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ABSTRACT Face super-resolution involves generating a high-resolution facial image from a low-resolution
one. It is, however, quite a difficult task when the resolution difference between input and output images
is too large. In order to tackle this challenge, many approaches use generative adversarial networks that are
pre-trained on a large facial image dataset, but they often generate fake details and distort the person’s original
face, leading to a loss of identity. Hence, in this paper, we propose a progressive face super-resolution net-
work, called RPF, to super-resolve a facial imagewithout losing details and personal identity by progressively
exploiting the same person’s high-resolution image as a reference image. First, we remove unnecessary detail
information, such as hair and background, from the reference image, which may be different from the low-
resolution input. Next, we align the high-resolution reference image to the low-resolution input image and
blend them to generate a synthesized image. Finally, we refine the synthesized image to generate a faithful
super-resolved image containing both details and identity information. Experimental results demonstrate
that the proposed RPF algorithm outperforms recent state-of-the-art methods in terms of detail restoration
and identity preservation, with improvements of 0.0098 and 0.0478 in LPIPS and ISC, respectively, on the
CelebA-HQ dataset.

INDEX TERMS Face super-resolution, reference-based super-resolution, convolutional neural networks,
generative adversarial networks.

I. INTRODUCTION
Face super-resolution (SR) is a problem of reconstructing a
high-resolution (HR) facial image from a low-resolution (LR)
one. Recent face SR researches [1], [2], [3], [4] have focused
on a challenging scenario in which the scale factor — the
resolution ratio between HR and LR images — is very large,
e.g., 64 as illustrated in Figure 1. This is because input images
to many problems in face analysis, such as face recognition
[5], face attribute recognition [6], and face alignment [7],
often have very low resolutions. In order not to degrade
the performance of such analysis severely, the input images
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should be sufficiently upsampled. However, it is not easy
to restore HR images with large scale factors. A typical SR
network is trained to reduce pixelwise differences between
a restored HR image and the ground truth (GT), but it may
suffer when input is too small and thus does not provide
meaningful cues for restoration. In such a case, the network
tends to produce blurry results.

To overcome the limitation, many techniques [1], [2], [3],
[4] adopt generative adversarial networks (GANs) [8], [9]
pre-trained on a large scale facial image dataset. They gen-
erate high-quality images by exploiting facial details learned
by the pre-trained GANs. However, as shown in Figure 1,
GANs may reconstruct fake details and alter the person’s
original face severely, resulting in identity loss. This misses
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the objective of face SR to restore a specific person’s HR
facial image. Face SR should not only provide high-quality
details but also preserve the person’s identity.

FIGURE 1. Examples of face SR results at a scale factor of 64: An input LR
image is super-resolved by PULSE [1], GCFSR [2], and the proposed RPF
algorithm. Each dotted line presents the similarity between the
super-resolved image and GT. RPF yields the highest similarity both
quantitatively and qualitatively, indicating that it preserves the identity
information in GT faithfully.

There have been some attempts [10], [11], [12], [13] to
exploit the same person’s HR reference image containing fine
details and identity information. Note that HR references are
readily available in many cases. For example, someone may
zoom in on her tiny face in a group photo using her HR por-
trait in the same personal album [13]. These reference-based
techniques should align a reference image to an input image,
for they may have different facial angles and expressions.
However, even though they are successfully aligned, it is
not straightforward to use the reference information for face
SR. Non-facial regions in the reference may exhibit quite
different characteristics from those in the input, depending
on hairstyles, accessories, and shooting locations. If such
differences are not taken into account systematically in the
SR process, they may cause unpleasing artifacts in SR results.

In this paper, we propose a novel reference-based face
SR algorithm to reconstruct a high-quality face image with-
out losing the person’s identity. First, we mask a reference
image based on non-facial region removal to prevent adverse
impacts of non-facial regions due to their variability. Second,
we propose the reference-based progressive face SR (RPF)
network, which gradually magnifies the input resolution by
employing reconstruction blocks repeatedly. Each recon-
struction block contains three modules for warping, synthe-
sis, and refinement. First, the warping module estimates the
motion field between the masked HR reference and the LR

input to align the reference to the input. Second, the syn-
thesis module reconstructs facial details finely and faithfully
using the reference information. Third, the refinement mod-
ule generates plausible details for non-facial regions and also
further enhances facial details by fine-tuning facial regions.
Extensive experiments demonstrate the effectiveness of the
proposed RPF algorithm. Also, it is shown that RPF outper-
forms existing face SR techniques in both detail restoration
and identity preservation.

This paper has the following contributions:
• We propose a novel reference-based face SR algorithm,
called RPF, that reconstructs high-quality details without
losing identity information.

• We propose masking reference images based on the
observation that non-facial regions have different char-
acteristics from facial ones.

• The proposed RPF algorithm meaningfully outperforms
existing face SR techniques in detail restoration and
identity preservation.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work. Section III explains the pro-
posed RPF algorithm, and Section IV discusses experimental
results. Finally, Section V draws conclusions.

II. RELATED WORK
A. FACE SR WITH SMALL SCALE FACTORS
With the great success of convolutional neural networks
(CNNs), many CNN-based face SR algorithms, e.g. [14],
[15], [16], have been proposed. Zhou et al. [14] devel-
oped the bi-channel CNN consisting of only a few layers.
Yu and Porikli [15] adopted a generative adversarial loss
to reconstruct realistic images. Huang et al. [16] designed a
wavelet-based CNN to prevent over-smoothing.

To interpolate facial images effectively, attempts have
been made to use prior knowledge of facial configurations
or characteristics [14], [17], [18], [19], [20], [21], [22].
Zhu et al. [14] adopted the high-frequency prior extracted
from HR face samples. Chen et al. [17] developed an end-
to-end SR network using landmark and parsing maps. Also,
spatial configurations of faces were extracted and used for
face SR in [19], [20], and [23]. Xin et al. [18] extended
the capsule network [24] to encode facial attributes such
as gender, age, and beard style. Yu et al. [21] developed
an attribute-embedded upscaling network to exploit facial
attributes. Hu et al. [22] extracted 3D priors to achieve more
reliable SR. However, these algorithms are mainly for rela-
tively small scale factors (×8,×16).

B. FACE SR WITH LARGE SCALE FACTORS
Generative models, such as StyleGANs [8], [9], can produce
detailed and realistic facial images randomly, but they can-
not generate what a user wants. To exploit StyleGANs for
face SR, some algorithms [1], [2], [3], [4] adopt encoders
to extract features from an LR input image and use them
as input to StyleGANs. For instance, Menon et al. [1] itera-
tively optimized latent features to obtain desired SR results.
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Yang et al. [3] developed an encoder to extract variables from
an LR image and then employed StyleGAN as a decoder to
generate an HR image. Similarly, Chan et al. [4] extracted
variables, refined the variables using StyleGAN, and used
their decoder to produce an HR image. He et al. [2] proposed
a controllable, as well as generative, face SR algorithm. These
algorithms [1], [2], [3], [4] provide rich details for face SR,
but those details may be fake ones rather than interpolated
from an input image. Such fake details often distort identity
information, so Wang et al. [25] fine-tuned StyleGAN with
the identity preserving loss. However, since identity infor-
mation cannot be used in testing, it still has the weakness
of ambiguous identity restoration. In contrast, the proposed
RPF algorithm uses the reference image of the same person
to enforce the identity information to be used in testing as
well as in training.

C. REFERENCE-BASED FACE SR
Some algorithms [10], [11], [12], [13] use an HR reference
image, which can be selected from the same person’s album,
for face SR. Liu et al. [12] adopted a conditional variational
autoencoder to restore details using the same person’s HR
reference. They embedded input and reference images into
a joint latent space and generated an SR image using a
generative decoder. Li et al. [10] warped a reference image
to an input image based on optical flow and reconstructed an
SR image. They used the information in the entire reference
image, including non-facial regions such as hair, accessories,
and background, for the SR reconstruction, but the non-facial
regions may be quite different from those in the input image,
causing visual artifacts. For more reliable SR, Li et al. [11]
selected the most similar reference image among multiple
candidates. Kim et al. [13] partitioned both input and refer-
ence feature maps into patches and matched the most sim-
ilar pairs of input and reference patches to restore details.
These reference-based SR algorithms, however, may cause
unpleasing artifacts in non-facial regions. Furthermore, they
are designed to use reference HR images at relatively small
scale factors (×8,×16).

III. PROPOSED ALGORITHM
Suppose that an LR image x ∈ RL×L×3 is a degraded version
of an original HR image y ∈ RκL×κL×3, where κ is the
scale factor. In this paper, face photos have the aspect ratio
of 1 : 1, so the spatial resolution of x is denoted by L × L.
Also, it is assumed that a reference image r ∈ RκL×κL×3 is
given, which differs from y but contains the same person’s
face. In reference-based face SR, we aim to restore the HR
image y from the LR one x by exploiting the information in
the reference r.

Figure 2 shows an overview of the proposed RPF algo-
rithm. Through the non-facial region removal, we obtain
the masked reference image r̂ from r. Then, we grad-
ually magnify x with r̂ through multiple reconstruction
blocks.

A. NON-FACIAL REGION REMOVAL
A face photo is composed of facial regions and non-facial
regions, such as hair, accessories, and background. In com-
parison with non-facial regions, the facial regions, contain-
ing the identity information, are relatively invariant across
different photos. In general, the facial regions in two photos
of the same person are different due to the misalignment of
facial landmarks, which are caused by different facial angles
or expressions. Such differences can be compensated by an
alignment process. In contrast, even for the same person, non-
facial regions vary greatly depending on hairstyles, fashion
items, or shooting locations. Therefore, rather than being
helpful for SR, non-facial regions often cause visual artifacts
in SR. It is hence essential to erase non-facial regions from a
reference image to achieve face SR reliably.

We develop a scheme for non-facial region removal illus-
trated in Figure 3. We parse a reference image r into
18 classes (e.g., skin, nose, and hair) using the bilateral
segmentation network [26]. We then generate a binary face
mask m based on the semantics of those 18 classes. Specifi-
cally, we assume that the five classes of ‘neck,’ ‘hat,’ ‘hair,’
‘necklace,’ and ‘clothing’ are non-facial, while the others are
facial. We set the mask value to 1 if a pixel belongs to one
of the facial classes, and 0 otherwise. Finally, we obtain the
masked reference image r̂ by

r̂ = m ⊙ r (1)

where ⊙ denotes the Hadamard product.

B. RPF NETWORK
As shown in Figure 2, we progressively restore an HR image
with a scale factor κ = 2N through the proposed RPF network
consisting of N reconstruction blocks. Each reconstruction
block doubles the resolution. When a scale factor is large,
it is difficult to train a neural network that produces an HR
image at once. It is known that the progressive approach
facilitates more reliable training at a large scale factor [27],
[28]. In Section IV, we also validate the effectiveness of the
progressive approach experimentally.

For progressive face SR, we downsample the masked ref-
erence image by a factor of 2 repeatedly and feed them to the
corresponding reconstruction blocks, as shown in Figure 2(a).
Then, each reconstruction block in Figure 2(b) increases the
resolution by a factor of 2 using the warping, synthesis, and
refinementmodules.More specifically, the nth reconstruction
block processes an image x(n) ∈ R2n−1L×2n−1L×3 and the
corresponding masked reference r̂(n) ∈ R2nL×2nL×3 to yield
an output image x(n+1)

∈ R2nL×2nL×3, where 1 ≤ n ≤ N .
Note that x(1) is the LR input x, and x(N+1) is the SR output.
Let us describe each module subsequently.

1) WARPING MODULE
To super-resolve the input x(n) faithfully, we first align the
masked reference r̂(n) to x(n) using the warping module in
Figure 4. The warping module estimates the motion field
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FIGURE 2. (a) An overview of the proposed RPF algorithm. In this example, the LR input x has the spatial resolution of 16 × 16, which is
super-resolved to 1024 × 1024 using six reconstruction blocks. For visualization, x is resized to the same size as the SR result via bicubic interpolation.
(b) The nth reconstruction block.

FIGURE 3. Illustration of the non-facial region removal process.

ux→r̂, which indicates the matching pixel in r̂(n) correspond-
ing to each pixel in x(n). However, the spatial resolution of
x(n) is 2n−1L × 2n−1L, while that of r̂(n) is 2nL × 2nL. Thus,
we first double the resolution of x(n) through a convolution
layer and a pixel shuffle layer. Then, we concatenate the
input and reference information and perform the optical flow
estimation.

Similar to U-Net [29], the warping module contains the
encoder, composed of downscale blocks, and the decoder,
composed of upscale blocks. In Figure 4, each downscale
block halves the spatial resolution using an ordinary convo-
lution layer and a stride convolution layer. The number of
downscale blocks is determined so that the encoder output,
i.e., feature map, has the spatial resolution of 8 × 8. Then,
through the same number of upscale blocks, each of which
contains a convolution layer and two deconvolution layers,
we gradually refine the feature map to obtain the motion field
ux→r̂ of resolution 2nL × 2nL. Finally, we obtain the aligned
reference image r̃(n) by

r̃(n) = φB(r̂(n),ux→r̂) (2)

where φB is the backward warping operator [30].

2) SYNTHESIS MODULE
The synthesis module aims to restore fine details of facial
regions in x(n) using the aligned reference image r̃(n) in (2).

Figure 5 shows the structure of the synthesis module. First,
we double the resolution of x(n) through a convolution layer
and a pixel shuffle layer and process r̃(n) through another
convolution layer. Since both input and reference are aligned,
we simply concatenate them and use four residual blocks to
transfer high-frequency information in the reference to the
input and finally yield the synthesized image x̃(n). Note that
the synthesis module focuses on the detailed reconstruction
of facial regions.

3) REFINEMENT MODULE
Even though we can restore facial regions faithfully through
the synthesis module, it is not straightforward to recon-
struct missing details of non-facial regions because no reli-
able information is available in the reference image. Hence,
we design the refinement module to generate plausible
details for non-facial regions. To this end, we adopt the
encoder-decoder architecture [2]. The encoder extracts fea-
tures from the input image x(n) and the synthesized one x̃(n),
and then the decoder processes the features to yield the final
reconstruction x(n+1). Specifically, the encoder is composed
of K downscale blocks, each of which halves the spatial
resolution using an ordinary convolution layer and a stride
convolution layer, and an embedding block containing two
stride convolution layers and K fully connected (FC) layers,
as shown in Figure 6 (a). Here, K is determined so that
the intermediate feature map e1 has the spatial resolution of
4 × 4. As shown in Figure 6 (b), the decoder consists of K
upscale blocks, each of which doubles the resolution via style
modulation and feature modulation [2]. In this work, we train
multiple feature modulation models: one for each specific
resolution.

In the refinement module within the nth reconstruction
block, we first upsample the input image x(n) via bicubic
interpolation. Then, from the average of the upsampled image
and the synthesized one x̃(n), we extract the intermediate
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FIGURE 4. The network structure of the warping module.

FIGURE 5. The network structure of the synthesis module.

feature maps {ek}Kk=1 and the latent vectors {vk}Kk=1. Next,
throughK upscale blocks in the decoder, we obtain the feature
map dK , which is processed by the last convolution layer to
yield x(n+1). Specifically, at the kth upscale block, the style
modulation outputs the feature map sk from dk−1 and vk ,
where d0 = e1. Then the feature modulation blends sk and
ek using learnable mixing coefficients αk and βk to construct
the feature map dk , as shown in Figure 6 (c).
For example, Figure 7 shows intermediate results for

super-resolving an image.

C. LOSS FUNCTIONS
To train the three modules in each reconstruction block,
we design the warping loss Lwarp, the synthesis loss Lsyn,
and the refinement loss Lref. We do sequential training of
multiple reconstruction blocks in RPF, starting with the first
reconstruction block: we train each reconstruction block after
freezing the parameters of the previous blocks. Below we
describe the losses for training the nth reconstruction block.
Note that GT is also downsampled to the corresponding
spatial resolution via bicubic interpolation.

1) WARPING LOSS
To define the warping loss Lwarp, we construct a warped ref-
erence rwarp by warping an HR reference r to GT y, as shown

in Figure 8. To this end, we extract facial landmarks from
each image using the landmark extractor in [31]. Based on
the matching pairs of landmarks, we compute the thin-plate
spline warping (TPS) function [32], denoted by f (·), and use
it to warp only facial regions in r to yield rwarp. Here, non-
facial regions are removed as stated in Section III-A. Figure 9
shows that the facial configurations of rwarp are well aligned
with those of y. Next, we define the warping loss

Lwarp =

∥∥∥r̃(n) − r(n)warp

∥∥∥
1

(3)

where r̃(n) is a warped image by the warpingmodule and r(n)warp
is obtained by downsampling rwarp.

2) SYNTHESIS LOSS
The synthesis loss Lsyn is defined as

Lsyn = Lrec(s) + αLadv(s) (4)

where Lrec(s) is a reconstruction loss and Ladv(s) is an adver-
sarial loss. Here, we set the hyperparmeter α as 0.1. In the
synthesis module, we focus on facial regions only to pre-
vent negative impacts of non-facial regions in a reference
image. Hence, we downsample the binary face mask m
in Section III-A to m(n) and then define the reconstruction
loss

Lrec(s) =

∥∥∥m(n)
⊙ x̃(n) − m(n)

⊙ y(n)
∥∥∥
1

(5)

to penalize synthesis errors in the facial regions. Also,
we adopt the adversarial loss Ladv(s) to enhance subjec-
tive qualities by emphasizing high-frequency information.
Specifically, we use the Wasserstein loss [33], [34] as Ladv(s),
where m(n)

y ⊙ x̃(n) and m(n)
y ⊙ y(n) are used as the input.

3) REFINEMENT LOSS
We define the refinement loss Lref as a combination of the
reconstruction loss Lrec(r), perceptual loss Lper, identity loss
Lid, and adversarial loss Ladv(r),

Lref = Lrec(r) + Lper + Lid + Ladv(r) (6)
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FIGURE 6. The network structure of the refinement module, composed of an encoder and a decoder, in the nth reconstruction block.

FIGURE 7. Intermediate results of a reconstruction block: The reference image r in (a) is aligned by the warping module, resulting in the aligned
reference r̃(n) in (b). It is fed into the synthesis module to generate the synthesized image x̃(n) in (c). Finally, the refinement module provides the final
reconstruction x(n+1) in (d), which is similar to GT in (e).

FIGURE 8. For the warping loss Lwarp in training, a warped reference
rwarp is obtained by warping a reference image r to the GT y.

where the reconstruction loss is given by

Lrec(r) = ∥x(n+1)
− y(n)∥1. (7)

Also, the perceptual loss

Lper = ∥fx(n+1) − fy(n)∥2 (8)

measures the similarity between deep features fx(n+1) and
fy(n) , which are extracted from x(n+1) and y(n) through
AlexNet [35]. It helps to yield better perceptual qualities [34],
[36]. Similarly, the identity loss Lid is defined as

Lid = ∥ix(n+1) − iy(n)∥1 (9)

where ix(n+1) and iy(n) are extracted from the ArcFace net-
work [37] for face recognition. Since these features are

FIGURE 9. Examples of the GT images y, HR reference images r, and
warped references rwarp.

trained to discern different people [2], Lid helps to preserve
the person’s identity. Finally, we also adopt the Wasserstein
loss for Ladv(r) but use x(n+1) and y(n) as the input.

IV. EXPERIMENTS
A. DATASETS AND METRICS
1) CelebA-HQ [27]
It contains 30,000 facial images of 6,217 people. Among
them, for reference-based face SR, we select 28, 278 pairs of
original and reference images. Specifically, we sample refer-
ence candidates for each original image, satisfying the same
identity constraint [13]. We then choose the reference image
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among the candidates, whose facial landmarks are the closest
to those in the original image. To measure the distances
between facial landmarks, we adopt the average L1 distance.
Also, we extract those landmarks using the algorithm in [31].
We split the collected pairs into 27,291 pairs for training and
987 pairs for testing.

2) FFHQ [8]
It consists of 70,000 facial images, which are more diverse
than CelebA-HQ in terms of ages, ethnicities, accessories,
and shooting locations. However, since it provides no iden-
tity information, it is used only for training the refinement
module.

3) EVALUATION METRICS
For quantitative comparisons of face SR results, we mea-
sure the peak signal-to-noise ratio (PSNR), structural simi-
larity index measure (SSIM), learned perceptual image patch
similarity (LPIPS) [38], and identity similarity score (ISC)
[2], which measures the preservation of identity information
quantitatively.

B. IMPLEMENTATION DETAILS
We train the proposed RPF network in two stages. First,
we train the refinement modules of all reconstruction blocks
on FFHQ. For each refinement module, we use a resized LR
image via bicubic interpolation as the input and the resized
GT as the output. Thus, in this stage, we do not require
reference images. Second, we train the warping and synthe-
sis modules in each reconstruction block using CelebA-HQ.
The training is performed sequentially from the coarsest to
the finest reconstruction blocks. For efficient training, after
fixing the parameters of the previous reconstruction blocks,
we train a current reconstruction block. Similarly, within
each reconstruction block, after training and fixing the warp-
ing module, we train the synthesis module. Each module is
trained for five epochs.

In all modules except the refinement modules, we fix
the feature dimension (i.e., the number of channels) to
C = 64. The refinement modules are implemented based
on GCFSR [2]. In each convolution layer, we perform zero
padding and adopt the ReLU activation. We exclude batch
normalization since we use a small mini-batch of size 1.
We use the Adam optimizer [40] with a learning rate of 10−4.
The training is performed with an RTX 3090 GPU.

C. COMPARISONS
In Table 1, we compare the proposed RPF algorithm with
recent state-of-the-art face super-resolution (SR) algorithms,
including PULSE [1], mGANprior [39], GLEAN [4], GPEN
[3], and GCFSR [2], at large scale factors κ = 32 and
64. The results were obtained by executing the available
codes of these algorithms. Note that RPF meaningfully out-
performs the existing algorithms in all experiments and

metrics. The performance gap between RPF and the
second-best algorithm GCFSR is larger at the larger scale
factor κ = 64, demonstrating the advantages of the proposed
algorithm in restoring details when the input is too small. This
is attributed to the exploitation of HR reference images in the
proposed algorithm.

Figure 10 shows qualitative results for the proposed RPF
and state-of-the-art face SR algorithms at κ = 64. We see
that, while the existing algorithms generate detailed facial
images, they fail to preserve the identity information. In con-
trast, the proposed RPF provides more faithful results, pre-
serving the identity information by employing reference
images. It is noteworthy that the reference and input images in
our experiments have different facial expressions and angles.
Despite these differences, RPF effectively transfers the detail
information from the reference images to super-resolve
the extremely LR input images. These results demonstrate
the effectiveness of the proposed RPF algorithm in gen-
erating high-quality SR results while preserving identity
information.

We then compare the proposed algorithm with Colla-
geNet [13], which is a recent algorithm for reference-based
face SR. Since CollageNet is designed for scale factors 2,
4, 8, and 16, we employ CollageNet twice in this test to
assess its performance at higher scale factor of 32 and 64.
As shown in Table 1, the proposed RPF outperforms Colla-
geNet in LPIPS and ISC metrics, demonstrating the effec-
tiveness of RPF in restoring details and preserving identity
information. Note that the traditional metrics PSNR and
SSIM are less suitable for assessing SR results at such high
scale factors (×32,×64). As shown in Figure 10, they may
favor smoothed results that are perceptually inferior. Thus,
the performance on perceptual metrics, such as LPIPS and
ISC, is more crucial in accurately evaluating the quality of
high-scale SR results.

In Table 1, we also compare the proposed RPF algo-
rithm with MPRNet [28], a recent image restoration algo-
rithm. Since MPRNet is originally designed for deblurring,
we upsample an input image via bicubic interpolation and
then feed it to MPRNet to obtain a high-resolution image.
We see that the proposed RPF outperforms MPRNet at all
scale factors in terms of all metrics.

D. ANALYSIS
Next, we perform several experiments on CelebA-HQ to
analyze the proposed RPF algorithm. Here, we fix the scale
factor κ to 64.

1) PROGRESSIVE RECONSTRUCTION
Table 2 compares the proposed algorithm with the alternative
method that increases the resolution by a factor of 64 at
once, instead of the progressive reconstruction using multiple
reconstruction blocks.We see that the progressive reconstruc-
tion significantly improves the SR results.
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FIGURE 10. Qualitative comparison of face SR results at the scale factor κ = 64 on CelebA-HQ: Input images in (a) are super-resolved by PULSE [1] in
(b), GPEN [3] in (c), GCFSR [2] in (d), CollageNet [13] in (e), and RPF in (f). GT and reference images are in (g) and (h), respectively.
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TABLE 1. PSNR, SSIM, LPIPS, and ISC performance comparison on CelebA-HQ at scale factors κ = 32 and κ = 64. The best result is boldfaced, and the
second best one is underlined.

FIGURE 11. SR results using diverse reference images. In the left half, each reference image is selected from a different person’s photos.
In contrast, in the right half, each reference is the same person’s photo.

2) REFERENCE IMAGES
We replace HR reference images with resized input images
via bicubic interpolation to analyze the contribution of HR

reference images. Table 2 shows that reference images are
essential for faithful face SR. Especially, they increase the
ISC score considerably, indicating that the proposed RPF
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FIGURE 12. SR images are obtained by the proposed RPF algorithm in (a) and by the ablated method without
the non-facial region removal process in (b). GT images are shown in (c).

transfers the identity information in reference images to input
images effectively.

3) DIVERSE REFERENCE IMAGES
Figure 11 shows face SR results using diverse reference
images from the same people or even from different people.
We see that the proposed RPF generates quite different SR
results according to the references, which indicates that RPF
uses the information in reference images effectively. How-
ever, despite of those differences, the proposed RPF generates
reliable SR images.

4) NON-FACIAL REGION REMOVAL
We leave out the non-facial region removal for HR reference
images. This degrades the PSNR score severely due to visual
artifacts in non-facial regions, as illustrated in Figure 12.

5) REAL-WORLD DEGRADATION MODEL
As done in [41] and [42], we evaluate the robustness of the
proposed RPF algorithm using the real-world degradation
model in [41], which generates diverse LR images using blur
kernels and noise. Figure 13 shows that the proposed RPF
super-resolves these LR images as well.

TABLE 2. PSNR, LPIPS, and ISC performance comparison of ablated
methods on CelebA-HQ at the scale factor κ = 64.

FIGURE 13. The proposed RPF algorithm super-resolves degraded LR
images by exploiting reference images. The real-world degradation model
in [41] is used in this test.

V. CONCLUSION
We proposed a novel algorithm, called RPF, for reference-
based face super-resolution without losing details and iden-
tity. The algorithm consists of three key components:
warping, synthesis, and refinement modules. The warping
module aligns a high-resolution reference image with a
low-resolution input image. The synthesis module utilizes
facial information from the HR reference image to restore
both details and identity in the LR input. Lastly, the refine-
ment module further enhances the facial regions of the
synthesized image and generates realistic details in non-
facial areas. Experimental results demonstrated that the pro-
posed PRF outperforms existing algorithms quantitatively
and yields high-quality SR results by leveraging the informa-
tion contained in HR reference images.

The proposed RPF algorithm has a limitation that it is
designed to use only one reference image and thus ignores
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other potential sources of improvement. Further research
could explore the use of multiple reference images to over-
come this limitation. Also, it is worth noting that the proposed
RPF is specifically designed for facial SR, so it is evaluated
solely on facial images. Therefore, another future research
issue is to generalize RPF for the SR of general images.
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