice for cancer treatment
requires collecting multimodal data for each patient, such as
radiological images (e.g. X-ray, CT scan, ultrasound, MRI
and metabolic imaging), histopathology slides, genomics and
clinical data. Such a variety of modalities describes different
clinical aspects of cancer disease and can provide a wide
range of complementary bio-markers leading to more accu-
rate diagnosis and more efficient treatment plans. Although
there are several works in the current state-of-the-art dealing
with the detection, classification and prognostic task taking
the aforementioned single modalities individually [18], [19],
[20], [21], [22], there are still few works in oncology that
aim to fuse these modalities together. Hence, in recent years,
researchers focused their efforts on the fusion of these modal-
ities into a single machine learning framework [8], [9], [10],
[11], [12].

In [8] the authors proposed a novel multimodal radiomics
model for preoperative prediction of lymphatic vascular infil-
tration (LVI) in rectal cancer based on hand-crafted fea-
tures extracted from magnetic resonance (MR) and com-
puted tomography (CT) modalities. The authors validated
their method on a retrospective cohort of 94 patients with
histologically confirmed rectal cancer. The results show as
the multimodal (MR/CT) radiomics models can serve as an
effective visual prognostic tool for predicting LVI in rectal
cancer. It demonstrated the great potential of preoperative
prediction to improve treatment decisions over the stand-
alone modalities.

In [9] the authors proposed a multimodal deep learn-
ing method for NSCLC survival analysis leveraging CT
images in combination with clinical data. The authors vali-
dated their framework using data from The Cancer Imaging
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Archive (TCIA), which contains paired samples of CT scans
and clinical data for 422 NSCLC patients [23]. The results
show that there is a relationship between prognostic infor-
mation and radiomics images. In addition, the proposed mul-
timodal model improves the analysis of survival in NSCLC
patients compared to the current state-of-the-art which only
works with clinical data.

In [10] the authors proposed a deep multimodal
fusion framework for the end-to-end multimodal fusion
of histopathological images and genomics features (muta-
tions, CNV, mRNAseq) for survival outcome prediction.
This work implements the Kronecker product to model
pairwise feature interactions across modalities and controls
the expressiveness of each modality through a gating-based
attention mechanism. The authors validated their framework
using glioma and clear cell renal cell carcinoma datasets
from The Cancer Genome Atlas (TCGA), which contains
paired samples of whole-slide images of hematoxylin-and-
eosin-stained specimens, genotype, and transcriptome data
for 769 patients [24]. Based on a 15-fold cross-validation,
results show that the proposed multimodal fusion paradigm
leads to an improvement over the current state-of-the-art
in predicting survival outcomes when using each modality
independently.

In [11], the authors proposed a hybrid deep multimodal
fusion model that merges patients’ gene modality data
with pathological images to predict breast cancer sub-types.
To extract features from the different forms and states of
the data, the authors set up separate feature extraction net-
works and then fused the output of the two networks using a
weighted linear aggregationmethod. The authors used Princi-
pal Component Analysis to reduce the dimensionality of the
gene modality data and filter the image modality data. The
fused features were then used to predict breast cancer sub-
types. The authors validated their framework TCGA-BRCA
dataset as a sample set for their molecular sub-type prediction
of breast cancer. It contains gene expression data, CNVs,
and histopathological images for 1098 breast cancer patients.
Results show that the model achieved 88.07% accuracy in
sub-type prediction, outperforming traditional DL models
by 7.45%.

In [12] the authors proposed a deep model merging
together radiology scans, molecular profiling, histopathology
slides and clinical factors to predict the overall survival of
glioma patients. The authors validated their framework by
collecting data from the TCIA repository, which contains
paired samples of whole-slide images of hematoxylin-and-
eosin-stained specimens, MRI scans, DNA sequencing data,
and clinical variables for 176 glioma patients. Results show
that their model, with a median C-index of 0.788±0.067, sig-
nificantly outperforms the best performing unimodal model,
which has a median C-index equal to 0.718±0.064. Further-
more, the proposed model successfully stratifies patients into
clinical subgroups based on overall survival, adding further
granularity to clinical prognostic classification and molecular
subtyping.

Despite the importance of radiomics and pathomics data
taken individually, to the best of our knowledge, at the time
this work was written, only one study has combined them
into a single machine learning framework for the outcome
prediction of radiation therapy treatment [12]. Hence, this
paper proposes the second attempt to combine radiomics,
pathomics and clinical data into a single model to predict out-
comes for NSCLC patients. As mentioned in section I, since
in the current clinical practice the knowledge of oncogene-
dependent characteristics does not change the therapeutic
strategy, in this work we do not consider genomics data

III. MATERIALS
In this work we used an in-house cohort of 33 patients with
Locally-Advanced stage III NSCLC, who were enrolled from
November 2012 to July 2014 and treated with concurrent
chemoradiation at a radical dose with an adaptive approach.
The adaptive protocol was approved by Ethical Committee
Campus Bio-Medico University on 30 October 2012 and reg-
istered at ClinicalTrials.gov on 12 July 2018 with Identifier
NCT03583723 after an initial exploratory phase. Enrolled
patients underwent a clinical evaluation after chemoradia-
tion treatment and were classified into two groups according
to target reduction: (i) adaptive, i.e., patients who achieved
a reduction in tumour volume, assessed by two radiation
oncologists on weekly chest CT simulations, leading to the
implementation of a new treatment plan with which the
patient would continue radiation therapy (adaptive approach);
(ii) not-adaptive, i.e., patients who did not achieve target
shrinkage and continued the chemoradiation with standard
treatment. The a priori probability of this patients’ cohort
consists of 11 and 22 adaptive and not-adaptive patients,
respectively.

For this patient cohort we collected heterogeneous data
including histological slides, CT scans, as well as clinical
data, therefore forming the following unimodal data streams
(i.e., pathomics, radiomics and semantics) in the multimodal
learning framework investigated in this study:

• Pathomics modality: This modality includes samples
generated from biopsy slides of lung cancer tissue,
stained with haematoxylin and eosin (HE). HE (haema-
toxylin/eosin) tumour tissue slides were reviewed by
a pathologist to confirm sample adequacy. Slides
were digitised (APERIO CS2 Leica Biosystems or
NanoZoomer 2.0 RT Hamamatsu) at 20x magnifica-
tion. The digitised slides were loaded and segmented on
QuPath. Regions of interest (ROIs), also called crops in
the following, were manually defined by lung pathology
experts to identify tumour areas avoiding histological
artefacts, macrophage clusters and inflammations, fibro-
sis and necrosis. A total of 1113 tumour areas were
manually segmented for the 33 tissue samples, one per
patient.

• Radiomics modality: This modality includes initial
CT scans collected prior to the start of concomi-
tant chemoradiation therapy treatment. The CT scans

47566 VOLUME 11, 2023



M. Tortora et al.: RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer

FIGURE 2. Example images for both pathomics and radiomics modality. To the left: examples of
crops countered by pathologists. To the right: examples of CTVs manually defined by expert lung
pathology on CT scans. For the sake of presentation, we show both the crops and the CTVs scaled
to the same size.

consisted of single layer spiral computerised tomogra-
phy - Siemens Somatom Emotion. Acquisition param-
eters were 140 Kv, 80 mAs, and 3 mm for slice thick.
The scans were pre-processed applying a lung filter
(kernel B70) and a mediastinum filter (kernel B31). The
characteristics investigated in this work and presented
in section IV-B were extracted from 3D ROIs given by
the Clinical Target Volume (CTV), manually countered
by expert radiation oncologists. The CTV is the volume
containing the Gross Tumour Volume (GTV), i.e., the
macroscopically demonstrable disease, and therefore,
with a probability considered relevant for therapy, the
microscopic disease at the subclinical level. It is worth
noting that in [25] the authors showed that CTV should
be preferred to GTV when computing radiomics fea-
tures. In total, this modality contains 39 manually con-
toured CTVs for the 33 patients. It is worth noting that
the number of CTVs exceeds the number of patients as
multiple tumours can occur in a patient.

• Semantic modality: Two experienced radiation oncol-
ogists independently reviewed all CT scans and scored
each tumour for four semantic imaging features, divided
into tumour staging scores (T, N and tumour stage), and
histological evaluation. They also added the age and
sex of the patients. Each radiation oncologist blindly
assigned staging scores, and, in case of disagreement,
they reviewed the CT scans together and any discrep-
ancies were resolved through discussion until consensus
was reached.

As can be seen from these descriptions, the data sources
used are highly heterogeneous and are uncorrelated unimodal
flows. Thus, as we previously mentioned in section I, this
motivated the choice of using the late fusion approach as a
multimodal approach.

Figure 2 shows four examples of both crops extracted
by the pathologists from the high-resolution whole-slide
images which contain the selected tumour area of interest,
and CTVs extracted by expert oncological radiotherapist by

TABLE 1. A priori distribution of samples for each unimodal flow.

CT scans weekly collected during the radiation therapy treat-
ment. Moreover, the first three rows of Table 1 summarise
the a priori sample distribution for each of the three different
modalities.

IV. METHODS
This section introduces the proposed fusion framework to
handle the binary classification task introduced before. It is
composed of four main blocks shown in Figure 3 identified
by the bars at its bottom and presented in the following.
First, a pre-processing phase is applied to the different uni-
modal flows (section IV-A). This stage uniforms the data,
increases the dimensionality of unimodal flows, and encodes
categorical features into numerical ones. The second step,
presented in section IV-B, extracts the features from both
images belonging to the pathomics and the radiomics flows.
The third step consists in patient aggregation, i.e., we merge
each instance of the same patient of a single modality to get a
single label for each patient (section IV-C). This is necessary
so that the following data fusion step can work on consistent
samples, i.e., one sample per patient, and not on single his-
tologicals (patches or CTs’ slices). Section IV-D presents the
eight fusion rules we investigated that belong to three differ-
ent paradigms, this offering a view of how different fusion
techniques can fuse three sources of information. On the
one side, they are the product, maximum, minimum, mean,
decision template and Dempster-Shafer, and all of them are
based on the decision profile, i.e., a matrix organising the
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FIGURE 3. Proposed late fusion classification framework consisting of four blocks identified by the
bars at the bottom of the figure. Let M be a multiplexer that allows us switching between two patient
aggregation modes, A1 and A2, respectively. If mode A1 is active, mode A2 is deactivated by a control
signal passing through the logic NOT port, and vice versa.

output of l different soft classifiers in a multiple classier
framework, with l = 3 in our case. On the other side, the
other two are themajority voting rule that workswith the crisp
labels and the confidence rule, which is a classifier selection
technique.

A. PRE-PROCESSING
This section presents the pre-processing applied to each uni-
modal flow which differs for each modality due to the hetero-
geneity of the data.

In the case of pathomics images, we applied a patch
extraction operation to the original crops manually contoured
by expert pathologists on the high-resolution whole-slide
images. The patch extraction phase was performed by a
sliding window with a size equal to 100 × 100 and a stride
equal to 60, both chosen empirically. This step permits us to
increase the cardinality of the available images by exploiting
the variability typical of different regions of the same image.
Furthermore, it also provides homogeneous images, as the
original ones are characterised by a wide size variability.
After this operation, we empirically removed the extracted
patches with more than 20% of pixels belonging to the back-
ground to keep only the most informative images. In the
end, the new repository of pathomics patches is composed
of 53550 instances.

Let us now focus on the pre-processing for radiomics.
As already reported in section III, the radiomics modality
consists of CTVs manually contoured by expert radiation
oncologists on CT scans. To increase the dimensionality of
this modality, we decomposed the CTVs, i.e., the volumes
containing the macroscopically demonstrable tumour mass
and themicroscopic disease at the sub-clinical level, into their
component slices. Thus we passed from having few 3DCTVs
per patient to multiple 2D slices per patient, for a total of
928 slices.

Finally, in the case of semantic information, in order to
have numerical features, we applied an ordinal encoding for
T, N and stadium features, and one-hot encoding for sex and
diagnosis features as no ordinal relation exists for these latter
categorical variables.

The second part of Table 1 shows the a priori distribution
of instances obtained after the pre-processing.

B. FEATURES EXTRACTION
This section describes the features extraction stage imple-
mented for both the pathomics and the radiomics unimodal
flows. It is straightforward that this step is not applied to the
semantic unimodal flow, since it includes patients’ medical
data already processed. Note also that the features computed
for each modality were selected to optimise each unimodal
flow, but this is out of the scope of this work and, for the sake
of brevity, we do not present this phase here. Nevertheless,
the starting feature set consists of 2D intensity and texture
features well established in the medical image processing
scenario [26] and, specifically, in radiomics [27] and dig-
ital pathology [28]. They are statistical features extracted
from the first-order image histogram, and several descriptors
extracted from the results provided by both the Grey Level
Co-OccurrenceMatrix (GLCM) and the Local Binary Pattern
(LBP) operators. Please note that we also investigated the use
of deep learning, as we will discuss in section V.

1) PATHOMICS
Among the descriptors mentioned before, histopathological
images are represented by measures derived from the GLCM,
computed from each patch.1

1Note that the GLCM operator is applied on the S-channel of the HSV
colour model.
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The GLCM is a texture feature used to analyse the spa-
tial distribution of grey levels within a 2D image at the
microscale [29]. This operator can be parameterised in terms
of δ and θ . The former represents the relative distance in
pixels between two points in I , while the latter is the relative
orientation between two points in I . Here, taking into account
preliminary experiments and findings in related fields [30],
[31], [32], [33], for pathomics we used δ = 1 and θ ∈

[0◦, 45◦, 90◦, 135◦], so that each patch has four GLCMs.
From each of these matrices we extracted six Haral-

ick descriptors [29], i.e., contrast, dissimilarity, homogene-
ity, energy, correlation and the angular second moment,
listed in depth in Appendix B. Their concatenation provides
24 textural descriptors per patch.

2) RADIOMICS
For the radiomics modality, we used the same features as
presented in our previous work [34]. Hence, for each slice
that makes up the 3D ROI extracted from the CT scans
by the radiologists, we computed 12 statistics features and
104 textural features.

Statistical features consist of the moments up to the fourth-
order of the first-order image histogram, i.e., the mean, the
standard deviation, the skewness and the kurtosis. Further-
more, the picture of grey-level distribution is also grasped by
the histogram width, the energy, the entropy, the value of the
histogram absolute maximum and the corresponding grey-
level value, the energy around such maximum, the number
of relative maxima in the histogram and their energy. These
statistics are listed in depth in Appendix B.
Texture features are derived from the GLCM and from

the LBP. The former is parameterised by a unit distance δ

between pixels and an orientation θ ∈ [0◦, 45◦, 90◦, 135◦]
and we extracted six second-order statistical features as the
pathomics flow.

The latter is an operator that describes the local texture by
assigning each pixel in an image a binary code according to its
local circular neighbourhoods of P points located on the cir-
cumference of radius R centred on the pixel itself [35]. In this
work, we used an extension of the original operator making
it invariant to both local monotonic greyscale variations and
rotation [36]. Oncewe have applied this operator to each pixel
in the image, we can compute a histogram of the LBP decimal
codes’ occurrences.

In this work, we empirically parameterised R with a unit
distance and we set P equal to 8. Finally, the same 12 sta-
tistical features reported above on the top of this section
(i.e., mean, standard deviation, skewness, kurtosis, etc.) are
then computed from the histogram of LBP distribution.

C. PATIENT AGGREGATION RULE
As mentioned above, each patient is composed of several
samples both for the pathomics and the radiomics flows. For
the former, the samples correspond to the patches extracted
from the crops contoured by the pathologists, whilst for the

latter, the samples correspond to the various slices included
in the segmented CT VOIs.

For this reason, in order to have a single classification
per patient and consistent sample fusion, a samples’ patient-
wise aggregation is necessary. In this work, we used two
different patient-wise aggregation rules, denoted as A1 and
A2 in Figure 3, respectively.
The former is applied before the classification step, and it

averages out each component of the feature vector x ∈ ℜ
n

belonging to the same patient p:

xp =
1
N p

∑
x∈X p

x

where X p is the set of feature vectors computed from all the
samples of the same patient p (i.e., histopathology patches or
CT slices), and N p is its cardinality.
The latter works after the classification process, and it

averages the soft labels of all the instances of a patient. For-
mally, given a classification problem with C class labels and
L unimodal flows,2 and assuming one classifier per modality,
let D = {Di}Li=1 denotes the set of classifiers. Hence, given
x, a soft classifier outputs a C-dimensional vector given by

Di (x) =
[
di,1 (x) , . . . , di,C (x)

]T
,

where di,j (x) ∈ [0, 1] is the soft label and it represents the
degree of support provided by classifierDi for the hypothesis
that x comes from the class ωj. On this premise, the A2
patient-wise aggregation rule is defined by:

dpi,j =
1
Np

∑
x∈X p

di,j (x)

where, thus, dpi,j represents the average soft label per class
computed over all the instances of the i-th modality of the
same patient (i.e., x ∈ X p).

D. LATE FUSION RULES
This section introduces the late fusion rules that merge the
multimodal information extracted from the different uni-
modal flows.

Using the notation already introduced, in a multimodality
framework we organise the outputs returned by the L uni-
modal classifiers into a patient-wise decision profile DPp,
defined by the following matrix:

DPp =



µ1,1 · · · µ1,j · · · µ1,C
...

. . .
...

...

µi,1 · · · µi,j · · · µi,C
...

...
. . .

...

µL,1 · · · µL,j · · · µL,C


where µi,j is computed according to A1 or A2 aggregation
rule. This implies that, using A1, µi,j = di,j(xp), whereas
using A2 we have µi,j = dpi,j. Thus, the patient-wise data is
projected into a new feature space with dimension L×C and

2Note that in our case C = 2 and L = 3.
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this new representation combining the unimodal classifica-
tion stages is depicted by the symbol

⊗
in Figure 3.

The fusion methods calculate the support χj for the classωj
by applying some mathematical procedure described below
on the DPp representation and, using the maximum member-
ship rule, we then assign the patient p to the class ωs if:

χs ≥ χz, ∀ z = 1, . . . ,C

In this work, to compute χj we apply eight late fusion
techniques, represented with the tag LFt , with t = 1, . . . , 8,
in Figure 3. They include four fusion rules computing the
support for the j-th class independently of the support of the
other classes:

1) Product rule (LF1): it computes the support χj for the
class ωj as:

χj =

L∏
i=1

µi,j

2) Max rule (LF2): it computes the support χj for the
class ωj as:

χj = max
i

µi,j

3) Min rule (LF3): it computes the supportχj for the class
ωj as:

χj = min
i

µi,j

4) Mean rule (LF4): it computes the support χj for the
class ωj as:

χj =
1
L

L∑
i=1

µi,j

We also investigated others two rules computing the class
supports comparing the entire DPp feature space with the
decision templates (DTs) of each class. DTs-based methods
have been found to be among the best combination techniques
and show stable performance over a range of experimental
settings [37]. They are:

1) Decision Templates, DTs (LF5): its use was proposed
in [37] and consists of calculatingC DTs, one per class,
that capture the pattern of each. The decision template
DTi for classωi is the centroid of classωi in the training
L×C feature spaceDPp and it is calculated as follows:

DT i =
1
Ni

Ni∑
p=1

DPp,

where Ni is the number of patients belonging to the
class ωi.
Finally, the p-th patient’s support degree χi for the class
ωi is computed bymeasuring the similarity between the
current DPp and DTi:

χi = 1 −
1

L · C

C∑
j=1

L∑
i=1

(
µk,j − dt ik,j

)2
,

where dt ik,j is the k , j-th entry in the i-th decision
template DTi.

2) Dempster-Shafer rule (LF6): it is still based on the
use of DTs. The p-th patient’s proximity 8p between
the output of the i-th classifier Dpi and DT

i
j is defined

as [38]:

8
p
j,i =

(
1 +

∥∥∥DT ij − Dpi

∥∥∥2)−1

∑C
k=1

(
1 +

∥∥∥DT ij − Dpi

∥∥∥2)−1 ,

whereDT ij denotes the i-th row of decision template for
the class ωj, D

p
i denotes the output of the i-th classifier

on the p-th patient and ∥·∥ is any matrix norm. Then,
the final support degree for the j-th class is:

χj = K
L∏
i=1

8
p
j,i

∏
k ̸=j

(
1 − 8

p
k,i

)
1 − 8

p
j,i

[
1 −

∏
k ̸=j

(
1 − 8

p
k,i

)]
where K is a scaling factor.

For the sake of completeness, we also investigated other
two rules working with different paradigms.

On the one side, we use the majority voting rule (LF7)
that works with crisp label outputs of each modality by
assigning the patient p the class label ωs that is most repre-
sented among those returned by the L unimodal classifiers.
Formally:

s = argmax
j

L∑
i=1

µ
crisp
i,j , for j = 1, . . . ,C

where

µ
crisp
i,j =

 1, if j = argmax
w

µi,w

0, Otherwise
, ∀ i = 1, . . . ,L ∧ j = 1, . . . ,C

On the other side, we also applied the confidence rule
(LF8), which assigns patient p the class label ωs:

s = argmax
j

DPpq, for j = 1, . . . ,C

which corresponds to the q-th unimodal classifier output with
the largest degree of support:

q = argmax
i

(
maxDPpi

)
, for i = 1, . . . ,L

where DPpi denotes the i-th modality whose classifier output
is represented by row the i-th of DPp.

V. EXPERIMENTAL SETUP
Herewe introduce the experimental setup adopted, presenting
in section V-A the set of experiments carried out, and in
section V-B the validation adapted as well as the evaluation
metrics used.
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TABLE 2. Summary of the 16 rule combinations performed in this work.

A. SET OF EXPERIMENTS
The first set of experiments consists of evaluating the late
fusion paradigm through all the different combinations of
the fusion and aggregation rules, LFx and Ay, respectively,
for a total of 16 combinations since x ∈ {1, . . . , 8} and
y ∈ {1, 2}, which are summarised in Table 2. Furthermore,
these 16 experiments were performed for all combinations of
modalities, i.e.Pathomics+Radiomics+Semantic (P+R+S),
Pathomics+Semantic (P+S), Radiomics+Semantic (R+S),
and, finally, Pathomics + Radiomics (P + R), for a total of
64 experiments.

Then, we compared the late fusion approach with an early
fusion framework. Concerning this last approach, in this work
we considered two early fusion rules: a simple approach in
which the different modalities are concatenated without any
processing on the feature space, and a concatenation given
by the application of the Kronecker product, as presented
in [10]. Indeed, the latter rule was chosen to bring out a corre-
lation of the different modalities in the various combinations
of them. For the sake of consistency of samples, in the early
fusion paradigm we only applied the A1 aggregation rule, i.e.
samples’ patient-wise aggregation is performed by averaging
each component of the feature vectors belonging to the same
patient.

In all the experiments, we used the same learning paradigm
in the classifier blocks of Figure. 3, in which is a Random
Forest [39] with entropy as a function to measure the quality
of a split, whilst, for all the other parameters, we used the
default values provided by the Scikit-learn framework [40],
without any fine-tuning. Indeed, it was empirically observed
in [41] that in many cases the use of tuned parameters can-
not significantly outperform the default values of a classi-
fier suggested in the literature, as also confirmed in other
works [42], [43], [44].

Although we focus on the potential of multimodal learning
in outcome prediction for NSCLC, in this work we also
compare hand-crafted features with a deep learning frame-
work to provide a thorough and complete analysis. For this
comparison, the 64 experiments described above were also
performed using deep features extracted from both path-
omics and radiomics modalities using the ResNet-18 [45]
and GoogLeNet [46] networks respectively, pre-trained on
ImageNet dataset. The choice of using ImageNet as a pre-
training tool is motivated by the fact that this dataset provides

TABLE 3. Results for the unimodal flows in terms of AUC.

enough rich image detail of different objects and targets, and
therefore we believe that these pre-trained network feature
extraction capabilities can be transferred to both pathomics
and radiomics tasks. For each patient we trained the CNNs
with a transfer learning process performed with all samples
from the other patients for 20 epochs, as suggested by our
previous work [47]. Furthermore, given the reduced amount
of training samples, during the training, we froze the weights
for all the layers except the ones of the new final fully con-
nected layer. Straightforwardly in this last layer, we removed
the original 1000 neurons, which are replaced by two soft-
max neurons with random weights. These experiments were
performed using the PyTorch framework [48].

B. EVALUATION METHODS
We tested all the proposed approaches with a leave-one-
patient-out (LOPO) cross-validation paradigm so that we
performed a number of runs equal to the number of patients.
Therefore, in each run, the test set consisted of all samples
belonging to one patient, whereas all the others were allocated
to the training set.

The patient-wise performances were computed by averag-
ing the Area under the ROC curve (AUC) of each run, where,
as a reminder, the positive and negative classes correspond to
adaptive and non-adaptive patients, respectively. It is worth
recalling that AUC is a figure of merit widely adopted in
the medical community to characterise the performance of
a prediction model. Furthermore, to compare the results we
also applied some statistical tests that will be introduced
hereinafter and formally presented in Appendix A

VI. RESULTS AND DISCUSSION
This section presents and analyses the results in several direc-
tions, starting from the raw outputs reported in Table 3 and
Table 4. The former reports the scores attained by every single
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TABLE 4. Overall results for the 64 experiments performed in terms of
AUC, where P, R and S stand for pathomics, radiomics and semantic,
respectively.

modality, eventually using one aggregation rule to combine
the features describing the samples. The radiomics modality
with the use of the feature mean as patient aggregation rule is
the best unimodal flow with an AUC equal to 0.870. Further-
more, this performance score confirms the effectiveness of
the radiomics signature identified in our previous work [34],
as the AUC obtained there, equal to 0.82, is of comparable
magnitude to the one presented in this work. Nevertheless,
the cohorts of patients included in the two studies are not
directly comparable in terms of the dimensionality of the
dataset. Table 4 shows the performance attained by the pair-
wise fusion approaches and by the trimodal combination, for
all the 16 fusion rules. With an AUC equal to 0.909, the best
results are achieved by the multimodal triplet P+R+ S, and
the pairwise combinations R+S and P+R, with the following
fusion rules respectively: A1 + LF6, A1 + LF5 and A1 + LF2.
Hence, all of them are given by the use of the feature mean
as patient aggregation rule at the feature level followed by
the Dempster-Shafer, Decision Template, and Maximum as
fusion rule, respectively.

To discuss these results, the rest of this section deep-
ens the results in three directions. First, we present the
results provided by the late fusion approaches introduced
in section IV-D and schematically depicted in Figure 3
(section VI-A). Second, in section VI-C we compare late
fusion and early fusion approaches. Third, in section VI-C
we show a comparison of hand-crafted and deep features.

A. LATE FUSION RESULTS
The contribution of this experiment is three-fold, so it permits
us to answer the following three questions:

FIGURE 4. Radar chart showing the performance in terms of AUC of the
unimodal and multimodal approaches, where P stands for Pathomics,
R for Radiomics, and S for Semantic. The filled circle represents the flow
with the highest rank, whilst blank circles represent unimodal or
multimodal approaches with statistically different performances from the
best approach according to Friedman test with the Iman-Davenport
amendment followed by the pairwise Bonferroni-Dunn post-hoc test
(p < 0.1).

1) What is the best combination of modes?
2) Within the multimodal combination, which is the

unimodal mode contributing more to the best
performance?

3) What is the best fusion rule?
Let us now explore each of these questions. In all the
cases we will introduce figures that offer a high-level syn-
thesis of the huge amount of results provided by all the
experiments.

1) BEST MULTIMODAL COMBINATION
Figure. 4 shows a radar chart plotting the performances
in terms of AUC of the various unimodal and multimodal
approaches. As mentioned above and summarised in Table 2
we have a total of 16 different rules, given by the different
combinations of the aggregation rules (Ay) and the late fusion
rules (LFx). So for each of these rule combinations we rank
each approach so that the one with the highest performance
receives a score of 7, whilst the one with the lowest perfor-
mance gets a score of 1. At the end of this iterative process the
rank of each stream is given by the sum of the ranks received
for each of the 16 experiments mentioned above. We then
normalise for the maximum rank achievable. In the figure,
we adopt a filled circle to mark the flow with the highest
rank, while the blank circles denote those approaches with
a lower rank, whose performances are statistically different
from the best one according to the Friedman test with the
Iman-Davenport amendment followed by the Bonferroni-
Dunn pairwise post-hoc test (p < 0.1). Furthermore, we do
not report any circle when the rank of a flow is lower than the
best one and the corresponding performance are not statisti-
cally different.
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FIGURE 5. Radar chart showing the performance in terms of AUC of the fusion rules
given by the combination of LFx and Ay (Figure. 3) and varying the modalities
combination. Filled circles represent the fusion rule combination with the highest
rank, whilst blank circles represent models with statistically different performances
from the best model according to the Wilcoxon signed-rank test (p < 0.1).

Under these premises, in this figure the lengths of the
spokes show how the multimodal approaches generally per-
form better than the unimodal ones, as the latter always
differ from the best combination in a statistically significant
way. Furthermore, as you can see from the filled circle, the
trimodal combination given by P+R+S is the best approach
and it significantly differs from all unimodal approaches
(i.e. P, R, S) P + S. Although in a different clinical context,
similar considerations about the inherent superiority of mul-
timodal approaches over the unimodal flows were obtained
from [12] and [49]. Indeed in [12] and [49], the overall sur-
vival analyses performed for glioma and lung cancer, respec-
tively, show how the multimodal combination significantly
outperforms the best performing unimodal flows. Further-
more, as in our work, in both studies the triplet multimodal
combination emerged as the best approach.

2) MOST INFORMATIVE UNIMODAL APPROACH
Let us now rank the unimodal approaches in order to under-
stand which flow is the most informative in terms of AUC.
The ranks are computed as described before. Indeed, given
a fusion rule, the multimodal approaches are ranked so that
the flow with the best performance gets rank 4, as we have
four different multimodal approaches. Then, all the unimodal
approaches that make up the multimodal flow get the same
rank as the multimodal one. So, for instance, if the case
P + R + S multimodal flow got rank 3, the unimodal
approaches of pathomics, radiomics and semantic all get the
rank 3. This operation is repeated for all 16 different rule
combinations and the final ranks are updated by accumulation
and, finally, normalised for the maximum rank achievable.

Hence, with a rank equal to 0.667, the radiomics approach
is the most informative unimodal flow, outperforming both
the pathomics and semantic flows which got a rank equal to
0.549 and 0.535, respectively. Similar considerations were

obtained from [12] where, although in a different clinical
context, the overall survival analysis of glioma dealing with
the radiomics unimodal flow emerges as the most informative
modality in terms of Cox Loss.

3) BEST FUSION RULE
Figure 5 shows a radar chart plotting the performance in
terms of AUC of the various fusion rules varying the way we
combine the modalities. Let us remember that, as mentioned
above and summarised in Table 2, the rules represented in
the figure are the combination of the aggregation and late
fusion rules, Ay and LFx , respectively. For each multimodal
combination, we ranked each fusion rule in terms of AUC so
that the worst rules receives rank 1, whilst the best receives
rank 16. Filled circles in the figure represent the fusion rule
combination with the highest rank, whilst blank circles repre-
sent models with statistically different performances from the
best fusion rule according to the Wilcoxon signed-rank test
(p < 0.1). Note that here we used such test rather than Fried-
man’s method since, for each late fusion rule, we compared
the four different multimodal combinations, a number limit-
ing the application of Friedman’s test. Furthermore, we do not
report any circle when the rank of a flow is lower than the best
one and the corresponding performance are not statistically
different.

The chart shows that the patient aggregation rule named as
score mean aggregation (A2) performs generally worst than
the feature mean rule (A1). On the other hand, if we focus
on the late fusion rules, we observe that they perform almost
equally well on all multimodal combinations.

Moreover, the best combinations of rules depend on the
modality combination considered. For the P + R + S com-
bination, the best rule combination is denoted as A1 + LF6,
which is therefore given by the use of the feature mean
as patient aggregation rule at feature level followed by the
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TABLE 5. Exhaustive comparison of late and early multimodal learning
for the various modality combinations in terms of AUC. Each cell shows
the amount of win–tie–loss of a combination of the corresponding
multimodal combination handled in the late fusion paradigm. For each
modalities combination, the cells are highlighted in grey when the late
fusion approaches are significantly better than the early fusion rules
according to the one-tailed sign test (p < 0.05).

Dempster Shafer as fusion rule working on the outputs of
each classifier. For the P + S combination, the best rules
are denoted as A1 + LF4 and A1 + LF7, which are given by
the combination of the feature mean as patient aggregation
rule and, respectively, the mean and majority vote as fusion
rule. For the R+ S combination, the best rule combination is
denoted as A1 + LF5, which is therefore given by the use of
the feature mean followed by the Decision Template as fusion
rule. For the P+ R combination, the best rule combination is
denoted as A1 + LF2, which is therefore given by the use of
the feature mean followed by the maximum as fusion rule.
Globally, the best fusion rules are A1 + LF4 and A1 + LF7,
since on average they ranked highest across all modality
combinations. It suggests that these rules are well adapted to
different situations, generalising successfully across different
types of datasets, which, in turn, are characterised by different
data types, sizes and dimensionalities.

B. LATE VS EARLY FUSION
Table 5 shows an exhaustive comparison of late and early
multimodal learning for the various modality combinations
in terms of AUC. As we already mentioned, with the early
fusion paradigm we only tested the A1 aggregation rule for
the sake of consistency of samples. Each cell reports the
amount of win–tie–loss of the corresponding multimodal
flow handled in the late fusion paradigm. Since early fusion
only handles the A1 aggregation rule, the comparison was
restricted to only the 8 late fusion rules that use this method
of aggregation. Given the number of patient data, we statis-
tically validated this comparison with the sign test, a simple
but powerful statistical test. In Table 5, for each modalities
combination, the grey cells highlight when the late fusion
approaches are significantly better than early ones according
to the one-tailed sign test (p < 0.05). The table shows
that the late fusion paradigm almost always outperforms
the early fusion paradigm for the performance metric con-
sidered. This suggests us that there is a certain difficulty
in the data-level fusion process when the data are signif-
icantly uncorrelated, and have such a different nature and
dimensionality, as in the medical task we are dealing with in
this work.

C. HAND-CRAFTED VS DEEP FEATURES
This experiment compares the discriminant capacity of hand-
crafted features (as discussed in section IV-B) with that of

TABLE 6. Exhaustive comparison between the performance of modality
combinations expressed in terms of AUC, where P stands for Pathomics,
R for Radiomics, and S for Semantic. Each cell shows the amount of
win–tie–loss of a combination in a row compared with a combination in a
column, respectively performed using hand-crafted and deep features.
The cells highlighted in grey represent the modality combination
significantly better than another according to the one-tailed sign test
(p < 0.05).

deep features, using the same multimodal late fusion frame-
work (as depicted in Figure 2). Hence, for the two descriptor
groups, we have the same number of experiments, i.e., 64 as
discussed in section V-A.

We summarised the comparison in Table 6, which offers an
exhaustive comparison between themodality combinations in
terms of AUC. Each cell shows the amount of win–tie–loss of
a pair of modality combinations indexed by row and column,
respectively performed using hand-crafted and deep features.
For instance, the second cell in row 1, with indexes (1, 2),
counts the wins, ties and losses obtained by the modalities
triplet P+R+S performed with hand-crafted features against
the modalities pair P + S performed with deep features.
Since for each combination we have a total of 16 different
combinations of the fusion and aggregation rules, LFx and Ay
respectively, the total amount of scores for each cell is equal
to 16.

Again, we statistically validated this comparison with the
sign test. In Table 6 the grey cells represent the modality
combination significantly better than another according to
the one-tailed sign test (p < 0.05). From the table we can
see how the hand-crafted features perform better than the
deep features. The reason for this result can be found in
the low dimensionality of the dataset, as could be expected.
Indeed, this limits the ability of the deep neural networks to
fully express their power of abstraction, generalisation and
discrimination.

VII. CONCLUSION
In this work, we have presented a multimodal late fusion
framework combing radiomics, pathomics and clinical data
to predict radiation therapy treatment outcomes for NSCLC
patients. We fed the proposed framework with hand-crafted
features extracted from the aforementioned data sources.
Here, we explored the combinations of eight different late
fusion rules (i.e., product, maximum, minimum, mean,
decision template, Dempster-Shafer, majority voting, and
confidence rule) with two samples’ patient-wise aggregation
rules (i.e., feature mean and score mean) implemented to
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have a single classification per patient and consistent sample
fusion, for a total a 64 experiments.

The take-home message emerging from this work is that
the multimodal learning framework leads to a significant
improvement of a learning system in terms of performance.
Indeed, in this work the simultaneous fusion of the three
modalities is the best approach and it significantly differs
from all the models fed with the stand-alone data flows.
Although in a different clinical context, similar considera-
tions about the inherent superiority of multimodal approaches
over the unimodal ones were obtained from [12] and [49].

While our work demonstrates the potential of the
multimodal framework to predict radiotherapy outcomes,
some limitations must be acknowledged. Although hand-
crafted features still show remarkable performance in low-
dimensional datasets, such as the one in our study, they may
be prone to human biases, which could adversely affect the
accuracy and limit the generalisability of the results.

Future work will focus on the following directions to over-
come these limitations. External validation on independent
datasets, when will be available, would help us robustly
assess the performance of the proposed multimodal frame-
work on new patient cohorts. Furthermore, by increasing the
dimensionality of the dataset, deep learning approaches can
be reconsidered. These have the potential to automatically
learn complex patterns from the data, which could potentially
improve the accuracy, reliability, and robustness of the pre-
diction model, as happened in other fields. Next, we deem
that incorporating the eXplainable AI paradigm into the pro-
posed multimodal late fusion framework is a direction worth
investigating. Indeed, it underlies the mechanisms that drive
predictions, which is required to help clinicians to justify and
make informed evidence-based decisions [50]. By making
the proposed framework interpretable, we can facilitate the
adoption of AI techniques into current medical practice and
improve patient outcomes.
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APPENDIX A
STATISTICAL TESTS
In this work, we used various statistical tests to validate and
compare our approaches, which are outlined in the follow-
ing sections. We recommend referring to [51] for interested
readers to provide further insight into these methods.

A. FRIEDMAN TEST WITH IMAN AND
DAVENPORT AMENDMENT
The Friedman test with an amendment by Iman and Dav-
enport is a non-parametric statistical test used to compare
multiple models. For each of the 16 different combinations
of fusion rules (Ay + LFx), each flow is ranked so that the
best receives rank 1, whilst the worst receives rank 7. Tied
ranks are shared equally as explained above. The test statistic
with the amendment proposed by Iman and Davenport is the
following:

FF =
(N − 1) χ2

F

N (M − 1) − χ2
F

which follows the F-distribution with (M − 1) and
(M − 1) (N − 1) degrees of freedom and where:

χ2
F =

12N
M (M + 1)

 M∑
j=1

R2j −
M(M + 1)2

4


where Rj =

1
N

∑N
i=1 r

j
i is the average rank of the j-th flow

and r ji is the rank of the j-th flow when considering the
i-th fusion rule, where i = 1, . . . ,N and j = 1, . . . ,M
(N = 16,M = 7). Once the F-statistic has been computed,
we can carry out the test comparing it with the critical value
for the chosen level of significance. If it is greater than this
value we can reject the null hypothesis H0 and accept that
there is a difference between the flows.
Bonferroni-Dunn Post-Hoc Test: If H0 is rejected,

Bonferroni-Dunn post-hoc test is applied to find exactly
where the differences are:

z =
R1 − Rj√
M(M+1)

6N

where R1 is the average rank of the best flow and Rj is the
average rank of j-th flow. Two flows are statistically different
if the obtained p-value from this z-value is smaller than α

M−1 ,
where α is the desired level of significance.

B. WILCOXON SIGNED RANK TEST
The Wilcoxon signed-rank test is a non-parametric statisti-
cal test that tests if two models are statistically different.
Given the error estimates of two models for the N folds of the
LOPO validation paradigm, the test computes the differences
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of these errors di. Then it ranks the absolute values of the
differences |di| so that the smallest value receives rank 1,
whilst the largest one receives rank N . If there is a tie, all the
ranks are shared so that the total sum stays 1 + 2 + · · · + N .
Subsequently, it splits the ranks into positive and negative
according to the sign of di and calculates the following
amounts:

R+ =

∑
di>0

ri +
1
2

∑
di=0

ri, R− =

∑
di<0

ri +
1
2

∑
di=0

ri

Finally, the test computes the following statistic:

z =
T −

1
4N (N + 1)√

1
24N (N + 1) (2N + 1)

which is approximately distributed as a normal distribution
and where T = min (R+,R−). Once the z-statistic has been
computed, we can carry out the test comparing it with the crit-
ical value for the chosen level of significance. If it is greater
than this value we can reject the null hypothesis and state that
the two methods have statistically different performances.

C. SIGN TEST
The sign test is simply performed counting wins, ties and
losses, with or without statistical significance, of eachmethod
pair. This test is based on the intuition that if two methods
are equivalent, each one will perform better than the other
one on approximately N/2 of the tests. Hence, following
the binomial distribution, we can claim that the first method
is significantly better than the second one if its amount of
wins is greater than N/2 + 1.96

√
N/2, at a level of signifi-

cance of 0.05.

APPENDIX B
STATISTICAL DESCRIPTORS
The following are the statistical measures extracted from
the intensity histogram and used in this work to provide a
synthetic description of both the LBP and the grey level
histogram:

• Mean:

m =

l−1∑
k=0

rkp (rk)

• Standard deviation:

σ =

√√√√ l−1∑
k=0

(rk − m)2p (rk)

• Smoothness:

R = 1 −
1(

1 + σ 2
)

• Skewness:

skewness =

l−1∑
k=0

(rk − m)3p (rk)

• Kurtosis:

kurtosis =

l−1∑
k=0

(rk − m)4p (rk)

• Energy:

energy =

l−1∑
k=0

p (rk)2

• Entropy:

entropy = −

l−1∑
k=0

p (rk) log2 [p (rk)]

• Absolute maximum:
l−1
max
k=0

[p (rk)]

• Maximum value:
l−1

argmax
k=0

[p (rk)]

where l is the number of grey levels in the image I and p (rk)
is the number of pixels with a grey level equal to rk .

Given instead a grey-level co-occurrence matrix G
extracted from image I , the following are the formal defini-
tion of Haralick features used in this work:

• Contrast:
l−1∑
i,j=0

Gi,j
(
gi − gj

)2
• Dissimilarity:

l−1∑
i,j=0

Gi,j
∣∣gi − gj

∣∣
• Homogeneity:

l−1∑
i,j=0

Gi,j
1 + (gi − gj)2

• Angular Second Moment (ASM):
l−1∑
i,j=0

G2
i,j

• Energy:
√
ASM

• Correlation:
l−1∑
i,j=0

Gi,j

 (gi − µi) (gj − µj)√
(σ 2
i )(σ

2
j )


where Gi,j denotes the i, j-th entry of G, l is the number of
grey levels in the image I , gi and gj denote two grey level
values ∈

[
0, 2l − 1

]
, and, finally, µi denotes the mean value

of the one-dimensional marginal distributions of G.
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