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ABSTRACT Power quality issues are required to be addressed properly in forthcoming era of smart meters,
smart grids and increase in renewable energy integration. In this paper, Deep Auto-encoder (DAE) networks
is proposed for power quality disturbance (PQD) classification and its location detection without using
complex signal processing techniques and complex classifiers. In this technique, Gabor filter is used to
extract a set of general Gabor features from the convolution of PQD image. Subsequently, through sparse
based DAE network, essential and optimal features are extracted and learnt which are used by a simple
classifier (SoftMax) to classify the PQD type. Furthermore, the temporal information of the PQD is obtained
using the PQD image to correctly locate the disturbance’s initiating and terminating instants. The proposed
DAE network has the benefits of Deep Learning-based networks in terms of automatic feature selection, but it
requires smaller data sets. The issue of obtaining optimised, robust, and strong features from the PQD signal
is thus resolved. Excellent classification accuracy of PQD is obtained with appropriate network parameter
setting of the proposed DAE network. The proposed technique is compared with three other methods i.e.
support vector machine (SVM), stacked auto-encoder (SAE) and principal component analysis (PCA) for
PQD classification by implementing all the four techniques on python platform using the same data set. It has
an overall classification accuracy of more than 97% at a signal to noise ratio (SNR) of 20dB, which is on
the higher side when compared to other methods of PQD detection under noisy environment. Additionally,
this method requires less computation time with the same data set than alternative approaches like SVM.
Thus, the proposed method outperforms existing methods for PQD classification and detection of single
disturbance and multi-disturbance in terms of greater accuracy and reduced computation complexity and
computation time.

INDEX TERMS Power quality monitoring, power quality disturbance, deep auto-encoders, optimal feature
extraction, power quality event detection.
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I. INTRODUCTION
A. BACKGROUND AND LITERATURE SURVEY
With the advances in electrical and electronic devices
and increase in the use of non-linear power electronics-
based devices (converters, flexible AC transmission system
(FACTS) devices, etc.) and non-linear loads (Variable fre-
quency drives), different power quality (PQ) issues or dis-
turbances are often encountered in the power system. This
causes various issues resulting in reduced efficiency of the
devices to damage the instrument in case the disturbance
is severe. Hence, accurate and efficient monitoring of these
PQDs become essential. The emerging smart grid trends with
smart meters requires continuous monitoring and detection of
PQDs from economic and technical point of view [1]. General
PQ issues include voltage variations which are momentary
(voltage sag, voltage swell, voltage interruptions, etc.), har-
monics, oscillatory transients and their combinations. In addi-
tion to IEC 61000-2-5:1995, IEC 61000-2-1: 1990 standards,
an IEEE work group 1159-2019 [2] has compiled a list
of power quality related definitions and mentions the rele-
vant standards for PQDs. These standards are summarized
along with main PQ events as mentioned in [3]. Further,
a comprehensive state-of-the-art for different detection and
classification techniques of PQDs along with main interna-
tional standards such as IEC 61000 and EN 50160 have been
presented [4]. The general procedure of classifying PQDs
involves three major steps: segmentation, feature extraction,
and classification [5]. The presence of a PQD signal is
identified in the segmentation section, and the disturbance
component is extracted from the normal power signal. The
transient component is detected, and the disturbance is sepa-
rated. Following that, in the feature extraction section, vari-
ous signal processing techniques such as Wavelet transform
(WT), S transform (ST), Hilbert Huang transform (HHT), and
others are used to extract optimal, strong, and non-redundant
features from the power disturbance signal. The disturbance
signal is decomposed in WT, yielding multiple signals with
varying resolution levels. Detailed version of disturbance
signal is obtained in this process to get the features [6]. ST has
advantage of multi-resolution analysis (like WT) and uses
frequency variables like that of Fourier Transform (FT) [7].
Empirical mode decomposition (EMD) method is used to
disintegrate the power disturbance signal in HHT followed
by the analysis using Hilbert transform (HT) [8]. Finally,
in the classification process, the optimal features of the dis-
turbance is classified using a suitable classifier [9]. SVM,
Artificial Neural Network (ANN) etc. are among popular
classifiers for PQD classification. ST has been used in [10],
[11], [12], and [13], WT in [14], [15], and [16], HHT in [17]
and [18] as the feature extraction technique for PQD signal.
In [16], [19], [20], and [21] SVM and in [10], [22], [23],
and [24] ANN based technique is used for classification
purpose of PQD. It is inferred from [25] that better results of
classification can be obtained with suitable pairing of signal
processing technique and artificial intelligence (AI) based
classifiers. Accurate classification of PQD can be possible

with the selection of optimal features from the set of features
obtained from the power disturbance signal [26]. From the
set of features, Some of these are ignored to get accurate and
fast classification. After feature extraction, a optimal feature
selection (OFS) model has been used for extracting optimal
features from the feature set to remove redundant features
and improve classification accuracy and computation time.
The developing field of deep learning (DL) addresses the
issue of optimal feature extraction and classification jointly
to make the process optimized and rich features are learnt
automatically from the feature set [27], [28].

The application of DL in the field of image processing has
discovered low level structures as well as mid-level structures
of images such as edges and shapes [29]. In this way, fea-
tures extracted by DL networks perform exceptionally well
for feature extraction in the presence of noise, outperform-
ing hand-engineered features for classification [30]. Nev-
ertheless, DL-based approaches necessitate large data sets,
expensive training, and long training time. In this proposed
work, a DL-based auto-encoder technique is used to learn
optimized, robust, and strong features from a PQD image,
requiring a smaller data set than other DL learning-based
methods. It also does not necessitate complex signal pro-
cessing or machine learning based classification techniques,
as previously discussed. As a result, the proposed PQD clas-
sification technique requires lesser time and computation
effort. A neural network model known as autoencoder (AE)
that encodes the high dimensional data and then decodes the
compressed version and reconstructs the input could be used
to compress data [31]. Multiple layers of AE forms SAE or
DAE, a deep neural network. DAE can extract essential and
rich features from the images easily which could be classified
through a classifier with good accuracy. Rich features are
learned during the reconstruction process, and after the train-
ing process, the decoding part is discarded, and the features
can be used for classification of PQD data or images.

B. PROPOSED WORK
In this paper, Gabor filters are used to extract features from
PQD images, and an improved deep convolution autoencoder
for PQD image classification is designed using convolution to
select strong features. The convolution layer aids in the acqui-
sition of features, after which DAE easily discriminates and
learns the rich and essential features, resulting in improved
classification accuracy. These strong features are then used
with a Softmax classifier to classify PQD types. Following
themodel’s training with noisy PQD images, this method also
classifies noisy PQD.

The major contribution of the research is highlighted as
below:

• Gabor features are extracted from simple and complex
PQD images without noise and with noise at differ-
ent levels, and optimal and strong features are learned
using a deep neural network with a sparse auto-encoder.
Gabor features are being used for the first time for PQD
classification.
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• The proposed DAE network can correctly classify the
type of PQD in the images and also accurately determine
the location of the disturbance in the PQD image. Hence,
temporal information of the PQD can also be determined
accurately.

• Excellent classification accuracy of PQD is achieved
by appropriate network parameter setting. The features
obtained through the DAE network are powerful and
outperforms the handcrafted features used without DAE
network. Also, less computation time is required using
this method with the same data set as compared with
other popular methods like SVM.

• DAE network requires less data set as compared to deep
learning-based architectures and also does not require
complex signal processing techniques like wavelet, FFT
etc. hence, it has benefits of deep learning-based net-
works which are obtained with comparatively smaller
data sets.

The rest of this paper is structured as follows. In Section II, the
proposed convolution based deep neural network is presented
in detail. In section III, PQD data analysis along with data
set generation and parameter selection for the proposed deep
neural network is given. Section IV, presents the experiments,
results and discussions in detail. Finally, the conclusion is
summarized in Section V.

II. PROPOSED METHOD
This paper proposes a new PQD classification and detection
method using image processing and neural networks-based
auto-encoders. This auto-encoder is based on deep learning
for robust and strong feature learning. Firstly, through sim-
ulation fifteen types of PQD signals are generated. These
PQD signals are converted into images. Fig. 1 represents
the block diagram to depict the whole process of detection
and classification of PQD. Convolution is done for the PQD
image with Gabor filter to obtain a set of original Gabor
features. These features are then passed through into a DAE
neural network, which is trained to learn optimal, strong,
and non-redundant features. The DAE network is trained
with supervised learning. SoftMax classifier is then used
for classification of PQD. For correct detection of temporal
information (starting time and ending time) of the disturbance
in the image, the image is first converted to grey image (refer
Fig. 1). According to [32], grey images reflect the presence
and type of PQD in the image. If grey intensity of the PQD
image is considered, the grey intensity of the region around
sag or voltage interruption is found be darker than the normal
part of the signal image. Similarly, the intensity of grey are is
found to be lighter than the corresponding part of the signal
image for voltage swell. As a result, the beginning and end of
this intense section are used to pinpoint the exact location of
PQD in the image.

A. DAE NETWORK
In this section, the deep neural network having DAE for
PQD image classification is proposed. The deep network is

FIGURE 1. Proposed PQD classification and Detection Framework Using
DAE Networks and Gabor Filter.

FIGURE 2. Proposed DAE network for PQD classification.

composed of five layers, as shown in Fig. 2. The process is
divided into three steps: texture analysis, feature optimization
and classification.

1) TEXTURE ANALYSIS
The PQD classification requires extraction of the texture
features from PQD images usingGabor filter as convolutional
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FIGURE 3. Layers of deep neural network as encoder and decoder.

unit. Gabor filter is a type of Gaussian kernel function that
function similarly to band-pass filter and can be tuned in
terms of central frequency, bandwidth, and orientation. [34].
In case of unsupervised texture, segmentation Gabor filter has
the ability to perform well [33]. In Fig. 2, L0 and L1 layer
could be considered for texture analysis. Given the PQD
image P, the mean and variance is computed below.

O1(x, y) =
1

(2m+ 1)2

w∑
i=−m

m∑
j=−m

P(x + i, y+ j)

O2(x, y) =
1

(2m+ 1)2

w∑
i=−m

m∑
j=−m

[P(x + i, y+ j)2−

O1(x + 1, y+ j)]2 (1)

where x and y represent the positions of the pixels in the
PQD image, 2m+ 1 represents the window size of the filters,
O1(x, y) represents the mean, and O2(x, y) represents the
variance.

Multi-scale and multi-directional features of the PQD in
the frequency domain are obtained with Gabor transform
which is similar to Fourier transform combined with Gauss
function. The two-dimensional Gabor filter is presented as:

G(x0, y0, ω0, θ) =
1

2πσ 2 exp(−
x20 + y20
2σ 2 )[ejω0x0 − e−

ω20σ2

2 ]

(2)

Also, with x0 = xcos + ysinθ and y0 = −xsinθ + ycosθ ,
centre frequency of the filter is represented by ω0. Standard
deviation of the Gauss function is represented by σ . Orien-

tation of the Gabor filter is represented by θ . e−
ω20ω2

2 repre-
sents the direct current compensation and ejw0x0 represents
the alternating current component. Convolution of the PQD
image, P(x, y) with Gabor filter gives multi-scale features
of the PQD image. The image is convolved with the Gabor
filters present in the first layer which are its convolutional
units. The original image is decomposed into multiple filtered
images. Each image has some spectral information and hence,
texture features are obtained as a multidimensional matrix of

features. To overcome speckle noise effects and reduce com-
putation complexity average pooling is used after obtaining
the features. The most important advantage of Gabor filters is
their invariance to rotation, scale, and translation [35], [36].
Ten Gabor filters in five scales and eight orientations are
applied in the layer L1 and PQD images used in this present
experiments are of size 640∗480 pixels. Hence, the dimension
of the feature vector is 640∗480∗10 = 3, 072, 000.Due to the
high correlation of adjacent pixels in the image, the feature
images are down sampled. The proposed work has used a
down sampling or feature reduction factor of four hence, size
of the feature vector would have a size of 3, 072, 000/4 =

768000. Many of these features are not required for good
classification accuracy as a large number of features reduces
accuracy and consumes an excessive amount of computa-
tion time. After application of DAE network, a vector of
8 essential features are obtained. In the following step, feature
optimization is used to learn the best, compact, strong, and
non-redundant feature set to be used for PQD classification.

2) FEATURE LEARNING
After obtaining the texture features, important distinct and
rich features are learnt using two sparse autoencoders in the
network. In Fig. 2, layer L2 and L3 correspond for the feature
extraction part as high dimensional mapping part (encoder)
and low dimensional mapping part (decoder) respectively.
In sparse encoders, the hidden layers are penalized for activa-
tion hence, smaller number of hidden units are activated [37],
[38]. The reconstruction error is minimized between the input
data and output data of encoder and decoder unit of sparse
encoder respectively. Fig.3 shows encoder and decoder based
neural network layer. In encoding step, a linear mapping
is used with nonlinear activation function to represent an
input, where n represent the nth layer of the encoder and is
represented as zni = fn(Wnxni + bn). The decoding in the
decoder step is given by running the stack in reverse order
and reconstructed output is obtained as x̂ni = gk (Wnzni + b̂n)
Weight matrices of encoder and decoder part are represented
byWn and Ŵn for the layer respectively. Similarly, the weight
biases for encoder and decoder units are represented by bn
and b̂n respectively. Also, encoder and decoder functions
are represented by fn(.) and gn(.), and these functions are
normally tanh or sigmoid function. The loss function which
is optimized for the nth layer autoencoder is given below.

JSAE (Wn, bn, Ŵn, b̂n) = J (Wn, bn, Ŵn, b̂n)

+ σ

in∑
j=1

KL(β||β̂j) (3)

where, JSAE (Wn, bn, Ŵn, b̂n) is the loss function which does
not include sparse constraint and represented as:

JSAE (Wn, bn, Ŵn, b̂n) = argmin
Wn,bn,Ŵn,b̂n

k∑
i=1

||xni − x̂ni ||
2

+
µ

2
||Wn||

2
F (4)
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where, µ denotes the parameter for weight decay, total num-
ber of samples are denoted by k . Also, hidden values of
(n− 1)th layers acts as the inputs for the nth layer, i.e., xni =

zn−1
i , Sparsity penalty is represented by α. Count of hidden
neurons of nth layer is represented by in. Further, KL(β||β̂j
represents Kullback–Leibler divergence ranging between β

and β̂j defined as:

KL(β||β̂j) = β log
β

β̂j
+ (1 − β)log

1 − β

1 − βj
(5)

where, β represents the sparsity parameter. k th hidden unit
average activation over the sample set is represented by β̂j

i.e., β̂j =
1
K

∑K
i=1 fn,j(x

n
i ).

Two sparse autoencoders are used one after the other.
The sparse encoder (first one) is designed with number of
hidden units greater than that of the input layer so that linear
features are obtained. After the first encoder, the second
encoder is designed in such a way such that the number of
hidden units are lesser than the input so that the feature set
dimension is reduced. After the layers of encoders, SoftMax
classifier is applied [39]. The neural network’s raw output
is finally converted into probabilities by the SoftMax clas-
sifier, and classification is completed. The SoftMax classifier
normalizes the probability values of output received from the
autoencoder. The learning rate of 0.6 is chosen after repeated
simulation tests. The deep neural network develop needs to be
initialized first, so, ReLU (rectified linear activation function)
function is used to initialize the deep neural network. After
assigning weights, biases are optimised jointly. Method of
gradient descent is applied to update the autoencoder and
classification layer parameters.

3) CLASSIFICATION
The final layer L4, or the SoftMax classifier, classifies the
image or images after the biases and weights have been
optimised. Softmax classifier is a ML based algorithm. It is
a supervised learning algorithm that is used for multiple
classes of classification. It assigns probability distribution
(PD) to each class. The class with highest probability is given
a normalized value of ‘1’ as PD and PD of other classes
are scaled accordingly. This classifier works with PD and is
preferred here due to its faster execution time for multiple
class based classifiers. The classifier results in high accuracy
of classification. It computes the probability of the image
sample xi belonging to the oth class.

p(yi = o|xi;W4, b4) =
eW4

(o)T
xi + b(o)4

(
∑z

j=1 e
W4

(j)T xi + b(j)4
(6)

The weights portion and biases portion in the oth class is
denoted by W (o)

4 and b(o)4 respectively. Total number of clas-
sification categories is represented by z. We get maximal
probability of the sample xi and hence, the classification label

is determined through equation:

class(xi) = argmax(t = 1, ., ., ., ., c)p(yi = o|xi;W4, b4)
(7)

III. PQD ANALYSIS
In this section, PQDs are generated using MATLAB envi-
ronment to develop required data set and then, the data is
converted to images. Further, the analysis of the disturbances
is carried out following the process proposed in section II.

A. PQD DATASET GENERATION
A dataset of PQDs is required for proper PQ disturbance
classification. The availability of PQD data in large num-
bers is difficult to obtain since the occurrence of all types
of PQ disturbances is not guaranteed, and the location and
time are also not fixed. As a result, synthetic PQDs data is
widely used for training neural network layers [40]. PQDs
are simulated in MATLAB using numerical models imitating
the PQ disturbances and these simulated PQDs are very close
to the real PQ disturbances that could be used for training and
testing of deep neural networks. Further to accommodate the
modelling uncertainty from real signal, white Gaussian noise
(WGN) is added to these signals that is a general practice
in power system modelling [41], [42], [43]. Single PQD as
well as multiple PQDs are developed using the numerical
models [44] which are presented in Table 1.

Fifteen types of PQD named as standard voltage signal
(C1), voltage sag (C2), voltage swell (C3), voltage interrup-
tion (C4), voltage harmonics (C5), transient oscillation (C6),
voltage flicker (C7), impulse transient (C8), voltage notch
(C9), voltage sag with harmonics (C10), voltage swell with
harmonics (C11), voltage sag with oscillation (C12), voltage
swell with oscillation (C13), voltage sag with harmonics and
oscillation (C14), voltage swell with harmonics and oscilla-
tion (C15) are developed through the numerical modelling.
The signal is chosen that is generated with fundamental fre-
quency of 50 Hz and sampling rate of 3200 Hz. Length of
10 cycles is chosen for each signal. The single dimension
PQD signal data is obtained in CSV format which is then con-
verted to two-dimensional image with the use of Matplotlib
library of python. Fig. 4 shows some of the PQD waveform
images generated through process. Fig. 4(a) presents normal
50Hz sinusoidal voltage. Fig. 4(b) presents an oscillatory
transient (OT). OT is a frequency change in voltage with both
positive and negative polarity values. Fig. 4(c) presents sag
in voltage waveform. Sag is a fall in RMS value of normal
sinusoidal voltage signal ranging between 0.1 pu and 0.9 pu
with a time period ranging between 0.5 cycles to 1 minute.
Fig. 4(d) is swell in voltage signal. Swell is a rise in RMS
voltagewhich is above 1.1 pu and exists for a duration ranging
from 0.5 cycles to 1minute. Fig. 4(e) is interruption in voltage
signal. In this the voltage supply falls below 0.1 pu for time
duration which is less than 1 minute. Fig. 4(f) is flicker
in voltage and is continuous and fast variations in voltage
waveform.
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TABLE 1. Numerical modeling of the simulated PQ disturbances [21].

The developed data set contains 1000 images of 15 dif-
ferent types of PQDs. Each image has a resolution of 480 ∗

640 pixels. For training, 750 images of each PQD type are
used, out of which 250 images of each PQD type are used
for testing. In addition, images with the same number are
generated by adding white Gaussian noise to the PQD data
with SNRs of 20dB, 30dB, and 40dB. The proposed model
is also trained with noisy PQD images for classification of
PQD.

B. PARAMETER SELECTION
The classification accuracy of the proposed deep neural net-
work greatly depends upon its structure and selection of
parameter values. As discussed in section II, ten Gabor filters
are used for texture analysis with five scales and eight ori-
entations including [0, (π/8), (π/4), (3π/8), (π/2), (5π/8),
(3π/4), (7π/8)] in the layer L1 to obtain the initial feature
set of the PQD image. The original PQD image is convolved
with the Gabor filters and decomposed into multiple filtered
images. Each obtained image has some spectral information.
As a result, a multidimensional matrix of features is obtained.
In general, the classification accuracy of a machine learn-
ing (ML) model/deep learning model is the ratio of correct
classifications made by the model for each class and total
number of classifications made for each class. The classifi-
cation performance of the proposed model is evaluated by
the indexes termed as average accuracy (AA) and overall

accuracy (OA). AA is defined as the ratio of the total sum
of accuracy of classification for each class and the total
number of classes available for classification where as OA
of a machine learning based model is defined as the ratio of
total number of correct classification predictions made by the
machine learning/deep learning model and the total number
of classification predictions made by the model.

As discussed in section II-A, average pooling is done after
obtaining the set of Gabor features to reduce the complexity
of computation and reduce speckle noise effect. Variance fil-
ter and mean filter size are used to determine window size of
average pooling. Classification accuracywith different values
of s is shown in Fig. 5 where, s is ranged from 4 to 20 and this
indicates the effect on classification accuracy when window
size of the convolution filter is changed. Further, it is worthy
to note from the results that if pooling is done appropriately,
the effect of noise is limited and also the size of window
should not be too large. It is found that when s = 12, the
performance of the network is found to be satisfactory. Layer
L2 and layer L3 represent the two layers of DAEs and number
of units present in each layer are represented by L2 and
L3 respectively. The classification accuracy of the deep neural
network depends upon the parameters s, L2 and L3. The hyper
parameters µ, α, and β are set to 0.005, 0.01, and 0.5 respec-
tively. L2 and L3 are set to 90 and 30 respectively. Fig. 6 shows
the classification accuracy of the deep neural network with
different values of L2 and L3, setting L2 from 20 to 200 and
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FIGURE 4. PQD images (a) Normal voltage waveform (b) Oscillatory transient (c) Voltage sag (d) Voltage
swell (e) Voltage interruption (f) Voltage flicker.

L3 from 20 to 60. The experiment was executed four times
with a set of parameters and mean value was calculated for
each case.

The deep neural network performs best when L2 = 90 and
L3 = 30 with good OA. Keeping L4 fixed, the DAE network
achieved a good performancewhen L2 ranged between 90 and
140. The result indicated that with high-dimensional mapping
the classification accuracy could be improved by increasing
the value of L2, but after increasing L2 beyond a certain value,
it was observed that the performance was not affected much.
Hence, it could be concluded that since L2 is used for high
dimensional mapping and L3 is used for dimension reduction,
this abrupt reduction may be responsible for weakening of
important information. It is also observed that the value of
L3 should neither be too high and nor too low. Hence, high
value of L3 may lead to overfitting problem in classifier
training and low value of L3 may lead to loss of important

TABLE 2. Classification accuracy computed with different features
(in %age).

features. Hence L3 was chosen to be between 25 to 40 and
corresponding values of L2 was found out to be between
90 and 140.

IV. RESULTS AND ANALYSIS
A DAE network is created as described in section II, and
parameters are configured as described in section III-B. After
selecting and setting the perfect parameters for DAE network
(s=12, L2=90 and L3=30), the experiments are performed.
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FIGURE 5. Comparison of classification performance when window
size(s) of Gabor filter is changed.

FIGURE 6. Comparison of classification performance when L2 and
L3 units are varied.

FIGURE 7. Classification accuracy comparison of different features.

25% percent of the units of L2 layer and 25% of the units of
L3 layer are dropout to control the overfitting problem. Gabor
filter is used for feature extraction in L1 layer. For proper
analysis, many different features are learnt which are then
compared in Table 2 for their classification accuracy after
learning process. The features considered for analysis are
pixel features which are learnt from the PQD original image,
Gabor features from L1 layer and grey level co-occurrence
matrices (GLCM) features from L1 layer. It could be seen
from Table 2 that Gabor and GLCM features perform better
than the pixel features and Gabor features lead to better
classification accuracy than GLCM features. Fig. 7 depicts
a graphical comparison of OA and AA for the classification

TABLE 3. Average accuracy of PQD classification of proposed work with
different SNR ratios.

of PQD using pixel, Gabor, and GLCM features. Hence, the
use of Gabor features are preferred in this proposed work.

A. PERFORMANCE ANALYSIS UNDER NOISY PQDs
The efficacy of the proposed method to classify single and
multiple PQDs under different noise conditions such as with-
out noise and with noise at different levels. PQD signals with
20dB, 30dB and 40dB of noise were generated and the train-
ing and testing of the proposed model was done considering
these conditions. With the incursion of noise in the signal,
the quality of PQD images degrades. However, the proposed
technique has the ability to extract the strong features of
images. The classification accuracy of fifteen different PQDs
(refer Table 1) with varying signal to noise (SNR) ratios,
such as 20 dB, 30 dB, and noiseless PQD signal, is shown
in Table 3. As it could be seen from this Table that although
the average classification accuracy (AA) declines as the noise
level increases but in the proposed method, PQD images with
no noise achieves 99.4% AA, 98.93% AA of PQD with SNR
of 20dB, 98.69%AA is obtained for PQDwith SNR of 30dB,
and 97.99%AA is obtained for PQDwith SNR of 40dB using
Gabor features. Fig. 8 compares the classification accuracy
of PQ events with different values of SNR as mentioned in
Table 3. The experimental results mentioned in this table
indicates the efficacy of the proposed model in classifying
PQD with better accuracy, even under noisy conditions.

B. PERFORMANCE COMPARISON
A comparison of the proposed work is carried out with three
other common approaches, SVM [34] and SAE [37] and
Principal component analysis (PCA). We have implemented
all the four PQD classification techniques on python platform
and used the same data set to conduct extensively comparative
experiments to verify the superiority of the proposed frame-
work. SVM is a well-established method that can work using
limited data sets. We have applied kernel SVM using sigmoid
function to convert non-linear data into simple linear data.
Support vector classifier (SVC) is used for the classification
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FIGURE 8. Classification accuracy of PQ events (%) with different values
of SNR.

FIGURE 9. Classification accuracy comparison different methods for each
class of PQ event.

purpose. Regularization constant (C) is obtained by using
grid search technique. In the above comparison method, inde-
pendent component analysis (ICA) is applied to the feature
set obtained after convolution with Gabor filter to reduce
the number of features and select good features. 75% of the
samples are taken as training samples and rest 25% as testing
samples. In SAE method, Gabor features are not considered
and features are learnt directly through a single layer of
autoencoder and classification is done by SoftMax classifier.
In PCA based method, the PQD image is convolved with the
Gabor filter and PCA is used for feature selection rather than
sparse autoencoder with same data set. The results are shown
in Table 4 and Table 5. Table 4 gives the comparison of over-
all classification accuracy (OA) for 15 different classes and
execution time of the proposed method with SVM, SAE, and
PCA based methods. It could be observed from this table that
the proposed method outperforms the other three methods in
terms of overall classification accuracy and execution time.
The proposed method’s PQD classification accuracy (AA)
for each class is compared in Table 5 with methods based
on SVM, SAE, and PCA for 20 dB SNR. This table and
corresponding Fig. 9 show that, in comparison to the other
three alternatives, the proposed method provides good PQD
classification accuracy for each class in the presence of noise
with a 20 dB SNR.

FIGURE 10. Comparison of recent PQD classification techniques with the
proposed method.

TABLE 4. Classification accuracy (OA) and time of computation
(s) comparison of different methods with different SNR ratio.

TABLE 5. AA of different methods for each class of PQ event.

It could be seen that our proposed method for PQD clas-
sification (DAE) performs far better than the three methods.
According to the results, with and without different levels of
noise, features extracted automatically through DAE perform
better than features extracted automatically through ICA in
SVM method and automatic feature learning in simple SAE
method. In addition, the classification process takes less com-
putational time than all the three methods. It is observed that
proposed DAE network selects and learns more discriminat-
ing features from the feature sets as compared to other three
methods.

Table 6 and Fig. 10 compares various latest methods for
PQD classification available. In [13], multi-resolution ST is
used for optimal feature extraction from PQD signal and
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TABLE 6. Comparison of recent PQD classification techniques with the proposed method.

then simple fuzzy logic-based classifier is used for classi-
fication. A good classification accuracy is obtained which
is around 98%. Multi-resolution ST technique used here is
complex since it is using convolution along with Fast Fourier
Transform to obtain a complex feature matrix whereas in the
proposed method, simple Gabor features are extracted with-
out any complex mathematical algorithm and then efficient
features are learnt using DAE giving an average accuracy of
99.4%. In [45] a modified ST technique is used for efficient
feature extraction and SVM variant is used for classification
of nine types of PQD. A run time of 13.4 ms is reported for
the proposed method (excluding training and testing times)
whereas proposed method takes 13 ms of run time with
greater accuracy. In [15], discrete wavelet transform (DWT)
is clubbed with SVM as a classifier for 11 types of PQD
classification. As compared to the proposed method, DWT as
a feature extraction technique along with SVM as a classifier
is complex. Classification accuracy of 98.95% is achieved
which is less than that of proposed method. In [8], HHT along
with ELM is applied for the purpose of PQD classification,
HHT is fast and advanced signal processing technique, but
average run time mentioned is 19 ms which is greater than
the proposed technique’s run time, accuracy for both the
techniques nearly matches with proposed technique having
accuracy on higher side. In [46], ICA is used with SAE
along with SoftMax classifier to classify PQDs. ICA is used
for feature set extraction and SAE for choosing the right
features. As compared, features obtained in the proposed
methods are easier to obtain and also higher accuracy is
obtained for PQD classification. In [47] VMD is applied with
a variant of extreme learning machine, the technique gives
very good results and selects optimum features, but its run
time is approximately 27.4 ms which is greater than the pro-
posed method which has a run time of 13 ms. In [32], image
processing is used for the purpose of PQD classification, PQD

TABLE 7. PQD time detection.

image is first processed with three types of image enhance-
ment techniques, features are extracted and then important
features are selected based on Gini importance and finally
disturbance classification is done with RF classifier with an
accuracy of 99.33% for nine types of artificially generated
PQDs. Whereas an accuracy of 99.40% is obtained with the
proposed method with simple feature extraction and selection
process. Important point is that in both the methods, image
processing techniques are being used for PQD classification,
but the proposed method is less complex and straightforward.
It is inferred that the proposed DAE method outperforms all
other methods in terms of classification accuracy.

C. PQD TIME DETECTION
Images of the PQ signals are taken in batches and there is
one class which denotes normal voltage signal and the rest
others have disturbance in between the image batch. The
proposed DAE network can classify the type of PQD present
in the image along with the starting and ending times of
the disturbance. This may be the sudden change or transient
that happens in the normal sinusoidal voltage that gives the
information regarding the presence with onset and ending
times of disturbance in voltage signal. Time detection of PQD
is restricted to appearance since when disturbance appears in
a normal sinusoidal voltage, the transient that occurs gives the
starting point of the PQD. If this PQD is converted to a grey
image then the intensity of the grey part after the start and in
duration of PQD is different from normal sinusoidal voltage
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FIGURE 11. PQD images (a) Oscillatory transient (C6). (b) Voltage swell (C3).

grey image. Hence, this difference in grey image intensity
gives the starting and ending point of PQD.

For correct detection of temporal information (starting time
and ending time) of the disturbance in the image, the image is
first converted to a grey image as shown in Fig. 1. According
to [32], grey images reflect the presence and type of PQD in
the image. If the grey intensity of the PQD image is consid-
ered, the grey intensity of the region around sag or voltage
interruption is found be darker than the normal part of the
signal image. Similarly, for voltage swell the intensity of grey
area is found to be lighter than the corresponding part of the
signal image hence, starting and ending of this intense part
is used to give the exact location of PQD in the image. The
proposed DAE network can classify the type of PQD present
in the image along with the starting and ending times of the
disturbance. Table 7 gives the starting and ending times of
some of the PQD events as shown in Fig. 11.

V. CONCLUSION
This paper has successfully performed PQD classification
and occurrence time detection using a new image recognition
technique based on an improved deep autoencoder to obtain
the best features with minimum data set, less complexity
and computation time. In this technique, the redundant and
unnecessary features are neglected from the original feature
set obtained through convolution using Gabor filter. Subse-
quently, the optimised features learned through the improved
DAE network are used for classification of 15 different types
of PQ events, including the normal voltage waveform. The
main advantages of the proposed method include: high accu-
racy classification of real and noisy PQDs, requirement of
lesser computation time using this method with the same
data set contrarily to other popular methods like SVM, use
of Gabor filter to extract features from PQD images hence,
complex signal processing techniques are not required, and
accurate determination of temporal information (starting and
ending time) of the PQD. The proposed model achieves an
overall classification accuracy of more than 97% with an
SNR of 20dB, which is on the higher side when compared
to other popular methods for PQD classification. As a result,
it is concluded that the proposed technique has the potential

to identify any problems with power quality quickly and
accurately.
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