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ABSTRACT Multi-satellite imaging mission planning (MSIMP) has been difficult in various scenarios
due to the complex constraints of multi-satellite imaging, the wide area covered by target points, and the
difficulty of achieving differentmission requirements in a short period of timewith limited satellite resources.
In addressing this challenge, this work investigates multi-satellite imaging mission planning based on the
Unified Plan Model and Improved Adaptive Differential Evolution algorithm (UPM-IADE). First, a unified
model is built based on two scenarios: a large-scale imaging mission and an emergency support mission, and
then a mission assignment framework is adaptively selected based on mission priority. Second, a monorail
task synthesis method based on visible time windows is created to clarify the execution relationship between
the satellite and the target point. Finally, an individual weight ranking rule is developed, and the weight is
used to combine the fitness value ranking and diversity ranking into a final fitness value ranking, which is
used to select individuals that satisfy the mutation requirements into the mutation strategy pool for adaptive
mutation strategy selection. Experiments 1, 2, 3, and 4 have demonstrated that UPM-IADE can successfully
resolve the imaging satellite mission planning for both scenarios while providing remarkable performance
in terms of high mission benefit and rapid response.

INDEX TERMS Multi-satellite imaging mission planning, global large-scale imaging mission, emergency
support mission, adaptive differential evolution algorithm, individual weight ranking rule.

I. INTRODUCTION
Multi-Satellite Imaging Mission Planning (MSIMP) is the
rational and optimal allocation of limited satellite resources
based on numerous planning environments and types of
observation requirements in order to improve the operational
efficiency of Earth observation for gathering remote sensing
images [1], [2]. With the ongoing development of satellite
Earth observation applications and the gradual increase in the
number and types of Earth observation satellites in orbit, user
needs are becoming increasingly complicated.Maneuverabil-
ity and orbital constraints prevent single-imaging satellites
from providing continuous observations of individual tar-
get points [3], [4]. Owing to a large number of distributed
satellites and the wide distribution area, multi-satellite mis-
sions can achieve long-term, multi-directional continuous
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monitoring of the observation area, which is widely used
in disaster monitoring, urban planning, agriculture, mete-
orology, environmental protection, and many other fields.
MSIMP is currently used extensively in practical applications
such as large-scale imaging missions and emergency support
missions. However, the difficulty of achieving different mis-
sion requirements in a short period of time with limited satel-
lite resources. Therefore, it is important to study the problem
of a unified model for MSIMP in various scenarios [5], [6].

In recent years, researchers have proposed numerous excel-
lent models and algorithms that have demonstrated good
performance in dealing with MSIMP.

Integer planning model based on satellite mission plan-
ning. The Integer Programming Model (IPM) is used in
MSIMP to describe linearly constrained problems that can be
solved using column generation methods to find the optimal
solution [7]. Niu et al. [8] proposed a multi-objective integer
planning model to efficiently allocate multiple satellites for
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large-area seismic image data acquisition and to solve the
large-scaleMSIMP target scheduling problem. Chen et al. [9]
investigated the conflicting metrics for all visible time win-
dows in the emergency mission and proposed a mixed integer
linear programmingmodel that satisfied the time interval con-
straint in order to solve the problem of limited observational
capability in MSIMP.

Constraint satisfaction model based on satellite mis-
sion planning. The Constraint Satisfaction Problem (CSP)
describes the non-linear goal and constraints in the MSIMP
problem by combining the constraint satisfaction problem
and the optimization objective so that the objective func-
tion is chosen as the minimum [10]. Wu et al. [11] pro-
posed an improved constraint fulfillmentmodel for NSGA-III
MSIMP based on the imaging scheduling problem for
large-scale satellite formation systems. Chen et al. [12] stud-
ied a constraint satisfaction model-based MSIMP for data
subject scheduling, which solves the challenge of schedul-
ing large-scale satellite observation data using an enhanced
non-dominated ranking genetic algorithm. Zhang et al. [13]
proposed a large-scale multi-satellite mission planning
algorithm based on SVM+NSGA-II, which considers the
periodicity of satellite resource conflict, the large-scale char-
acteristics of multi-star missions, and the optimization objec-
tive constraint satisfaction model.

Deterministic Algorithm based on satellite mission plan-
ning. The Deterministic Algorithm (DA) is a local optimiza-
tion algorithm based on a deterministic strategy that is more
efficient for solving MSIMP problems with low problem
complexity and small observation task size and less efficient
for solving complex, larger-scale MSIMP problems [14].
Wang et al. [15] proposed an emergency MSIMP algorithm
that takes into account cloud uncertainty using an integer lin-
ear model and branch delimitation combined with columns.
She et al. [16] regarded the planning process as a dynamic
combinatorial optimization problem with the highest priority
and the smallest swing angle. To improve satellite observa-
tion efficiency, an MSIMP based on improved mixed integer
programming is proposed.

Heuristic Algorithm based on satellite mission planning.
The Heuristic Algorithm (HA) is an experience-based com-
binatorial optimization algorithm that can solve large-scale
MSIMP problems effectively. However, this algorithm’s
application scope is limited, and reasonable heuristic
rules must be constructed to obtain heuristic informa-
tion [17]. Chen et al. [18] proposed a heuristic local search
algorithm-based integrated scheduling method for Earth
observation satellites to solve the large-scale MSIMP prob-
lem, and their local search algorithm ensures the algorithm’s
optimal performance. He et al. [19] used an edge comput-
ing framework and a heuristic planning algorithm to plan
missions for multiple agile satellites, achieving a high mis-
sion completion rate by scheduling each satellite mission
reasonably based on scheduling cycle order. Song et al. [20]
proposed a heuristic algorithm for task selection time
windows and adopted a multi-objective optimization

algorithm to solve the multi-satellite mission planning
problem.

Intelligent Optimization Algorithm based on satellite mis-
sion planning. The Intelligent Optimization Algorithm (IOA)
is a well-established global optimization algorithm that
is not limited to specific problems and is suitable for
large-scale solution problems [21]. Zheng et al. [22] inves-
tigated an improved genetic algorithm based on a realistic
space mission environment, which improved the mutation
and crossover operators to significantly improve the effi-
ciency and accuracy of swarm satellites performing complex
tasks. Luo et al. [23] used an adaptive DE algorithm to investi-
gate orbital maneuver optimization of earth observation satel-
lites. Their research sheds new light on how to optimize the
emergency mission-oriented earth satellite observation orbit
maneuvering problem in three dimensions: optimal response
time, ground resolution, and fuel consumption. Sun et al. [24]
established an emergency task planning model and proposed
a multi-strategy differential evolution algorithm based on the
time window segmentation method to solve the problem.

Although the previous research produced good mission
planning results, there are still the following challenges in
multi-satellite mission planning when both large-scale imag-
ing missions and emergency support missions are considered
in two special scenarios:

• In the process of MSIMP, faced with the requirement
of multi-satellite mission planning in various scenarios,
research on MSIMP in only a single scenario faces the
difficulties of inconsistent planning model and extended
planning time. Therefore, how to construct a unified
model for MSIMP in various scenarios is one of the
challenges of MSIMP problem-solving.

• In practice, MSIMP is constrained by resources such as
poor satellite maneuvering performance and the limited
number of imaging times, as well as complex constraints
of multi-imaging satellites in the mission environment,
existing difficult problems such as low execution effi-
ciency, multiple execution schemes, and long planning
time. Therefore, how to construct a fast and accurate
algorithm to solve the MSIMP scheme is another chal-
lenge for MSIMP problem-solving.

To address these difficulties, by using imaging satellites as
the research object, large-scale imaging missions and emer-
gency assurance missions as the planning scenarios, short
planning times and high planning efficiency as the research
objectives, this work investigates MSIMP based on the Uni-
fied Plan Model and Improved Adaptive Differential Evolu-
tion algorithm (UPM-IADE). The main contributions of this
paper are outlined as follows:

• In terms of constructing planning models, for the chal-
lenge of the model inconsistency of multi-satellite mis-
sion planning in various scenarios. We build a unified
model for the first time based on optimization theory
for two scenarios: a large-scale imaging mission and an
emergency support mission. We then adaptively choose
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a mission assignment framework based on the priority of
the mission, resolving issues with poor model scalability
and weak algorithm targeting in the mission assignment
of MSIMP for various users’ actual needs.

• In terms of constructing mission planning algorithms,
to address the poor side-swing maneuverability of the
imaging satellites and the limited number of side-view
images within each orbital revolution, we propose a
single-orbit task synthesis method considering the time
window. By adjusting the side view of the imaging satel-
lite to combine several point targets into the observation
strip at the same time to carry out the observation target
task, in order to improve the execution efficiency of
MSIMP.

• In terms of constructing adaptive algorithms, for the
above two different scenarios, which have difficulties
such as multiple execution options and long planning
time, we investigate MSIMP based on the UPM-IADE
algorithm. By considering individual fitness value and
diversity contribution, an individual weight ranking rule
and an adaptive mutation strategy pool are established.
This method ensures that the optimal MSIMP execution
scheme is obtained in a short time.

The remainder of the paper is organized as follows.
Section II describes common approaches and classical
differential evolutionary algorithms for two scenarios: multi-
satellite mission-based planning for large-scale imaging mis-
sions and emergency support missions. Section III introduces
the MSIMP unified model based on task priority, includ-
ing a mathematical description of the model, the objective
function, constraints, and evaluation indicators. Section IV
presents the monorail task synthesis method based on visible
time windows, as well as the principle and specific process
of the UPM-IADE algorithm. Section V sets up simulation
experiments and compares the performance of different algo-
rithms. Section VI concludes and future perspectives.

II. RELATED WORD
This section first introduces the basic process of MSIMP
and then introduces the basic concepts and principles of the
differential evolution algorithm.

A. BASIC PROCESS OF MSIMP
MSIMP is aim to allocate satellite resources based on opti-
mization theory for multiple imaging satellites and a large
number of observation mission requirements proposed by
users while taking into account multiple conflicting objective
constraints, in order to clarify the specific information of
observation missions and the corresponding executing satel-
lites, orbit cycles, imaging time range, and the side view, and
to maximize the overall benefit [25], [26], [27].

Assume that a set of observation tasksT =
{
t1, t2, . . . , tNT

}
is executed by a group of satellites S =

{
S1, S2, . . . , SNs

}
.

The observation tasks have multiple visible time win-
dows w =

{
wt1,wt2, . . . ,wtNT

}
under a certain satellite

resource that is capable of performing observations on
multiple satellites at different moments of the visible time
windows.

The MSIMP scenario is shown in Figure 1. The moving
trajectory of the satellite at different moments is displayed
on the orbit. The observation mission t2 has multiple visible
time windows, which can be simultaneously observed by
satellite S1 and satellite S2 at time T2. Satellite S1 can observe
{t4, t2, t5} respectively at time {T1,T2,T3} of the visible time
window. Satellite S2 can observe {t1, t2, t3} respectively at
time {T1,T2,T3} of the visible time window. Constrained
by satellite resources and its own maneuvering performance,
each observation task is carried out by satellite resources only
once. The time of any two execution tasks does not overlap
for the same satellite and the execution time interval must be
within the conversion time of satellite operation. According to
the objective function and constraints, the MSIMP scheme is
formulated for each observation mission under the condition
of satisfying the constraints of multi-satellite imaging, with
the goal of maximizing the comprehensive benefit of satellite
imaging.

FIGURE 1. Schematic diagram of the basic process of MSIMP.

B. DIFFERENTIAL EVOLUTION ALGORITHM
The differential evolution algorithm (DE) is an intelligent
optimization algorithm that is both robust and efficient, which
has been widely used in many fields such as multi-agent
planning systems and intelligent mission system control [28],
[29]. Classical DE has two stages: population initialization
and evolutionary iteration. The population generates NP eli-
gible individuals at random within the boundaries during
the population initialization phase. During the population
evolution phase, the loop is repeated for each generation of
individuals, following the pattern of mutation, crossover, and
selection until the end of the algorithm. The DE algorithm is
shown in Figure 2.

46146 VOLUME 11, 2023



X. Yang et al.: Unified Model for Multi-Satellite Imaging Mission Planning in Various Scenarios

FIGURE 2. Schematic diagram of differential evolution algorithm.

1) INITIALIZATION OF THE POPULATION
In the population initialization phase, the upper and lower
bounds of the parameter vector are determined, and NP
D-dimensional individuals are generated randomly and uni-
formly within the boundaries using a random generator:
where x jU , x

j
L are the upper and lower bounds of the j-th

dimensional individual, respectively. rand(0, 1) is a random
number with a uniform distribution in the interval (0, 1).

2) MUTATION STRATEGY
The target vector XGi is generated by multiplying the ran-
dom mutation factor VG

i with the difference of the vector of
adaptive distributions based on different difference mutation
strategies. The current common differential mutation strate-
gies are shown in equations (1)-(5)
(1) DE/RAND/1

VG
i = XGr1 + F · (XGr2 − XGr3 ) (1)

(2) DE/RAND/2

VG
i = XGr1 + F · (XGr2 − XGr3 + XGr4 − XGr5 ) (2)

(3) DE/BEST/1

VG
i = XGbest + F · (XGr1 − XGr2 ) (3)

(4) DE/BEST/2

VG
i = XGbest + F · (XGr1 − XGr2 + XGr3 − XGr4 ) (4)

(5) DE/CURRENT TO BEST/1

VG
i = XGi + F · (XGbest − XGi + XGr1 − XGr2 ) (5)

where XGr1 ,X
G
r2 ,X

G
r3 ,X

G
r4 are randomly chosen individuals in

the population that are different from XGi and satisfies the
r1 ̸= r2 ̸= r3 ̸= r4 ̸= i; XGbest denotes the best individual
in generation ‘G’. The parameter F is the mutation scaling
factor.

3) CROSSOVER STRATEGY
To generate the experimental vector, the mutation vector is
binomially crossed with the target vector, is shown as follow:

UG
i =

{
VG
i,j, if randj(0, 1) ≤ Cr or j = jrand

XGi,j, otherwise
(6)

where Cr is the cross operator on the interval [0,1].

4) SELECTION STRATEGY
The DE algorithm adopts a greedy strategy for the selection
of the mutation vector and the target vector, the most opti-
mal one enters the subsequent generation. The mathematical
expression of the selection operation is presented in (7):

XG+1
i =

{
UG
i , if f (UG

i ) ≤ f (XGi )
XGi , otherwise

(7)

The classical DE adopts one-to-one greedy selection,
in which the process of selection operation has an impact on
the evolutionary direction of the entire population. In equa-
tion (7), f (x) is the fitness value function and the higher
fitness value vector enters the next generation.

III. PROBLEM DESCRIPTION
First, the MSIMP unified model based on task priority is
introduced in this section. Second, the mathematical descrip-
tion of the unified model, objective function, constraints, and
evaluation indicators is given.

A. THE MSIMP UNIFIED MODEL BASED ON
TASK PRIORITY
This section builds a unified model based on two scenarios:
large-scale imaging missions and emergency assurance tasks,
and then chooses a mission assignment framework adaptively
based on mission priority. In two types of scenarios, the
observation process using the task priority-based MSIMP
unified model can be described as follows:
First, due to the limitations of satellite resources and the

requirements of different users’ imaging tasks, the priority of
MSIMP is quantified in a unified model based on imaging
mission level according to the different imaging task level,
task imaging type, urgency degree, and user level. An integer
between [1] and [10] is used to set the priority of each target
point, and the task priority is calculated as follows:

w = f (Mlevel,Mtype,Edegree,Ulevel) (8)

where equation (8) is a unified mathematical representation
of the task priority effect factor. Mlevel is the imaging task
level, Mtype is the task imaging type, Edegree is the urgency
degree, Ulevel is the user level.

A =


A11 A12 . . . A1n

A21 A22
... A2n

...
...

...

An1 An2 · · · Ann

 , Aij = ai
/
aj (9)
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where equation (9) represents the task priority index judg-
ment matrix, Aij is the relative importance between index i
and index j, ai

/
aj is the ratio of weight coefficients of index

i and index j.

L =

n∑
i=1

n∑
j=1

(Aijaj − ai)2 + 2λ

 n∑
j=1

aj − 1

 (10)

where equation (10) represents the construction of the
Lagrangemultiplier method to solve aj, λ is the undetermined
coefficient.

w(X1,X2,X3,X4) =

n∑
j=1

ajXj (11)

where equation (11) represents the calculation function of
task priority influence factor, X1,X2,X3,X4 refers respec-
tively to Mlevel,Mtype,Edegree,Ulevel in equation (8).

Priority = |w| · 10,

{
Priority ≥ 7, high priority
1 ≤ Priority ≤ 6, low priority

(12)

where equation (12) represents the calculation function of
task priority. And it is divided into high priority (7-10 levels)
and low priority (1-6 levels) to distinguish the importance of
the target task.

Second, the proportion of high-priority tasks and low-
priority tasks in total tasks is separately counted, and the
mission assignment framework is adaptively selected based
on the priority of each target in the user’s proposed mission
requirements. There are two types of allocation framework
in the MSIMP mission assignment framework: large-scale
imaging mission allocation framework and emergency assur-
ance mission allocation framework. The large-scale imaging
mission allocation framework is chosen for a set of missions
that contain a greater proportion of low-priority missions than
high-priority missions. In contrast, the emergency support
mission allocation framework is chosen.

Finally, the MSIMP problem is transformed into a con-
straint satisfaction problem, and two optimization objectives
and constraints for two types of assignment frameworks are
proposed, namely, maximum mission benefit and minimum
average response time for large-scale imaging missions and
emergency support missions, respectively. TheMSIMP based
on UPM-IADE is used to achieve the optimization objective
of maximum mission benefit and minimum response time.

Figure 3 depicts the observation process of the MSIMP
unified model using a large-scale imaging mission scenario
as an example. Black circles represent low-priority ground
target points, blue circles represent high-priority ground tar-
get points, grey areas represent the satellite’s field of view
coverage, yellowish areas represent local areas containing
target points, and blue dashed lines within the field of view
indicate the track of subsatellite point.

In Figure 3, the circular arcs depict the satellite field of
view and the lateral swing angle. The rectangular area at

the bottom of the figure represents the mission satellite’s
observation time window in a single orbital circle, which is
used to specify the visible relationship between the mission
satellite and the target point, which is represented by a 6-tuple
consisting of the target number, imaging start time, imaging
end time, imaging duration, target priority, and side swing
angle.

Because the proportion of low-priority target points is
greater than the proportion of high-priority target points, the
process of satellite earth observation in the framework of
large-scale imagingmissions using theMSIMP unifiedmodel
based on task priority can be summarized as follows: High-
speed imaging satellites in operational orbit select the appro-
priate mission assignment framework based on the imaging
requirements of the user, assigning one or a group of imag-
ing targets to multiple satellites that meet maneuverability
constraints such as lateral swing angle and satellite imaging
duration. Then, on the basis of the optimal objective assign-
ment, a monorail task synthesis method based on visible time
windows combined with an improved adaptive differential
evolution algorithm is used to develop a task planning scheme
that results in the optimal value of the overall optimization
objective function.

B. ESTABLISH MSIMP OBJECTIVE FUNCTIONS
AND CONSTRAINTS
1) MATHEMATICAL DEFINITIONS
The following mathematical definitions and decision vari-
ables are included in the MSIMP unified model based on task
priority proposed in this work:

(1) Satellite mission set is S =
{
S1, S2, . . . , SNs

}
, and the

satellite number is NS , where ∀Sj ∈ S, The relevant
parameters include: maximum roll angle of remote sen-
sor Aj, field angle of view θj, maximum uptime of satel-
lite tmaxsj, minimumuptime of satellite tminsj, average
angular velocity wj, type of satellite payload dj, orbit
cycle number in the planning period N o

j , and optimal
image resolution of the satellite remote sensor rsj .

(2) In the MSIMP, the observation task set is T ={
t1, t2, . . . , tNT

}
,NT is the total number of tasks, where

∀ti ∈ T . The relevant parameters include: Pi =

(Plati ,Ploni ), which indicates the position of task targets.
Plati and Ploni are the latitude and longitude of the target,
respectively. The priority of the task is NT . The opera-
tion mode of the satellite mission is Ti, which indicates
that the side view for optical imaging satellites can
be regarded as the working mode of earth observation
and the working mode for the SAR imaging satellite
is the imaging mode adopted by the satellite radar
sensor. A minimum resolution r ti is required. In terms
of ∀ti ∈ T , we assume that themoment for the proposed
requirements is tSi , and the response time of task ti is
tri = tSi − tPi .

(3) The visible time windows for the earth observation task
set T are calculated. Every visible time window of each

46148 VOLUME 11, 2023



X. Yang et al.: Unified Model for Multi-Satellite Imaging Mission Planning in Various Scenarios

FIGURE 3. Demonstration of imaging satellite earth observation and illustration of the
observation window.

imaging satellite comprises mission planning meta-
tasks. The time window wtijk of imaging satellite Sj to
task ti in orbit cycle k is: wtijk =

{
i, j, k, tstart , tstop, a

}
.

Variable i represents the number of tasks, and j is the
number of satellites. tstart and tstop represent the start
and end times of the visible time window, respectively.
a represents the satellite mission lateral angular.

(4) After the calculation of the visible time window, the
time window for the current satellite to execute its mis-
sion within a single orbital revolution can be defined
as: WS =

{
i, tstart , tstop, tcon, a, pt arg et

}
. tcon indicates

the imaging duration and pt arg et indicates the task point
priority.

(5) The meta-task sequence for the kth orbital revolution
of satellite Sj is Mjk =

{
mjk1 ,mjk2 , . . . ,mjknjk

}
where njk

is the number of meta-missions Sj performed during
its kth orbit. The meta-task is synthesized, which task
number is greater than one and satisfies the constraint
condition. The task sequence after task synthesis is
Cjk =

{
cjk1 , cjk2 , . . . , cjkNjk

}
. The single meta-task is

also regarded as a synthesis task in this sequence. Njk
represents the number of synthesis missions in orbit k
of satellite Sj. In ∀cjkP ∈ Cjk , the relevant parameters
include: start time of synthetic tasks bjkP , end time of
synthetic tasks ejkP , and roll angle of synthetic tasks a

jk
P .

(6) Decision variable.

xijk =

{
0, not executed task
1, executed task

}
(13)

where xijk is a 0–1 binary decision variable is used to
describe the mission implementation situation. When

xijk = 0, it represents that task ti is not selected for
execution. When xijk = 1, it indicates that task ti is
executed.

2) OBJECTIVE FUNCTIONS AND CONSTRAINTS
The objective function is defined for two different imaging
requirements for large scale imaging mission and emergency
support mission, according to themission optimization objec-
tive elements. The mission completion rate is required for
large-scale imaging missions. However, the task’s timeliness
is inadequate. Meanwhile, an emergency support mission is
essentially a request for mission response time and mission
completion rate in emergency situations.

a: OBJECT FUNCTIONS
• Mission significance optimization object functions:

max : f1(xijk ) =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1

xijkwi (14)

where equation (14) states that this type of mission
should maximize the sum of all task priority weights
wi. Imaging satellites should perform as many important
earth observation tasks as possible.

• Mission effectiveness optimization object functions:

min : f2(xijk ) =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijk tri

N S
T

(15)

The optimization objective of this type of task requires the
shortest average response time of the emergency support task.
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Equation (15) represents the sum of the response times tri for
all tasks, taking the minimum average value for the number
N S
T of emergency support tasks.

b: CONSTRAINTS
Various constraints must be met in order for the objective
function to be realized. For multi-satellite collaborative imag-
ing task planning, the following constraints are abstracted
from aspects of user requirements, collaborative tasks, and
satellite resource constraints:

• Constraints of observation duration:

∀j ∈ S, ∀i ∈ T , ∀k ∈ Wijk

xijk tmin
Sj

≤ xijk (ejkp − bjkp ) ≤ xijk tmax
Sj

(16)

In equation (16), the minus between the imaging end time
ejkp and the imaging start time bjkp of any of the planning
element tasks in the mission synthesis sequence Cjk must be
less than the maximum uptime of satellite tmaxsj and larger
than the minimum uptime of satellite tminsj .

• Constraint of working mode:

∀wtijk , Ti = tj (17)

Equation (17) is the constraint of working mode. Each
satellite payload is regarded as a mode of working. Satellites
should meet within visible time windows, which are required
the type of use of the remote sensor is consistent with current
user needs.

• Constraint of resolution:

∀wtijk , rsj ≤ r ti (18)

Satellites can only carry out mission requests that fall
within their scope of observation. As a result, the satellite Sj
must meet the minimum resolution of the satellite remote
sensor rsj that is less than or equal to the user’s imaging
requirement during any time window of the kth orbital circle
task ti.

• Constraint of satellite’s lateral angular:

∀cjkp ,

∣∣∣ajkp ∣∣∣ ≤ Aj (19)

During the ground observation process, the satellite should
adjust the side swing angle based on the location of the
ground target point for imaging, and if the ground target
point is outside the track of the subsatellite point, the satel-
lite should adjust the imaging side angle for observation.
As shown in equation (19), satellite maneuverability requires
that the imaging side angle of the ground target ajkp not exceed
the satellite’s maximum side angle Aj.

• Constraint of the lateral angular transition time:

∀cjkp ,

∣∣∣ajkp − ajkp−1

∣∣∣ /wj ≤ bjkp − ejkp−1 (20)

For any of the planning tasks in the task synthesis
sequence, the lateral angular transition time must be less than
or equal to the observation duration.

• Constraint of uniqueness:

∀ti ∈ NT ,

NT∑
i=1

NS∑
j=1

Nσ
j∑

k=1

xijk ≤ 1 (21)

Equation (21) is uniqueness constraint, which indicates
that the satellite sensor can only execute one task at a single
time due to the constraint of satellite load.

c: EVALUATION INDICATORS
The mission evaluation indicators planned for multi-satellite
imaging missions are as follows:

• Ideal benefit:

IP =

NT∑
i=1

wi (22)

Ideally, all target tasks are completed and the sum of the
target priorities is the ideal benefit.

• Average benefit:

Iaver =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijkwi

NT
(23)

The benefit of satellite execution target points averaged
over all orbital circles.

• Mission benefit rate:

RI =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijkwi

NT∑
i=1

wi

· 100% (24)

The total benefit of the current mission as a percentage of
the ideal benefit.

• Mission completion rate:

RC =
NTotal
NT

· 100% (25)

The total number of target missions completed for this
mission planning as a percentage of the total number of
missions.

• Average mission response time:

Etri =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijk tri

N S
T

(26)

Equation (26) indicates the average response time of the
executed mission.

IV. DESIGN OF UPM-IADE ALGORITHM
This section first describes the calculation of visible time
window, then describes the monorail task synthesis method
based on visible time windows, and finally introduces the
MSIMP-based adaptive differential evolution algorithm.

46150 VOLUME 11, 2023



X. Yang et al.: Unified Model for Multi-Satellite Imaging Mission Planning in Various Scenarios

A. VISIBLE TIME WINDOW CALCULATION
The MSIMP problem is classified as a mission planning
problemwith a time window. Satellite imaging missions have
multiple visible time windows, and each visible time window
is a satellite imaging mission planning meta-task with the
satellite and the ground observation target. As a result, in the
pre-processing phase of satellite imaging mission planning,
the visible relationship between the mission satellite and the
specified target point should first be clarified.

The visible window calculation can be used to generate
the set of visible time windows between the execution task
and the target point for a pre-defined multi-satellite mission
planning scenario, as shown in Algorithm 1. First, the stkInit
interface function is used to capture the path of each satel-
lite and satellite-borne remote sensor, and then the satellite
resource set S and satellite mission set T are obtained and
saved to the database, containing information such as the
maximum lateral swing angle and the track of subsatellite
point data.

Second, the vertical foot position of the subsatellite point
track is calculated using the latitude of the starting and ending
positions of the observed target point. The position relation-
ship between the observation target point and the track of
the subsatellite point is determined, and the satellite’s lateral
swing angle is computed. Finally, the visible time windows
that did not meet the resolution and workingmode constraints
are removed. Meanwhile, the visible time window of each
target and associated parameters are saved.

Algorithm 1 Visible Window Algorithm Framework
Input: Satellite mission set S, Observation mission set T .
Output: Visible window wijk .
1 /* Use the stkIint to evaluate the visible window */
2 for j=1:length(SensorPaths)
3 for i=1:TargetNumber
4 if ∀wtijk ,Ti = tj;
5 access(i,j).ComputeAccess;
6 Save the satellite resource set S and Observation mission
set T data to the database;
7 end if
8 end for
9 /*Calculate the lateral view */
10 for j=1:SatelliteNumber
11 for i=1:TargetNumber
12 midlat(i, j) =

Startlat(i,j)
Stoplat(i,j) ;

13 if tarlat(i) > midlat(i)
14 aerEle(i, j) = 90 − aerEle(i, j);
15 else if
16 aerEle(i, j) = aerEle(i, j) − 90;
17 end for
18 Remove the time windows that do not comply with the
resolution and payload restrictions;
19 Save time windows wijk ;
20 end for
21 end

B. MONORAIL TASK SYNTHESIS METHOD BASED ON
VISIBLE TIME WINDOWS
The visible time window calculations as above clarify the
visible relationship between the executing satellite and the
target point, and this subsection investigates monorail task
synthesis method based on visible time windows.

The resources, time, and angle of satellite observation for
each meta-task are specified by calculating the visible time
window. It means that each meta-task is an optional observa-
tion activity for mission execution, and mission planning is
essentially the process of selecting and allocating meta-tasks.
The imaging satellite combines multiple meta-tasks that sat-
isfy certain conditions and have a temporal relationship to
generate a mission synthesis and develop an imaging satellite
mission planning scheme to achieve optimized objectives.
This section considers synthetic tasks that include point tar-
gets, with the objective of optimizing the task of observing
targets by adjusting the side view of the imaging satellite
to simultaneously incorporate multiple point targets into the
observation strip at the same time.

The following is the basic process of the monorail task
synthesis method based on visible time windows. First, we go
through all of the orbits and use the bubble method to sort
the meta-tasks of each satellite’s single orbit based on the
observation time. The set of meta-task sequences for the kth
orbit of satellite sj is Mjk =

{
mjk1 ,mjk2 , . . . ,mjknjk

}
, which is

used to record the task information of all orbits that contain
field of view, average lateral angular, and maximum uptime.
Second, we consider task synthesis for multiple meta-tasks
within a single orbital circle. The number of meta-tasks Njk
and side swing angle information ai within the coverage range
of the synthetic task angle are recorded in the meta-task
sequence set that meets the conditions. Furthermore, the
swing angle data is sorted ascendingly to generate a series
of swing angles A = {a1, a2, . . . , an}. Finally, the synthesis
mission’s observation angle ami is calculated, the coverage of
the synthetic angle and the task number s are determined,
and the maximum benefit I jki of the synthesis task cjki is
calculated. Algorithm 2 depicts the algorithm framework.

C. ADAPTIVE DIFFERENTIAL EVOLUTIONARY ALGORITHM
The adaptive differential evolution algorithm (ADE) is a
widely used intelligent optimization algorithm whose perfor-
mance is limited primarily by exploratory and exploitative
aspects. A reasonable trade-off between the spatial search
performance and exploitation performance is required to
improve the performance of the algorithm and approach the
optimal solution [30]. The ADE provides the flexibility to
adjust algorithm parameters and alternate multiple mutation
strategies during the optimization process based on the inter-
relationship between each generation of individuals and the
optimal fitness value of individuals [31]. At the beginning of
evolution, as the individual approaches the optimum, the con-
trol parameters become progressively smaller, which ensures
a rapid approximation of the individual to the optimum. The
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Algorithm 2Monorail Mission Synthesis
Input: Field angle of view θj, average angular velocity wj,
target priority wi, total track cycles It , all orbit numbers of
synthesis missions Njk , and lateral angular ai.
Output: Synthetic task set cjk .
1 for Total track cycles It
2 if this orbital circle has observation missions
3 Mjk = Bubble sort(mjkl );
4 Save field of view, angular velocity, and max work
time;
5 end if
6 end for
7 for total track cycles It ;
8 if l > 1
9 Determine the mission composition constraints;
10 ∀cjkp ,

∣∣∣ajkp ∣∣∣ ≤ Aj;

11 ∀cjkp ,

∣∣∣ajkp − ajkp−1

∣∣∣ /wj ≤ bjkp − ejkp−1;
12 Save information of Njk ,ai;
13 A = sort(ai);
14 for i = 1 to Njk ;
15 ami = ai +

θi
2 ;

16 [maxAjka,b −
θj
2 ,maxAjka,b +

θj
2 ];

17 I jka,b = max(cjka,b);
18 end for
19 end if
20 end for
21 end

addition of random individual interaction in the late stage
of evolution allows the algorithm to easily step outside the
local optimum to improve global search capabilities, reducing
tedious and time-consuming manual adjustments [32].

In this work, we propose a unified plan model and
improved adaptive differential evolution algorithm. On the
one hand, individual fitness values are considered as a refer-
ence factor for the spatial distribution of individuals, by calcu-
lating individual fitness values for each generation to assess
whether the population satisfies the mutation requirements.
Individuals in the UPM-IADE algorithm, on the other hand,
are classified as ‘‘exploitation,’’ ‘‘equilibrium,’’ or ‘‘explo-
ration’’ based on the individual weight ranking rule. Indi-
viduals adaptively choose mutation strategies from a pool of
strategies in order to efficiently balance population diversity
and convergence, overcoming the difficulty of having many
MSIMP execution scenarios and long planning times.

1) INDIVIDUAL WEIGHT-RANK RULE
This section proposes a mutation operator based on the indi-
vidual weight ranking rule that integrates individuals’ fitness
values and diversity contributions to strike a better balance
between the exploratory and exploitative tendencies of dif-
ferential evolutionary algorithms and search for an optimal

solution for MSIMP in less time. Figure 4 depicts the algo-
rithm’s schematic diagram.

First, the fitness values of individuals in each generation
of the population are presented. The individual fitness values
are ranked in an ascending order and defined as the individual
fitness value ranking.

Ri
fit

= i, i = 1, . . . ,NP (27)

where Ri
fit
represents the individual’s XGi fitness ranking. The

ranking of individual fitness values is proportional to their
size.

Second, fitness is a measure of survival advantage in each
individual in the population. Individuals with large fitness
values are primarily distributed around the local optimal
solution or optimal individual in the spatial distribution. Indi-
viduals with small fitness values are randomly distributed at
the edges of the space. Furthermore, the middle individual
position in the spatial distribution between individuals with
high fitness values and individuals with low fitness values.
As reference values, the fitness values of middle individuals
are chosen as follows:

fitmiddle = fitness(RNPfitness/2) (28)

where RNPfitness represents the fitness value of the individual

XGNP . The individuals whose fitness values ranked as R
NP
fitness/2

are defined as middle individuals. To some extent, the fitness
value reflects the distribution of individuals in the population
space. The difference in fitness between the current individual
and the reference value can be roughly represented by the
deviation value:

S = |fiti − fitmiddle| , i = 1, . . . ,NP (29)

where fiti denotes the fitness value of the current individual,
S is the absolute value of the difference between the fitness
values of the current and middle individuals.

If the deviation value S of individuals with large fitness
values is large, then the current individual is far from the
optimal individual or fall into the local optimum. Meanwhile,
if individuals with small fitness values have large deviation
values S, then the current individual is farther from themiddle
individual, and its position in space is more marginal. This
situation can contribute more randomness and diversity to the
exploration of solutions. Both these situations provide more
information for searching the optimal solution.

The deviation values are sorted in ascending order, and the
order of individuals is defined as diversity ranking shown as
follow:

RiS = NP − 1, i = 1, . . . ,NP (30)

Then, the fitness value ranking and diversity ranking are
weighted to determine each individual’s final ranking, which
is as follows:

R = wF × RiS + (1 − wF ) × Rifit , 0 < wF < 1 (31)
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FIGURE 4. Individual weight-rank rule of UPM-IADE algorithm.

whereRiS is the diversity ranking of the current individualX
G
i ,

and wF is an important parameter that controls the evolution-
ary bias of the population.

wF =
fitGi
fitmax
G

(32)

where fitGi is the fitness value of the current individual, and
fitmax
G is the optimal fitness value in the current population.

The weights wF are dynamically adjusted based on the ratio
of the current individual fitness value to the current popula-
tion’s optimal fitness value. The final fitness value ranking is
generated by the weighted combination of the fitness value
ranking and the diversity ranking, and it is used to select
individuals that meet the variation requirements for the next
generation. Finally, due to the long planning time of MSIMP,
the population individuals meeting themutation requirements
are ranked based on the final fitness value. Each genera-
tion’s population is divided into ‘‘exploitation’’ individuals,
‘‘equilibrium’’ individuals, and ‘‘exploration’’ individuals.
The details are described in Algorithm 3.

2) ADAPTIVE MUTATION STRATEGIES POOL
In algorithm 3, the individual weight ranking rule is used to
divide each generation of the population into three different
types of individuals: ‘‘exploitation’’ individuals, ‘‘equilib-
rium’’ individuals, and ‘‘exploration’’ individuals. The strate-
gies and basic properties are illustrated in Table 1.

‘‘DE/best/1’’ mutation strategy uses the best individuals
from the current population as the base vector, which can
retain more excellent genes from the parent individuals. This
strategy has a high degree of convergence. ‘‘DE/rand/1’’
in mutation strategy 2 randomly selects individuals in the
generated vector from the population, which has a higher

Algorithm 3 Individual Weight-Rank Rule
Input: Population size NP, Each individual’s fitness value fit;
Output: Individuals Sorted Based onWeights, Three subpop-
ulations;

1/*Fitness ranking* /
2 Access to Each individual’s fitness values;
3 Rfit = sort(fit);
4 Ri

fit
= i, i = 1, . . . ,NP;

5 /*Select reference values* /
6 fitmiddle = fitness(RNPfitness

/
2);

7/*diversity ranking* /
8 S = |fiti − fitmiddle| , i = 1, . . . ,NP;
9 RS = sort(S);
10 RiS = NP − 1, i = 1, . . . ,NP;
11/*Final ranking based on weights* /

12 wF =
fit iG
fitmax
G

;

13 R = wF × Ris + (1 − wF ) × Rifit , 0 < wF < 1;
14 Individuals ranking based on weights;
15 Dividing the population into three
subpopulations;
16 end

TABLE 1. Mutation strategy parameter setting.

global search ability. In mutation strategy 3, ‘‘DE/current-to-
best/1’’ can effectively balance the individual’s exploration
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FIGURE 5. MSIMP flowchart based on UPM-IADE algorithm.

and exploitation. Furthermore, this strategy has the charac-
teristics of strong global search ability and fast convergence
to improve the algorithm’s convergence speed. Individuals
can choose mutation strategies from the adaptive mutation
strategies pool based on their exploration and exploitation
biases. As a result, the overall performance of theUPM-IADE
algorithm is improved in two ways: identifying the optimal
solution region of the vector solution space more effectively
and accelerating optimization convergence. At each iteration,
the adaptive mutation strategies pool contains only one set of
mutation strategies.

3) FLOWCHART BASED ON UPM-IADE ALGORITHM
Figure 5 depicts the MSIMP flow chart based on the UPM-
IADE algorithm, including the constraints and objective

functions for constructing the MSIMP, as well as the prin-
ciple of the adaptive differential evolution algorithm for the
MSIMP.

V. EXPERIMENTAL SIMULATION, RESULT AND ANALYSIS
In this work, four groups of simulation experiments are car-
ried out inMatlab2016a and STK11.6 software to validate the
effectiveness of UPM-IADE-based MSIMP. Experiment 1:
feasibility and stabilityfor a large-scale imaging mission on
a global scale. Experiment 2: feasibility and stability for
a local area-oriented emergency support mission. Experi-
ments 3 and 4 compared the performance of the UPM-IADE
algorithm to similar algorithms in two different types of
planning scenarios.
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TABLE 2. Satellite payload parameters and orbital parameters.

A. EXPERIMENTAL DESIGN
Each demonstration scenario is built using STK software
and eight imaging satellites chosen from the STK standard
database. In order to conserve satellite resources, the maxi-
mum side-swing angle for each satellite is limited to 40◦.
Six orbital elements can be used to determine the position

of imaging satellites: Semi-major axis (a), eccentricity (e),
orbital inclination (i), argument of perigee (ω). right ascen-
sion of the ascending node (RAAN), and true anomaly (ϕ).
The satellite payload parameters include the following: field
angle of view (θj), maximum uptime of the satellite (tmaxSj ),
maximum roll angle of the remote sensor (Aj), average angu-
lar velocity, and optimal image resolution of the satellite
remote sensor (rsj ). The number of orbital elements and satel-
lite payload parameters of each satellite are shown in Table 2.
In this study, we employ similar algorithms and the

UPM-IADE algorithm for comparison experiments to evalu-
ate the feasibility and stability of the UPM-IADE Algorithm.
Differential Evolution Algorithm (DE) and Self-Adaptive
Differential Evolution Algorithm (SADE) are two similar
algorithms. The DE algorithm sets the mutation scaling factor
F = 0.3, Crossover rate CR= 0.5; The initial value of SADE
algorithm mutation scaling factor is set to F = 0.5, the initial
crossover rate is set to CR = 0.5.

B. VALIDATION EXPERIMENTS
1) EXPERIMENT 1: FEASIBILITY AND STABILITY FOR A
LARGE-SCALE IMAGING MISSION ON A GLOBAL SCALE
Large-scale imaging missions are mostly routine tasks that
should be observed on specific space locations and targets on
a regular basis based on mission requirements, and imaging
satellites should complete as many imaging tasks as pos-
sible. This experiment used a uniformly distributed pattern
of 100 imaging target points to simulate the user mission
requirements within a global range of latitude [−30,70] and
longitude [−180,180]. Figure 6 depicts the distribution of
target points to be observed within the global range.

It is worth noting that the geographical location of the
target point influences the mission’s synthetic observation.

To reduce errors caused by target point distribution, the geo-
graphical distribution of target points is set in a uniformly
distributed pattern using the method used by Cui et al. to con-
struct problem instances [33].

The population size of the UPM-IADE algorithm is set to
200, and the maximum number of iterations is set to 300.
Table 3 shows the optimal assignment results for MSIMP,
where ‘‘Sat’’ refers to the satellite allocation sequence,
‘‘Target’’ refers to the target point allocation sequence, and
‘‘Ptarget’’ refers to the target mission execution priority.
The symbol ‘‘−’’ indicates that the time window assigned
to this target point does not satisfy the resolution and load
constraints, and thus no imaging task is scheduled.

Table 3 analyzes the allocation of mission satellites to
target points based on the MSIMP optimal allocation results.
Figure 7(a) clearly shows the execution target point num-
bers and corresponding target point priority for the eight
satellites in the large-scale imaging scenario. In Figure 7
(a), the x-axis represents the target task number, the y-axis
represents the execution priority of the corresponding target
task, and the z-axis represents the execution task satellite
number. To clarify the execution of various satellites, eight
different colored squares are used to represent the target tasks
of various satellites. In Figure 7(b), priorities 1-10 in the
legend are used to respectively indicate the ratio of activities
of each priority to all required tasks in a large imagingmission
experiment. Figure 7(b) shows that among the 100 require-
ment tasks, unexecuted tasks accounted for 10% of the total
number of required tasks, and tasks with a priority of less than
6 accounted for 53% of the total number of required tasks,
with satisfactory results.

The simulation results above demonstrate that the
UPM-IADE algorithm proposed in this paper can effectively
solve the planning model in large-scale mission scenarios and
deal with the satellite and target point assignment relation-
ship. As a result, MSIMP using the UPM-IADE algorithm is
a highly feasible option

Table 4 shows the outcomes of multiple iterations of
the large-scale imaging mission at various population sizes,
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FIGURE 6. Large-scale imaging mission distribution.

TABLE 3. The simulated experiment results of common imaging mission planning.

including the ideal benefit valueValueP, average benefit value
Valueaver , mission completion rate RC , mission benefit rate
RI , and mission response time Aver_tri for each population
size, whereNum_Iter is the number of experimental iterations
and Times is the number of experimental repetitions.

The following conclusions can be drawn from the simu-
lated experimental data in Table 4:

(1) The mission completion rate and mission benefit of
using the UPM-IADE algorithm to solve the MSIMP
problem have less difference as the number of popula-
tions and iterations increases, and the average benefit
value is close to the ideal benefit. At a population size
of 300 and 300 iterations, this instance achieves the
optimal value of the optimization objective function,
with an average gain of 464.01.

(2) Both the mission benefit rate and the mission com-
pletion rate exceed 90%, demonstrating that the final

solution is feasible and satisfies the multiple mission
constraints in the construction model, reflecting the
collaborative nature ofmulti-satellitemission planning.

(3) Considering the UPM-IADE algorithm performance
under parameter control, the average benefit value is
close to the ideal benefit value for multiple iterations
with different population sizes, demonstrating that the
UPM-IADE algorithm search results are close to the
global optimal solution.

In conclusion, the UPM-IADE algorithm-based MSIMP
has strong stability.

2) EXPERIMENT 2: FEASIBILITY AND STABILITY OF
EXPERIMENTS FOR LOCAL AREA-ORIENTED
EMERGENCY SUPPORT MISSION
The emergency response requirements are mostly applied to
urgent and unexpected situations, which place demands on
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FIGURE 7. Result of large-scale imaging tasks. (a)multi-satellite mission assignment in large-scale imaging tasks diagram. (b)The ratio of missions
with different priorities to large-scale imaging tasks.

TABLE 4. The result of different population sizes with Muti-iterations for the large-scale imaging missions.

the mission’s importance and timeliness, as well as maxi-
mizing total tasks benefit and achieving the shortest aver-
age response time. This section simulates a natural disaster
in a region, with 30 mission targets chosen at random as
emergency support mission targets. The satellite contin-
uously maps the affected area, allowing for the shortest
average response time for all tasks. Figure 8 shows the
distribution of the target points to be observed in the local
area.

Table 5 depicts the task allocation relationships between
satellites and target points for an emergency support mission
with a population size of 200 and 300 iterations. Table 5
shows that the UPM-IADE algorithm proposed in this paper
can effectively deal with the satellite and target point alloca-
tion relationship in emergency mission scenarios. As a result,
MSIMP based on the UPM-IADE algorithm is feasible.

Table 6 presents the results of multiple iterations with
different population sizes for ideal benefit values ValueP,
average benefit values Valueaver , mission completion rates
RC , and mission response times Aver_tri for each population
size.

The following conclusions can be drawn from
Tables 5 and 6:

FIGURE 8. Emergency support mission targets distribution.

(1) When dealingwith small-scale emergency support mis-
sions, the UPM-IADE algorithm achieves a small dif-
ference in mission completion rate and mission benefit
rate, indicating good performance for multiple itera-
tions of experiments with different population sizes.
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TABLE 5. The simulated experiment results of emergency support imaging mission planning.

FIGURE 9. Convergence curve of fitness value using different algorithms.

(2) In this instance, the average benefit values are all close
to the ideal benefit values, indicating that the MSIMP
solution using the UPM-IADE algorithm is close to the
global optimal solution.

(3) The results of this experiment show that the system is
capable of carrying out emergency missions well; As
the number of iterations and population size increase,
the response time increases, but the emergency support
tasks are all well executed.

(4) Experiment 2 and Experiment 1 show that the popula-
tion sizes adapted to the different instances differ. For
the current instance, a population size of 200 is optimal,

with an average benefit of 300 when the number of
iterations is 300 and all target points are executed for
the imaging mission.

Experiment 1 and Experiment 2 simulation results show
that the UPM-IADE-based MSIMP proposed in this work
can effectively solve the MSIMP problem. UPM-IADE val-
idates the unified model’s feasibility and stability in both
large-scale imaging and emergency support mission scenar-
ios, addressing the MSIMP mission allocation model’s poor
scalability and weak algorithm targeting in different mission
requirements.
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TABLE 6. Simulation experiment data analysis for the emergency support imaging mission.

FIGURE 10. Convergence curve of response time using different algorithms.

C. COMPARISON OF UPM-IADE AND
OTHER ALGORITHMS
To accurately assess the performance of the UPM-IADE
algorithm and confirm its progress in terms of both the fitness
value of the optimization objective and the effectiveness of
optimization. In this section, the UPM-IADE algorithm is
compared with the DE and SADE algorithms in the above
two types of situations, the large-scale imaging mission and

the emergency support mission, to further study how well it
performs when solving MSIMP.

1) EXPERIMENT 3: LARGE-SCALE IMAGING MISSION WITH
DIFFERENT ALGORITHMS
Compared experiments are carried out to validate the per-
formance improvement of the UPM-IADE algorithm in
terms of optimization mission benefit and optimization
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FIGURE 11. Convergence curve of fitness value using different algorithms.

efficiency using three algorithms for a large-scale imag-
ing mission scenario with a target point of 100, con-
trolled by a parameter of population size 300 iteration
count 300.

We chose six evaluation indexes to analyze the perfor-
mance of the UPM-IADE algorithm in order to verify the
performance improvement in terms of optimization target
fitness value and optimization efficiency:

(1) Maximum fitness value: Imax = max(
NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijkwi)

represents the maximum mission benefit of the satellite exe-
cuting the target within all orbital circles, where xijk is the
decision variable of executing the task, wi is priority of exe-
cuting the task. This index reflects the ability of algorithms
to optimize in different experiments.

(2) Average fitness value: Iaver =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijkwi

/
NT

represents the average mission benefit of the satellite execut-
ing the target within all orbital circles, where NT is number
of tasks. This index reflects the stability of algorithms in
different experiments.

(3) Minimum fitness value: Imin = min(
NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijkwi)

represents the minimum mission benefit of the satellite exe-
cuting the target within all orbital circles. This index reflects
the solution of the algorithm to the minimum benefit.

(4)Maximum response time: Tmax=max(
NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijk tri )

represents the maximum response time tri of all tasks xijk .
This indicator reflects the maximum running time of the
mission planning system.

(5) Average response time: Taver =

NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijk tri

/
NT

represents the average response time tri of all tasks xijk . This
indicator reflects the average running time of the mission
planning system.

(6) Minimum response time: Tmin = min(
NT∑
i=1

NS∑
j=1

N o
j∑

k=1
xijk tri )

represents the minimum response time tri of all tasks xijk . This
indicator reflects the minimum running time of the mission
planning system.
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FIGURE 12. Convergence curve of response time using different algorithms.

The convergence curves of the maximum/average/
minimum fitness values of the UPM-IADE, SADE, and
DE algorithms are shown in Figure 9. In comparison to
the SADE and DE algorithms, the UPM-IADE algorithm
has significantly higher maximum, average, and minimum
fitness values. The convergence curve of fitness values of the
UPM-IADE algorithm converges to the approximate vicinity
of the optimal solution in 65-74 generations, indicating a
fast convergence rate in the early stages of the search. As a
result, the UPM-IADE algorithm performs well in terms of
convergence.

Figure 10 depicts the maximum/average/minimum
response time convergence curves of the UPM-IADE, SADE,
and DE algorithms. In Figure 10, the response times of
the UPM-IADE algorithm are significantly less than those
of the SADE and DE algorithms when the convergence
curves of themaximum/average/minimum response times are
compared. It demonstrates that the UPM-IADEmethod takes
less time to execute than the SADE and DE algorithms in the
MSIMP system, and the UPM-IADE algorithm can solve the
optimal execution plan in a short time.

Figure 10(a) shows that the UPM-IADE algorithm enters
the fast convergence stage between generations 120 and 140.

The reason for this is that the UPM-IADE algorithm has suf-
ficient exploration capability early on and can accelerate con-
vergence speed when it explores the optimal solution region.
It tends to develop fine search and enter fast convergence in
the middle and late stages of the algorithm, indicating that
the mutation operator based on weight sorting rule plays an
important role in further improving the solution.

2) EXPERIMENT 4: LOCAL AREA-ORIENTED EMERGENCY
SUPPORT MISSION WITH DIFFERENT ALGORITHMS
Algorithm performance comparison experiments are carried
out in an emergency support mission scenario using the three
algorithms mentioned above, UPM-IADE, SADE, and DE,
with the parameters of each algorithm set to a population size
of 200 iterations of 300. The convergence curves of the fitness
values of the various algorithms are depicted in Figure 11.

Figures 11(a), 11 (b), and 11 (c) show the convergence
curves in three indicators of each algorithm, namely maxi-
mum fitness, average fitness, and minimum fitness. In terms
of optimization mission benefits, the three metrics of the
UPM-IADE algorithm converged quickly within 65-74 gen-
erations, while the maximum fitness value, average fitness
value, and minimum fitness value were significantly higher
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than the SADE and DE algorithms. It is clear that the
UPM-IADE algorithm performs well in terms of conver-
gence.

Figure 12 represents the response time convergence curves
for the different algorithms. Subpanels (a), (b), and (c) of
Figure 12 depict the convergence curves of the three algo-
rithms in terms of maximum response time, average response
time, and minimum response time. Based on the evaluation of
the three indicators, the response time of the IADE algorithm
is shorter than that of the other algorithms in terms of opti-
mal efficiency. As a result, the IADE algorithm’s efficiency
improves.

The following results can be obtained based on the
above experimental results comparing the performance of
the UPM-IADE algorithm with similar algorithms in two
types of scenarios for large-scale imaging missions and local
area-oriented emergency support missions. On the one hand,
when applied to both types of scenarios, the UPM-IADE
algorithm converges faster than similar algorithms in the
fitness value convergence curve and achieves greater benefits
in the fitness value when convergence is reached. This is
significant proof that the mutation operator based on the
individual weight ranking rule proposed in the UPM-IADE
algorithm is essential.

On the other hand, the UPM-IADE algorithm has a shorter
response time than similar algorithms in both types of scenar-
ios. The experimental results show that this method ensure
that the multi-satellite mission planning system solves for the
optimal execution solution in a shorter time. The UPM-IADE
algorithm significantly improves both optimization mission
benefits and optimization efficiency.

VI. CONCLUSION AND FUTURE WORK
To solve the difficult problem of planning multi-satellite
imaging missions, this paper proposes a unified plan model
and an improved adaptive differential evolution algorithm.
In terms of developing planning models: to avoid the difficult
problems of inconsistent models and long planning times in
mission planning for different user requirements, a unified
model is constructed for the first time for two types of sce-
narios, namely large-scale imaging mission and emergency
support mission, overcoming the problems of poor scala-
bility of MSIMP models and weakly pertinent algorithms.
In terms of mission planning algorithms, a monorail task
synthesis method based on visible time windows is proposed
to improve MSIMP execution efficiency due to weak satellite
mobility and a limited number of imaging cycles in a single
orbit. In terms of developing adaptive algorithms, we pro-
posed a unified planmodel and improved adaptive differential
evolution algorithm, as well as a weight-ranking mutation
rule, to effectively balance population diversity and conver-
gence. This overcame the difficulty of multiple execution
schemes and long planning time for MSIMP. The experimen-
tal results demonstrate that the algorithm can effectively solve
both large-scale imaging mission and emergency support

mission scenarios, and in addition, it has high mission benefit
and a short response time when dealing with MSIMP.

Future research will focus on considering MSIMP in a
dynamic environment. In a deterministic environment, the
UPM-IADE proposed in this work can effectively solve the
application problems of MSIMP in the two scenarios of
large-scale imaging mission and emergency support mis-
sion. However, in the actual implementation process, multiple
imaging satellites are frequently confronted with a large num-
ber of uncertain factors. For example, cannot deal with unex-
pected situations such as cloud occlusion, satellite equipment
failure, and satellite resource failure in real time, which leads
to the ineffective execution of satellite observation tasks.
Therefore, it is necessary to carry out further research on
MSIMP in a dynamic environment.
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