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ABSTRACT Despite recent advancements in deep learning technologies, Child Speech Recognition remains
a challenging task. Current Automatic Speech Recognition (ASR) models require substantial amounts of
annotated data for training, which is scarce. In this work, we explore using the ASR model, wav2vec2,
with different pretraining and finetuning configurations for self-supervised learning (SSL) toward improving
automatic child speech recognition. The pretrainedwav2vec2models were finetuned using different amounts
of child speech training data, adult speech data, and a combination of both, to discover the optimum amount
of data required to finetune the model for the task of child ASR. Our trained model achieves the best Word
Error Rate (WER) of 7.42 on the MyST child speech dataset, 2.91 on the PFSTAR dataset and 12.77 on
the CMU KIDS dataset using cleaned variants of each dataset. Our models outperformed the unmodified
wav2vec2 BASE 960 on child speech using as little as 10 hours of child speech data in finetuning. The
analysis of different types of training data and their effect on inference is provided by using a combination
of custom datasets in pretraining, finetuning and inference. These ‘cleaned’ datasets are provided for use by
other researchers to provide comparisons with our results.

INDEX TERMS Child speech recognition, self-supervised learning, wav2vec2, automatic speech recogni-
tion, MyST dataset, PFSTAR dataset, CMU_kids dataset.

I. INTRODUCTION
Current deep learning-based automatic speech recognition
(ASR) models perform remarkably well on adult speech data.
However, they struggle when it comes to recognizing speech
from children. Models such as wav2vec2, Deep Speech 2,
ContextNet, and others [1], [2], [3], [4], [5], [6], [7] all
achieve impressive results on adult speech datasets such
as LibriSpeech (∼1000h), TIMIT (5.4h), LJSpeech (∼24h),
MediaSpeech (∼10h), and more. This is due in no small part
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to the vast amounts of annotated adult speech data avail-
able for training such models and the ease with which it
can be obtained. However, when it comes to child speech
recognition, State-Of-The-Art (SOTA) ASR models trained
on adult data perform quite poorly on child voice datasets.
This is due to the inherent differences between adult and
children’s voices. A child’s voice is quite different from an
adult’s voice [8], [9] in terms of pitch, linguistic and acoustic
features, ability to understand and pronounce words, high
fundamental frequency, and shorter vocal tract length.

In addition, it is a challenging task to collect and annotate
child speech data in comparison to adult speech data which
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can be acquired from various sources such as movies, news
broadcasts, audiobooks, internet, etc. Even if child speech
can be collected from such sources, providing accurate anno-
tations remains challenging. When compared to adult voice
datasets, child voice datasets are quite limited [10].

ASR is an important and useful tool for speech researchers.
It forms the basis of speech understanding [11] when
combined with advanced language models, but also finds
applications in generative models and for training improved
Text-To-Speech (TTS) models [12], [13], [14]. The interrela-
tionship between ASR and TTS is further described in [15].
As our underlying motivation is related to TTS models and
their finetuning, we cleaned the publicly available datasets
used in this research to provide improved annotations for TTS
models.

A. RELATED WORKS
In the past few years, there have been many different
approaches to improving the performance of automatic child
speech recognition systems [16]. Most of these approaches
consist of various data augmentation techniques for increas-
ing the amount of usable training data. Text-to-Speech based
data augmentations as introduced by [14] and [17], where
ASR models are finetuned using synthetic data, have not
shown significant increases in the accuracy of child ASR.
Generative Adversarial Network (GAN) based augmenta-
tion [18], [19], [20] has also been explored to increase the
amount of labeled data with acoustic attributes like those
of child speech. Some of the other popular augmentation
approaches include Vocal Tract Length Perturbation [21],
Fundamental frequency feature normalization [22], out-of-
domain data augmentation using Stochastic Feature Mapping
(SFM) [23], and data processing-based augmentations [24]
such as Speed Perturbation, Pitch Perturbation, Tempo Per-
turbation, Volume Perturbation, Reverberation Perturbation,
and Spectral Perturbation. Spectrogram Augmentation also
seems promising for improving the performance of ASR sys-
tems [25], [26]. Each of these methods shows improvements
in childASR accuracy, however, they still require correspond-
ing labeled annotations to speech data.

Another recent trend is the use of transfer learning
approaches for improving the recognition in child ASR for
features adaptability from adult to child speech. The authors
in [27] perform extensive analysis to understand the effect of
the amount of adaptation data, different DeepNeural Network
(DNN) transfer learning configurations, and their impact on
different age groups for improving child ASR. In [28], the
authors explored the use of a two-step training strategy, which
involves multilingual pretraining followed by transfer learn-
ing, for improving the performance of ASR systems on child
speech.

Each of these methods show some improvements in child
ASR accuracy, however, they still require corresponding
labeled annotations to speech. A recent review of child
ASRs [21] determined that most of these SOTA methods are

supervised learning approaches. The authors in [29] show
the performance of various supervised learning approaches
for ASR in child speech. They compared the performance
of end-to-end ASR systems with that of Deep Neural
Network-Hidden Markov Model (DNN-HMM) hybrid sys-
tems. Another paper [30] studied the performance of Factored
Time Delay Neural Networks (TDNN-F) with traditional and
SOTA systems for ASR of child speech. These supervised
approaches rely on labeled child speech data during training
for the task of ASR.

As there is a distinct lack of labeled child speech data
compared to adult, approaches that utilize unsupervised [31]
and self-supervised learning [1] were explored for this paper.
Therefore, the goal of this work is to present a method
to incorporate unlabeled child speech data into the training
procedure of a typical ASR model while also making use
of abundant, labelled, and unlabeled adult speech data to
improve the overall accuracy of ASRmodels on child speech.

B. SELF-SUPERVISED LEARNING FOR CHILD ASR
Self-supervised learning (SSL) has emerged as a paradigm to
learn general data representations from substantial amounts
of unlabeled examples allowing one to then fine-tune models
on small amounts of labeled data. The use of SSL for child
ASR was first seen at Interspeech2021, where a model using
SSL [32] received first place for non-native child speech chal-
lenge. A similar use case [24] was also presented in the SLT
2021 children speech recognition challenge [33]. Another
approach is used in [34], where the author uses a bidirectional
unsupervisedmodel pretrainingwith child speechASR. After
reviewing various approaches to SSL, wav2vec2 [1] was
chosen for this paper. Wav2vec2 shows that using SSL for the
task of ASR provides improvements over SOTA supervised
learning approaches.

At the time of working on this paper, many applications
of the wav2vec2 model for child ASR were observed. The
authors in [35] propose the use of a transformer model
pretrained on adult speech to achieve SOTA results on chil-
dren’s dataset. Reference [36] a comparison between dif-
ferent SSL approaches for child speech recognition tasks.
In [37], authors proposed a Domain Responsible Adaptation
and Fine-Tuning (DRAFT) framework to address the domain
shift between adult speech used for pretraining and child
speech used for finetuning. They use wav2vec2 along with
other SSL methods to examine the cross-domain transfer
between different children’s datasets.

This paper explores various pretraining and finetuning
configurations with different combinations of adult and
child speech datasets using wav2vec2 speech representations.
Three child speech datasets were used in this study. These
datasets were cleaned and preprocessed to make them usable
for ASR. We also report the best results on different child
speech validation. The ideal data requirement for pretraining
and finetuning in a low-data scenario was also explored in
this paper by observing the relation/pattern of performance
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FIGURE 1. Pretraining and finetuning steps in Wav2vec2 (from [1]).

in different datasets used. The rest of this paper is organized
as follows: Section II describes the model architecture. Sec-
tion III introduces the datasets used for this paper. Section IV
includes the codebase and experiments. Section V describes
the results. Conclusions are presented in Section VI.

II. TRAINING METHODOLOGY FOR SSL
The wav2vec2 model [1] is used to extract speech repre-
sentations from raw audio files in a self-supervised learning
scenario and use these representations for ASR-specific tasks.
Wav2vec2 is used in this paper as it can achieve SOTA results
when trained on a large amount of unlabeled speech data and
finetuned on labeled data as small as 10 minutes. This is ideal
for our task, as it is much easier to obtain significant amounts
of unlabeled child speech data than gather accurately labeled
data.

As it is a two-step training method (See Figure 1), the
first step includes a pretraining step in which the model is
trained with a large amount of unlabeled data. The second
step includes finetuning on labeled data using Connection-
ist Temporal Classification (CTC) loss [38] for downstream
ASR tasks. As the model learns SSL speech representation
in pretraining, it can be trained using large quantities of
unlabeled speech data and can be finetuned with only a small
amount of labeled data. This way, the problem of scarcity of
child speech is solved as we can train the ‘pretraining’ model
with a combination of unlabeled speech data and it can also
be used to learn speech representations from adult speech
datasets making use of the abundant adult speech data.

A. PRETRAINING
The pretraining stage of the wav2vec2 model consists of a
feature encoder, context network, and quantization module.
The CNN feature extractor takes the raw audio waveform as
input and passes it through a series of 1D convolutional layers
to extract high-level representations from the waveform. The
output of the feature extractor is a sequence of feature vectors
that represent the input waveform. The context network is
a transformer-based encoder which takes this sequence of

feature vectors and processes them using a stack of trans-
former layers. The transformer layers in wav2vec 2.0 use
a self-attention mechanism allowing the model to capture
long-range dependencies in the input data. The quantiza-
tion module consists of a codebook of fixed vectors, where
each input feature vector is assigned to the closest code-
book vector. Gumbel softmax function [39] is used to choose
the quantized representation from multiple codebooks. After
quantization, the discrete symbols are passed through a trans-
former encoder, which learns to encode the sequence of
symbols into a fixed-length representation that can be used
for downstream tasks such as speech recognition. Since the
process involves mapping continuous values to discrete val-
ues, it makes the model to be more efficient for training and
inference.

The contrastive loss function in Wav2vec2 is applied after
the quantization is performed. It is used to train the model
to produce embeddings that capture useful features of speech
signals. This is followed by a diversity loss which encourages
similar feature vectors to be closer together and dissimi-
lar feature vectors to be farther apart. By minimizing these
losses, Wav2vec2 can learn to produce embeddings that are
effective for downstream speech recognition tasks.

Experiments’ configurations are provided as the BASE
and LARGEmodels. The configurations differ in transformer
block size but use the same size for the encoder. The feature
encoder contains seven blocks with each block having strides
of (5,2,2,2,2,2,2) and kernel widths of (10,3,3,3,3,2,2) and
output temporal convolution of 512 channels. The context
network of the BASE model contains 12 transformer blocks,
each block with a 512-dim model, 8 attention heads, and
a 2048-dim feed-forward inner layer, while the LARGE
model contains 24 transformer blocks with model dimensions
1024, inner dimensions 4096, and 16 attention heads. We use
4 NVIDIA Tesla V100 GPUs to pretrain the model. Model
pretraining was optimized using ADAM [40]. During the
first 8% of updates, the learning rate warms up to a peak of
5 × 10 −4 for BASE and 3 × 10−4 for LARGE, and then
it linearly decays. We use both BASE and LARGE models
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according to dataset size used for pretraining. BASE models
contain 93M parameters and LARGE models contain 317M
parameters.

B. FINETUNING
For finetuning, 29 target letters were used (from the Lib-
rispeech dataset) as provided by the authors in wav2vec2 [1].
Models are optimized by minimizing CTC loss [38] for ASR
task. A modified version of SpecAugment [25] is applied as
masking to timestamps and channels to reduce the overfitting
and improve the recognition robustness. We fine-tune on
one V100 GPU. For the first 1000 updates, only the final
output classifier was trained, after which the Transformer
block was also trained. The feature encoder was frozen
during finetuning training. We also use different finetuning
configurations depending on the size of finetuning datasets.
The hyperparameters are kept the same as provided by the
wav2vec2 authors [1]. The learning rate changes accord-
ing to the dataset size as documented by the authors of
wav2vec2 [1].

As the goal of this study is to evaluate the performance
of self-supervised speech representations, it was decided not
to incorporate a language model in this research. Addition-
ally, previous research has shown that the best results for
children’s ASR systems were achieved without the use of an
external language model [29]. Language model adaptation
for child speech is also an unexplored research area. Child
speech would require a specialized trained language model
for best results. As there isn’t any definitive publicly available
language model for child speech, we consider this as a part of
the future research topic.

III. DATASET DESCRIPTION AND USAGE
The datasets are divided according to their usage. The child
speech data used in this paper include MyST Corpus [41],
CMU_Kids [42] and PF-STAR [43]. Adult Speech datasets
include Librilight [44], LibriTTS [45], and LibriSpeech [46].

A. DATASET DESCRIPTION
Below we provide a description of the datasets used in this
paper:

1) LIBRISPEECH [46]
Librispeech is an adult speech dataset with approximately
1000 hours of recorded audio with a sampling rate of 16Khz.
The data is derived from read audiobooks from the LibriVox
project. The data is carefully segmented, aligned, and used
popularly in speech research.

2) LIBRILIGHT [44]
Librilight is an adult speech dataset used as a benchmark for
training speech recognition systems with limited or no super-
vision. It contains 60,000 hours of unlabeled adult speech
extracted from audiobooks. It wasmentioned in thewav2vec2
paper [1] and used by the authors.

3) LibriTTS [45]
The LibriTTS dataset is a large-scale dataset for training TTS
models and is a subset of the Librispeech dataset. It consists
of approximately 560 hours of high-quality audio and text
transcriptions from audiobooks. This dataset is used here
for inference over adult speech as it is a clean and noise-
free dataset. The ‘dev-clean’ segment of the LibriTTS dataset
which contains over 8.9 hours of clean adult speech. It is also
widely used as a baseline in the validation of ASR and TTS
experiments.

4) MY SCIENCE TUTOR (MySt) CHILD SPEECH [41]
The MyST (My Science Tutor) Children’s Speech Corpus
consists of 393 hours of American English children’s speech
with a total of 228,874 utterances. The speech was collected
from 1371 third, fourth and fifth-grade students. 45% of the
utterances have been transcribed at the word level amount-
ing to 197 hours. This dataset is used in this paper as it’s
the largest open-source corpus of child speech available for
research use.

5) PF-STAR CORPUS OF BRITISH ENGLISH CHILD
SPEECH [43]
This corpus contains British English child speech from
158 children aged 4 to 14 years. The recordings are divided
into a training set (7.5 hours), an evaluation set (1 hour)
and a test set (5.6 hours). The corpus was collected at three
locations: a university laboratory and two primary schools.
It contains both read and spontaneous child speech with
transcriptions.

6) CMU KIDS [42]
CMU KIDS Corpus contains read-aloud sentences by chil-
dren. It was created to provide training data for the SPHINX II
automatic speech recognizer at Carnegie Mellon University.
It contains 9 hours of American English child speech. The
dataset contains 24 male and 52 female speakers having a
total of 5180 utterances.

B. DATASET CLEANING AND PROCESSING
All speech data was converted into a 16-bit mono channel
with a 16Khz sampling rate, wherever required. All the tran-
scriptions were cleaned and normalized to remove abbrevi-
ations, punctuations, whitespaces, etc. and all the characters
were changed to uppercase. All the non-linguistic annotation
symbols (in child speech datasets) such as ‘‘<unk>, sil,
hmm, <breath>, <noise>, <indiscernible>, [ze-], [cham-],
[∗∗∗ision], etc.’’ were removed and only alphanumeric char-
acters were retained in the transcript. This was done for all the
labeled data used in this paper. Child datasets required further
cleaning and pre-processing as follows:

1) MYST CLEANUP
We use the transcribed portion of MyST dataset contain-
ing over 197 hours of speech data presented in .trn file
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format. The MyST dataset contained a lot of noisy and
non-meaningful sentences such as:

◦ <silence> I’m i don’t know <noise> actually
◦ <whisper> sending go back (∗)
◦ <whisper> what’s this one <side_speech> it’s an
◦ give me that <indiscernible> a circuit is a pathway
◦ <laugh> yeah yeah

The content between ‘<’ and ‘>’ tags were removed from
all the transcriptions along with the tags themselves. All the
cleaned text files were saved in a .txt format. On further
inspection, it was observed that samples below 10 seconds
in length generally contained non-meaningful, noisy speech,
and data above 20 seconds would lead to GPU running out
of memory. Therefore, 10-20 seconds long speech samples
from transcribed MyST were selected for finetuning. A final
cleaning was performed by manually removing some of the
non-meaningful utterances by listening to audio files and
going through the transcripts, which amounted to a total of
65 hours of clean data. The data was then randomly split into
two groups having 55 hours of data for training and 10 hours
for testing as can be seen in Table 1.

FIGURE 2. Example of ‘.trs’ file in the pfstar dataset. The content in this
image was segmented into ‘five two four’, ‘seven’, ‘five nine’, and ‘one oh
one’. The image is provided to show an example of how transcripts data
were made available using ‘.trs’ transcriber old format.

2) PFSTAR CLEANUP
The PFSTAR corpus also contained a lot of non-meaningful
utterances and noisy data samples. The dataset comes with
‘.trs’ transcription files, containing time-aligned text infor-
mation (see Figure 2). These timestamps were used to further
segment the data into small audio chunks and remove noise
from the dataset. The ‘sp’ tag from the transcription was
used to divide the long transcripts into smaller segments.
The corresponding time information was used to segment
the long audio files into smaller chunks using FFmpeg1 and
Python. The audio files from the PFSTAR dataset which were

1FFmpeg: https://ffmpeg.org/

30-70 seconds long were segmented into smaller audio
chunks of 5-20 seconds in duration. This segmentation led
to 12 hours of clean, usable PFSTAR data, which was further
divided into 2 sets: PFS_10h with 10 hours of data (for train-
ing) and PFS_test with 2 hours of data (for inference). The
final audio data was saved in .wav format and transcriptions
in .txt format.

3) CMUKIDS CLEANUP
CMU_Kids dataset also contains a lot of noisy and incom-
prehensible child speech. The transcriptions are provided in
a ‘.trn’ file format and audio files in a ‘.sph’ format. The
data was cleaned in a similar way to MyST by removing
all the unrequired tags and non-textual information from the
transcripts. For example, ‘‘they [begin_noise] kept a few
[end_noise] butterflies in [noise]’’ was converted to ‘‘they
kept a few butterflies in’’. A few more examples can be seen
below:

◦ [begin_noise] cages [end_noise] to lay more eggs
[noise] [sil]
-> cages to lay more eggs

◦ a [begin_noise] blue butterfly [end_noise] /F L R UW/
[human_noise] flew by [human_noise] [human_noise]
-> a blue butterfly flew by

The cleaned dataset contained all the audio files in ‘.wav’
format and all transcribed speech in ‘.txt’ format as needed
for our training. The total amount of CMU_Kids dataset
amounted to 9 hours which was used during inference only.

C. DATASET USAGE
The dataset usage is mentioned in Table 1. The ‘Usage’
column indicates whether the dataset was used for

TABLE 1. Dataset description for pretraining, finetuning and inference.
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TABLE 2. Group-A: WER for different pretraining (Adult speech datasets) and finetuning (Adult speech dataset) experiments on the MYST, PF-STAR, CMU
KIDS and LIBRITTS ‘dev-clean’ datasets.

pretraining, finetuning, or inference. The ‘Type’ column
specifies whether the dataset consists of child or adult speech.
Dataset name is mentioned in ‘Dataset’ columnwhile amount
(in hours/minutes) is mentioned under ‘Duration’ column.

Pretraining datasets only consists of audio files and doesn’t
require any transcript/labelled data during training. Finetun-
ing data consists of audio files along with labelled transcripts.
The size of the finetuning datasets was chosen as instructed
in wav2vec2 [1], and to keep it consistent with their method-
ology. A similar distribution was maintained for finetuning
with child speech datasets (wherever possible). The data was
segmented randomly for creating various finetuning subsets.

IV. CODEBASE AND EXPERIMENTS
A. CODEBASE AND HYPERPARAMETERS
The wav2vec2 implementation provided by the fairseq2

framework is used for our experiments. Hyperparameters
were kept the same for both BASE and LARGE pretraining
configurations as provided by the wav2vec2 authors. Fine-
tuning configurations were also kept consistent with the fine-
tuning dataset size used. Data cleaning and data processing
scripts were created using FFmpeg and Python-based tools
such as pydub and scipy. All the training checkpoints are
made available on our GitHub page3 and can be used directly
with the model implementation from fairseq. See note4 for
more information on data cleaning scripts and dataset avail-
ability.

B. EXPERIMENTS
Experiments were divided into five groups, Group-A, B,
C, D and E. ASR performance is measured in terms of
Word Error Rate (WER) on different adult and child speech
datasets. Child speech datasets used in inference include
unseen MyST_test, PFS_test and CMU_Kids, and adult
speech dataset include LibriTTS ‘dev-clean’. These datasets

2https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
3https://github.com/C3Imaging/childASR_w2v2
4Note: We only make the basic data cleaning scripts available in the

GitHub. Researchers trying to replicate our work can email us and get access
to other research material. For access to respectively cleaner versions of
datasets used in this paper, researchers can buy their own license for the
original datasets (where required), and on providing proof of that license,
can get access to our ‘clean’ versions.

are common for all groups during inference tests. All the
groups of experiments (except Group-C) use two model con-
figurations, namely BASE and LARGE. The BASE config-
uration includes 960 hours of Librispeech pretraining data
and the LARGE configuration includes 60k hours of Libri-
light data, which is 60 times as much pretraining data as in
the BASE configuration. This enables an assessment of the
importance of the original training data size for the wav2vec2
model.

For Group-A (Table 2), the finetuned checkpoints provided
by the wav2vec2 repository were used for inference. Each
of the BASE and LARGE configurations were finetuned
with 10 minutes, 100 hours, and 960 hours of Librispeech.
For Group-B (Table 3), the pretrained model is finetuned
with 10 minutes, 1 hour, 10 hours, and 55 hours of MyST
child speech data. In Group-C (Table 3), the Librispeech
and MyST datasets having 960 hours of adult speech and
393 hours of child speech data, respectively, are used for pre-
training. The model is then finetuned over different amounts
of theMyST dataset (similar to Group-B).We only use BASE
configuration for this experiment. Group-D (Table 4) uses
PFSTAR dataset for finetuning instead of the MyST dataset,
and both BASE and LARGE configuration are finetuned
with 10 minutes, 1 hour and 10 hours of PFSTAR child
speech dataset. Group-E (Table 5) uses a mix of differ-
ent datasets in the finetuning. A mix of the MyST_55h,
PFS_10h, and LS_960 datasets was used. Finetuning
mix included LS_960h+MyST_55h, LS_960h+PFS_10h,
MyST_55h+PFS_10h and LS_960h+MyST_55h+PFS_10h.
These experiments were performed to see the cross-
domain correlation in WER across different finetuning
datasets.

Note that we did not train any models from scratch with
child speech data alone as there is not sufficient publicly
available child speech data to learn any meaningful speech
representations from child speech alone. This is discussed in
more detail in section V.

V. RESULTS AND DISCUSSION
A. MAIN RESULTS FROM THE GROUP EXPERIMENTS
Results from group experiments are presented in
Tables – 2, 3, 4, and 5, with lowestWERs highlighted in bold.
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TABLE 3. Group-B and Group-C: WER for different pretraining (adult and child speech datasets) and finetuning (MyST child speech dataset) combinations
on the MYST, PF-STAR, CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

TABLE 4. Group-D: WER for different pretraining (adult speech datasets) and finetuning (PFstar child speech dataset) combinations on the MYST,
PF-STAR, CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

TABLE 5. Group-E: WER for different pretraining (adult datasets) and finetuning (adult and child speech datasets) combinations on the MYST, PF-STAR,
CMU KIDS and LIBRITTS ‘dev-clean’ datasets.

1) GROUP-A (TABLE-2)
In this group, adult datasets are used in both pretraining
and finetuning. All models show a pattern of decreasing
WER with an increase in the size of the finetuning dataset.

It can also be observed that there is not a large differ-
ence in WER between BASE and LARGE models even
though the LARGE model uses 60 times more training
data.
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2) GROUP-B (TABLE-3)
All the models in Group-B, finetuned with different amounts
of MyST data, attained lower WERs on the child speech
in comparison with Group-A experiments. A similar trend
of decreasing WER can be observed with an increase in
finetuning data.

3) GROUP-C (TABLE-3)
Group-C experiments were designed similar to Group-B (see
Table-3). The objective was to investigate whether adding
child speech dataset in the pretraining have any impact on the
model performance. Comparing to the BASE models from
Group-B, the WERs on all test sets increased in Group-C.
Therefore, using child speech in pretraining was not consid-
ered for Group-D and Group-E experiments.

4) GROUP-D (TABLE-4)
In this group, the PFSTAR dataset was used for fine-tuning.
The model’s performance also improves as the size of the
finetuning dataset increases. The best results, as might be
expected, are on PFS_test while results on the other test
datasets are less impressive.

5) GROUP-E (TABLE-5)
Group-E used LS_960h, PFS_10h and MyST_55h in various
finetuning combinations as these datasets gave the best WER
in previous finetuning experiments. Group-E models outper-
formed all the previous models and gave the best WER for all
the inference datasets.

B. DISCUSSION OF RESULTS
Group-A (Table 2) results provide a baseline where only
adult speech data is used for pretraining and finetuning. The
relative improvements due to finetuning with adult speech
are similar across all of the child test datasets, indicating
that large adult speech datasets provide similar levels of
improvement on different child speech validation. We can
draw three additional conclusions. Firstly, there is less than a
3% variation in WER between BASE and LARGE wav2vec2
models across all the test datasets, so the LARGE model is
only useful where optimal performance is needed, and BASE
models are ideal for low resources scenario. Secondly, the
improvement between finetuning with 10 minutes of adult
speech data and 100 hours is much more significant than
the improvement between 100 hours and 960 hours. There
is only a 3% average WER difference between LS_100h and
LS_960h finetuning, suggesting 100 hours of adult speech is
ideal for finetuning.

Next, after introducing various amounts of child speech
data for fine-tuning in Group-B (Table 3), it is noted that
smaller amounts of child speech data result in better improve-
ments inWER. It is clear that as little as 1 hour of child speech
can have similar improvements to 100 hours of adult speech.
Similarly, 10 hours of child speech shows similar improve-
ments as 960 hours of adult speech. However, we also note

a significant domain mismatch across the test datasets as the
improvements on PFS_test and CMU_Kids are significantly
weaker than for MyST_test. An overarching conclusion here
might be that 1 hour of child speech is equivalent to 100 hours
of adult speech where there is strong domain alignment
between the finetuning and test speech. Lastly, using LARGE
model for finetuningwith only a small amount of child speech
(e.g., 10 mins) may be detrimental due to domain mismatch
between pretraining and finetuning datasets. Again, there is
a relatively small performance improvement between BASE
and LARGE models.

The Group-C (Table 3) experiments add the MyST_
Complete dataset to the pretraining. Performance is poorer
than with adult speech only, highlighting the limitations
of pretraining data with the noisy and non-linguistic child
speech in the MyST_Complete corpus. Further investigation
is needed to understand this impact of child speech data on
the pretraining; however, it will require a much cleaner and
larger child speech dataset.

Group-D (Table 4) experiments are equivalent to Group-
B (Table 3) but use the PFSTAR dataset for fine-tuning.
As this dataset is smaller than MyST, only 10 minutes, 1 hour
and 10 hours of speech can be used for fine-tuning. The
key takeaway here is that PFS_test results improve even
more significantly than MyST_test in Group-B, but the other
child speech test datasets barely show any improvement.
Clearly there is a significant domain mismatch between
PFSTAR dataset with British English dialect and the two
other child-speech datasets with American English dialect.
PFSTAR was also recorded in a much cleaner environ-
ment. This shows that properties like dialect, accent and
acoustic characteristics can impact the performance of the
ASR model. Interestingly, MyST and PFSTAR finetuning
(from Group B and D) shows similar WER on LibriTTS
dev-clean implying that child speech datasets with distinct
properties perform similarly when used for adult speech
recognition.

Finally, for the Group-E experiments (Table 5), where
a mix of adult and child datasets are used, we find that
finetuning on the two child speech datasets, MyST_55h
and PFS_10h gives the best results with WER rates of
7.91 and 2.94 on the respective tests datasets, MyST_test
and PFS_test. Performance for CMU_Kids is significantly
weaker at 15.97. Clearly, when the finetuning data has a
good domain match with the tests data then SOTA WER
rates can be achieved through finetuning with approximately
65 hours of child speech data. The BASE and LARGE config-
urations inGroup-E show an absolute difference of 0.84WER
suggesting that performance is similar for both configura-
tions when cross-domain datasets combinations are used in
finetuning.

Interestingly, using smaller amounts of child speech can
provide significant improvements in WER accuracy as com-
pared with large amount of adult speech. This study pro-
vides a baseline for future studies. While the results of
this study provide a comprehensive analysis of different
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TABLE 6. Previous SOTA results on the MYST, PF-STAR, and CMU_KIDS datasets.

finetuning techniques for child ASR, additional conclusions
can be drawn by comparing different experiments.

C. THIS WORK IN THE CONTEXT OF PREVIOUS CHILD
SPEECH ASR APPROACHES
As commented in the Introduction, the publicly avail-
able child speech datasets are small in comparison to
well-established adult speech datasets and audio quality is
poor in comparison. Further, if the full datasets are used to
build randomized test datasets, then many of the data samples
will be of very variable quality. Thus, previous authors have
adopted various approaches to clean and utilize the data but
due to lack of standardized approach, it would not be fair to
make any direct comparisons.

Our best results using the SSL approach show potential
for significant improvement over the previously reported
results on the same dataset as shown in Table 6. Our trained
models achieved the best WER of 7.42 on the MyST_test
dataset, 2.91 on the PFSTAR, PFS_test dataset (reaching
human level performance) and 12.77 on the CMU_Kids
dataset, as compared to the previously reported results
from [28], [29], [30], [35], and [37]. Our detailed explana-
tions of how the test datasets were ‘cleaned’ for this work
should further provide researchers with a useful basis for
future comparisons.

VI. CONCLUSION
In this work, the wav2vec2 self-supervised training approach
is adapted with different mixes of pretraining and fine-
tuning datasets to provide a methodology to improve the
accuracy of child speech recognition. A combination of
adult and child speech datasets is used to determine the
data requirements for improving child speech recognition.
Experiments were designed to evaluate the relative perfor-
mance on the in-domain MyST and PFSTAR datasets, the
out-of-domain CMUKIDS dataset while using the LibriTTS
dev-clean dataset as a reference adult speech dataset. The
best results were obtained where the model was pretrained on
adult data and fine-tuned on a combinations of child speech
datasets. The best WER rates (7.42 on MyST_test, 2.91 on
PFS_test, 12.77 on CMU_Kids) are comparable with the best
SOTA results available currently in the literature.

A model pretrained with adult speech data can best learn
the speech features as compared to a model including both
adult and child speech in pretraining. In particular, adding a
low-quality dataset such as the MyST child speech dataset in
pretraining reduced the performance of theASRmodel across
all test datasets. Significant domain variations were also evi-
dent between the MyST, CMU_Kids and PFSTAR datasets
with the latter being of notably better quality. Qualitatively
we can say that MyST and CMU_Kids are more closely
aligned than the PF-Star dataset. When a cross-domain mix
of child speech is used for fine-tuning (e.g., model 27 or
model 31) then the optimal results are achieved. For a model
finetuned with single or multiple child/adult speech data,
WER increases over the dataset with similar distribution as
finetuning dataset.

The BASE configuration of wav2vec2, which is pretrained
with 60 times less data than the LARGE configuration is
effective for a low-data scenario. In fact, the improvements
achieved through using the LARGE configuration were typ-
ically only a few percent and hardly seem to justify the
large increase in computational resources needed to train.
As for finetuning, we can say that 100 hours of adult
speech finetuning data offer a practical trade-off between
computational effort and ASR accuracy. Finetuning with
as little as 10 hours of child speech data provided better
improvement over models finetuned with 960 hours of adult
speech. Optimal results are achieved using in the order of
65 hours of cross-domain child speech (a mix of MyST
and PFSTAR).

For future work, these models can be used to transcribe
additional child speech data from the unlabeledMyST dataset
and a range of additional unlabeled datasets. It would also
be interesting to investigate the potential of generative data
augmentation models [47] to provide additional synthetic
child speech samples and a wider variety of child speech for
pretraining and finetuning experiments.
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