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ABSTRACT A growing interest in synthetic data has stimulated the development and advancement of a
large variety of deep generative models for a wide range of applications. However, as this research has
progressed, its streams have become more specialized and disconnected from one another. This is why
models for synthesizing text data for natural language processing cannot readily be compared to models
for synthesizing health records anymore. To mitigate this isolation, we propose a data-driven evaluation
framework for generative models for synthetic sequential data, an important and challenging sub-category of
synthetic data, based on five high-level criteria: representativeness, novelty, realism, diversity and coherence
of a synthetic data-set relative to the original data-set regardless of themodels’ internal structures. The criteria
reflect requirements different domains impose on synthetic data and allow model users to assess the quality
of synthetic data across models. In a critical review of generative models for sequential data, we examine
and compare the importance of each performance criterion in numerous domains. We find that realism and
coherence are more important for synthetic data natural language, speech and audio processing tasks. At the
same time, novelty and representativeness are more important for healthcare and mobility data. We also
find that measurement of representativeness is often accomplished using statistical metrics, realism by using
human judgement, and novelty using privacy tests.

INDEX TERMS Artificial intelligence, big data, deep learning, generative models, neural networks,
synthetic data, privacy.

I. INTRODUCTION
In recent years, the adoption of deep generative models for
synthetic data has spread to various domains. Such models
can generate impressive high-quality synthetic images [96],
text [54], and music [12] as well as sensory data [61],
electronic health records [6], mobility trajectories [53], and
financial time-series [85]. This significant progress was
made possible by a facilitated accessibility of vast amounts
of data and computing technologies capable of handling
the data, both emerging from the continuing rise of ‘‘big
data’’ and advances in deep learning. Models based on
deep learning can handle large amounts of complex, highly
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correlated, high-dimensional data and generate synthetic data
for many use-cases. Among others, applications of synthetic
data approaches boosted progress in data augmentation [32],
imputation of missing data [19], fairness in biased data-
sets [87], and sharing of privacy-sensitive data-sets [91].
Today, deep generative data synthesis is a large and mature
field that involves many streams of research across a wide
range of domains. An overview is provided by a few review
articles on deep generative data synthesis, for example,
in molecular science [50], graph data [39], engineering
design [71], in finance [3], and in the industrial Internet of
Things area [21].

While the field has advanced in big leaps, research in
the various (sub-)domains also tend to drift apart. This is
particularly the case for domains that deal with processing
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FIGURE 1. Illustration of the heterogeneity of sequential data based on
cardinality and dimensionality.

of sequential data, such as geo-locations [75], shopping
paths [47], text [54], video streaming [46], [78], music [12],
[95], clickstreams [15], internet browsing behavior [28],
financial transactions [60], electronic health records [6] or
water treatment. These data stem from dynamic phenomena
which are at the heart of many fields of research, but they
pose significant challenges for modelers and analysts. While
different types of sequential data share underlying serial
correlational structures, they are also heterogeneous in terms
of the dimensionality and cardinality of steps in a sequence
(see Figure 1). And thus, indeed, it is difficult to compare
models applied to problems in natural language processing
(NLP) with models for the generation of synthetic health
records. Still, some domains share common characteristics,
and models applied in one field can be applied in others.
Consider the recent success of so-called transformer models
introduced in natural language generation (NLG) [14], [70]
and now being applied in other domains to generate synthetic
time-series data [45]. Because model transfer into other
fields is not always straightforward, new insights can remain
isolated to specific domains and fail to disseminate. The two
most common barriers are (i) heterogeneity of the data and
(ii) conflicting requirements for synthetic data in different
use-cases. Because research in one domain can benefit from
insights from other domains, a common basis for discussing
generative models and guiding research is needed, especially
in domains in which research to date is sparse.

To facilitate this discussion, we propose a framework
for deep generative models designed to generate synthetic
sequential data based on high-level evaluation criteria.
This framework addresses the barriers of heterogeneity in
the data and the data requirements via abstraction and
allows researchers to put generative models into broader
contexts. We present a critical review of publications on deep
generative models in the context of synthetic sequential data
and apply the proposed framework to those models.

The present article complements prior reviews in related
fields, such as broad reviews on deep learning in general [67]
and reviews of architectures of deep generative models

FIGURE 2. High-level structure of the article.

[35], [64], [81]. Furthermore, in addition to the above
mentioned domain-specific reviews on synthetic data, a num-
ber of review articles have focused on specific model
architectures, such as generative adversarial networks [44],
normalizing flows [52]. However, the scope of those articles
is narrow. They address specific model architectures or
domains and disregard literature in other domains. The
present article contributes to filling the gap between such
broad methodological and narrow field-level reviews of deep
generative models for synthetic data by proposing a domain-
and model-agnostic framework to assess deep generative
models for synthetic sequential data.

The remainder of the article is organized as summarized
in Figure 2. Section II introduces the high-level evaluation
framework for generative models. Then, in section III,
we assess applications of synthetic data in different domains,
compare strengths and weaknesses of the used models and
their architectures and critically analyze them according
to the proposed evaluation framework. Finally, section IV
concludes the paper and provides directions for future
research.

II. EVALUATION OF GENERATIVE MODELS FOR
SYNTHETIC DATA
Metrics to evaluate the performance of deep generative
models are as diverse as the models’ objectives and specific
data structures involved. General-purposemetrics, such as the
commonly used negative log-likelihood (NLL), average log-
likelihood (ALL) and maximum mean discrepancy (MMD)
are rare and have limitations of their own [79]. Other metrics
are specific particular model architectures. References [9]
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and [10], for example, give a thorough overview of metrics
commonly used to evaluate generative adversarial networks
(GANs). Some metrics are domain-specific, such as the
classifier-based inception score (IS) for synthetic images
proposed by [74]. [79] reviews metrics used to evaluate
generative models in the visual domain, and [39] for graph
data. These metrics effectively measure progress in specific
domains and compare models of a specific type, such as
GANs; using them to compare different models and domains
can be challenging. Even when considering only sequential
data, heterogeneity is quickly apparent. The cardinality and
dimensionality of the data illustrate this heterogeneity, being
augmented only further by the lengths of sequences. For
example, text is one-dimensional and discrete since it is made
up of single words in a discrete vocabulary. Video data, on the
other hand, is continuous and high-dimensional. At each step,
there is a whole image that consists of many pixels, each
is described by real numbers between 0 and 255. Figure 1
illustrates the heterogeneity in the landscape of sequential
data by plotting the cardinality and dimensionality the data
for several examples of sequential data relative to each other.

To tackle the numerous challenges associated with het-
erogeneous data and applications, we propose five high-
level abstract criteria for evaluation of generative models:
representativeness, novelty, realism, diversity, and coher-
ence. The criteria are designed to compare the original data
to the synthetically generated sample and can be applied
to any generative model for synthetic data (see [66] for a
recent example of a holdout-based framework for empirical
assessment). They reflect requirements that are imposed on
synthetic data in specific use-cases.

Because the criteria can be imposed on numerous types of
sequential data, obtaining high scores on all five will rarely
be the goal. Borji reviews qualitative and quantitative metrics
for generative models in [9] and [10], but there is no one-
to-one mapping between those criteria and ours. The two
approaches share some aspects, reflected in what [9] defined
as the desiderata of evaluation measures.

Our proposed criteria are abstract in nature but capture
different concrete metrics depending on the use-case. Fur-
thermore, some of our criteria conflict with each other.
For example, we expect to see trade-offs between high
representativeness of the synthetic data-set and it’s novelty.
Figure 3 illustrates synthetic data that have high and low
scores on each criterion relative to a given data-set.

A. EVALUATION CRITERIA
1) REPRESENTATIVENESS
The representativeness of a generative model for synthetic
data describes its ability to capture population-level prop-
erties of the original data. Ideally, generative models distill
abstract structures from a set of training data. Consequently,
the population-level properties of the synthetic and original
data should be the same. For example, a data-set of face
images is likely to have a certain distribution of hair

colors and eye distances, and those distributions and the
dependencies between the distributions (e.g., gray hair and
the amount of wrinkles on a face) in the original and synthetic
data should match. Depending on the type of data, there can
be a multitude of ways to measure and quantify the similarity
of the distributions.

Representativeness of synthetic data matters because
statistical analyses and machine learning methods performed
on synthetic data should result in the same statistical findings
as analysis of the original data. A lack of representativeness
despite all other criteria being fulfilled, indicates that the
synthetic data provide a good representation only of a biased
subspace of the actual data distribution and miss potentially
critical information.

In many cases, representativeness is evaluated by statistical
measures. Common methods are ALL, MMD and Kullback-
Leibler divergence (KLD), which compare the probability
distribution of the original data to the approximation of
the distribution by the generative model. Recently, repre-
sentativeness has also been evaluated by comparing the
performance of classification models applied to the original
and the synthetic data (see [17] for an example in healthcare).

2) NOVELTY
Evaluating the novelty of data from a generative model
compares the original and synthetic data at an individual
level. Novelty is sometimes overlooked in explicit quality
evaluations, but the value of synthetic data without novelty
is typically quite limited. The goal of using deep generative
models usually is creation of entirely novel data-points.
Novelty means that the synthetic data-points are entirely new
observations of the latent distribution of the original data and
should not closely resemble any original data-points.

Models that generate only novel data-points do not allow
any individual-level information from the training data
to leak into the synthetic data. Thus, novelty is tightly
linked to privacy, and a high novelty score indicates that
the ‘‘inspiration’’ behind the synthetic data-points is not
identifiable at the individual level. The synthetic data records
could just as well have been a holdout subset of the original
data. The opposite of high novelty is a model that memorizes
and exactly recreates the training data. Such synthetic data
would fulfill the other four criteria (since a copy of the
original training data is obviously indistinguishable in many
respects from that data).

In some cases, such as in NLP, novelty of the synthetic
data is irrelevant. In other cases, however, such as creative
domains (e.g., music composition), the goal is to generate
new creative content. For example, [23] used the average
Euclidean distance of a synthetic data-point from its nearest
neighbor in the original data-set to measure the novelty of
synthetic music (see Section III-B for details). In other cases,
such as healthcare, privacy is more important than novelty.
The generative models used to produce private synthetic data
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FIGURE 3. Illustration of synthetic data-sets that score high (top) and low (bottom) on the proposed criteria when
compared to the original data-set on the left. Coherence only captures the internal structure of the data and is illustrated
on the right.

must not leak any sensitive information (see Section III-D for
more details).

3) REALISM
When considering an individual synthetic data-point gener-
ated by a highly realistic model on its own, it is difficult to
know whether it is synthetic or original. Realism is similar
to representativeness of the data, but at the individual subject
level. A synthetic data-set can match all the statistics of the
original data and still be unrealistic when individual data-
points share characteristics that make them easily identifi-
able as synthetic. Consider a representative but unrealistic
example obtained using a GAN trained on random cat images
from the internet. Synthetic cat images can contain captions
reminiscent of online memes that look plausible from a
distance but actually consist solely of abstract symbols having
shapes similar to letters.

Realism has been addressed in many publications in a
variety of ways. The most common method is judgement
of realism of the synthetic data by humans, either qual-
itatively (e.g. [59], [62]) or using empirical evaluations
(e.g. [7], [63], [83]). Evaluation studies present indi-
viduals with the original data-point and the synthetic
data-point and ask them to choose which is the most.
In some publications, participants in the evaluation
studies were restricted to experts (e.g., medical experts
in [7] and [20] and music experts [11], [63]). In some
cases, realism is quantitatively evaluated using objective
measures. These evaluations are usually domain-specific
and use metrics such as IS [73], [80] and the evaluation of
synthetic music against theoretical music rules [48].

4) DIVERSITY
While representativeness, novelty and realism capture simi-
larities between the original and the synthetic data, diversity
measures similarities between each synthetic data-point
and the whole synthetic data-set at the individual level.
Therefore, models that score well on diversity generate
unique data-points even when data-sets are large. Models
that generate the same individual points over and over, such

as some early versions of GANs, obviously lack diversity.
For instance, generators sometimes create a single image
that the discriminator cannot distinguish from an original
image. Generating only that image is a local optimum, and
the resulting effect is called mode collapse.

Many publications have not addressed the diversity of
the generative models’ synthetic data. In most cases, it is
important that models achieve at least some diversity, and
some models can generate only a small number of different
samples (e.g., the aforementioned GANwith mode collapse).

There are several ways to measure the diversity of a model.
Donahue et al. [23] used the average Euclidean distance of
synthetic data-points to their respective nearest neighbors
to evaluate the diversity of their model (see Section III-B).
Others have used metrics based on classifiers. For example,
to measure the diversity of their video-generation models, the
authors of [73] and [80] used the IS [74] (see Section III-C).
In other cases diversity has been captured only by subjective
qualitative evaluations by humans.

5) COHERENCE
Unlike the first for criteria, which are based on the structure
of the synthetic data at an individual or population level,
coherence captures the internal structure of single synthetic
data-points, specifically their consistency. Coherence is
particularly relevant for sequential data, that reflect sequential
orders of events and for data such as images. Coherence
requirements depend on the use-case and the original data
and, thus, can differ in terms of coarseness. Music, for
example, should sound smooth and natural note-by-note and
measure-by-measure, but also should stay within a certain
genre overall. In images when multiple objects cast shadows
from a single light source, the shadows must be coherent in
terms of the direction in which they point and their length.
While some incoherence in the data can lead to greater
novelty or diversity, too much results in unrealistic data.
A music sample that frequently changes its genres would
certainly sound creative but would also sound unrealistic.

Some studies have measured the coherence of synthetic
data implicitly when evaluating its realism. In the study

VOLUME 11, 2023 47307



P. Eigenschink et al.: Deep Generative Models for Synthetic Data: A Survey

FIGURE 4. Popularity of various architectural elements in deep learning
models used to generate synthetic sequential data. The top graph shows
the percentage of each architecture found to be the basis for models
used in the all reviewed studies. The heatmap in the bottom figure shows
the prevalence in percent of each architectural element in five domains.
The data underlying both graphics is included in the Web Appendix.

conducted by Bretran et al. [11] experts evaluated the
naturalness of transitions in synthetic music. In many cases,
however, domain-specific objectivemetrics have been used to
judge coherence. In [80] coherence was computed using the
average content distance between frames in synthetic videos
(see Section III-C).

III. ASSESSMENT OF APPLICATIONS
We next review applications of deep generative models to
generate synthetic sequential data in a variety of domains.
We critically analyze the contributions to this fast-growing
literature, evaluate them using our proposed criteria, and
demonstrate that the criteria individually are not equally
relevant in all domains and are not measured the same way.
Each subsection discusses the applications in their focal
domain and summarizes a few representative contributions
in terms of the proposed assessment criteria. See Tables 1
to 5 for overviews of representative contributions in particular
domains. Additionally, we analyze the architectures of
the models used in the selected publications. Figure 4
summarizes the prevalence of architectural elements used
in the reviewed articles in different domains. An excellent
overview of deep neural network architectures is provided
by [36].

A. NATURAL LANGUAGE PROCESSING
NLP is a broad field devoted to computers interacting
with human language. Common tasks in NLP include
language modeling, text translation [77], human-machine
dialog generation, and natural language generation [26], [33].
Thanks to the widespread adoption of machine learning and
deep neural networks in recent years, the research community

TABLE 1. Excerpts of studies of generative models for natural language
processing and metrics used for evaluation.

has made significant progress in accomplishing these tasks.
Today, highly capable language models can generate texts
almost indistinguishable from human-generated text.

Language data-sets are comprised of text, which can
come in many different flavors - news articles, product
reviews, medical diagnoses, and music lyrics. However, all
text can be represented as a combination of tokens from a
discrete vocabulary. The tokens are the most basic compo-
nents of text, commonly single words complemented with
punctuation.

Sentences, paragraphs, and longer texts are then merely
sequences of such tokens. However, the sequences must obey
certain grammatical, semantic, and logical rules. Moreover,
since sentences are not just loosely strung together, later
sentences and words in the text can be highly dependent on
words that appeared multiple sentences before. For example,
a character in a short story that disappears in the beginning,
can reappear paragraphs later. The rules and contextual
dependencies of a text pose significant challenges to language
models and to the generation of synthetic text. A model
must be capable of capturing the proper setting of various
linguistic features such as syntax, semantics, pragmatics,
and morphology. Otherwise, the resulting text can quickly
become incoherent or unrealistic.

A fascinating language model is provided by [40]. It was
inspired by how humans create complex texts, which rarely
arise from scratch in a single pass. Instead, humans rather
create initial drafts and revise the drafts incrementally. [40]
adopted this idea in their neural editor model by sampling
a prototype sentence from the training corpus, combining
it with a random parameter for editing the sentence, and
generating a modified, new sentence. Their edit parameter
can lead to changes such as altered wording, shorter or
longer sentences, and change from active to passive voice.
Architecturally, the model is based on a VAE (variational
autoencoder; [51], [72]) with an attention-based LSTM
(long short-term memory; [34], [43]) encoder and an LSTM
decoder. The prototype sentence and the edit parameters are
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randomly sampled and then used to transform the sentence in
a sequence-to-sequence fashion.

A metric commonly used to evaluate the quality of
language models is the perplexity [49], which captures how
‘‘surprised’’ a language model is to see the words in the
original training corpus in terms of probabilities it assigns
to each word. Looking at language models as generative,
perplexity measures the representativeness of the generative
model. Reference [40] evaluated their neural editor using
a data-set of restaurant reviews from Yelp and a more-
general text data-set. They found that the synthetic texts were
representative when measured by perplexity in both cases.
Though they were able to generate novel sentences that were
significantly different from the prototype sentences, each
synthetic sentence still originated from a single prototype
sentence and thus was somewhat close to the prototype.

The edit parameter can be used to perform similar edits on
multiple sentences or to smoothly vary the degree to which
editing is performed on a single sentence. Reference [40]
used these properties to generate a variety of sentences,
qualitatively suggesting that the generation of diverse data-
sets is possible. Individuals deemed the synthetic sentences
realistic and coherent according to their ratings of overall
quality, grammaticality, and plausibility.

Though the neural editor effectively generates synthetic
sentences, creating longer text samples composed of several
coherent sentences that are non-repetitive, grammatically
correct, and non-contradictory remains challenging. Models
capable of that task require a greater capacity to capture the
long-term dependencies in such texts. Shen et al. proposed
such a model in [76] and, given the inherent hierarchical
paragraph structure of longer texts, they chose a hierarchical
VAE architecture. The encoder network consists of one low-
level CNN (convolutional neural network) that maps each
sentence to a latent variable and one high-level CNN that
maps all the latent variables for each sentence into one latent
variable for the entire text input. On the decoding side, two
hierarchical LSTM networks operate the other way around
at the sentence and on word level. The decoder obtains a
latent variable for a text and transforms it via the sentence-
level LSTM into latent sentence variables. The sentence-level
latent variables are then passed down to the word-level
LSTM,which generates thewords for the synthetic sentences.
The model can output longer synthetic paragraphs by putting
all the words together into sentences and the sentences into
paragraphs. Passing the latent variables down the LSTM
hierarchy allows the decoder to capture relatively coarse
characteristics of text and sentences, such as the topic and
sentiment.

Shen et al. [76] evaluated their model using Yelp reviews
and abstracts from arXiv papers and found that their
multilevel-VAE (ml-VAE) model improved the representa-
tiveness of the output relative to a flat VAE model (the
baseline). They evaluated representativeness by measuring
the perplexity of the language model and calculating the
corpus-level bilingual evaluation understudy (BLEU) score

of the output. The BLEU score was originally developed for
in-text translation and has proven to be a good metric for
measuring translation quality that correlates well with human
evaluations. It measures similarities between the generated
text and a set of references by comparing their n-grams: n
consecutive words/tokens in a text.When the set of references
is the whole synthetic data-set, the BLEU score is called self-
BLEU.

The average BLEU score of the ml-VAE model obtained
by comparing generated text to the training corpus indicated
that representativeness improved relative to the baseline. The
authors also reported an acceptable diversity score. Diversity
was especially important to them because VAEs used for
NLG often suffer from mode collapse. They evaluated
diversity by calculating self-BLEU scores, the percentage of
unique n-grams, and the 2-gram entropy of a set of synthetic
texts. They further evaluated the coherence and realism of
the synthetic text by asking individuals to compare text
generated by the baseline model to the ml-VAE synthetic
text and choose the one that seemed most ‘‘real’’ to them.
Individuals rated the texts’ fluency, grammar, and consistency
to measure their coherence. These human evaluations also
showed that, in terms of realism and coherence, the ml-VAE
yielded results that were superior to the results of the baseline
model and acceptable when compared to human-generated
text.

Likelihood-based models such as VAEs have their critics,
who suggest that the models are well suited to optimizing
perplexity and representativeness but lack the ability to
generate realistic, coherent high-quality samples. In [30],
Fedus et al. attempted to generate higher-quality sam-
ples using a GAN-based model that incorporated LSTM
encoder-decoder networks in the generator and discriminator.
To improve overall training, they masked the sentences by
blanking words and asking the generator to predict the
missing words based on the rest of the sentence. In that case,
the networks knew the entire sentence context; most other
models condition a word solely on the preceding words in the
sentence. They found that their hybrid GANmodel improved
perplexity and thus representativeness relative to a likelihood-
based baseline model. Still, they claim that low perplexity
alone does not indicate high-quality synthetic text, their
primary focus. Their human evaluations also showed that the
hybrid GAN model produced more realistic samples than the
baseline model in most cases. Distinguishing between the
synthetic and human-generated texts seems relatively easy for
the participants. Since mode collapse is a common issue in
GANs, the authors also took a narrow look at the diversity
of the synthetic results. They evaluated the percentages
of unique 2-, 3-, and 4-grams. They found some mode
collapse, indicating that the text generated by their model
lacked diversity relative to the text generated by the baseline
model. In addition, the synthetic sentences sometimes lacked
coherence because they lost the global context. However,
the authors expected to be able to improve coherence by
increasing the capacity of the model.
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TABLE 2. Excerpt of studies of synthetic speech and audio data and
metrics used to evaluate the output.

NLP is a heavily researched domain that has produced
a wide range of applications. The primary concern of
most studies of generative models is the generation of
representative and realistic synthetic texts with realism
implicitly used as a metric for coherence in most cases.
Diversity is also investigated in detail when models are
prone to mode collapse. However, novelty is rarely addressed
and could be of interest primarily in privacy-sensitive cases
such as medical patients’ chief complaints [55]. Interestingly,
for most of our high-level evaluation criteria (Section II)
some metrics have been established for NLP. NLL, BLEU,
and perplexity are often used to measure representativeness.
Realism and coherence are mainly evaluated together as
parts of human evaluation studies, with participants choosing
between synthetic and human-generated text based on various
properties. Finally, to assess the diversity of synthetic results,
studies used either self-BLEU or statistics such as the
percentage of unique n-grams. Metrics employed in [30]
and [76] to evaluate diversity stood out, especially when
compared to the qualitative diversity evaluation used in [40].

B. SPEECH AND AUDIO PROCESSING
Generation of audio data has a long history. It originated
in several quite different domains and relied on completely
different theories. Most notable the generation of synthetic
music and speech. Both ultimately make data audible by
converting it to sound. As different as these origins and the
rules used to generate synthetic sound are, both are specific
types of digital audio data that eventually yield the same
result.

Following the success of deep neural networks in generat-
ing content such as images, video, and text and the availability

of vast quantities of audio data, researchers began to apply
the techniques to audio-synthesis. The resulting models
learned either from raw audio signals or from intermediary
representations such as musical scores and linguistic speech
parameters. The models can grasp the underlying structure of
the data to create realistic-sounding synthetic audio data.

The most general representation of sound is the amplitude
of sound waves over time sampled at a constant rate (i.e.,
raw audio). Consequently, the sound signal is continuous and
one-dimensional. Still, because of the high frequencies of
natural sounds, the sequences are long and complex. Typical
sampling rates are at least 16kHz, resulting in signals with
thousands of steps per second.

Models designed to work with raw audio generally are
the most adaptable. Unlike models that use intermediary
representations, their results do not have to go through one
or more conversion steps before becoming audible [63].
The drawback of raw audio is the need for high-capacity
models that can learn certain rules on their own instead
of having to encode the rules in specific representation.
To generate realistic speech, for example, models have to
learn how intonation affects meaning to generate realistic
speech. Speech parameters already encode intonation rules
to some extent.

Deep learning models can leverage some aspects of
audio data by choosing appropriate representations. But,
as previously mentioned, there are drawbacks. Musical
scores, for example, require multiple conversion steps to
become audible. Additionally, representations can abstract
away relevant nuances of music and speech. Timing and
volume, for example, can be important when generating
synthetic music, but often cannot be represented accurately
in musical scores.

When generating music and speech, use of raw audio
signals in generative models is in the minority. Applications
such as WaveNet [62] show that raw audio models can
succeed in multiple domains by leveraging the flexibility of
deep learning models. WaveNet is an autoregressive model
that predicts one step of a sequence at a time conditioned
on previous steps. Multiple layers of causal convolutions
incorporate causality into the network. These are one-
dimensional convolutions that depend only on present and
past time steps. A key problem of networks involving causal
convolutions is that, when the convolutions depend on the
present and previous time steps, the network has to be
quite deep to capture long-term dependencies. WaveNet [62]
overcomes this obstacle by dilating the convolutions in each
layer. Therefore, instead of using the output of the preceding
time step as input, WaveNet skips multiple time steps.

The WaveNet [62] model has been evaluated in numerous
experiments. Most important for this review is the uncondi-
tional generation of polyphonic single-voice piano music and
of speech for a single speaker. WaveNet made a significant
leap forward in the ability to generate of synthetic audio
data by adopting deep learning models and still serves as
a baseline for evaluation of new models. Reference [62]
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addressed novelty, realism, and coherence of the sample
output of WaveNet only qualitatively and did not address
representativeness or diversity. Qualitatively, the synthetic
music was rated as harmonious and aesthetically pleasing.
Their synthetic speech samples consisted of non-existent
words that resembled actual words and were spoken with
realistic intonations. The authors argue that conditioning on
information such as a speaker’s ID for speech and genre
for music, yields better results. Additionally, because the
input size was limited, WaveNet’s synthetic outputs lacked
long-term coherence and synthetic music samples sometimes
changed genre and volume from one second to another.

The structure of raw audio makes generation of long
coherent audio signals challenging. The signal at one time
step can depend on the values of neighboring time steps and
on the values of thousands of preceding time steps. WaveNet
lacks this long-term coherence but yields short audio samples
of good quality. To overcome this limitation, WaveNet
has been incorporated into higher-level architectures
(e.g., [22], [58]). Dieleman et al. [22] transformed raw audio
signals into a more-abstract, higher-level representation and
train WaveNet on the representation.

In their SampleRNN model, Mehri et al. [58] addressed
the problem of coherence by hierarchically stacking networks
that operated at different timescales. The lowest layer of the
SampleRNN is a WaveNet network operating on the raw
audio signal. Higher layers operate on coarser timescales by
collating multiple time steps of the signal into the state of
a recurrent neural network (RNN). As a result, the higher
layers can capture long-term dependencies and pass that
information down the network hierarchy, allowing WaveNet
to obtain aggregated dependency information from numerous
preceding time steps. The SampleRNN was evaluated on
speech data, human sounds, and music data. The authors
reported that it generated more-representative synthetic audio
samples than a simple WaveNet, based on the NLL of
the synthetic samples. Also, participants who evaluated the
results of SampleRNN in an empirical study perceived the
synthetic output more realistic than the output of WaveNet.

Donahue et al. [23] also worked with raw audio but applied
an interesting approach. They transferred the DCGAN
network [69], a model prominently known for its success
in image synthesis, to audio generation. They created
two models: WaveGAN for raw audio and SpecGAN
for spectrograms of sound data. Both are GAN models
with a convolutional generator and discriminator and a
structure similar to DCGAN. However, since as raw audio
is one-dimensional and images are two-dimensional, the
convolutions are flattened. Two-dimensional filters sized
5 × 5 in DCGAN become one-dimensional filters of length
25 in WaveGAN and WaveGAN’s output is a raw audio
sample of length 16,384 instead of an image of size
128×128. SpecGAN, on the other hand, operates on the two-
dimensional spectrograms of raw audio data. The raw audio
samples are first transformed into intensity distributions of
different frequencies at each timestep, creating spectrograms.

SpecGAN then generates synthetic two-dimensional spectro-
grams that are inverted back to raw audio to obtain audible
sound.

With a sampling rate of 16kHz WaveGAN and SpecGAN
generate synthetic audio samples that have a duration of
about one second. The models are applied to data-sets with
similarly short sounds, such as intonations of the numbers
zero through nine in speech, short drum and piano sounds,
and bird vocalizations. The authors thoroughly evaluated
the two models using IS, nearest-neighbor comparisons, and
human judgement. Donahue et al. [23] used the IS, which
was originally developed to evaluate of synthetic images,
to determine the realism and diversity of their synthetic
sounds. To evaluate diversity, they measured the mean
Euclidean distance between a synthetic sound and its nearest
neighbors. Novelty was determined by the mean Euclidean
distance between a synthetic sound and nearest neighbors
in the original data-set. Additionally, study participants
evaluated the quality, diversity, and realism of the synthetic
vocalizations of the numbers. The authors report better results
in terms of novelty, diversity and realism than achieved using
SampleRNN [58] and WaveNet [62].

The limitations associated with using raw audio data
in terms of sequence length make use of higher-level
representations of sound such as musical scores and the
Musical Instrument Digital Interface (MIDI) standard for
music beneficial in some scenarios. Higher-level repre-
sentations can encode important information but abstract
away some aspects of raw audio. Less capacity is needed
for these models, but the representations cannot be made
audible directly. Often, some interpretation is to musi-
cians or to computer programs. Additionally, abstrac-
tion reduces sequence length while usually increasing
dimensionality.

Piano rolls are an example of a higher-level representation
of music. They were inspired by the rolls used in automated
pianos that triggered playing of a note for a certain duration.
Similarly, piano roll representations encode whether a note
—or multiple notes in polyphonic cases —is played in a
particular time step of a song. The duration of the time
steps is constant for a single piano roll and across a data-
set. The duration is much longer than in raw audio data
so piano rolls can encode multiple seconds of melodies
using shorter sequences and thus make it easier to capture
intra-sequence dependencies. However, piano rolls slightly
increase dimensionality because each note in a track is
encoded instead of amplitudes of sound waves. There are
several other representations used formusic, and the literature
on deep learning models for generating symbolic music is
extensive [13], [31].

In [24], Dong et al. described a model designed to gen-
erate multi-voice polyphonic rock music called MuseGAN
operating on piano rolls. Multi-voice music consists of
multiple tracks for the instruments (e.g., piano, guitar,
and bass). Each track is represented by a piano roll. The
challenge in modelling multi-voice polyphonic piano rolls
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is capturing the intra-dependencies of notes in a track
and the inter-dependencies of notes played in different
tracks.

MuseGAN [24] uses the intra- and inter-dependencies
of tracks to compose synthetic music, further separating
the dependencies into time-dependent and time-independent
parts. The network is a GAN that uses a generator partly
inspired by generative video models [73], [80], [83] (see
Section III-C for details on these models). The synthetic
music is sampled from the generator by track. Each track
is generated from two random numbers representing all
tracks and two random numbers representing individual
tracks encoding time-dependent and time-independent intra-
and inter-track dependencies. The track-generator captures
dependencies in time and between notes played using a CNN
structure. Similarly, the MuseGAN discriminator is a CNN
that judges whether a melody is real or synthetic based on the
structure of the notes played in a single track over time and
in multiple tracks at the same time.

Dong et al. [24] leveraged symbolic representation to
reduce the complexity of the problem and to assess the quality
of the generated music samples. To evaluate the represen-
tativeness and coherence of the meusic they compared the
training data and synthetic data based on music-theoretical
measures. The authors computed the ratio of bars in which
no notes were played, the number of pitch classes used in
a bar, and the ratio of notes lasting longer than a 32nd
note to evaluate representativeness. Themodel captured drum
patterns observed in the training data fairly well, but the
synthetic melodies were more fragmented and used a larger
number of pitch classes than the original melodies, indicating
noise in the synthetic data. The tonal distance [41] between
tracks in the generated samples generally showed a strong
harmonic relation, indicating strong coherence. In addition to
these objective measures, the authors evaluated the synthetic
samples’ harmonicity, rhythmicity, musical structure, and
coherence based on responses by study participants, who also
gave the samples overall ratings that measured coherence
and realism as defined in our proposed framework. The study
participants rated the samples as 2.3 to 3.5 on a 1–5 scale;
they did not compare the samples to baseline samples from
other models or to the original music.

Speech also can be generated using representations. One
of the most studied paradigms is statistical parametric speech
synthesis (SPSS) [94], which uses linguistic features of
speech such as phonemes, cadence, and word frequency
to synthesize spoken words. Considerable research has
been conducted on SPSS, but unconditional generation of
synthetic speech data-sets is uncommon. Common tasks
are text-to-speech, voice conversion, and vocoding (making
speech parameters audible). In all three, cases speech is
being generated from an input (text, speech fragments,
speech parameters). Though these tasks fall outside the
scope of our literature review it is important to note that
deep learning based models for speech data are emerging
(see, e.g., [68], [84], [93]).

TABLE 3. Excerpt of models for synthetic videos and metrics used to
evaluate them.

Evaluation of synthetic audio data poses a challenge that
cannot adequately be addressed in general: the significance
of our proposed criteria and validity of metrics used to
measure the criteria vary with the type of audio (e.g., speech
versus music). Rhythms and harmony are highly relevant for
music but only somewhat relevant for speech. Reasonable
evaluations are often based on domain-knowledge. In the case
of music, the relevant domain is music theory, for which
metrics such as the ratio of pauses, fragmentation of a sample,
and the tonal distance, as used in [24], are reasonable. For a
review of objective metrics for evaluating synthetic music,
see [92]. For all kinds of audio and for music and speech in
particular, subjective evaluations of realism and coherence by
humans are a significant part of evaluations. Reference [24]
makes use of domain-specific metrics for representativeness
and coherence and, thus, their assessment is better suited for
synthetic music than, for example, the qualitative evaluation
used in [22], [58], and [62]. Additionally, Donahue et al.
introduced metrics for the evaluation of novelty and diversity
of synthetic sound in [23], which is hardly analyzed in any of
the other reviewed studies.

C. VISUAL DATA PROCESSING
Today, thanks to the prevalence of smartphones, images and
videos are produced and consumed en masse. Access to
such a vast amount of data has led to dramatic advances
in processing and classification of existing images and in
models to generate synthetic ones (see, e.g., [69], [96]). Since
videos are merely sequences of images, the ability to generate
synthetic videos also has advanced. The ongoing challenge
is capturing a smooth dynamic motion in the transitions
between images.

Models based on CNNs and GANs have been highly suc-
cessful in generating images. Consequently, many successful
generative models for synthetic videos have been based on
them [73], [80], [83]. The primary challenge in designing
such models is incorporation of the temporal dimension with
videos’ two spatial dimensions of the video.

The VGAN model proposed in [83] tackles this challenge
by decomposing the dynamic foreground from the static
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background, reducing the complexity of the problem. The
dynamic foreground is captured by a three-dimensional
spatio-temporal CNN, and the static background can be
captured by a two-dimensional spatial CNN. Both CNNs
are incorporated into the generator of a GAN that is
then optimized against a three-dimensional spatio-temporal
discriminator that judges the realism of the scene and the
motion.

The VGAN model has been applied to small short videos
of 64 × 64 pixels with 32 frames and duration of around
one second from Flickr in different categories collected such
as beaches, golf courses, and train stations. The authors
of [83] assessed the representativeness of the resulting
synthetic videos qualitatively and reported generally correct
motion patterns for scenes in the various categories. Synthetic
videos of beaches contained crashing waves and synthetic
videos of trains contained train tracks and train cars with
windows moving by quickly, as one would expect. The
generated scenes were sharp overall, but individual objects
such as people in the synthetic beach scenes tended to lack
resolution. The realism of the resulting videos was evaluated
by participants in an empirical study who were asked to view
the synthetic and original videos and choose which seemed
most realistic. Though the participants overwhelmingly chose
the original videos, the synthetic scenes were chosen in 18%
of the comparisons.

The VGAN architecture [83] is optimized for videos with
static backgrounds. Saito et al. [73] relaxed this restriction
in their TGAN model by decoupling the temporal dimen-
sion from the spatial dimensions. First, a one-dimensional
temporal generator produces a sequence of temporal codes
that are then mapped one-by-one to an image by a two-
dimensional image generator. The discriminator, a three-
dimensional spatio-temporal CNN, then distinguishes real
videos from synthetic ones. According to the IS, the synthetic
videos generated by TGAN are more diverse and realistic
than those generated by VGAN.

Tulyakov et al. [80] argued that the straightforward decom-
position of a video into temporal and spatial dimensions,
as done in TGAN, unnecessarily increases the complexity
of the problem by ignoring similar motion patterns. In [80],
they proposed a decomposition of the content of a video
and the motion therein, which they incorporated into a
generative model called MoCoGAN. Consider the various
facial expressions presented by a person in a video. In such
a video, the person’s face is the content and performance
of an expression is the motion. This disentanglement allows
the model to generate videos with the same content but
different motions and vice versa —that is, videos of a person
performing different facial expressions.

MoCoGAN incorporates this decomposition in the latent
space of the generator. The input to the generator is split into
a content variable and a sequence of motion codes. An RNN
generates the motion codes and connects them to subsequent
codes to ensure a coherent motion. Then, given the fixed
content variable for all frames and a motion code, each frame

in the video is synthesized by a two-dimensional CNN image
generator. Similarly, the discriminator judges the realism of
the content and motion of a video separately using a two-
dimensional CNN for the content and a three-dimensional
spatio-temporal CNN for the motion.

The authors evaluated the MoCoGAN’s performance
synthesizing small short videos of various scenes, including
tai-chi movements and facial expressions. They qualitatively
assessed the ability of the model to decompose content from
motion by fixing a person as the content and generating
videos of that person performing different motions. The
results demonstrated MoCoGAN’s ability to generate novel
content by adjusting the input variables of the generator. They
found that the synthetic videos generated byMoCoGANwere
more diverse and realistic than synthetic videos generated by
VGAN [83] and TGAN [73] based on the IS. Additionally,
participants in an empirical study viewed the videos gener-
ated by MoCoGAN as more realistic than videos generated
using VGAN [83] and TGAN [73]. Tulyakov et al. [80] also
quantitatively evaluated the coherence of synthetic videos of
facial expressions using the classifier-based average content
distance (ACD), which quantifies the difference between
two frames in a video in terms of content. OpenFace [5]
is applied to each frame of a video presenting a facial
expression to extract facial features that identify the person.
Small differences (distances) in the features between frames
indicate that the same person is displayed throughout the
video and, therefore, a small ACD. The MoCoGAN obtained
higher coherence scores than the VGAN [83] and TGAN [73]
videos.

When generating synthetic videos, many concepts from
image generation carry over. We see this in the prevalence
of CNN and GAN models and in the metrics used to evaluate
synthetic videos. Specifically, the IS is often used to measure
realism and diversity of synthetic videos and [80] uses
ACD to measure coherence; both rely on image classifiers.
When evaluating reaslism, human studies are heavily used
in addition to IS and ACD. Human evaluations of realism
also capture coherence to some extent. The representativeness
and novelty of synthetic videos are rarely evaluated explicitly.
Altogether, the results so far are promising for synthetic
videos that are short and relatively low resolution. The large
number of dimensions associated with high-quality videos
combined with the large number of frames needed even for
short videos continue to thwart efforts to synthesize more
complex videos. The introduction of the ACD as an objective
measure for coherence in [80] is particularly noteworthy,
since other studies such as [73] and [83] evaluate coherence
only as a part of the realism assessment.

D. HEALTHCARE
Generative models for synthetic medical data have gained
attention in recent years. The sensitivity of medical data
and strict access restrictions make sharing of original
medical data from patients extremely challenging [7].
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TABLE 4. Excerpt of models to generate synthetic medical data and
metrics used to evaluate them.

A promising solution is to use generated synthetic data
instead. Synthetic medical data can be shared and published
for secondary analyses since the privacy of patients is
guaranteed.

Data from intensive care units (ICUs), where patients with
severe and life-threatening conditions first receive treatment,
are especially valuable for clinical analysis [16]. The data
can include real-valued monitoring information, such as
measured oxygen saturation, heart rate, and respiratory rate.

Esteban et al. [27] generated such synthetic medical data
based on information collected from the first four hours
of patients’ stays in an ICU. They employed an LSTM
as the generator in a GAN and another LSTM as the
discriminator of real and synthetic data sequences. They
evaluated representativeness of the generated data using
MMD and by training a classifier model on the synthetic
data-set and testing it on a real holdout data-set (train on
synthetic, test on real (TSTR)). They evaluated realism by
training a classifier model on the real data-set and testing
it on the synthetic data-set (train on real, test on synthetic
(TRTS)). In both cases, the classifier models achieved results
comparable to models trained and tested solely on original
data.

Novelty is especially important in privacy contexts; that is,
it must be impossible to reconstruct the original data-points
from the synthetic ones. Overall, [27] found that the synthetic
data-points were not close to original single data-points based
on the evaluation of the distances between the synthetic
data-points and their real nearest neighbors. Their qualitative
exploration of the latent space —conducted by interpolating
between generated points —also showed that the model
yielded diverse results. To account for the importance of
privacy, they adapted the training of the original model to
incorporate differential privacy [1], [25]. Under the stricter
privacy conditions, they reported that the synthetic data were
highly representative and slightly less realistic.

The real-valued time-series data used by Esteban et al. [27]
are important in healthcare but are one of many types of
electronic health records (EHR). EHR data has been the main
focus of recent studies [4] and turns out to be quite diverse.

EHRs include patients’ demographic information, diagnoses,
laboratory test results, medication history, clinical notes,
and medical images, and other medical records [86] and
disclose discrete-valued codes for diagnoses, medications,
and procedures.

Choi et al. [20] studied synthetic sequences of discrete-
valued multi-label EHR data containing information on diag-
noses and treatments. The sequences in the data were long
and high-dimensional, thus presenting significant challenges
for generation of synthetic data. The authors addressed these
challenges by combining an autoencoder (AE) and a GAN in
their generative model, medGAN. The AEwas used to reduce
the complexity of the output data of the generator, which
learns salient features of the samples by projecting them to a
lower dimensional space and then projecting them back to the
original space [36], [82]. Thus, medGAN generates synthetic
data in the lower dimensional space. Then, the pre-trained
decoder converts the generated output to synthetic EHR data
in the original space.

The authors evaluated medGAN and found that it outper-
formed several generative models, including random noise,
independent sampling [20], stacked restricted Boltzmann
machines [42] and VAEs. Representativeness and diversity
are only evaluated qualitatively, but the authors argued that
significant improvements were accomplished by applying the
minibatch averaging method [20] to reduce overfitting and
mode collapse. Novelty was evaluated by conducting two
privacy risk evaluations. One measured the risk of disclosure
of personally identifiable information and the other measured
the risk of disclosure of personal sensitive medical data.
The evaluations determined that medGAN can generate
novel private synthetic data that reveal little information to
potential attackers rather than simply reproducing the training
samples. Overall, medGan’s synthetic data were reported to
be realistic, but qualitative evaluation by a single doctor is not
entirely convincing.

Since introduction of medGAN, other researchers have
extended it in different directions. Two that have out-
performed medGAN in all experiments were proposed
by Baowaly et al. [6]. The medWGAN model combines
medGAN with the Wasserstein GAN model, which uses
a gradient penalty [2], [38] to minimize divergences in
Wasserstein distances. The medBGAN (medical boundary-
seeking GAN) model trains the generator to obtain a
distribution of samples located on the decision boundary of
the discriminator. To evaluate the models’ representativeness,
the authors conducted the Kolmogorov-Smirnov (K-S) test
and compare the dimension-wise probabilities and averages
of the real and synthetic data. Realism was evaluated by
comparing predictions made by machine learning models for
the real and synthetic data. Association rule mining (ARM)
is often used to identify associations and patterns in clinical
concepts in EHR data [89] and was used by [6] to evaluate
realism and coherence. Another extension of medGAN for
generating real-valued time-series data, has been proposed by
Yahi et al. [90].
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TABLE 5. Excerpt of models for generating mobility data and applied
metrics.

Medical text and images also have attracted attention.
Medical text consists of clinical notes and patients’ chief
complaints, which share characteristics of other types of
text data (see Section III-A) but typically are short and
are composed of a limited number of words from medical
vocabularies. Lee [55] applied an encoder-decoder model to
generate synthetic natural-language chief complaints using
EHR data from around 5.5 million records of emergency
department visits. Guan et al. [37] proposed a GAN model
to generate Chinese EHR text data. Both models use
demographic and disease features as inputs and generate
corresponding EHR text data. However, they are conditional
models that fall outside the scope of this survey.

In healthcare, synthetic EHR data is primarily used to
protect patients’ privacy while enabling data sharing and
secondary data analyses. Thus, most studies in the field are
mainly concerned with novelty, representativeness, and real-
ism. Novelty is particularly important to privacy-protection
and, thus, is often evaluated using privacy tests. Tests for
representativesness and realism in EHRs are not necessarily
domain-specific; TSTR and TRTS have most often been used
to evaluate those criteria. [27] used particularly interesting
evaluation procedures, compared to other reviewed studies
such as [6] and [20]. They compared the original data with the
synthetic data and evaluated representativeness using TSTR,
realism using TRTS and novelty via the NN distance.

E. MOBILITY
Everyday, massive quantities of data on human mobility
are collected. Mobile devices such as smartphones are
equipped with GPS functionality and transportation systems
(car sharing, logistics, public transports) usually incorporate
automatic tracking. Mobility data are used in a wide
range of tasks, including urban traffic predictions [57],
shared mobility services [18], marketing services [47], and
transportation of people and goods [29]. However, the
risk of re-identification of individuals makes sharing of
such data highly sensitive. The relevance of this risk has
been demonstrated even for aggregated mobility data [88].
Synthetic mobility trajectories do not present this risk and
thus enable sharing, by either obfuscating the original path

data or generating completely synthetic trajectories that
cannot be related to individuals.

Ouyang et al. [65] studied generation of synthetic realistic
human location trajectories for privacy-sensitive secondary
data analyses. Usually, mobility trajectories are represented
as sequences of continuous coordinates (x, y) consisting
of a longitudinal and latitudinal component over time t .
Ouyang et al. converted this time-major representation
into a location-major representation in the form of maps
corresponding to times of stays at each coordinate (x, y).
The maps were then fed into a GAN consisting of a
deconvolutional generator and a convolutional discriminator.

The authors evaluate the model results primarily in terms
of representativeness and coherence. Representativeness was
evaluated by comparing geographical statistics describing
the real data with the same statistics for the synthetic data.
They compare the marginal probabilities of visiting a certain
location at a certain time and of remaining there for a certain
duration using Jensen-Shannon divergence (JSD).

The so called semantics of the trajectories play a key
role in producing representativeness and coherence. The
semantics give a trajectory intrinsic meaning, which can be
difficult for generative models to capture. The path ‘‘home-
bus-work-bus-home’’, for example, intuitively makes sense
whereas ‘‘airport-home-work-train’’ does not make sense
and semantically is unlikely to be true. Ouyang et al. fur-
ther distinguished between absolute and relative semantics.
Absolute semantics captures the meaning of each location
in a trajectory; relative semantics capture the meaning of
a location in a trajectory relative to other visited locations
in the trajectory. To evaluate representativeness, the authors
compared the absolute semantics of the real and synthetic
data at the population level. Likewise, they measured
coherence using a comparison of the relative semantics
measured by the pair-wise semantic distance which was
originally introduced by Bindschaedler and Shokri [8]. This
metric accounts for trajectories of people who can live in
geographically different locations but still share semantic
patterns. Their results showed that the GAN-based approach
preserved both the statistical characteristics of the original
data and their relative semantics.

Ouyang et al. [65] did not conduct any privacy tests
and limited the evaluation to one GAN-based model.
In [53], Kulkarni et al. extended their study by testing the
performance of seven generative models that used different
architectures and conducting privacy tests to measure the
novelty of the results. They compared deep generativemodels
based on GANs, LSTMs, and other variations of RNNs with
each other andwith a statistical model, Copulas. Interestingly,
Copulas and the GANs performed best in terms of represen-
tativeness, which was evaluated by comparing geographical
statistics and absolute semantics (similar to [65]) and by
measuring MMD. The RNNs and Copulas generated the
most coherent synthetic trajectories. The long-range temporal
dependencies throughout the generated trajectories, which
measure coherence, decayed most slowly.
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Interestingly, Kulkarni et al. [53] measured the novelty of
the synthetic data by conducting two specific privacy tests.
They applied a location-sequence attack, which determines
the level of accuracy to which trajectories in the original
data can be reconstructed, and a membership interference
attack, which measures the accuracy of an inference that an
individual contributed to a specific trajectory. In both tests,
the RNN and GAN models outperformed the other models
by a considerable margin.

The synthetically generated data in [53] and [65] were
intended to be used in privacy-sensitive secondary data
analyses. This is an important use, but the value of synthetic
mobility data extends far beyond that. In [56], Lin et al.
used labeled cellular geo-location data collected from mobile
devices to generate synthetic mobility data for traffic volume
simulations. Actual high-quality data on traffic volumes are
difficult to collect. The simulations were applied to a super-
district in the San Francisco Bay Area in California and were
used to provide decision support for several transportation
projects designed to improve urban transportation planning.
The authors employed an LSTM model and evaluated its
representativeness by comparing the vehicle traffic counts
and public transit boarding and alighting counts of the
simulated results and the actual counts. They argue that
transportation policy-makers and planners can benefit from
using synthetic location data to improve their understanding
of urban mobility.

The literature on models for generating mobility data is
not vast, and the quantitative approaches used to validate
such models vary greatly. In reviewing different applications
to mobility data, we observed that representativeness was
particularly important in all of the studies. Consequently,
the studies provide reliable metrics for representativeness,
such as MMD, JSD, absolute semantics, and count variables.
Coherence seems to be important in many cases but is
evaluated in various ways, including relative semantics of
the trajectories and observations of decays of temporal
dependencies throughout the trajectory. Privacy, of course,
is a significant issue. Reference [53] especially stands out
its consideration of privacy as the authors conducted robust
privacy tests on their synthetic data. We also find that all of
the reviewed studies related to mobility presented a strong
use-case for the generative models.

IV. SUMMARY AND CONCLUSION
Synthetic data allows governments, businesses, and
researchers to easily access and share sensitive data without
the risk of violating privacy regulations. The importance
of having access to highly sensitive data was highlighted
again through the COVID pandemic, where governments
and researchers rely on high-quality sensitive medical data.
Furthermore, the democratizing effect of accessible synthetic
data mitigates the power of large data aggregators, such as
Google and Facebook. It reduces the limitations of real-world
data-sets, such as inherent biases, insufficient quantities, and
class imbalance. With their ability to capture complex data

and their relationships, deep generative models have boosted
progress in synthetic data generation significantly.

This article discusses deep generative models for synthetic
data and introduces a set of high-level evaluation criteria for
a data-driven assessment of the quality of generated data.
We examine their use and applicability to synthetic sequential
data in the fields of natural language, speech, audio and visual
data processing, healthcare and mobility.

The proposed evaluation framework allows for clear and
easy communication of the requirements posed on synthetic
data in different domains and use-cases. We find that
synthetic texts in NLP applications are primarily evaluated
for representativeness and realism. Synthetic music, speech,
and video data must be realistic and coherent. Studies in
healthcare are mainly concerned with generating private
synthetic EHRs that still allow for secondary data analysis
and, thus, assess the data’s representativeness, novelty and
realism. Synthetic mobility trajectories are generated for
similar purposes with an additional focus on their coherence.
However, not all mobility studies examine the synthetic data’s
novelty, potentially leading to privacy risks when sharing
such data. Table 6 provides an overview of the assessment
results in the reviewed domains.

The results show that in many domains the requirements
posed on synthetic data do not conflict each other. For
example, representativeness and realism in NLP applications
or realism and coherence in video data go well together.
However, there are domains where requirements do conflict
each other. This can be observed in privacy sensitive domains
such as healthcare and in creative domains such as music
composition, where synthetic data have to be representative
and novel at the same time. Finding an acceptable trade-
off between those criteria can be challenging and usually
involves a lot of tuning by the experimenter.

We also find that the nature of metrics used to evaluate the
criteria can vary significantly. Some studies evaluate criteria
only qualitatively by looking at synthetic text samples or
listening to synthetic music samples. In most cases, only the
individual-level criteria (i.e., novelty, realism, and coherence)
are evaluated in this subjective way, but sometimes also,
representativeness and diversity are. Other studies rely on
human evaluations by laypeople or experts to judge realism
and coherence of synthetic data. Human evaluations often
also contain subjectivity either by the designer or the study
participants. Thus, the most objective measures are formal
computational metrics. Such metrics are primarily used to
evaluate representativeness (e.g., by MMD or NLL) and
diversity (e.g., self-BLEU or distances) of synthetic data.
In many cases, novelty is not evaluated at all and coherence
is assessed as part of evaluating the data’s realism.

Our review highlights that generative architectures are used
in a variety of applications and, in particular, GANs receive
much attention. Most often, the architectural elements are
used in conjunction with each other. In many cases, at the
core of the networks, RNNs or CNNs are involved to ensure
causally coherent generation of synthetic sequential data.
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TABLE 6. Overview of reviewed application domains and metrics used to measure representativeness, novelty, realism, diversity, and coherence of deep
generative models.

Autoregressive elements and attention mechanisms are also
applied to some use-cases.

For the future, our proposed evaluation framework for
unconditionally generated synthetic data has the potential
to be extended for the evaluation of conditionally generated
data. That kind of data is always generated within a
given context, such as categories of videos or genres of
songs. An evaluation framework for conditionally generated
synthetic data has to account for that context. We expect
conditionally generated synthetic data to need robustness
within a context and variability to be more nuanced
depending on the context.

With more jurisdictions passing privacy laws, in the future,
we expect synthetic data to gain more attention. We expect
more advanced and more objective metrics that allow a better
and more objective assessment of synthetic data quality,
particularly on the individual level. The development of the
IS, used for synthetic images and videos, and other metrics
that correlate well with the human judgement of realism,
point in that direction. In-depth research of objective metrics
allows systematic assessment of synthetic data quality with
more robustness and less subjectivity in it. Meanwhile,
we expect a continuation of the coexistence and combination
of quality assessment based on expert judgment and formal
computational metrics.

Another potentially interesting area worth further explor-
ing is to complement a purely data-driven approach to
assess the quality of synthetic data with a decision-oriented
view. Credible decisions made on the basis of data can
require certain properties of the data. Biased data with
underrepresented minority groups can be a weak basis for
decisions influencing all individuals, including the minority
group. Other decisions can be sensitive to recent events in

the data. The decisions made during the COVID pandemic,
for example, were highly sensitive to the recency of the data.
A decision-oriented evaluation approach could help improve
decision-making (or avoid weak decisions) by contrasting the
decisions derived from synthetic data scenarios with those
based on the original, real-life data. Recent research into
fairness and debiasing using synthetic data are promising
starting points in this direction.
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