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ABSTRACT Despite rail’s growing popularity as a mode of freight transportation due to its role in
intermodal transportation and numerous economic and environmental benefits, optimizing all aspects of rail
infrastructure use remains a significant challenge. To address this issue, various methods for developing train
disruption prediction models have been used. However, these models continue to struggle with accurately
predicting short-term arrival delay times, as well as identifying the causes of delays and the expected impact
on operations. The lack of information available to operators makes it difficult for them to effectivelymitigate
the effects of disruptions. The goal of this study is to investigate a set of data-driven models for the short-term
prediction of arrival delay time using data from the National Railway Company of Luxembourg of freight
rail operations between Bettembourg (Luxembourg) and other nine terminal stations across the EU, and then
investigate the effects of the features associated with the arrival delay time. For our dataset, the lightGBM
model outperformed othermodels in predicting the arrival delay time in freight rail operations, with departure
delay time, trip distance, and train composition appearing to be the most influential features in predicting the
arrival delay time in the short-term. The National Railway Company of Luxembourg can use the short-term
prediction model developed in this study as a decision-support system. For example, knowing a train’s arrival
delay time allows you to estimate future operational time, providing more support to reduce disruptions and
subsequent operational delays via a simple web service.

INDEX TERMS Data-driven models, delays forecasting, freight transport, gradient boosting, rail operation
delays.

I. INTRODUCTION
The freight transportation industry is constantly changing,
and rail transportation is becoming a more popular option
due to its advantages in terms of operational costs, efficiency,
reliability, emissions, and safety. This trend has resulted in
the gradual integration of rail into intermodal transportation,
with public agencies encouraging a shift away from other
alternatives [1]. As rail intermodal operations become more
important for the efficiency and dependability of the freight
transport industry, optimizing all aspects of rail infrastructure
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is critical. This includes ensuring that the infrastructure is
well-maintained, properly managed, and capable of meeting
the current transportation system’s demands. Furthermore,
using technology and data analytics to optimize rail infras-
tructure and improve overall performance of the rail transport
sector is critical [2], [3].

However, due to the complexity of rail networks and the
large volume of rolling stock operating on them, train delays
are a significant issue that must be addressed. Delays are
divided into two types: those caused by the unpredictable time
it takes to prepare the train for departure and those caused by
variations in the train’s performance during its journey [4],
[5], [6]. Arrival delay prediction, which involves calculating
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the difference between the actual arrival time and the sched-
uled arrival time for a trip between two stations, is critical for
rail risk management. When there are disruptions, train dis-
patchers must assess the impact on the overall schedule and
minimize losses by adjusting operations to reduce the chain
of delays that could impact overall system operation [7], [8].

Event-basedmodels, which involve procedures with depar-
ture, travel, and arrival events, are a common approach for
forecasting disruptions and the resulting operational delays
in railway operations. Data-driven models, on the other hand,
have shown promise in handling and recognizing relation-
ships between nonlinear, multidimensional, and time-based
data. These models have been successfully used to uncover
interrelationships between various features in rail operations
[8], [9], [10], [11], [12], [13], [14], and previous studies have
used them to forecast rail operation delays caused by dis-
ruptions [15], [16], [17], [18], [19]. These models, however,
have failed to predict short-term arrival delay times, as well as
the underlying factors that caused the delay and the expected
impact on operations. To overcome the limitations of previous
studies, the present research has two main objectives:

• Evaluate and compare the effectiveness of various
data-drivenmodels in predicting short-term arrival delay
times in freight rail operations.

• Determine the significance of features associated with
arrival delay time.

• Create a Short-term Decision Support System (STDSS)
to evaluate operational interventions aimed at reduc-
ing disruptions and their associated delays in real-time
freight operations.

The remainder of this article is structured as follows. Section
II provides a review of previous studies that have examined
methods for modelling delays in rail operations, as well as
data-driven models. In Section III, the problem is described
in detail. Section IV describes the case study and method-
ology used to implement data-driven models for predict-
ing short-term arrival delay times in freight rail operations,
as well as an examination of the significance of the character-
istics associated with arrival delay time. Section V includes
the results and discussion of the study. Finally, Section VI
summarizes the research’s key findings and suggests future
research directions.

II. LITERATURE REVIEW
Numerous studies have been conducted to investigate the
issue of delay propagation caused by disruptions in rail oper-
ations. Barta et al. proposed a Markov chain-based model to
investigate the spread of delays among trains that connect
intermodal terminals, which can be caused by unforeseen
events like traffic congestion or unscheduled maintenance
[20]. In another study, a Bayesian networks approach was
proposed to address this issue, where evidence of events was
used to reduce uncertainty over time for other events [21].
Additionally, researchers assessed the effectiveness of vari-
ous timetables, including the shuttle timetable, in allowing
operations to continue despite disruptions [22], [23].

Wen et al. investigated data-driven methods for train dis-
patching in passenger and freight rail operations, discovering
that the use of ML methods is very promising due to the rich
data that can be obtained from train operations. For this rea-
son, numerous studies have used data-driven models such as
decision trees, support vector machines, random forests, and
artificial neural networks to predict and investigate rail oper-
ation delays. These studies’ findings have been mixed, with
some revealing a strong relationship between train delays
and dwell times and others revealing a weaker relationship
between running times and departure delays [24], [25]. Peters
et al., for example, built a neural network based on rules
between dependent trains to forecast delays for real-time
delay monitoring [26], whereas Pongnumkul et al., used the
moving average of historical travel times and travel times
of the k-nearest neighbors (k-NN) to predict passenger train
arrival times [27]. In another interesting study in this field,
Oneto et al. created a dynamic data-driven train delay predic-
tion system for large-scale railway networks using weather
data from national services [28].

Several data-driven approaches have been used to forecast
rail operation delays caused by disruptions using regression
models. For example, Kecman and Goverde created a deci-
sion tree model and a least-trimmed squares robust linear
regression model to predict train running and dwell times
[15]. Li et al. used linear regression and K-Nearest Neigh-
bor algorithms to predict the duration of station stops in
a different study [16]. Barbour et al. used a support vec-
tor regression model to forecast estimated arrival times for
freight trains based on train, network, and traffic congestion
features [29]. Meanwhile, other researchers [17], [18] used
data-driven methods to investigate the characteristics of rail
service interruptions and the resulting delays in High-Speed
Railway Systems. Minbashi et al. also proposed a machine
learning-based framework to improve predictability in freight
rail operations by focusing on yard arrivals and departures
and employing a random forest algorithm [30].

While previous research has studied the problem of pre-
dicting train disruptions, our study addresses a significant
gap in the literature. Specifically, we focus on the short-term
prediction of arrival delay times in freight rail operations
and identify the root causes of delay and their expected
impact on operations. While previous studies have struggled
to predict the arrival delay time in the short-term, particularly
after the train departs from the previous control station, our
study develops a consistent data-driven model using super-
vised Machine Learning (ML) that surpasses other models in
predicting the arrival delay time within this context. Addi-
tionally, we use the Shapley Additive exPlanation method
(SHAP) to thoroughly analyze the impact of the features such
as departure delay time, trip distance, and train composition
on arrival delay time. Our findings allow us to develop a
STDSS that can evaluate operational interventions aimed at
reducing delays in freight rail operations. In general, our
researchmakes an important addition to the existing literature
by addressing a specific gap in short-term prediction and
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identifying the root causes of delay in freight rail operations,
with the aim of creating this useful STDSS for a specific
company.

In a previous study [31], some of the authors of this
research used a binary classification approach to predict
whether a train will be delayed or not in the long-term (days)
and to identify the features that cause those delays. How-
ever, in this current study, the authors focus on developing
a short-term prediction model for real-time decision making
using a regression approach.

TABLE 1 summarizes recent and representative studies on
railway delay propagation in chronological order. It discusses
the type of railway investigated as well as the major contri-
butions.

III. PROBLEM DESCRIPTION
Time and distance charts are a common and standard-
ized method for evaluating train performance and detect-
ing intra-journey schedule deviations. FIGURE 1 shows an
example where the cumulative distance traveled on the ver-
tical axis and cumulative time on the horizontal axis can be
easily identified, allowing for easy identification of critical
points where delays accumulate and evaluating the train’s
performance compared to the schedule at any point during
the journey. This method aids in providing a comprehensive
view of the journey and is useful for evaluating train perfor-
mance [46].

Given that the orange line in FIGURE 1 represents the
scheduled time-spatial trajectory and the blue line represents
the train’s actual ones, the goal of this research is to predict the
arrival delay time after the train has departed from the previ-
ous control station (so that the departure delay time is known),
and we use data-driven models to identify the data behavior
responsible for the variety of intra-journey possibilities.

Equations (1)-(5) are defined based on FIGURE 1, where
the departure delay time (DepDelay) is a function of the
actual departure time (ActDep) and the scheduled departure
time (SchDep). Similarly, the arrival delay time (ArrDelay) is
determined by the actual arrival time (ActArr ) as well as the
scheduled arrival time (SchArr ). In contrast, the scheduled
travel time (SchTime) is a function of SchArr and SchDep.

DepDelay = ActDep − SchDep (1)

ArrDelay = ActArr − SchArr (2)

SchTime = SchArr − SchDep (3)

ArrDelay = ActArr − SchTime + ActDep − DepDelay (4)

ArrDelay =

∑
Xi − SchTime + ActDep − DepDelay (5)

Given that this problem is dealing with the short-term
prediction of the arrival delay time once the train has departed
from the previous station, the arrival delay time is a function
of known features, except for the actual arrival time, for which
data-driven models are implemented to predict its value.

Data for train journey segments can be sourced from
a schedule of specific waypoints defined by the National

TABLE 1. A summary with studies related to delay prediction.

46968 VOLUME 11, 2023



J. Pineda-Jaramillo et al.: Short-Term Arrival Delay Time Prediction in Freight Rail Operations

TABLE 1. (Continued.) A summary with studies related to delay
prediction.

Railway Company of Luxembourg (Société Nationale des
chemins de fer Luxembourgeois or CFL).
To better control the delays accumulated along the train’s

route, a short-term forecast must be performed once the train

TABLE 2. Characteristics contained in the data.

passes through an intermediate station as a ‘‘checkpoint’’ to
create a STDSS that makes accurate real-time predictions
that allow for the implementation of strategies such as train
rescheduling, reordering, rerouting, and other strategies to
optimize freight rail operations.

IV. METHODS AND PROCEDURES
In this section, we describe the process of creating a
short-term predictive data-driven model to predict the arrival
delay time of a train that has already departed from the
previous control station. FIGURE 2 depicts the steps in
the methodology used in this study, from data collection to
the development of the predictive model for further analysis.
All the steps depicted are discussed in depth below.

A. DATA COLLECTION
The study used data from the National Rail Company of
Luxembourg - CFL Multimodal, which was collected over
a 17-month period, from November 2019 to April 2021. The
datasets contain information on their freight rail operations
conducted between this period of time between Bettem-
bourg (Luxembourg) and other nine stations within the EU
(Boulou, Champigneulles and Lyon in France; Zeebrugge and
Antwerp in Belgium; Kiel and Rostock in Germany; Poznan
in Poland; and Trieste in Italy). This data was provided by
CFLMultimodal, which contained awide variety of attributes
related to trains, wagons, stations, and operations, as shown
in TABLE 2. The datasets were meticulously analyzed and
combined to ensure that all freight rail operations along the
various routes depicted in FIGURE 3 were considered.

To ensure high quality, the dataset used in this study under-
went various data pre-processing procedures such as feature
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FIGURE 1. Time and Distance chart – Intra-journey characteristics.

FIGURE 2. Flow diagram of the methodology used in this study.

engineering, data cleaning, and data transformation. Sec-
tion IV-B describes the resulting dataset in detail, including its
size, descriptive statistics, and the data pre-processing proce-
dures used. The data-driven models were then developed and
trained using this refined dataset, as described in Section IV-
C, with the goal of predicting freight rail arrival delay times.
The goal of these models is to predict arrival delay times in
freight rail operations in order to provide valuable insights
that can be used to improve the reliability of freight rail
transport.

B. DATA PROCESSING
Following the organization and combination of the datasets
listed in TABLE 2, single dataset was processed to ensure

FIGURE 3. Freight rail routes included in the study, including all control
stations between origins and destinations.

that each row represents the trips between a pair of con-
trol stations, which are the stations (junctions) that the train
passes through between the starting and destination stations,
as shown in FIGURE 3.
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Data imputation techniques were used to fill any missing
values in the merged dataset. The median value was used to
fill in numerical features, and the most common class was
used to fill in categorical features. Furthermore, by utilizing
the dataset’s available features such as train weight, train
length, and train wagon count, we used feature engineer-
ing to create two new features to improve the predictive
capability of our models: train weight per length and train
weight per wagon. Additionally, we used one-hot encoding
to convert categorical features into dummy variables and the
z-score standardization method to rescale numerical features
to ensure that the data is on the same scale [47], [48]. The
interquartile range method was used to remove outliers from
the numerical features as well.

As part of our correlation analysis, we used a 0.7 Pearson
correlation coefficient threshold to eliminate any features
that were highly correlated with one another. This thresh-
old was chosen in accordance with standard data analysis
practice, which states that a correlation coefficient greater
than 0.7 indicates a strong linear relationship between two
variables [49]. We were able to reduce redundancy in our
dataset and improve model performance by removing these
highly correlated features.

The goal of this study was to predict the arrival delay time,
which is the numerical difference between the actual arrival
time and the scheduled arrival time for trips between two con-
trol stations (as explained in Section III, equations (1)-(5)).
Regression approach was chosen as the best data-driven
approach because the target feature is a numeric value. Fol-
lowing extensive data pre-processing and feature engineer-
ing, a total of 10,265 trips between control stations were
identified for analysis.

C. DATA-DRIVEN MODELS
Predicting arrival delay times in rail operations is a diffi-
cult task due to the numerous factors that can affect train
schedules. Machine Learning models are increasingly being
used for this purpose because of their ability to effectively
analyze large amounts of data and learn from it in order
to make accurate predictions. Several studies have demon-
strated the effectiveness of various machine learning models
in predicting arrival delay times in rail systems, including
linear regression, logistic regressions, k-nearest neighbors,
random forests, gradient boosting machines, and artificial
neural networks [39], [50], [51], [52], [53]. These models
can consider a variety of factors, such as weather, passenger
volume, and train speed, to provide more accurate predictions
of arrival delays.

To effectively train and evaluate machine learning (ML)
models for predicting arrival delay time, the original dataset
was randomly divided into two sets, namely a training set and
a testing set, with a 70% to 30% ratio [13]. It is worth noting
that both the training and testing data are part of the data
used in this study, and as such, they were subject to the same
preprocessing and cleaning steps to ensure their consistency

and quality. The proportions of independent input features
and the target feature, which in this case is the arrival delay
time, were the same in both subsets. In order to avoid bias in
the results, it is also critical to ensure that the distribution of
values for all independent features is similar for both groups.

The arrival delay time was then predicted using a set of
machine learningmodels that had previously been widely and
efficiently applied to a variety of regression problems. These
models are as follows:

• Linear regression is a machine learning algorithm that
forecasts numerically continuous output with a constant
slope. This model is typically used to predict values
within a continuous range rather than categorizing them
into different classes [54].

• The K-nearest neighbors regressor is a non-parametric
ML algorithm that approximates the relationship
between independent features and continuous out-
comes by averaging observations in the same neighbor-
hood [55].

• Random forest regressor, which is a tree-based ensemble
ML model that generates many regressors in parallel
and aggregates their results by combining a sampling
method and an ensemble approach to improve model
building [54].

• Light gradient boosting machine, an open-source frame-
work developed by Microsoft for training gradient
boosting models [56]. This is another tree-based ensem-
bleMLmodel that works in a sequential order, with each
subsequent model attempting to improve on the errors
of the previous model. As a result, each model improves
ensemble performance [57].

The performance of the data-driven models was assessed
using several metrics, including the RootMean Squared Error
(RMSE), the Coefficient of Determination (R2), the Mean
Absolute Percentage Error (MAPE), and the Mean Absolute
Error (MAE), which are commonly used metrics to assess
the performance of regression machine learning models [52],
[58], [59], [60], [61].

• R2measures the proportion of variance in the dependent
variable that is explained by the independent variable(s).
It is a measure of how well the model fits the data, with
higher values indicating a better fit.

• RMSE measures the difference in absolute terms
between predicted and actual values, giving higher
weights to larger errors. It provides a measure of how
far off the model’s predictions are from the actual val-
ues, with lower values indicating a better fit. A lower
RMSE suggests that the predicted model is closer to the
underlying distributions of the actual data, or in other
words, a more accurate model.

• MAE is another measure of the difference between pre-
dicted and actual values. Unlike RMSE, MAE gives
equal weights to all errors and provides a measure of the
average magnitude of the errors. A lowerMAE indicates
a more accurate model.
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• MAPEmeasures the percentage difference between pre-
dicted and actual values. It is often used in forecasting
and provides a measure of the average magnitude of
the errors as a percentage of the actual values. A lower
MAPE indicates a more accurate model

Overall, these metrics are useful for evaluating the perfor-
mance of regression machine learning models because they
offer different perspectives on the model’s prediction accu-
racy. Using multiple metrics can help ensure that the model
performs well in various areas.

The equations for calculating these metrics are shown
in (6)-(9), where: yi is the actual value of the observation i
(target); ŷi is the predicted value of the observation i (model’s
output); ȳi is the average value of all observations i, and n
is the number of observations. A good model will typically
have a high R2 value as well as low RMSE, MAPE and MAE
values.

RMSE =

√√√√√ n∑
i=1

(yi − ŷi)
2

n
(6)

R2 = 1 −

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳi)2

(7)

MAPE =
100%
n

n∑
i=1

|
yi − ȳi
yi

| (8)

MAE =

∑n
i=1 |yi − ŷi|

n
(9)

The tuning of hyperparameters is an important step in
optimizing the performance of data-driven models. To that
end, the random search method was used to find the models’
optimal hyperparameters [62]. Furthermore, the models were
evaluated using the k-fold cross-validation method to ensure
that their performance is robust and generalizable. To do this,
the training set was divided into K subsets, with the classes
in each subset represented in the same proportions as the
entire dataset, and the learning model was then applied to
the remaining subsets [63]. This method is commonly used
to mitigate any bias introduced by the holdout method, which
uses a fixed amount of data for training and the remainder for
testing.

Following the selection of the best ML model for pre-
dicting arrival delay time, it is critical to assess the model’s
learning curves to ensure that they are accurate. The learn-
ing curves depict the trend of the model’s training and
cross-validation scores as a function of training sample count.
This allows us to detect possible problems of overfitting or
underfitting as well as determine whether adding more obser-
vations to the training set improves model performance [64].

The models were trained and validated in Python 3.8.5 on
an Intel Core i9-10885H CPU @ 2.40 GHz with 32 GB
DDR4 memory ram, a Hard Disk SSD 1TB NVMe class
40, and a GPU NVIDIA Quadro P620 DDR5. This hardware
configuration enables quick and efficient model training and

validation, reducing the time and resources required for the
analysis.

D. ANALYSIS OF THE INPUT FEATURES
Following the identification of the best data-driven model,
the impact of the features associated with arrival delay time
is calculated using the model’s coefficients for each input
feature. Following the conditional dependence theory [65],
the model’s coefficients represent the relationship between
the given input feature xi and the target y (i.e., arrival delay
time), with the assumption that all other features xj remain
constant. These coefficients represent the impact of each
input feature on the model’s output, allowing us to evaluate
the effect of each individual feature on the arrival delay time.

After that, the Shapley Additive exPlanation method
(SHAP) is used to generate feature dependence plots. This
method ensures that the results are better interpreted because
it reveals the direct impact of each feature on the model [61],
[66], allowing for the discovery of correlations between two
variables and their impact on freight rail arrival delay times.
SHAP feature dependence plots depict the interaction effect
of two combined features from the same observation, as well
as their impact on the model-predicted feature: the arrival
delay time.

V. RESULTS AND DISCUSSION
This section presents the results and analysis of data-driven
models for short-term prediction of arrival delay times in
freight rail operations, which is divided into two parts: (a) an
examination of the performance of the trained data-driven
models, with the goal of identifying the model that performed
the best based on evaluation metrics such as RMSE, R2,
MAPE and MAE, and (b) an analysis of the features that
have the most significant impact on delays in freight rail
operations, which are then used to gain insights into how the
features interact in the output of the best data-driven model.

A. DATA-DRIVEN MODELS
Initially, several feature combinations were tested to deter-
mine the most effective set of attributes for data-driven mod-
els. Using the Pearson method for correlation analysis, less
relevant attributes were removed, resulting in a refined set of
features that did not compromise the models’ performance.
The final dataset’s composition is shown in TABLE 3, and
a validation process was carried out to ensure that the distri-
bution of values for all features was consistent between the
training and test groups by carrying out a consistency test of
the data, as shown in FIGURE 4. This approach was used
to ensure that the models were trained on a representative
sample of the data while avoiding overfitting and underfitting
risks.

As described in in Section IV-C, five data-driven models
were initially analyzed and evaluated based on the proposed
evaluation metrics and the best performing model was then
selected for further analysis, where we can see that the
lightGBM model performed better than the other models.
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FIGURE 4. Similarity in the distribution of the values of independent
features for training and testing data.

TABLE 3. Composition of the final dataset.

To improve its performance even further, the random search
method was used in conjunction with popular ML Python
libraries such as Pycaret, Scikit-learn, and lightGBM [56],

TABLE 4. Results.

[67], [68]. The evaluation metrics of the lightGBM model
after tuning their parameters are also shown in TABLE 4.
Considering the results in TABLE 4, even though the

results for somemodels are quite similar, the tuned lightGBM
model slightly outperforms for predicting the arrival delay
time (even if any of those are valid options). As a result, this
model is chosen to assess the impact of the input features on
the model output as well as to investigate the relationship
between disruptions and their subsequent delays. For both
training and test data, the errors between the best model’s
prediction of the arrival delay time and the actual arrival
delay time of the operations performed by CFL Multimodal
were estimated (see FIGURE 5). The scatter plots and the
corresponding equations provided for the training and test
data show that the model performs well in predicting the
arrival delay time of operations made by CFL Multimodal.
The R2 scores of 0.96 for the training data and 0.89 for the test
data indicate a strong correlation between the predicted and
actual values of arrival delay time. The equation (10) for the
training data and (11) for the test data reveal that the model’s
predictions are consistent with the actual data, with only
slight deviations from the ideal line (y=x), demonstrating an
overall performance of the model being satisfactory.

ytrain = 0.96x + 3.22 (10)

ytest = 0.94x + 6.40 (11)

LightGBM is an open-source gradient boosting framework
that improves prediction accuracy in regression and classi-
fication problems by utilizing decision tree algorithms. It is
based on the gradient boosting framework, which combines
multiple weak learners to create a strong learner capable of
making more accurate predictions. The framework constructs
trees in depth and computes gradient and hessian values
using a histogram-based approach, which speeds up train-
ing and reduces memory usage [56], [57]. LightGBM also
has data parallelism, which enables faster training on large
datasets, and regularized parameter learning, which reduces
overfitting.
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FIGURE 5. Scatter plots of errors for training and test data between the
arrival delay time predicted by the model and the arrival delay time of the
operations made by CFL Multimodal.

FIGURE 6. Plot showing the input feature importance on arrival delay
time resulting from the tuned lightGBM model.

B. ANALYSIS OF THE INPUT FEATURES
FIGURE 6 depicts the effect of each input feature on the
magnitude of the output from the tuned lightGBM model.

FIGURE 7. Feature dependence plot of weight per length of the train vs
total distance trip.

The input features are arranged in descending order by the
magnitude of their impact. The greater the value of the fea-
ture, the more important it is in predicting the arrival delay
time. The departure delay time, as shown in FIGURE 6, is the
most important factor in predicting the arrival delay time,
followed by the distance traveled (between the previous and
destination control stations) and the train composition (in
terms of weight, length, and number of wagons).

The SHAPmethodwas used to construct the feature depen-
dency plot between each pair of the seven available features,
allowing the discovery of greater interaction effects between
each pair of features with a higher SHAP value, and thus
a higher incidence in the predicted feature. FIGURE 7 and
FIGURE 8 depict the strongest interactions discovered in the
feature dependence scatter plots, which show the effect of a
single feature on the predictions of the lightGBMmodel. The
following considerations must be made:

• Each point represents a single prediction (observation)
from the dataset.

• The x-axis represents the value of the specified feature.
• The y-axis displays the SHAP value for that feature,
which indicates how much the model’s prediction of
the arrival delay time for that sample is influenced by
knowing the feature’s value.

• The color corresponds to the second feature, which inter-
acts significantly with the feature on the x-axis.

FIGURE 7 depicts the variability of the train’s weight per
length in predicting the arrival delay time, with a growing
trend in the impact of this variable on predicting the arrival
delay time, and it is also observed that trains with a higher
weight per length of the train have a lower total distance of
the trip in general. FIGURE 8, on the other hand, depicts the
roughly linear and positive trend between the departure delay
time and its SHAP value, or the direct correlation between the
departure delay time and the arrival delay time.

This emphasizes the significance of departure delay time in
predicting arrival delay time in freight rail operations. These
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FIGURE 8. Feature dependence plot of departure delay time vs total
distance trip.

findings are consistent with previous research on passenger
trains, which found that departure delay time is a significant
predictor of arrival delay time [7], [8]. This study, however,
is the first to show the same correlation in freight rail oper-
ations. FIGURE 7 and FIGURE 8 show how important it is
to consider the weight per length of the train and the total
distance of the trip as variables in predicting arrival delay
time. These findings can be used to inform future operational
interventions, such as optimizing routes to reduce distance
and weight per length of the train, to improve overall freight
railway reliability.

It is also worth noting that this study is based on data from
a single freight rail company; thus, it would be advantageous
to expand this research by including data from other freight
rail companies to develop a more comprehensive study. This
would allow for more reliable conclusions and a more com-
prehensive understanding of freight rail operations’ behavior.

C. DISCUSSION
This study is the first of its kind to use gradient boosting
models to predict arrival delay times in freight rail operations
in the short-term. The resulting model is highly efficient
and can handle large-scale datasets with high-dimensional
features. LightGBMhas been shown to outperform other pop-
ular machine learning algorithms such as random forest and
XGBoost in various benchmarks and real-world applications,
making it a popular choice for predictive modeling tasks [56],
[57]. Other studies in the field have used different MLmodels
such as neural networks to address other problems in freight
rail operations [41], [69].

Previous research has found that train length has an impact
on both passenger and freight train punctuality [70], [71].
However, Van Der Kooij et al., discovered that enforcing
temporary speed restrictions on longer and heavier passenger
trains to safeguard the use of infrastructure could produce
significant network delays [72].

This study created a short-term predictive data-driven
model to predict the arrival delay time of a train that has
already departed from the previous control station and exam-
ined the features associatedwith arrival delay time. This study
makes the following significant contributions:

• The development of a consistent short-term predictive
data-driven model, which discovered that the lightGBM
model surpasses other data-driven models in predicting
arrival delay time in freight rail operations.

• The impact of the features associated with arrival delay
time was examined, and it was discovered that the depar-
ture delay time, the distance of the trip, and the train
composition are critical in predicting the arrival delay
time in freight rail operations.

• The possibility of CFL implementing the short-term
prediction model developed in this study as a STDSS
that can be accessed through a simple web service to
predict arrival delay times and assess future operational
interventions to reduce disruptions and the resulting
delays in freight operations.

The findings of this study are useful for the National Rail-
way Company of Luxembourg and other freight rail opera-
tions because they can use the predictive model to anticipate
delays in the short-term and take proactivemeasures to reduce
disruptions and their consequences. In addition, the analysis
of the characteristics associated with arrival delay time pro-
vides insights for future research and optimization of freight
rail operations.

Some of the authors of this paper previously published
a study [31] in which they used the same dataset to build
a long-term prediction model using a binary classification
approach to identify the rail operating features associated
with intermodal freight rail operation delays, allowing them
to predict whether a train will be delayed or not in the long
run based on its composition. Although both the previous
and current studies are concerned with developing predic-
tive models for train delay times in intermodal freight rail
operations in Luxembourg, there are significant differences
between the two. In the previous study, a binary classification
approach was developed for long-term predictions, whereas
in this new study, a regression approach was developed for
short-term predictions, allowing for real-time decision mak-
ing. Furthermore, the SHAP method is used in this new study
to identify the relationships between input features and delay
times, allowing for a more thorough analysis of the causes
of delay and the expected impact on real-time operations.
Furthermore, the Luxembourg National Railway Company
can use the short-term prediction model developed in this
study as a decision-support system, providing more support
to reduce disruptions and subsequent operational delays, for
example, using a simple web service.

VI. CONCLUSION
This study presents a comprehensive approach to predicting
freight rail arrival delay times, as well as investigating the
underlying causes of delays and their expected impact on
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operations. The goal is to predict operational delays in real
time and to create a STDSS that will assist decision-makers
in future operational interventions to reduce disruptions and
the resulting delays in freight operations. This will improve
railway reliability in the freight transport sector in the long
run.

Previous studies have developed models that predict the
occurrence of disruptions or delay times in railway opera-
tions, but most of them have focused on passenger trains.
Freight train research has primarily focused on examining the
impact of network delays rather than train delays and has been
unable to predict short-term delay times once the train has
departed from the previous control station.

In this study, we used regression algorithms to train five
data-driven models and analyzed predefined evaluation met-
rics (R2, RMSE,MAPE andMAE). For the examined dataset,
which included railway operations carried out between Lux-
embourg and nine stations in Belgium, France, Germany,
Poland, and Italy over a 17-month period, the lightGBM
model stood out as the best data-driven model to predict
arrival delay times in freight rail operations.

The lightGBM model has demonstrated that departure
delay time, trip distance, and train composition are variables
with a significant impact on the prediction of arrival delay
times in railway operations. Our findings show that longer
trains, longer distances, and heavier trains all have a direct
relationship with arrival delay times in general. These find-
ings may pave the way for future research into optimizing the
routes of these freight trains’ operations to reduce distances,
resulting in not only shorter operating times, but also shorter
arrival delay times.

However, it is important to note that analyzing the behavior
of freight rail operations using only data from one company
is insufficient when compared to multiple freight rail com-
panies. As a result, future phases of this study could include
data from other companies operating in the region to develop
a broader study at the continental level, which could include
data from other sources, such as historical climatic data in
railway operations. Furthermore, future research studies may
be geared toward the creation of a workflow capable of
automating all the processes required, from data extraction to
the construction and implementation of the models developed
in this study. These models enable practitioners to predict
arrival delay times in freight rail operations in real time,
thereby supporting decisions to reduce the impact of these
delays on the overall system operation.
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