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ABSTRACT A formidable challenge that hinders the widespread adoption of renewable energy sources
is the potential mismatch between their intermittent supply and the fluctuating demand. This necessitates
proper coordination to moderate temporal net load variations while reducing costly curtailment of renewable
energy production. By capturing the physical and security constraints of unbalanced distribution systems,
this paper formulates a problem to manage various fleets of commercial- and residential-scale distributed
energy resources (DERs), i.e., photovoltaics (PVs), deferrable loads (DLs), electric vehicles (EVs), and
thermostatically-controlled loads (TCLs). A multi-phase distribution system expanded on the relaxed power
flow constraints is considered to account for network awareness. The proposed objective is to minimize
hour-to-hour fluctuations of the net load variable, reduce solar energy curtailment, and prioritize preferred
EV state of charge and indoor temperature. This objective, however, renders the convex relaxation inexact,
wherein positive-semidefinite (PSD) matrices are higher than rank-1. To overcome this issue and therefore
enhance the reliability of the solution, we propose to tighten the relaxation constraints via appending the
trace of the power flow PSD matrices to the objective function. Multiple case studies on the IEEE 13-bus
feeder demonstrate the effectiveness of the proposed problem to optimize the load profile and yield exact
solutions.

INDEX TERMS Multi-objective optimization, net load flattening, unbalanced distribution systems, penal-
ized semidefinite programming.

I. INTRODUCTION
Electricity has become an indispensable part of modern soci-
ety, powering various equipment and appliances, including
vehicles, heating/cooling systems, and smart devices. The
escalating consumption of these devices, spanning residential
and commercial sectors, coupled with the accelerated inte-
gration of distributed energy resources (DERs) has reshaped
the dynamics of distribution systems. The reliance on fos-
sil fuel-based synchronous generators (SGs) to address the
fluctuations in net demand is no longer a viable option given
the substantial environmental consequences. Driven by the
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guest for sustainability, governments worldwide are actively
promoting the use of renewables by implementing policies
such as tax credits and feed-in tariffs, thereby encourag-
ing investments in clean energy infrastructure. In light of
these developments, the need for cutting-edge methodologies
designed to coordinate renewables and responsive demand
has become a critical research area.

The integration of renewable energy resources en masse
has engendered new challenges, stemming from the intermit-
tency and weather dependency of renewables. These factors
result in significant fluctuations in the net demand, which is
the difference between the total demand and the renewable
generation. As illustrated in Fig. 1a, this situation could give
rise to the notorious ‘‘duck curve’’ characterized by a steep
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FIGURE 1. (a) An example of a load profile and a net load profile when
solar penetration is 50%. It shows that, within 6 hours, the net load
ramps from approximately 0.28 (13 h) to the peak load (19 h). (b) The
load and net load curves for the profiles shown in (a).

decline and ascent of net load within a short time span [1], [2].
In addition to voltages potentially exceeding their limits [3],
the formation of lower base loads, as shown in Fig. 1b,
requires rapid ramping of conventional generation to balance
supply and demand, incurring standby SG start-up expenses
as well as the degradation of mechanical components. The
severity of the duck curve’s slope may escalate at a rate
commensurate with non-curtailable renewable energy pene-
tration, threatening the system’s stability and reliability and
demanding advanced methods to regulate energy flow and
consumption patterns.

A. LITERATURE REVIEW
A recent work [4] introduces a distributed methodology that
utilizes the thermal mass of households as an energy storage
system (ESS) for flattening the duck curve through pre-
cooling. The efficacy of the proposed approach is investi-
gated via detailed simulations at the household level, while
its impact is evaluated at the system level using an aggre-
gated demand model based on probability distributions.
Safdarian et al. [5] propose a distributed algorithm where
flexible loads can collectively achieve a flattened load profile,
while Singhal et al. [6] propose a new transactive market
mechanism where electric vehicle (EV) users can opt in
or out of charging during peak prices/demand based on a
saving versus comfort slider. Moreover, Rezaei and AliAkbar
Golkar [7] schedule plug-in EVs at a parking lot to flatten

the day-ahead load. Although the methodologies in [4],
[5], [6], and [7] represent a potentially effective and less
infrastructure-dependent measure to flatten the duck curve,
the studies fall short of examining the effect of demand
response on the power flow and voltages of the power system.

DR and dispatch of renewables can be effectively car-
ried out by solving optimal power flow (OPF) problems.
By capturing the physical and operational characteristics of
the power system in a mathematical model, OPF can enhance
the operation of the power system, address the challenges
associated with renewable integration, and enable the partici-
pation of various grid stakeholders in the control process. The
scheduling of demand and distributed generation hinges upon
demand and production forecasts [8], [9]. To accomplish
this, day-ahead forecasts that detail hourly figures of power
demand and production are generated. Thus, considering the
quasi steady-state of the power system, the distribution sys-
tem operator (DSO) undertakes the task of solving an OPF
problem at regular intervals [10].

In [11], a demand-side management scheme is proposed
for smart grid that adapts demand elasticity in the presence
of volatile generations. The paper considers households that
operate different appliances including plug-in hybrid elec-
tric vehicles (PHEVs) and batteries and models their util-
ity functions based on their preferences. The works in [12]
and [13] employ a DC-linearized OPF to minimize fuel
and start-up costs of thermal power plants while integrat-
ing pumped-storage hydroelectricity (PSH) and concentrated
solar plants (CSPs), thereby reducing the duck curve caused
by midday PV power saturation. Although the primary objec-
tive of this model is to minimize the fuel and start-up costs
of thermal units, it also incidentally flattens the duck curve
by mitigating the impact of midday PV power saturation.
Despite this model’s effectiveness, it does not address the
issue of duck curve flattening directly, but rather as a byprod-
uct of minimizing thermal unit costs. Further, DC OPF has
inherent limitations that cannot be overlooked. One such lim-
itation is that the DC approximation of power flow equations
neglects losses and reactive powers, and assumes flat voltage
magnitudes. Such a simplistic approximation may lead to
DER dispatch solutions that defy the system’s constraints,
rendering them unfeasible in practice.

The utilization of alternating current OPF (AC OPF) has
proven to be paramount to adherence to system constraints.
As demand response and renewable control take place in
distribution systems, it is vital that the associated constraints
of these systems are considered. Reference [14] aims to min-
imize the line losses and maximize social welfare in distri-
bution systems by adjusting the demand of each household
according to their preferences and constraints. The problem is
outlined for single-phase systems, which may fail to capture
the full range of unbalanced distribution systems. In addi-
tion, Shi et al. [14] contend that maximizing the utilities of
the electric equipment may create a new demand peak if
the parameters are not chosen carefully, which could under-
mine the benefits of the demand response. Chen et al. [15]
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incorporate an unbalanced distribution system and propose
a method to estimate the range of net power injection at
the substation achievable through the coordination of photo-
voltaics (PVs) and responsive demand, utilizing an optimiza-
tion problem that improves upon the linearization of power
flow presented in [16].

The principal goal of this paper is to address the intri-
cate challenge of minimizing day-ahead net load fluctua-
tions while optimizing user-defined consumption and reduc-
ing solar power curtailment. We approach this complex
issue by leveraging the coordination of flexible loads in
distribution networks, which involve an array of distributed
energy generators, including energy-constrained deferrable
demand (DLs), photovoltaic (PV) systems paired with battery
energy storage systems (BESSs), electric vehicles (EVs),
and thermostatically-controlled loads (TCLs). By integrating
these diverse components and devising a coordinated opti-
mization strategy, we aim to significantly enhance the effi-
ciency and effectiveness of the energy management process.
We utilize the potential of multiphase ACOPF to efficiently
capture the interplay of demand and distributed generation
across nodes and phases in distribution systems. We also rec-
ognize the inherent trade-off involved in the utility maximiza-
tion approach and the possibility of generating a paradoxical
DR peak that may undermine its effectiveness. In response,
we propose an objective function to schedule the various
responsive loads to flatten the net demand. Byminimizing the
inter-temporal net load function, we aim to reduce both peak
load and load variability, which are important factors for grid
stability and efficiency.

B. RANK MINIMIZATION IN ACOPF PROBLEMS
In this study, we encounter an inexact convex relaxation
due to the higher rank of the positive-semidefinite (PSD)
matrices arising from the proposed objective function, which
is a common occurrence for a wide range of convex ACOPF
problems that optimize objectives beyond the conventional
loss and generation minimization [17], [18], [19], [20].
The literature offers various methods to tackle rank devia-
tion and tighten the SDP relaxation in ACOPF problems,
such as the difference of convex approach [17] and convex
iteration [20], [21].

The rank-1 constraint is a crucial component of the opti-
mization problem, as its removal can lead to infeasibility
with respect to the original problem. Specifically, if the rank
of all PSD matrices is not 1, the projected solution may
lie outside the feasible region and fail to satisfy the desired
objectives. Objective functions aimed at achieving desired
voltage levels have also been shown to lead to infeasible
solutions in previous research [17], [20], [22].

The literature presents several methods to address rank
deviation and tighten the SDP relaxation in the context of
ACOPF problems. For instance, Wei et al. [17] propose a
sequential convex optimization method that restores solu-
tion feasibility by decomposing the ACOPF problem into
a second-order cone inequality and a non-convex constraint

FIGURE 2. Succinct formulations of the three techniques employed to
improve the accuracy of the ACOPF SDP relaxation. The difference of
convex and convex iteration approaches are iterative in nature, whereas
the adopted rank relaxation technique is non-iterative, making it
well-suited for multi-time energy-constrained ACOPF problems.

involving the difference of two convex functions. Referred
to as the difference of convex approach, this method lin-
earizes the concave constraint and sequentially tightens the
relaxation. In another approach, Alsaleh et al. [20] and
Wang and Yu [21] employ another iterative method, called
convex iteration, wherein a regularization term is appended
to the objective function to minimize the inferior eigenvalues
(and maximize the superior eigenvalue) [23]. The stopping
criteria in these works differ; while [20] relies on the exact-
ness of the PSD matrices, [21] depends on the diminishment
of the regularization term. However, both techniques—the
difference of convex and convex iteration—require solving
the SDP problems multiple times, as highlighted in Fig. 2,
making them unsuitable for multi-time energy-constrained
ACOPF problems due to their iterative nature.

Another approach is based on penalizing the trace of
the PSD matrix so as to minimize the inferior eigenval-
ues that cause the rank to be more than 1. Previously, the
method was used to recover feasible solutions for single-
phase transmission-level ACOPF problems [24], [25], [26].
Recently, the penalizationmethodwas adopted by [27] for the
multi-phase distribution-level ACOPF to incorporate the con-
straints of delta connections. This method offers faster com-
putation compared to its iterative counterparts, making it a
promising candidate for handling multi-objective multi-time
energy-constrainedACOPF problems. However, its effective-
ness in this context remains largely unexplored.

C. CONTRIBUTIONS
In this paper, we adopt the non-iterative penalization tech-
nique for the multi-time ACOPF problem and demonstrate
its success in recovering feasible solutions for a set of
non-conventional objective functions.

In addition to the DER models, we also integrate
the relaxed gang-operated voltage regulator model into
the overall problem, which necessitates the inclusion of
additional SDP constraints without the need for binary
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variables [28]. It is important to note that while our paper’s
scope does not encompass long-term planning or the adjust-
ment of volt-var devices such as reconfiguration switches
and capacitor units, the proposed approach can be extended
to incorporate these aspects. We acknowledge the complexi-
ties associated with incorporating switchable devices; how-
ever, given the non-iterative nature of the rank-penalized
SDP, it is possible to formulate a mixed-integer SDP prob-
lem that leverages iterative algorithms [29], [30], [31]. This
approach also holds potential for addressing a wider range
of optimization problems, including those that focus on the
strategic allocation and integration of distributed generation
resources [32].

The following summarizes the contributions proposed by
this paper:

• We propose a novel model that leverages the modern
infrastructure of multi-phase distribution networks, flex-
ible loads, and PV-battery systems to optimize net load
curves, thereby paving the way for efficient and sustain-
able energy management.

• To streamline the formulation while ensuring both
computational efficiency and high modeling accuracy,
we build upon the ACOPF model and incorporate
additional models for deferrable loads, PV-battery sys-
tems, thermostatically-controlled loads, and electric
vehicles. By exploiting the underlying sparsity and
the semi-definite structure of the ACOPF, we derive
a rank-relaxed semidefinite programming formulation
that can efficiently handle these complex and diverse
models.

• In light of the objective function aimed at mitigating
net-load fluctuations, the feasibility and accuracy of
the solution may suffer. To counteract this degradation,
we propose integrating the rank minimization method to
enforce a rank-1 constraint on the positive-semidefinite
(PSD) matrices. Through our approach, we are able to
obtain an optimal and feasible solution, all while pre-
serving the physical realizability and accuracy of the
solution.

This paper is structured as follows: Section II lays out the
theoretical foundation by introducing the SDP-based power
flow equations, formulating the DER models that incorpo-
rate energy and temperature constraints, and defining the
objective functions. Section III introduces the proposed
methodology for recovering feasible solutions via penal-
ized semidefinite programming. Section IV demonstrates the
effectiveness of our approach through a series of case studies
conducted on the IEEE 13-bus feeder. Finally, in Section V,
we summarize our findings and discuss future directions for
research in this area.

II. FORMULATION OF DISTRIBUTION POWER FLOW
A. NOTATIONS
We denote sets of nodes (buses) and edges (lines) by N and
E , respectively. Each element can be comprised a single, two,

FIGURE 3. Illustration of the power balance on the power balance for
line (i, j ).

or three transmission conductors. Note that the radiality of
the distribution system satisfies |E | = |N \ 1|, where 1 is the
index of the substation node. We use Nb ⊂ N to distinguish
nodes with DERs. Additionally, we introduce D, T , P , and
V to denote the sets of deferrable loads, thermostatically-
controlled loads, photovoltaics, and electric vehicles. Thus,
the aggregate set of physical nodes is

Nb = D ∪ T ∪ P ∪ V

We define the phase sets as 8 = {a, b, c}, 8′
= {b, c, a}.

The voltage at the substation bus, i = 1, is a fixed phasor
vector, where magnitudes are 1 pu and phase angles are
120◦ apart. The voltage and current vectors are complex
and defined as wi and Iik . Due to mutual coupling, the line
impedance is 3× 3 matrix, denoted as zik . Impedance entries
whose indices belong to missing lines are replaced by zeros.

Let si =
[
sai , s

b
i , s

c
i

]T
a vector of net demand (production

minus consumption) at each bus. For example, an entry of a
net-demand vector is composed of (sφi,d − sφi,g), where g and
d denote the DER and demand complex powers.

B. POWER FLOW MODEL
1) POWER FLOW MODEL: NON-CONVEXITIES AND
RELAXATION
The following model in (1)–(2) describes the power flow in
multi-phase systems:

Wj = Wi − zijIij (1)

diag
(
Wj

( ∑
(j,k)∈L

IHjk + IHj
))

= diag
(
WiIHij − zijIijIHij

)
(2)

Equation (1) is the voltage drop on line (i, j), where the
complex vectors of the node voltages and the line current are
respectively denoted as Wi,Wj, and Iij. Equation (2) is the
power flow from node i to node j. Note that the equation (2)
is a result of multiplying IHij by both sides, where the left

hand side is the product WjIHij , decomposed into downstream
power flows on line (j, k) and net-load power at node j. The
power balance equation, (2), can be re-written in terms of
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complex power variables as:∑
(j,k)∈E

diag(Sjk ) + sj = diag(Sij − zijIijIHij ) ∀(i, j) ∈ E (3)

Fig. 3 is a depiction of the power balance for line (i, j),
where node j can be any combination of three-, two-,
or single-phase lines.

In order to close the loop on the power flow constraints
in (1)-(2), complex power variables in (3) must be constrained
as functions of voltages and currents.

Sij = WjIHij ∀(i, j) ∈ E (4)

While the previous constraints comprehensively describe
the power flow, they are non-linear due to the complex vari-
able products in (3) and (4), repeated for each line. This
non-linearity hinders the computational tractability and can-
not certify global optimality.

2) LIFTED POWER FLOW MODEL AND RELAXATION
In order to reduce the number of non-convex constraints
and therefore obtain a nearly-convex problem, reference [33]
proposed to lift the voltage and current variables, where new
variables are defined as wi = WiWH

i and ℓij = IijIHij . Hence,
the voltage drop and power balance constraints are expanded
in (5) and (6), whereas the complex power constraint in (4) is
represented by the PSD and rank-1 constraints in (7) and (8).

wj = wi − (SijzHij + zijSHij ) + zijℓijzHij , ∀ (i, j) ∈ E (5)∑
(j,k)∈E

diag(Sjk ) + sj = diag(Sij − zijℓij), ∀(i, j) ∈ E (6)

[
wi Sij
SHij ℓij

]
⪰ 0 ∀ (i, j) ∈ E (7)

rank(
[
wi Sij
SHij ℓij

]
) = 1 ∀ (i, j) ∈ E (8)

3) RELAXATION AND PROJECTION
The model presented in (5)-(8) can be relaxed merely by
removing the rank-1 constraint. The solution to the convex
lifted model can be projected to the original model in (1) and
(2) if all PSD matrices in (7) are nearly rank-1.

C. DISTRIBUTED GENERATION, RESPONSIVE LOAD, AND
VOLTAGE REGULATION MODELS
1) DEFERRABLE LOADS (DLs)
The deferrable load model is power-flexible but energy-
constrained, where daily consumption must meet a prede-
termined energy by the end of the day. The model can be
represented by the following set of constraints:

∀φ ∈ 8, ∀i ∈ D :

Pdi,h ≤ ℜ(sd,φ
i,h ) ≤ P

d
i,h h ∈ H (9a)

H∑
h=1

ℜ(sd,φ
i,h ) = Ed,φ

i (9b)

sdi,h is the load complex power, and Pd,φ
i,h and P

d,φ

i,h are
the bounds of the demand response. In this paper, we only
consider a percentage of the real power demand to be flexible.
That said, for each i ∈ D bounds are determined based on a
flexibility coefficient, F , such that Pd,φ

i,h = (1 − F)ℜ(sd,φ
i,h ),

P
d,φ

i,h = (1 + F)ℜ(sd,φ
i,h ) and 0 < F < 1. Therefore, the

flexibility bounds differ per load, phase, and hour.
Given that the main objective is to diversify load consump-

tion throughout the day and flatten the net load curve, load
shedding where both power and energy are curtailable is not
considered in this paper.

2) THERMOSTATICALLY-CONTROLLED LOADS (TCLs)
Thermostatically controllable devices are both power- and
temperature-constrained. The consumer can set the desired
bounds of the indoor temperature, and determine the com-
fortable temperature within a time range [11], [14]. The latter
is attained by the objective function.

∀φ ∈ 8, h ∈ H, ∀i ∈ T :

0 ≤ pt,φi,h ≤ P
t

(10a)

T in,φi,h = T in,φi,h−1 + β1

(
T out
h − T in,φi,h−1

)
+ β2p

t,φ
i,h (10b)

T ≤ T t,φi,h ≤ T (10c)

The TCL real power, pt,φi,h , is constrained in (10a), e.g. P
t
=

4kW . The indoor temperature, T in
h , constraint in (10b) evolves

on an hourly-basis as a function of the outdoor temperature,
previous indoor temperature, and the power of the TCL.
β1 determines the thermal change with respect to outdoor
temperature, which is usually decided by the thermal insu-
lation of residential buildings. β2 is the appliance efficiency
parameter, and it is either negative for cooling or positive
for heating. The initial indoor temperature at h = 0 is set
randomly between 24 and 30 ◦C.

3) ELECTRIC VEHICLES (EVs)
We postulate the following assumptions for the EV model:

• For simplicity, we assume EVs have unified kWh capac-
ity. Being the U.S. top-selling EV in 2021 [34], Tesla
Model 3 is selected for our case studies, which has an
approximate capacity of 50 kWh.

• The elapsed time needed for full-charging is assumed
to be 9 hours, which is approximately the time required
with 7kW EV chargers.

• EV arrival time, ha, is randomly selected. In this paper,
the bounds of the random sample are 1 and 24, in order
to account for at-home tasks (working,education, etc).
Also, time after departure, where EVs are not charged,
is assumed to last for 10 hours before arrival time.
Therefore, the departure time, hd , at which EVs should
be charged enough is 10 hours before the arrival time.

• Further, the state of charge (SOC) of the vehicle at
ha is also randomized, to account for away-from-home
charging.
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Practically, charging and discharging energy conversion
of EV devices are characterized with some shortage of
efficiency. Charging and discharging inefficiencies usually
entail using separate continuous variables to render a phys-
ically realizable state of charge. Such a model requires a
non-convex constraint to prevent coincident charging and
discharging [35]. This constraint is, however, not essential for
some objective functions [36]. To streamline the formulation
and maintain the computational advantage, inefficiencies of
the EV battery can be ignored [15].

∀φ ∈ 8, ∀i ∈ V :

Pe ≤ ℜ(se,φi,h ) ≤ P
e

h ∈ H (11a)[
Sei s

e,φ
i,h

(se,φi,h )
CSei

]
⪰ 0 h ∈ H (11b)

Ee,φi,h = Ee,φi,h−1 − 1hℜ(se,φi,h ) h ∈ H (11c)

E
e
≤ Ee,φi,h ≤ Ee h ∈ H (11d)

Ee,φi,hd ≥ Edes hd ∈ H (11e)

Equation (11a) bounds the charging/discharging variable.
If vehicle-to-grid (V2G) is enabled, the PSD matrix in (11b)
constrains the capacity and reactive-power availability of the
inverter [30]. The inverter’s capacity is imposed by Schur’s
complement constraint (11b), which accurately represents
the nonlinear relationship |se,φi,h |

2
≤ (Sei )

2. Otherwise, the
discharging limit and reactive power are set to zero, Pe =

0 and ℑ(se,φi,h ) = 0. Equations (11c) and (11d) are state of
charge and charging limits. The desired charging state prior
to departure, Edes, is enforced by constraint (11e).

4) PHOTOVOLTAICS PAIRED WITH BATTERY ENERGY
STORAGE SYSTEMS (PV-BESS)
The PV and BESS are modeled as:

∀φ ∈ 8, h ∈ H, ∀i ∈ P :

ℜ(sp,φi,h ) = pslrh − pcrt,φi,h + pbtr,φi,h (12a)

0 ≤ pcrti,h ≤ pslrh (12b)

Pbtr ≤ pbtr,φi,h ≤ P
btr

(12c)[
Spi s

p,φ
i,h

(sp,φi,h )
CSpi

]
⪰ 0 (12d)

Ebtr,φi,h = Ebtr,φi,h−1 + 1hℜ(sp,φi,h ) h ∈ H (12e)

E
btr

≤ Ebtr,φi,h ≤ Ebtr h ∈ H (12f)

Ebtr,φi,24 = Ebtr,φi,1 h ∈ H (12g)

The net power injection of a PV inverter with a BESS is
enforced by the equality constraint in (12a), such that pslrh
is the solar real power, which is a given parameter based
on historical data and changes throughout the day, pcrt,φi,h

represents the curtailment of the power, and pbtr,φi,h is the BESS

power, where positive values represent discharging. In (12b),
pcrt,φi,h is upper-bounded by the solar power output, pslrh , to pre-
vent curtailment of power in excess of the available solar
resource. It is worth noting that active power curtailment,
as studied in [37], can be employed to extend the allowed PV
penetration in distribution systems, and the smart functions
of PV inverters, such as reactive power control and voltage
regulation, can further enhance the technical benefits of PV
to distribution systems.

We consider an oversized, variable-PF inverter that ensures
reactive power support during peak solar generation or peak
discharging. Similar to (11b), the PV-BESS inverter’s capac-
ity is imposed by (12d).

The SOC of the BESS is constrained in (12e). Note that the
charging and discharging real-power variable of the BESS is
contrary to that of the EV.

5) VOLTAGE REGULATOR
Maintaining voltage magnitudes within prescribed security
limits is of paramount importance for distribution systems.
To achieve this objective, alongside continuous reactive
power support provided by inverters, an autotransformer fur-
nished with tap changers is installed at the upstream line
of the distribution system. Autotransformers are employed
in the optimization problem to augment the voltage profile,
ensuring seamless coordination with existing distributed gen-
eration and responsive loads.

To preserve the tractability of the optimization problem,
we incorporate a binary-free voltage regulator model pro-
posed by [28]. For a voltage regulator situated on line (i, j) and
providing voltage variability on the secondary circuit within
maximum and minimum tap ratio bounds, the following con-
straints are imposed:

wi − r2wj ⪰ 0 (13a)

−wi + r2wj ⪰ 0 (13b)

Here, wi and wj denote the squared voltages at the primary
and secondary circuits of the autotransformer, respectively,
while r and r represent the lower and upper bounds of the
voltage regulator’s range.

D. OBJECTIVE FUNCTION
1) NET LOAD FLATTENING
Assuming the previous DER models are all placed at node i,
the temporal net load variable is written as:

si,h = sdi,h + pti,h + sei,h − spi,h h ∈ H (14)

In order to schedule flexible loads, curtailment, and charg-
ing/discharging of BESS so as reduce hour-to-hour net load
fluctuations, the following inter-temporal net load function is
minimized.

Fn =

∑
h∈H

∑
i∈N

∑
φ∈8

|sφi,h − sφi,h−1| (15)
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2) CONSUMER COMFORT PRIORITIZATION
TCL consumers may desire to have a certain indoor tem-
perature. This can be achieved by minimizing the following
function over Ht , which is the time range within which
consumers prefer a fixed indoor temperature, Tdes.

Ftcl =

∑
h∈Ht

∑
i∈T

∑
φ∈8

|T in,φi,h − Tdes| (16)

Similarly, an EV user may want to take a trip out of the
selected trip hours. Hence, EV readiness during idleness can
be maximized by minimizing the following term.

Fe =

∑
h∈H

∑
i∈V

∑
φ∈8

|Ee,φi,h − Edes| (17)

It should be noted that maximizing EV readiness could also
minimize EV participation with V2G services.

3) CURTAILMENT REDUCTION
To avoid reduction of the PV power output, the curtailment
variable is reduced by minimizing the following function:

Fc =

∑
h∈H

∑
i∈V

∑
φ∈8

pcrt,φi,h (18)

4) OVERALL PROBLEM
The optimization problem is formulated as:

min α1Fn + α2Ft + α3Fe + α4Fc

s. t. (5)-(14)

V 2
≤ wi ≤ V

2
i ∈ N (19)

where the objective function is a combination thereof, cre-
ating a trade-off between achieving a flat net load profile,
comfortable consumption, and reduced curtailment. In this
paper, the net load flattening is prioritized with higher values
of α1 compared to α2, α3 and α4. A good practice is to select
values such that α1 +α2 +α3 +α4 = 1. The effect of various
weight selections is discussed in the numerical results. The
squared voltage variable,wi, is limited by the security voltage
limits.

III. RANK-PENALIZED PROBLEM FORMULATION
In this section, we address the challenge of obtaining fea-
sible solutions to the multi-time ACOPF problem, caused
by the multi-objective function (15)-(17), by employing
a non-iterative rank penalization approach. This technique
allows us to retain the physical realizability of the solutions
while overcoming the limitations of the iterative methods
used to tackle rank deviation in ACOPF problems. This
approach not only enhances the computational efficiency but
also expands the applicability of the method to a wider range
of optimization problems. In what follows, we detail the
foundations of the penalized SDP approach.

The 6 × 6 PSD matrix in (7) is defined for line (ij) as Xij.
The trace of Xij is equal to the sum of the eigenvalues,

expressed as:

tr(Xij) =

6∑
n=1

λn (20)

If the PSD matrix is rank-1, the trace of Xij is equal to the
superior eigenvalue such that:

tr(Xij) = λ1 (21)

where λ1 is the largest eigenvalue. Therefore, appending tr(X )
to the objective function minimizes the inferior eigenvalues,∑

λn where n > 1. In this paper, we adopt this method to
render PSD matrices rank-1 and enable solution retrieval.

The overall problem then becomes

min α1Fn + α2Ft + α3Fe + α4Fc

+

∑
h∈H

∑
(ij)∈E

α
ij
5 tr(Xij,h)

s. t. (5)-(14)

V 2
≤ wi ≤ V

2
i ∈ N (22)

With α
ij
5 > 0, the rank penalization term elevates the

solution to (22) to be within the feasible region. Therefore,
problem (22) is a subset of the feasible space of problem (19).

Values of α
ij
5 can be adjusted non-uniformly. This is of the

essence for applications that impact particular lines. In which
case, larger values of α

ij
5 can be chosen for lines whose

PSD matrices are not rank-1. In our problem, the objective
functions are the source of inexactness, and hence we choose
a uniform value to penalize all PSD matrices. Reference [27]
found that smaller values can lead to a global optimal solu-
tion. A thorough comparison between the convex iteration
and rank penalization was conducted in [38] where both
methods exhibit similar results except that the latter is faster.
In our case studies, we fix α

ij
5 at 1.

IV. NUMERICAL EXPERIMENTS
In this section, we perform case studies on the modified
IEEE 13-bus distribution feeder. Before delving into the case
studies, we briefly describe the main steps of the proposed
method, which include data collection, preprocessing, and
scheduling of the DERs. Multiple load aggregators within the
distribution system gather historical solar power generation
data, demand profiles, and parameters of all DERs, such as
battery storage and flexible loads. Subsequently, these load
aggregators preprocess the data to determine the flexibility
range of the deferrable loads, considering the constraints and
preferences of the users. The load aggregators then pass this
information to the DSO,who is responsible for scheduling the
DERs, including dispatchable resources (DLs, EVs, TCLs,
and PV-BESSs), by formulating and solving amulti-objective
optimization problem in (22) based on the rank-penalized
convex multiphase ACOPF.
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FIGURE 4. Modified IEEE 13-bus feeder.

FIGURE 5. Day-ahead profiles of normalized solar irradiance and demand
with DL flexibility.

A. SIMULATION SETUP
First, the problem in (22) is coded in CVX [39], [40] and
solved using the commercial solver Mosek [41]. The sys-
tem is unbalanced and highly loaded with a total power of
3.466 MW and 0.855 power factor. As shown in Fig. 4, the
feeder exhibits dichotomy, wherein buses could be three-,
two-, or single-phase. In terms of real power, loading percent-
ages are 33.9%, 29.98%, 36.12% and respectively for phase
A, B, and C. We place PVs with BESS on Bus 5, 8, 13,
and 14 with uniform capacity. Thus, the solar power injection
inverter is calculated as such:

pslr,φi,h = η ×

∑
i∈N

∑
φ∈8i

ℜ

(
sdi,h

)
|8i| × |P|

, 0 < η < 1

where η is the penetration level. Note that sdi,h alludes to
the fixed real-power load. The BESS energy capability, Ebtr ,
is calculated similarly, but additionally multiplied by the
number of hourswithinwhich it can provide a constant power.
The capacity in Table 1 is based on the assumption that BESS
aggregation can provide 25% of the total load for 8 hours.

The PV-BESS inverter is sized such that it can inject solar
and battery power and reactive power. Hence, an oversized
inverter is used and rated in kVA as in Table 1.

Placement and parameters of EVfleets and TCL ensembles
are also tabulated in Table 1. To accommodate EVs and
TCLs, the original load of the feeder is reduced by 13%.

TABLE 1. Parameters and limits of flexible loads and distributed
generators.

FIGURE 6. Illustration of a typical summer temperature in Saudi Arabia
and desired indoor temperature bounds.

The voltage regulator is located between Bus 2 and 3 in
Fig. 4. In this paper, we assume gang-operated taps with
±10% flexibility of the nominal voltage.

The variability of the demand and solar generation follows
the normalized profiles depicted in Fig. 5. In the case of
demand response, we assume load deferrability on all loaded
buses, as tabulated in Table 1. The DL flexibility range is
determined by the load aggregator based on historical load
data and established demand patterns, which help identify
periods of high and low demand and set the maximum and
minimum bounds for deferrable load flexibility, i.e., P

d
i,h

and Pdi,h. The bounds are adjusted for different times of the
day to reflect consumer willingness to shift consumption,
ensuring deferred consumption neither exceeds the original
peak demand nor falls below the minimum original demand.

Fig. 6 shows the variations of a typical summer-day out-
door temperature along with the bounds of indoor tempera-
ture. Fig. 7 illustrates the laxity randomness of EVs.
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FIGURE 7. Random laxity and trip times of EVs.

We use multiple percentages to measure the effectiveness
of the proposed problem to reduce curtailment and/or flatten
the net load profile. The curtailment percentage, CP, is mea-
sured with respect to the total solar energy. DC, EVC and
TCLC are respectively the percentages of deferred consump-
tion of DLs, EV charging, and TCL consumption during solar
generation.

B. CASE STUDIES
1) BASE CASE: WITHOUT DEMAND RESPONSE AND
BATTERIES
Assuming loads are not flexible and PVs are not paired with
batteries, the problem is solved with a 50% solar penetration
(η = 0.5). Theweights are tuned to placemore importance on
the load flattening objective, where α1 = 0.5, α2 = 0.3, and
α3 = α4 = 0.1. Also, V2G capability of EVs is not active.

The temporal changes in demand, net demand, EV fleet
charging, TCL ensemble consumption, and reactive power
support of PV inverters are shown in Fig. 8. Fig. 8b shows
that, despite the limited flexibility of EV charging and TCL
consumption, the net demand is not flattened. This is mainly
because EVs and TCLs are mainly governed by laxity time,
temperature, and consumer preference. Phase A experiences
the largest base-to-peak difference in net demand volatility
when the net load increases by 766.65 kW from 2:00 PM
to 7:00 PM.

The net demand is even more volatile on phase A and B
due to single-phase PV configurations on bus 13 and 14,
which justifies the ample Var support on phase C as depicted
by Fig. 8e.

2) CASE 2: WITH DEMAND RESPONSE
We solve the problem assuming no energy storage and that
loads can alter their energy consumption within the range
prescribed in Fig. 5. The results in Fig. 9 show a significant
improvement in the net load demand profile.

Table 2 highlights the impact of load deferrability on Fn,
CP, DC, EVC and TCLC. With flexibility of load, 8.1% of
total demand is deferred to midday, minimizing the total net
load fluctuation by 60%. Also, Fig. 9b shows that the largest
base-to-peak difference in net demand volatility dropped 62%

FIGURE 8. Base case: temporal changes of (a) total demand (fixed load,
EVs, and TCLs), (b) net demand, (c) EV fleet consumption, (d) TCL ensemble
consumption, (e) PV reactive power support. Although EV charging and
TCL consumption are partially flexible, they are unable to alter the overall
demand profile due to the inflexibility of the original load.

from the base case, where the net demand increases only
by 290.76 kW from 2:00 PM to 7:00 PM. Interestingly, the
curtailment has also reduced by approximately 49%, at the
expense of a slight reduction in EV charging and TCL con-
sumption during solar irradiance.

The impact of weight selection on net load flattening
and curtailment is further investigated. Table 2 shows that
without curtailment minimization, approximately 11 kWh
is curtailed, amounting to 11.68% of the total solar energy,
without significant change in deferred load.

On the other hand, reducing curtailment without flattening
the net load results in less than 1% of curtailed solar energy.
It can be concluded that, without the flattening objective,
the flexible loads do not coordinate so as to mitigate the net
load variability, despite the sustained load deferment. This
signifies the role of the net load flattening objective.

It is clear from Fig. 8e and Fig. 9d that the PV Vars follow
the net demand, preventing voltage sags during high loading.

3) CASE 3: WITH DEMAND RESPONSE AND BATTERIES
Fig. 10b shows that the net load can further improved when
BESS is considered. It is noted from Fig. 10c that BESS
closest to the substation consume the highest power, pre-
sumably because of their proximity to the voltage regulator,
providing higher voltage levels compared to those far from
the substation.

Compared to the base case, the net load fluctuation, Fn, has
reduced by 69%, and curtailment has diminished to 1.46%.
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TABLE 2. The trade-off between load flattening, solar energy curtailment reduction, and consumption during solar irradiance with different weight
selections.

FIGURE 9. Case 2: temporal changes of (a) total demand (DLs, EVs, and
TCLs), (b) net demand, (c) EV fleet consumption, (d) TCL ensemble
consumption, (e) PV reactive power support. DLs have remarkably
improved the net load profile. Phase B has least load and the lowest PV
penetration, and thus its net load is more flattened than Phase A and B.

The curtailment reduction does not seem to be affected when
α2 = 0. On the other hand, zero curtailment is attained when
α1 = 0, at the cost of a large net load fluctuation.

Overall, introducing load flexibility and energy storage
improves the system’s ability to manage net load and con-
sumer comfort, as demonstrated by the changes in the per-
centage indicators (CP, DC, EVC, and TCLC). Varying the
weighting factors allows us to observe the trade-offs between
different objectives and select the most appropriate combina-
tion for a specific application.

In sum, it is essential to emphasize the significance
of the case studies that illustrate the versatility of our
rank-penalized SDP approach and its applicability to various
scenarios involving optimal management of DERs while pre-
serving physical realizability and solution accuracy. Among
the presented case studies, scenarios with higher penalties
on net load fluctuation are of particular importance. They
demonstrate the effectiveness of our proposedmulti-objective
optimization approach in addressing the critical issue of

FIGURE 10. Case 3: temporal changes of (a) total demand (DLs, EVs, and
TCLs), (b) net demand, (c) real power from each three-phase BESS, and
(d) overall BESS state of charge. The overall demand, mainly DL
consumption and BESS charging/discharging, coordinate to flatten the
net load profile. The SOC shows that batteries pick up charging once solar
irradiance is available.

harmonizing the interplay between generation and demand
assets to reduce net load fluctuation.

4) CASE 4: IMPACT OF COMFORT OBJECTIVE FUNCTIONS
In the previous case studies, we solved the problem with the
objective functions prioritizing the consumer’s comfort for
sustained EV charging and an indoor temperature of 24 ◦C.
We examine the impact of these objectives on the EV state of
charge and indoor temperature by solving the problem with
α2 = α3 = 0.
It is evident fromFig. 11a that without the EV prioritization

objective, the SOC of a single EV at Bus 3 tends to be slightly
less than 90%. The temperature preference objective is more
impactful, as Fig. 11b shows that the indoor temperature is
kept at its maximum when α4 is set to zero.

5) IMPACT OF αIJ
5 ON THE SOLUTION

The solution to the rank-relaxed (22) is deemed exact if,
and only if, all PSD matrices approximate a rank-1 structure
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FIGURE 11. Case 4: (a) The total state of charge for EVs at Bus 3 with and
without objective prioritizing 90% of charging. (b) The indoor
temperature at Bus 3 with and without prioritization of 24C◦.

FIGURE 12. (a) Penalized rank: The ratio of the second largest eigenvalue
to the largest eigenvalue for all PSD matrices. It is clear that the ratio is
low, indicating the dominance of the superior eigenvalue, λ1. (b) Without
rank penalization: The ratio is large showing that the solution is inexact
and therefore unreliable.

as delineated by (21). A customary method for assessing
rank involves the calculation of the ratio between the sec-
ond largest eigenvalue and the largest eigenvalue, denoted
as λ2/λ1. Diminished ratios signify the preeminence of
λ1 over other eigenvalues, thereby suggesting a close approx-
imation to the rank-1.

Upon solving case 4, the spatio-temporal ratio is computed
and plotted in Fig. 12a. The maximum ratio, a minuscule
1.9468 × 10−05, strongly indicates that the PSD matrices
possess a rank-1 structure, thereby rendering the solutions
feasible. To underscore the significance of rank-1 retrieval,
we solve the problem without penalizing the PSD matrices,
as in (19). The relatively elevated spatio-temporal ratio in
Fig. 12b suggests the inexactitude of the solution, wherein
the equality constraint (4) diverges considerably from being
satisfied.

V. CONCLUSION
In this paper, we proposed a multi-objective optimization
problem for the optimal scheduling of flexible loads and
energy storage devices to achieve a flattened net load profile,

reduced curtailment, and a pre-defined consumer’s prefer-
ence of consumption, while considering the physical con-
straints of a multi-phase distribution system. By leveraging
the convex relaxation of the optimal power flow problem and
enhancing solution quality through rank minimization, our
approach demonstrates a successful coordination of various
flexible loads to align peak demand with peak solar produc-
tion on the IEEE 13-bus feeder. Our case studies show that
energy-constrained deferrable loads have the highest contri-
bution to net load flattening and that small-scale batteries
paired with PVs can further support the achievement of our
multi-objective goals.

A key strength of our work is the successful implementa-
tion of rank minimization, which renders optimal and feasi-
ble solutions to the convex ACOPF problem. This approach
enables the adoption of non-conventional objective functions,
paving the way for new research directions in ACOPF prob-
lem formulations.

In our future work, we will extend our current approach to
develop a privacy-preserving algorithm that allows aggrega-
tors to optimize local assets while coordinating with the DSO
to abide by system constraints.
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