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ABSTRACT This paper proposes a novel online solution, i.e. Modified-Equilibrium Optimizer-Levenberg-
Marquardt (M-EO-LM) algorithm, for the symmetric and asymmetric harmonic elimination pulse width
modulation (HEPWM) methods of the modular multilevel cascaded converters. A detailed comparison of
the proposed M-EO-LM algorithm with nine state-of-the-art algorithms is also presented for twenty-nine
unimodal, multimodal and composite benchmark test functions. M-EO-LM has proven its effectiveness
by outperforming these algorithms. EO algorithm is first introduced for the solution of HEPWM method.
Its comparison with several state-of-the-art algorithms depicts its superiority; but it gets stuck in the local
minima. Modified-EO (M-EO) solves the problem by enhancing its exploration ability, and is then attached
to a rapid calculus-based LMmethod to form the novel M-EO-LM algorithm. M-EO-LM algorithm initiates
the solution process by solving the HEPWM equations for nine angles (N = 9 and 0.78 ≤ M ≤ 6.86)
offline in only two iterations, depicting its remarkable convergence ability. Solution angles are then divided
into several groups, serving as the search space for the online M-EO-LM algorithm. A comparison between
HEPWM and nearest level modulation methods based on the output voltage THD values is provided to
report the maximum number of solvable HEPWM angles for a complete online solution. These angles
(N = 8 and 0.78 ≤ M < 5.18) are then solved online using the M-EO-LM algorithm. Comparing the
computational times of the proposed online algorithmwith differential evolution-Newton Raphson algorithm
proves the rapid solution behavior of the M-EO-LM algorithm, validated through the simulation and real-
time experimental results.

INDEX TERMS Harmonic elimination PWM, modular multilevel cascade converter, fundamental voltage
control, harmonic control, equilibrium optimizer, Levenberg-Marquardt algorithm.

I. INTRODUCTION
Modular multilevel cascade converters (MMCCs) have
become indispensable for electrical power systems due to
their better harmonic behavior, better reliability and abil-
ity to produce medium and high voltage outputs [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Javier Moreno-Valenzuela .

MMCCs are further divided into four categories based on the
configuration of their sub-modules (SMs): single-star bridge
cell (SSBC), single-delta bridge cell (SDBC), double-star
chopper cell (DSCC), and double-star bridge cell (DSBC) [1].
SSBC-MMCC being the simplest, is chosen in the work
and will be referred as MMCC (for simplicity) instead
of the full form SSBC-MMCC. Three-phase structure of
MMCC is depicted in Fig. 1(a). Each phase is comprised of
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‘N ’ full-bridge (FB) SMs (Fig. 1(b)). Quarter-wave output
phase voltage of MMCC is shown in Fig. 1(c). MMCCs are
attached with certain demerits for instance, circulating cur-
rents, SM input voltage imbalance, output harmonics, etc. [2],
[3], [4]; however, present study only focuses on the harmonic
elimination from their output voltage using harmonic elimi-
nation pulse width modulation (HEPWM) method. HEPWM
method surpasses its counterparts due to its low frequency
operation, better harmonics profile and fundamental voltage
control [5], [6], [7]. Several offline computing methods have
been reported to solve the HEPWM equations [5], [6], [7],
[8], [9], [10]. These methods can be categorized into two
groups, namely calculus based algorithms and soft computing
(SC) algorithms. Calculus based algorithms require a good
initial guess, which should be closer to the global mini-
mum. This initial guess is not always available for the tran-
scendental HEPWM equations, leading to the discontinuities
in the solution. Hence, a significant amount of research is
carried out using SC methods, which include genetic algo-
rithm (GA), particle swarm optimization (PSO), differen-
tial evolution (DE), flower pollination algorithm (FPA), etc.
These algorithms employ the random search to track the
global minima, and provide excellent offline solution to the
HEPWM equations without requiring a good initial guess.
SC algorithm based offline solution of HEPWM equations
are widely discussed in the literature [8], [9], [10]. Solution
angles obtained offline are stored in the form of look-up tables
(LUTs) for real-time application. However, these LUTs not
only present critical need of large memory but also fail to
address the dynamic behavior of the system operating on
a large range of M [11]. Hence, real-time implementation
of these algorithms is not always realistic. Recently, various
online solution techniques of HEPWM method have been
presented to address these problems [11], [12], [13], [14],
[15], [16], [17].

In [11], a real-time solution of HEPWM is provided by
converting its mathematical model into a control system
model. The method avoids computationally burdened cal-
culations; but, is presented for three SMs only. Moreover,
as it requires a LUT, integral controllers and a decoupled
controller for its working, the complexity of the control sys-
tem will increase for higher number of SMs. A fusion of
artificial neural networks (ANNs) and Quasi-Newton algo-
rithm is proposed in [12] to solve the HEPWM method
in real-time. ANNs generate the sub-optimal initial guess,
which are utilized by the Quasi-Newton algorithm to cal-
culate the HEPWM switching angles during real-time oper-
ations. However, presence of several discontinuities pose
serious challenges for the algorithm, whose performance is
presented for limited values of M . Moreover, the solution
process is slow and requires several fundamental time peri-
ods. A novel homotopy perturbation method is presented
in [13] to solve the HEPWM method. However, the solution
process is not fast enough as it requires computational time of
tens of fundamental time period. A rapid online differential

FIGURE 1. Representation of (a) Modular multilevel cascade converter.
(b) Full-bridge sub-module. (c) Quarter-wave single-phase output voltage.

evolution-Newton Raphson (DE-NR) algorithm is presented
in [14] to solve HEPWM equations. DE-NR algorithm is a
combination of DE and NR algorithms. It simultaneously
exploits the excellent global search ability of DE and rapid
convergence behavior of NR algorithms to obtain the solu-
tion. Solution process starts by optimizing a particular set of
population vectors using the DE algorithm. These vectors are
then utilized as the initial guess for the NR algorithm to locate
the global minima. Solution process is completed in less than
a fundamental time period, which depicts the faster behavior
of DE-NR algorithm. However, in these algorithms [12], [13],
[14], input voltages of SMs are considered equal (termed as
symmetric HEPWM), which contradicts the real-time oper-
ation of MMCCs where dynamic operating conditions lead
to unequal magnitude of input voltage sources (asymmet-
ric HEPWM). Hence, these methods are prone to under-
performance, and their application for the online solution of
asymmetric HEPWM needs to be discussed.

Few works are reported to target the online solution of
asymmetric HEPWM [15], [16], [17]. A combination of
genetic algorithm (GA) and ANNs is utilized in [15] to
solve asymmetric HEPWM method for five angles. Offline
calculations are performed by GA to obtain a LUT, which
is then utilized to train ANNs for the real-time calculations.
A well trained ANN system abolishes the requirement of
LUTs during the real-time operation. However, GA does not
always produce continuous HEPWM solution angle trajec-
tories, which leads to the substandard training of ANNs for
certain values ofM . Hence, sub-optimal results are produced
by the ANNs during the online operation for these values of
M , which deteriorates the efficient working of the MMCC
based power systems. Furthermore, the memory requirement
for the storage of offline results in the form of LUT to produce
the near to accurate results by ANNs is quite high. Hence,
the work has reported the online solution of HEPWMmethod
for the variation of a single input voltage only, which limits
the real-time applications of the proposed method. In addi-
tion, computational time analysis and the online solution of
HEPWM method for a wide range of M is not discussed.
A modified version of HEPWM named as SHE-PAM is
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presented in [16] for the real-time operation. The method
follows the principle of amplitude modulation and requires
specific values of input voltages for a particular value of M .
As these input values may not always be available, so the
method cannot be applied efficiently for the real-time oper-
ation of MMCCs. An online stochastic configuration net-
work Levenberg-Marquardt (SCN-LM) solution algorithm
for asymmetric HEPWM is presented in [17]. It requires
offline training and tuning of parameters of SCN, which is
based on the pre-calculated HEWPM angles. The parameter
values are then employed online by SCN to generate ini-
tial guess for the LM algorithm, which produces the final
solution. Asymmetric solution of three HEPWM angles is
presented, but its application for larger number of angles is
not reported. In short, current online solution methods either
produce sub-optimal results, are not fast enough or their
application is limited to the small number of HEPWMangles.
To fill this niche, a resolute online modified-Equilibrium
Optimizer-Levenberg Marquardt (M-EO-LM) algorithm is
proposed for symmetric and asymmetric HEPWM methods.
Present work is consisted of the offline and online solution
of HEPWM equations using M-EO-LM algorithm, and the
major contributions include:

• Development and application of a novel M-EO-LM
algorithm for the solution of optimization problems.

• Continuous offline solution of symmetric and asymmet-
ric HEPWM equations for 0.78 ≤ M ≤ 6.86 in only
two iterations, with desired output voltage fundamental
component and harmonics control.

• Realization of the rapid and complete online solution of
symmetric and asymmetric HEPWM equations.

First, offline solution process starts with the application
and modification of a novel EO algorithm for the HEPWM
method. It is named as modified-EO (M-EO) and its superi-
ority is established by comparing it with four different state-
of-the-art algorithms. M-EO is then combined with the LM
algorithm to form a novel M-EO-LM algorithm for the rapid
solution of HEPWMmethod. Offline results are then summa-
rized into a compact table, which replaces the memory bur-
dened LUT for the online solution. In addition, a comparison
of HEPWM and nearest level modulation (NLM) methods
is provided to obtain the maximum values of N and M for
the complete online solution of HEPWM methods using the
M-EO-LM algorithm.

Second part of the work reports online implementation
of the M-EO-LM algorithm for HEPWM method. Com-
pact table obtained during the offline solution is utilized to
present a novel online solution framework for the symmetric
and asymmetric HEPWM methods. Rapid convergence of
the online M-EO-LM algorithm compared with the online
DE-NR algorithm [14] is also established. Simulation and
online experimental results are presented, which verify the
applicability of the M-EO-LM algorithm for the online solu-
tion of HEPWM method. As the objective is to introduce the
rapid online solution algorithm (M-EO-LM) for the HEPWM
method, application of the proposed algorithm for calculating

the HEPWMangles during the dynamic changes in the values
of M is only considered in this work. Its application for the
voltage control, current control, circulating current control
and voltage ripple control, etc. of MMCCs will be discussed
in the future studies.

The paper is organized as follows: Section II explains the
symmetric and asymmetric HEPWM methods followed by
the short description of NLM method in section III. A com-
prehensive description and working of the proposed online
algorithm (M-EO-LM) is presented in section IV, which
is validated by the simulation and experimental results in
sections V and VI respectively. The article is concluded in
section VII.

II. HARMONIC ELIMINATION PWM
Control of the output fundamental voltage component and the
removal of harmonics from the output voltage of MMCCs
using HEPWM method requires the solution of a computa-
tionally burdened set of transcendental equations [5], [6], [7].
Several forms of HEPWM method (unified HEPWM [17],
[18], SHE-PAM [16], non-fundamental switching HEPWM
method [9], etc.) are reported in the literature but the cur-
rent work targets the conventional fundamental switching
frequency HEPWMmethod (SMs are switched with the fun-
damental frequency of 50 or 60 Hz). However, the proposed
online solution algorithm is equally applicable to all forms
of the HEPWMmethod. Generalized mathematical model of
the HEPWMmethod is presented by (1) to (3) with the fitness
function (4), provided the constraints of (5) are observed.

N∑
i=1

V ′
i cosαi −M = ϵ1 (1)

N∑
i=1

V ′
i cos kαi = ϵk (2)

where k = {5, 7, . . . , 3N − 1} or {5, 7, . . . , 3N − 2} for
even/odd value of N , and M controls the magnitude of fun-
damental component (Vf ) of the output voltage using (3).

M = π |Vf |/4Vdc, 0 < M ≤ N (3)

Harmonics produced in the output voltage ofMMCCs have
detrimental effect on the system performance as they gener-
ate power losses, unwanted switching of protection devices,
power quality issues, etc. To limit the harmful effects of har-
monics, THDof the output voltage is required to be controlled
to a certain level as recommended by the IEEE-Standard 519-
2014 [19]. Therefore, the fitness function used in this study
is focused on limiting the THD of the output voltage, which
is described below:

f (α) =

√
(ϵ1)2 + (ϵ5)2 + . . . + (ϵk )2 (4)

0 < α1 < α2 < . . . < αN < π/2 (5)

Here Vdc, ϵ and f (α) represent the input dc voltage, calcu-
lation error and the fitness function value respectively, while
V ′
i (i = 1, 2, . . . ,N ) represents the normalized magnitude
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of input voltages (V1,V2, . . . ,VN ) with respect to Vdc. Sym-
metric HEPWM method (when all input voltages are equal)
being the simplest, remains the target of most publications,
and is commonly referred as HEPWM. However, asymmetric
HEPWM method (when at least one input voltage is differ-
ent) encompasses the practical working conditions, and is
imperative for the real-time operation ofMMCC based power
systems. Present work targets both categories to provide a
complete online solution of the HEPWM method. As triplen
harmonics are automatically removed in a stable three-phase
system, so (1) to (5) are solved for the first N non-triplen
harmonics. The first non-eliminated harmonics component
will be (3N + 1)th or (3N + 2)th for even or odd number of N
respectively.

Since HEPWM equations are transcendental in nature, the
solution complexity and the computational burden increase
with the increase in the value of N , which limits its real-time
applications for MMCCs with large values of N . NLM has
appeared as an alternative, but it suffers with poor harmonics
profile for smaller values of N . Hence, the work focuses on
the online solution of HEPWM equations till a suitable value
of N , beyond which, NLM can be applied for the real-time
operation. A brief description of NLM is provided below.

III. NEAREST LEVEL MODULATION
NLM method is a fundamental switching frequency method,
and has found several online applications in high voltage
DC (HVDC) systems due to its simple architecture and low
computational burden [20], [21], [22]. It requires the solution
of (6) for N number of angles.

αi = sin−1[π (i− 0.5)/(4M )], i = 1, 2, . . . .,N (6)

Despite its simple construction, harmonics profile attached
to the output voltage of MMCCs (generated by NLM) with
smaller number of N is poor. Hence, it is preferred for the
MMCCswith large number ofN , while HEPWM takes prece-
dence for relatively smaller number of N . Proposed online
algorithm for the solution of HEPWM equations is presented
in the next section.

IV. PROPOSED ALGORITHM
This section presents a detailed description of the proposed
online algorithm (M-EO-LM), and its gradual formation from
the constituent algorithms. Comparative analysis of EO with
three state-of-the-art algorithms and M-EO is also provided.
Furthermore, the effectiveness of the proposed M-EO-LM
algorithm is proven by comparing its performance with nine
state-of-the-art algorithms for twenty-nine unimodal, multi-
modal and composite benchmark test functions.

A. APPLICATION OF EO ALGORITHM
Recently introduced EO algorithm has found manifold appli-
cations in diverse fields, and has surpassed several state-of-
the-art algorithms [23]. It follows the control volume mass
balance models to reach the final equilibrium state (optimal
position). It starts by randomly initializing NP number of

‘particles (vectors)’ within the lower and upper bounds. These
particles are assembled in the matrix C and are continuously
modified using (7) till the stopping criteria is met.

Ci = Ceq + (Ci − Ceq)F + G(1 − F)/(λV ) (7)

where λ and V are constants, whileCeq represents a randomly
chosen (equilibrium state) vector from a group of vectors
{Ceq(1), Ceq(2), Ceq(3), Ceq(4), Ceq(m)}. Here, Ceq(1) to Ceq(4)
are four particles of C with successive best fitness values,
whileCeq(m) represents their mean vector. F is an exponential
term, and it maintains a balance between exploration and
exploitation using (8). G defines the generation rate and it
further controls the exploitation behaviour of EO by (10).

F = a1sign(r − 0.5)(e−λt
− 1) (8)

t = (1 − Iter/Max_Iter)a2(Iter/Max_Iter) (9)

G = G◦F (10)

G◦ = GCP(Ceq − λC) (11)

where a1, GCP (generation rate control parameter) and a2 are
constants, and their values are determined analytically. r is a
random number between 0 to 1, sign returns the sign of the
term (r − 0.5), while Iter and Max_Iter represent the current
and maximum number of iterations.

Though, EO has found hundreds of applications in diverse
fields; it is employed for the first time in this article for the
solution of HEPWMmethod. Fig. 2 presents a detailed com-
parison of EO, dragon fly (DF) [24], slime mould (SM) [25]
and DE [26] algorithms for the solution of HEPWMmethod.
These are soft computing (SC) methods and mostly require
large number of iterations to locate a global minimum. How-
ever, present work targets rapid online solution of HEPWM
method; hence, the solution process cannot be continued for
large number of iterations and is required to be completed in
minimum number of iterations. Fig. 2(a) depicts the conver-
gence behavior of these algorithms in each iteration forM =

5.15. The solution process is continued for a maximum of
one thousand iterations. EO has shown the best convergence
behavior by achieving theminimumfitness value followed by
SM,DE andDF algorithms. A detailed insight of convergence
behaviors of these algorithms is developed by plotting the
average fitness values for the range 6.76 ≤ M ≤ 6.86 in
Fig. 2(b). These values are obtained after a hundred solution
runs of each algorithm. Clearly, EO has outclassed these
algorithms by achieving the minimum average f (α) values
(Fig. 2(b)). It has also shown a remarkable converging behav-
ior in the first few iterations (Fig. 2(a)); but has failed to obtain
the solution with targeted fitness value (f (α) ≤ 10−4). Rea-
son is its inability to avoid the local minimum, if the search
space contains multiple local minima as reported in [23]. So,
a modified-EO (M-EO) is formed in this work to overcome
this limitation.

B. FORMATION OF M-EO ALGORITHM
M-EO is formed in the work to enhance the exploration
ability and suppress the exploitation ability of EO algorithm
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FIGURE 2. Comparison of EO, SM, DF and DE algorithms with respect to
the (a) Fitness value of HEPWM equations for M = 5.15 in each iteration.
(b) Average fitness values of HEPWM equations for 6.76 ≤ M ≤ 6.86.

using (12).

Ci = Cr1 + (Cr2 − Cr3)F (12)

where r1, r2 and r3 are three random indices (ranging
between 1 to NP). In (12), the last term of (7) is dropped to
present a modified version of (7). Dropping of the last term
subsides the exploitation ability of EO; hence, the chance
of getting stuck in the local minima is lessened. Moreover,
it simplifies the solution process as (10) and (11) are no more
required. In addition, instead of using a constant value of
a1 and λ, both are converted into the vectors of NP number
of unique randomly chosen values (between 0 to 1). Conse-
quently, a different value of F is obtained for each vector Ci,
resulting in the increased diversity of the population vectors.
Furthermore, replacement of the best fitness vectors of (7)
with the randomly chosen vectors in (12) enhances the explo-
ration ability of EO. Hence, premature convergence behavior
of EO is improved.

A comparison of the convergence abilities of EO and
M-EO algorithms is presented in Fig. 3 through their box-
plots. Boxplot provides the fitness value distribution of each
particle in each iteration. Two values of M (5.15 and 5.75)
are selected for this purpose. Figs. 3(a) and 3(b) show the
convergence abilities of these algorithms for M = 5.15,
while Figs. 3(c) and 3(d) depict their behaviors for M =

5.75 respectively. Rapid converging behavior of EO can be
clearly observed in Figs. 3(a) and 3(c). However, it fails
to improve the fitness after approximately forty iterations.
Furthermore, required fitness value is not achieved. On con-
trary, scattered boxplots of M-EO outline its better explo-
ration behavior with a compromise on convergence speed
(Figs. 3(b) and 3(d)). However, required fitness value is still
not achieved. A better understanding of the solution behaviors
of these algorithms can be developed from a comparison of
their f (α) values as shown in Fig. 4.
Fig. 4(a) depicts the convergence behavior of these algo-

rithms for M = 5.15 in each iteration. Evidently, M-EO has
shown the better response. Convergence behavior of these
algorithms is further elaborated by plotting the average fitness
values for the range 6.76 ≤ M ≤ 6.86 in Fig. 4(b). Clearly,
M-EO has outclassed EO algorithm by achieving the better
fitness value (Fig. 4(b)). Hence, M-EO has appeared as the
most suitable candidate (among all the presented algorithms,
Figs. 2 and 4) for the solution of HEWPMmethod. However,
similar to other algorithms (EO, SM, DF and DE), it has

FIGURE 3. Box plot of (a) EO for M = 5.15. (b) M-EO for M = 5.15. (c) EO
for M = 5.75. (d) M-EO for M = 5.75.

FIGURE 4. Comparison of EO and M-EO algorithms with respect to the
(a) Fitness value of HEPWM equations for M = 5.15 in each iteration.
(b) Average fitness values of HEPWM equations for 6.76 ≤ M ≤ 6.86.

failed to achieve the targeted fitness value within a thousand
iterations. Hence, it cannot be used to solve the HEPWM
equations during the online operation, which requires the
solution in few iterations. Recently, calculus based algorithms
are applied conjointly with the SC or machine learning (ML)
algorithms to enhance their exploitation ability, resulting
in a rapid solution [12], [14], [17]. Among these, LM has
cemented its prominence due to its ability to track the global
minima with higher success [17], [27]. Hence, a combination
of M-EO and LM (named as M-EO-LM) is proposed in
this work to solve the symmetric and asymmetric HEPWM
equations.

C. DESIGN OF M-EO-LM ALGORITHM
M-EO-LM algorithm is produced by blending the M-EO and
LM algorithms. Fig. 4 depicts the excellent ability of the
M-EO to reach near the global minima in few iterations
without getting stuck in the local minima; hence it provides
a good starting point for the LM algorithm. In essence,
LM algorithm is a combination of gradient descent (GD)
and NR algorithms [17], [27]. It utilizes the merits of both
methods as GD part helps it evade the local minima while
the NR part expedites the solution process. Its mathematical
model is presented as:

Ci = Ci − {JT (α) ϵ(α)/(JT (α) J (α) + µI )} (13)

where ϵ(α) = {ϵ1, ϵ5, . . . , ϵk} is the vector containing error
function values (obtained from (1) and (2)), J (α) represents
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the Jacobian matrix (of ϵ(α)) with respect to the switching
angles (α1, α2, . . . , αN ) and I is an identity matrix of the
order same as of J (α). µ is a constant with value varying
from 0.001 to 1000, and it controls the relative contribution
of GD and NR algorithms (smaller value of µ favours the
NR algorithm while larger value favours GD algorithm).
Normally, the initial value of µ is considered as 0.01, which
is updated in each iteration by a factor of 10 or 1/10 with
respect to the subsequent increase or decrease in the fitness
values of the function respectively. As LM algorithm is prone
to get stuck in the local minima, additional measures are
required to assist the M-EO-LM algorithm in avoiding these
minima. Hence, the diversity of the population vectors of the
M-EO-LM algorithm is improved by replacing the redundant
population vectors (population vectors with similar fitness
values) with the randomly initialized vectors after every five
iterations. This procedure not only enhances the exploration
ability of the M-EO-LM algorithm but also ensures that it
does not remain stuck in a local minimum. MATLAB imple-
mentation of the proposed M-EO-LM algorithm is presented
in the following pseudo-code.

D. COMPARISON OF THE M-EO-LM ALGORITHM WITH
SEVERAL STATE-OF-THE-ART ALGORITHMS
To verify the applicability of the proposed M-EO-LM algo-
rithm for the solution of optimization problems, a detailed
comparison of M-EO-LM with the algorithms proposed
in [23], [28], [29], [30], [31], [32], [33], [34], and
[35] namely: Equilibrium Optimizer (EO) [23], Particle
Swarm Optimization (PSO) [28], Grey Wolf Optimizer
(GWO) [29], Genetic Algorithm (GA) [30], Gravitational
Search Algorithm (GSA) [31], Salp Swarm Algorithm
(SSA) [32], Evolution Strategy with Covariance Matrix
Adaptation (CMA-ES) [33], Success-History Based Param-
eter Adaptation Differential Evolution (SHADE) [34], and
SHADE with linear population size reduction hybridized
with semi-parameter adaptation of CMA-ES (LSHADE-
SPACMA) [35], is presented in Table 1.

The work targets the solution of twenty-nine benchmark
test functions to evaluate the performance of the proposed
M-EO-LM algorithm. The benchmark test functions include
seven unimodal and sixteen multimodal functions as utilized
by [23], [29], [31], and [36]. Furthermore, six composite test
functions (CF1 to CF6), which were introduced by [37] as
challenging benchmark functions for measuring the global
minima tracking ability of an optimization algorithm are also
solved to verify the effectiveness of the proposed algorithm.
Average (Ave) values and standard deviation (Std) values of
the twenty-nine benchmark test functions obtained by the
application of the M-EO-LM algorithm is presented in the
column 4 of Table 1. As the comparison of EO ([23]) and
rest of the algorithms ([28], [29], [30], [31], [32], [33], [34],
[35]) is already carried out in [23], so the data of [23] is pre-
sented in the 5th to 13th columns (EO to LSHADE-SPACMA

Algorithm 1 Pseudo-code of the M-EO-LM Algorithm
1. Initialize the population vectors Ci (i = 1, 2, . . . , NP) in
accordance with the constraint of (5),

2. Set j = 0 (j is the iteration number), and randomly initialize
the weighting constant a2.

3. while fi(α) > 10−4 or j <Max_Iter (stopping criteria)
4. increment the iteration number j
5. for i = 1, . . . ., NP
6. Calculate fi(α) for each Ci vector using (1) to (5)
7. if j == 1
8. fitness_oldi = fi(α)
9. C_oldi = Ci
(where fitness_old and C_old vectors act as memory data
for greedy operation of M-EO-LM algorithm)

10. save best fitness value and best vector
11. else
12. if fi(α) <best fitness value
13. best fitness value=fi(α)
14. best vector= Ci
15. end if
16. if fi(α) <fitness_oldi
17. fitness_oldi = fi(α)
18. C_oldi = Ci
19. end if
20. Randomly initialize the vectors a1 and λ, and pick

three unique vectors from C
21. Calculate F , t , and Ci using (8), (9) and (12)
22. if fi(α) < 10−4

23. return Ci as final answer
24. else
25. apply LM algorithm for ten iterations
26. end if-else
27. if fi(α) < 10−4

28. return Ci as the final answer
29. end if
30. end if-else
31. end for
The following part enhances the heterogeneity of the pop-
ulation vectors by replacing all but one vectors of same
fitness value with the randomly initialized vectors after
every five iterations.

32. if required solution is not obtained
33. if j is divisible by five
34. Replace all but one population vectors of same

fitness values with the randomly initialized vectors
35. end if
36. if j == Max_Iter
37. return Ci with minimum value of fi(α) as the

final answer
(this loop returns Ci with minimum value of fi(α)
as the final answer, if the required solution is not
obtained in the maximum number of iterations)

38. end if
39. end if
40. end while
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TABLE 1. Comparison of the M-EO-LM algorithm with the algorithms of [23] for twenty-nine benchmark test functions.
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algorithms) of Table 1. Friedmanmean rank of the algorithms
is calculated based on the Ave and Std values of the functions.
Finally, the algorithms are ranked in accordance with their
Friedman mean ranks.

Unimodal functions (F1 to F7) are vital in evaluating the
exploitation ability of an algorithm as they contain a unique
minimum. It can be observed that M-EO-LM algorithm has
surpassed other algorithms to locate the minimum of uni-
modal functions. Its Friedman mean rank is 2.2857 followed
by the 2.3571 of EO algorithm. Hence, the superior exploita-
tion ability of M-EO-LM is verified.

Multimodal functions (F8 to F23) are comprised of several
local minima and a global minimum.Hence, these benchmark
test functions are vital in assessing the exploration ability
of the proposed M-EO-LM algorithm. Furthermore, these
functions play a crucial role in evaluating the sound balance
of exploitation and exploration abilities of an algorithm as it
locates the global minimum by evading several local minima.
In addition to the multimodal functions (F8 to F23), compos-
ite test functions (CF1 to CF6) are also utilized to evaluate
the effectiveness of the algorithms. These functions imitate
the search area of a complex real-life function by introducing
several local minima and regions of different forms. More-
over, they are constructed by the combined applications of
various mathematical operations of shifting, rotation, expan-
sion and hybridization of five standard unimodal and multi-
modal mathematical functions (namely: Sphere, Rastrigin’s,
Weierstrass, Griewank’s andAckley’s functions). Hence, they
present several challenging solution tasks to the M-EO-LM
and other algorithms. Readers are advised to consult [37]
for further details. Clearly, M-EO-LM algorithm has shown
the best results among all the algorithms for the solution of
multimodal and composite test functions (Table 1). It stands
at the first rank with the Friedman mean rank of 2.6087,
followed by the LSHADE-SPACMA and EO algorithms with
the Friedman mean rank of 3.1304 and 3.8261 respectively.
Overall ranking of the algorithms is also presented by con-
sidering all the twenty-nine benchmark test functions as a
single unit. M-EO-LM algorithm has shown the best results
in all the (unimodal, multimodal and composite) benchmark
test functions with EO algorithm taking the second place.
To summarize, M-EO-LM algorithm has outperformed all
the algorithms. Hence, it is established that M-EO-LM is an
effective and novel algorithm, which can be utilized for any
optimization problem. Application of the M-EO-LM algo-
rithm for the offline and online solution of HEPWM method
is presented in the next sections.

V. OFFLINE SIMULATION RESULTS AND DISCUSSION
In this section, switching angles varying from two to nine per
quarter-cycle of output voltage are sought offline, covering
the range 0.78 ≤ M ≤ 6.86 for MMCC based power system.
Comparison of the M-EO-LM algorithm with three state-of-
the-art algorithms is reported, which depicts its superiority
for the solution of HEPWM equations. Offline simulation
results obtained by developing a three-phase MMCC based

TABLE 2. Simulation and experimental model parameters.

power system in MATLAB-Simulink are discussed. System
design parameters are presented in Table 2. Purpose of the
study is to present the rapid and harmonic efficient working
of the proposed algorithm (M-EO-LM) based symmetric and
asymmetric HEPWM methods. Furthermore, utilization of
the offline results for the online solution process is discussed.
A detailed comparison of the HEPWM method (using the
M-EO-LM algorithm) with NLM method is also presented.
Purpose of the comparison is to obtain the maximum number
of angles (N ) for a complete and rapid online solution of
HEPWM methods using the M-EO-LM algorithm.

A. OFFLINE SYMMETRIC HEPWM
Fig. 5(a) displays the number of iterations taken by the
proposed M-EO-LM algorithm to solve the targeted range
(0.78 ≤ M ≤ 6.86), with the resolution value of M as
0.01 (subsequent value of M is obtained by incrementing
the previous value by 0.01). Value of NP (population vec-
tors) and Max_Iter (maximum iterations) are kept as 12N
and 10 respectively for the simulations. It should be noted,
transcendental nature of HEPWM method leads to the dis-
continuous solution angle trajectories for a particular value
of N (when HEPWM angles are not available for one or
more values ofM ). Hence, HEPWMmethods with additional
switching in the voltage levels are suggested in several pub-
lications to tackle this issue [8], [9], [18]. However, as an
objective of this work is to present the upper limit of N for
the online solution of HEPWMmethod, beyond which NLM
should be used due to the lesser computational time of latter;
the value of N is changed in the current work to mitigate the
discontinuity in the solution angle trajectories for the targeted
range of M (0.78 ≤ M ≤ 6.86). For instance, value of N
is changed from 4 to 5 for the range 2.81 ≤ M < 3.09
(Table 3) to obtain the realizable solution angles. Remarkably,
HEPWM switching angles for all values of M are obtained
within two iterations (Fig. 5(a)), which asserts the exceptional
convergence ability of the M-EO-LM algorithm. Further-
more, as small number of iterations are directly linked to a
rapid solution process, the potential of M-EO-LM algorithm
for the online solution of HEPWM method is also validated.
THD values of line-to-line output voltages of MMCC for
each value ofM are provided in Fig. 5(b). Noticeably, IEEE-
Standard of 5% THD values [19] is successfully followed for
N ≥ 6, which verifies the efficient harmonics control ability
of the M-EO-LM algorithm.
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FIGURE 5. (a) Number of iterations taken by M-EO-LM to solve the
HEPWM equations for the targeted range 0.78 ≤ M ≤ 6.86. (b) THD values
of the line-to-line output voltages for the targeted range 0.78 ≤ M ≤ 6.86.

TABLE 3. Summary of HEPWM angle trajectories for 0.78 ≤ M ≤ 6.86.

Summary of the number of angles required to solve a par-
ticular range of M is provided in Table 3. The targeted range
(0.78 ≤ M ≤ 6.86) is divided into seventeen groups (G1 to
G17) such that: (i) the success rate of M-EO-LM algorithm
is 100% for each value of M , and (ii) the solution angle
trajectories comprising of larger range of M with smallest
possible number of SMs (N ) are selected (among the multiple
solutions). This information is quite valuable as it directs the
solution process to the relevant search space for a particular
value of M . For instance, in order to operate the MMCC at
M = 5.15, G12 of Table 3 provides the information to solve
the HEPWM equations for eight angles. Moreover, Table 3
facilitates the online application of M-EO-LM algorithm for
the HEPWM method, which will be discussed in section VI.
Similar procedure can be adopted to obtain the low mem-
ory LUT for the online solution of all forms of HEPWM
method.

Comparison of the M-EO-LM algorithm with state-of-the-
art SM, DF and DE algorithms is presented in Fig. 6, with
respect to their fitness function values (4). All algorithms are
run a hundred times for ten iterations in each solution run, and
the average and standard deviation (σ ) values of their f (α)
are shown in Figs. 6(a) and 6(b) respectively. The maximum
limit of ten iterations is put as: i) the M-EO-LM algorithm
has solved the HEPWM equations for the targeted range of
M (0.78 ≤ M ≤ 6.86) in only two iterations (Fig. 5(a)),
and ii) this is a practical limit to solve the HEPWM equations
online in one fundamental time period (20 ms for the 50 Hz
system). Clearly, M-EO-LM algorithm has shown superior
converging behavior than the SM, DF and DE algorithms.
It is the only algorithm to produce a value of zero f (α)
(Fig. 6(a)), with σ = 0 (Fig. 6(b)) for the targeted range ofM

FIGURE 6. Comparison of M-EO-LM, SM, DF and DE algorithms with
respect to the (a) Fitness value of HEPWM equations for
0.78 ≤ M ≤ 6.86 in each iteration. (b) Standard deviation of fitness values
of HEPWM equations for 0.78 ≤ M ≤ 6.86.

(0.78 ≤ M ≤ 6.86). Hence, the superiority of the M-EO-LM
algorithm for the solution of HEPWMmethod is established.

Three-phase prototype of MMCC with nine SMs per-
phase is designed in MATLAB-Simulink to obtain the line-
to-line voltages for the pre-calculated HEPWMangles. Rapid
solution behavior of the proposed M-EO-LM algorithm is
depicted in the Fig. 7, which shows a smooth transition in
the line-to-line output voltage of MMCC for a sudden change
of M . The value of M is changed from 3.5 (N = 5) to 5.15
(N = 8) at t = 0.3 s. This successful response of the M-EO-
LM algorithm is vital for the systems, which have dynamic
requirements of the output voltage, for instance, motor drive
systems. Line-to-line voltages for M = 3.5 (five angles) and
M = 5.15 (eight angles) are further elaborated in Figs. 8(a)
and 8(b), while their frequency spectrum are portrayed in
Figs. 8(c) and 8(d) respectively. Clearly, fundamental volt-
age control is achieved in accordance with (3). In addition,
targeted number of harmonics (sixteen and twenty-four
respectively, section II) are successfully removed from the
line-to-line output voltages. Furthermore, THD value for
M = 5.15 (Fig. 8(d) is in accordance with the allowed 5%
IEEE-Standard [19] limit depicting the achievement of stan-
dard harmonic control. However, filtering will be required for
the output voltage ofM = 3.5 to bring the THD value within
the prescribed limits. Hence, the application of the proposed
M-EO-LM algorithm for desired output voltage fundamental
component and harmonics control of MMCC based power
systems is pragmatic.

B. OFFLINE ASYMMETRIC HEPWM
MMCCs are not always fed with equal input voltages; hence,
the solution of asymmetric HEPWM equations for the stable
and efficient operation of power systems is always desirable.
Solution of symmetric HEPWM equations within two itera-
tions and with 100% success rate using M-EO-LM, furnishes
the possibility of its application for the solution of asymmet-
ric HEPWM method. To cement the pertinence of M-EO-
LM algorithm for asymmetric HEPWM method; it is run
a hundred times for a thousand different values M and Vm
(Vm = mean({V1,V2, . . . ,VN })). The success rate turned out
to be 98.01%, and the number of iterations required to solve
the asymmetric HEPWM are also in line with the symmetric
HEPWM method. Due to space limitations, selected values
of M and relevant data are presented in Table 4.
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FIGURE 7. Transition of line-to-line output voltage of MMCC from
M = 3.5 (N = 5) to M = 5.15 (N = 8).

FIGURE 8. (a) Line-to-line output voltage of MMCC for M = 3.5.
(b) Line-to-line output voltage of MMCC for M = 5.15. (c) FFT analysis of
the output voltage for M = 3.5. (d) FFT analysis of the output voltage for
M = 5.15.

Smooth transition in the asymmetric line-to-line output
voltage of MMCC is shown in Fig. 9. The value of M is
changed from 3.3729 (N = 5) to 4.9 (N = 8) at t =

0.3 s, while the magnitude of input voltages are presented in
Table 5. This transition not only verifies the rapid solution
ability of the proposed M-EO-LM algorithm under varying
values of M but also validates its effectiveness during the
change in input voltages (Table 5). As the work targets
operation of MMCC based power systems with desired out-
put voltage fundamental component and harmonics control,
line-to-line voltages and the respective FFT spectrum for
these values of M (3.3729 and 4.9) are portrayed in Fig. 10.
Figs. 10(a) and 10(b) represent the line-to-line output volt-
ages of MMCCs for M = 3.3729 and 4.9 respectively.
FFT spectrum of these voltages are sequentially depicted
in Figs. 10(c) and 10(d). Once again, M-EO-LM algorithm
has not only established the required voltage control but has
also removed the targeted harmonics (sixteen and twenty-four
harmonics) from the line-to-line output voltage of MMCCs,
while maintaining the THD value within the allowed 5%
standard value (for N > 5, Fig. 10(d)). Hence, M-EO-LM
algorithm is established as vital for the reliable operation
of MMCCs, assuring rapid and effective voltage and fre-
quency control response under symmetric and asymmetric
conditions.

To summarize, the M-EO-LM algorithm has verified its
primacy over the frequently used SC based algorithms due
to its rapid and resolute convergence ability. In addition,
it has successfully controlled the fundamental voltage and the

TABLE 4. Summary of selected data of asymmetric HEPWM method.

FIGURE 9. Transition of line-to-line output voltage of MMCC from
M = 3.3729 (N = 5) to M = 4.9 (N = 8).

FIGURE 10. (a) Line-to-line output voltage of MMCC for M = 3.3729.
(b) Line-to-line output voltage of MMCC for M = 4.9. (c) FFT analysis of
the output voltage for M = 3.3729. (d) FFT analysis of the output voltage
for M = 4.9.

TABLE 5. Data utilized for asymmetric MATLAB-Simulink results.

harmonics during the symmetrical and asymmetrical oper-
ations, which consolidates its efficacy for the smooth and
efficient operation of MMCC based power systems. Further-
more, it has led to significant progress for the online solu-
tion of HEPWM method due to the production of compact
data (Table 3).

C. COMPARISON OF HEPWM WITH NLM
As mentioned in section II, finding the maximum value of
N for the complete online solution of HEPWM method is
quite critical. Hence, a detailed comparison of the HEPWM
method with the NLM method is carried out with reference
to the average and maximum THD values of their line-to-line
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output voltages. Switching angles for a particular value ofM
for the NLM method is obtained from (6), which is restated
below for the ease of readers:

αi = sin−1[π (i− 0.5)/(4M )], i = 1, 2, . . . .,N

Following condition should be fulfilled to obtain the real
values of αi:

π (i− 0.5)/(4M ) < 1, i = 1, 2, . . . .,N

Hence the minimum values of M (Mmin) attached with a
particular value of N for the NLM method can be obtained
by (14), and are provided in Table 6 (upto N = 8).

M > π(i− 0.5)/4, i = 1, 2, . . . .,N (14)

Table 6 plays a vital role in the transition between the
HEPWM and NLM methods during the online operation as
it provides the value of N after which NLM should be used
(in place of the HEPWM method) for the desired and rapid
online output voltage fundamental component and harmonics
control of MMCCs.

THD values of the line-to-line output voltages obtained
using the HEPWM and NLM methods are presented in
Table 7. Noticeably, HEPWMmethod has shown lower (aver-
age and maximum) THD values than the NLM method.
However, as the mathematical model of the NLM method
is simpler and its solution requires significantly less com-
putational time than the HEPWM method, it must be pre-
ferred for the values of M showing a THD value of less
than 5%. Fig. 11 shows the THD values of the line-to-
line output voltages obtained using the NLM method for
specific values of M . These values of M (M ≥ 5.18) for
the NLM method are picked such that the THD values are
always less than the targeted 5%. Hence, the NLM method
should be used for online operation of MMCCs for M ≥

5.18 (N = 7). However, Table 3 depicts that HEPWM
method utilizes N = 8 for the range of 5.00 ≤ M <

5.18. Hence, HEPWM equations will be solved online for
N ≤ 8. To summarize, 0.78 ≤ M < 5.18 with N ≤ 8 defines
the complete range for online solution of HEPWM method,
which will be targeted in the work. Solution ofM ≥ 5.18 will
not be discussed as NLM can be utilized for these values.
Detailed experimental results for the online implementation
of HEPWM (using M-EO-LM) is provided in the subsequent
section.

VI. ONLINE EXPERIMENTAL VALIDATION
Online experimental validation of the M-EO-LM algorithm
for the complete solution of symmetric and asymmetric
HEPWM methods is carried out by constructing a seventeen
level (N = 8) single-phase MMCC prototype as shown
in the Fig. 12. L298N modules of STMicroelectronics are
utilized as the constituent SMs of MMCC. Circuit param-
eters are mentioned in Table 2. Switching signals for the
SMs are generated using the Real-time Interface-Simulink
(RTI-Simulink) package of dSPACE 1104. The objective

TABLE 6. Minimum value of M related to a particular value of N for the
NLM method.

TABLE 7. Comparison of HEPWM with NLM with respect to the THD
values of their line-to-line output voltages.

FIGURE 11. THD values of the line-to-line output voltage obtained using
the NLM method for 5.18 ≤ M ≤ 6.86.

FIGURE 12. Experimental setup of the single-phase MMCC to produce the
seventeen level output voltage (eight SMs).

is to employ the M-EO-LM algorithm for the online solu-
tion of HEPWM equations with minimum computational
time. Online implementation and comparison of M-EO-LM
algorithm with the recently published online DE-NR algo-
rithm [14] for HEPWM method are presented in the next
sections.

A. ONLINE SYMMETRIC HEPWM
For the online solution of symmetric HEPWM equations,
M-EO-LM algorithm is fed with the information of Table 8,
while values of NP and Max_Iter are set as 3. Data of the
Table 8 is obtained through the offline solution of HEPWM
method (section V), and it presents the lower and upper
bounds (lb and ub respectively) of each α (HEPWM switch-
ing angle). The group numbers (G1 to G12) are the same
as reported by the Table 3. For instance, to obtain an out-
put voltage for M = 3.5, HEPWM equations are solved
online for N = 5 (G6 of Table 3), with the lb and ub of
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α1 to α5 as specified by the G6 of Table 8. Clearly, Table 8
is a compact and low memory LUT (which can be easily
incorporated in the code of M-EO-LM algorithm as an if-
else loop). Hence, the requirement of memory for the online
implementation of the M-EO-LM algorithm is trivial. Fur-
thermore, as the Table 8 is sufficient for the online solution
of HEPWM method with a high number of operating points
(0.78 ≤ M < 5.18), it eliminates the dependency on the
memory burdened LUTs/parameters for the online solution
of HEPWM method [12], [15], [17]. Similar online solution
procedure can be adopted for all forms of HEPWM method.

Table 9 presents the computational time of M-EO-LM
and DE-NR algorithms for various values of M . Computa-
tional time of the algorithm is calculated using the dSPACE
1104 real-time simulator. The algorithm is added as a function
block in the dSPACE RTI-Simulink model. The model file is
uploaded to the hardware controller only if the proposed algo-
rithm can be realized in real-time; otherwise, a task overrun
error is occurred. Task overrun is described as the inability of
the task (algorithm) to generate the output (solution angles)
before the start of the next task instance (function call), and
its occurrence terminates the real-time operation. Initially,
the model file is run with the sample time of 20 ms, which
is continuously decreased until a particular sample time is
obtained, beyond which task overrun error is generated. This
sample time is the minimum time required by the algorithm
to obtain the solution, and is termed as its computational
time. The process is repeated to calculate the computational
time of the M-EO-LM and DE-NR algorithms for each value
of M , some of which are reported in the Table 9. Clearly,
the computational time of M-EO-LM is quite less than the
fundamental time period (20 ms for a 50 Hz system) for
the targeted values of M (which can be further reduced by
utilizing an optimized code, and controllers/simulators with
better computational power, for instance, dSPACE 1202).
Furthermore, M-EO-LM has solved the HEPWM equations
faster than the DE-NR algorithm for each value ofM .
Dynamic response of the system to a sudden change in the

value ofM from 3.8 to 3.5 (N = 5) is provided in the Fig. 13.
Fig. 13(a) shows the variation in the symmetric HEPWM
output voltage of single-phase MMCC in accordance with
the change in the value of M , while the magnified transi-
tion is provided in the Fig. 13(b). Difference of the widths
between the output voltages for both values ofM is visible in
Fig. 13(c). As expected, the output voltage levels are wider
for the larger value of M (M = 3.8), resulting in the higher
value of Vf . Noticeably, output voltage forM = 3.5 is shifted
down in Fig. 13(c) to present a better comparison of output
voltages for M = 3.8 and M = 3.5. FFT analysis of the
output voltage forM = 3.8 is presented in Fig. 13(d). Clearly,
first four non-triplens low order harmonics (5th, 7th, 11th

and 13th) are successfully removed, while the fundamental
voltage component is controlled according to the (3).

A step change in the values of M from 3.5 to 5.15 is
displayed in Fig. 14(a), which depicts a smooth transition
of single-phase symmetric output voltage from eleven levels

TABLE 8. Look-up Table utilized for the online solution of HEPWM
method using the M-EO-LM algorithm.

TABLE 9. Computational time of the M-EO-LM algorithm and the DE-NR
algorithm for typical values of M of online symmetric HEPWM method.

FIGURE 13. (a) Transition in the symmetric HEPWM output voltage of
MMCC due to a step change of M = 3.8 to M = 3.5. (b) Zoom in
transition. (c) Comparison between the widths of the output voltages for
M = 3.8 and M = 3.5. (d) FFT analysis of the output voltage for M = 3.8.

(M = 3.5) to seventeen levels (M = 5.15) as the transition
requires a computational time of only 1.1 ms (Table 9).
The transition is further elaborated in Fig. 14(b) for better
apprehension of the reader. Figs. 15(a) and 15(b) represent
the single-phase symmetric output voltages of eleven and
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FIGURE 14. (a) Transition in the symmetric HEPWM output voltage of
MMCC due to a step change of M = 3.5 to M = 5.15. (b) Zoom in
transition.

FIGURE 15. Online (a) Output voltage of MMCC for M = 3.5. (b) Output
voltage of MMCC for M = 5.15. (c) FFT analysis of the output voltage for
M = 3.5. (d) FFT analysis of the output voltage for M = 5.15.

seventeen level (M = 3.5, N = 5 and M = 5.15, N =

8 respectively) MMCCs respectively, while their correspond-
ing FFT spectrum are shown in Figs. 15(c) and 15(d). Evi-
dently, targeted 5th, 7th, 11th and 13th harmonics are success-
fully removed from the output voltage of MMCC for N = 5
(Fig. 15(c)), while 5th, 7th, 11th, 13th, 17th, 19th and 23rd

harmonics are successfully removed from the output voltage
of MMCC for N = 8 (Fig. 15(d)). Therefore, it is concluded
that the M-EO-LM algorithm can be effectively applied for
a rapid and complete online solution of symmetric HEPWM
method, with desired output voltage fundamental component
and harmonics control.

B. ONLINE ASYMMETRIC HEPWM
Online implementation of the M-EO-LM algorithm for the
asymmetric HEPWM method utilizes the information of
Table 8. It further requires the real-time magnitudes of N
input voltages. It is worth mentioning that the HEPWM solu-
tion angles for a particular value ofM depend upon the values
of input voltages ((1) to (5)). Hence, variation in the value
of even a single input voltage requires the recalculation of
HEPWMangles for the same value ofM . Resultantly, a mem-
ory burdened solution set consisting of different HEPWM
solution angles is possible for a single value of M , particu-
larly for the systems with high number of operating points.
The situation is worsened for a large range ofM (for instance,
0.78 ≤ M < 5.18). The requirement of a very large LUT
(or training parameters) for the online solution of asymmetric
HEPWM method results in an infeasible online operation.
Thus, the usage of a low memory LUT (Table 8) for the
solution of asymmetric HEPWM method is of significant
importance as it not only enables low memory (low cost)
operation but also provide a rapid solution. Computational

TABLE 10. Computational time of the M-EO-LM algorithm and the DE-NR
algorithm for typical values of M of online asymmetric HEPWM method.

FIGURE 16. (a) Transition in the asymmetric HEPWM output voltage of
MMCC due to a step change of M = 3.6632 to M = 3.3729. (b) Zoom in
transition. (c) Comparison between the widths of the output voltages for
M = 3.6632 and M = 3.3729. (d) FFT analysis of the output voltage for
M = 3.6632.

time of the M-EO-LM algorithm for various values of M ,
corresponding to a particular value of Vm is presented in the
Table 10. It can be observed that not only the computational
time for each M of asymmetric HEPWM method is in line
with the symmetric counterpart but also the onlineM-EO-LM
algorithm has completely outrun the online DE-NR
algorithm.

Dynamic response of the system to a sudden change in
the value of M from 3.6632 to 3.3729 (N = 5) is provided
in the Fig. 16. Fig. 16(a) shows the variation in the asym-
metric HEPWM output voltage of single-phase MMCC in
accordance with the change in the value ofM . The magnified
transition is provided in the Fig. 16(b). Difference of the
widths between the output voltages for both values of M is
visible in Fig. 16(c). As expected, the output voltage levels
are wider for the larger value of M (M = 3.6632), resulting
in the higher value of Vf . It should be noted, output voltage
for M = 3.3729 is shifted down in Fig. 16(c) to present a
better comparison (of output voltages) for M = 3.6632 and
M = 3.3729. FFT analysis of the output voltage for M =

3.6632 is presented in Fig. 16(d). Clearly, first four non-
triplens low order harmonics (5th, 7th, 11th and 13th) are
successfully removed, while the fundamental voltage com-
ponent is controlled according to the (3). Furthermore, a step
change in the values of M from 3.3729 to 4.9 (with variable
input voltages, Table 5) is displayed in Fig. 17. A smooth
transition in the output voltage form eleven levels (M =

3.3729) to seventeen levels (M = 4.9) can be observed
(Fig. 17) as the computational time required for the transition
is merely 1.51 ms (Table 10). Figs. 18(a) and 18(b) represent
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FIGURE 17. (a) Transition in the asymmetric HEPWM output voltage of
MMCC due to a step change of M = 3.3729 to M = 4.9. (b) Zoom in
transition.

FIGURE 18. Online (a) Output voltage of MMCC for M = 3.3729.
(b) Output voltage of MMCC for M = 4.9. (c) FFT analysis of the output
voltage for M = 3.3729. (d) FFT analysis of the output voltage for M = 4.9.

the output voltages of eleven (N = 5 and M = 3.3729)
and seventeen level (N = 8 and M = 4.9) MMCCs for
asymmetric HEPWM method, while respective FFT spec-
trum are presented in Figs. 18(c) and 18(d). Evidently, not
only the magnitude of fundamental voltage components are
well controlled but also the targeted harmonics components
are successfully removed. To conclude, the same values ofM
utilized for simulation and experimental validation produce
correlated output voltage fundamental component and har-
monics control. Hence, the application of the proposed online
M-EO-LM algorithm for a complete solution of symmetric
and asymmetric HEPWM methods for MMCC based power
systems is validated.

VII. CONCLUSION
A novel online M-EO-LM algorithm is presented to solve
the computationally challenging symmetric and asymmet-
ric HEPWM equations of MMCCs. First, offline imple-
mentation of the M-EO-LM algorithm is performed for a
maximum of nine (N = 9) HEPWM switching angle
equations, which are successfully solved while controlling
the fundamental voltage component and THD values of the
output voltage. M-EO-LM algorithm has surpassed several
state-of-the-art algorithms and has solved the targeted range
(0.78 ≤ M ≤ 6.86) within only two iterations, show-
ing its computational supremacy for the solution of arduous
HEPWM method. A comparison of the HEPWM method
(using the M-EO-LM algorithm) with the NLM method is
carried out based on the THD values of their line-to-line out-
put voltages to report the complete range ofM (0.78 ≤ M <

5.18 and N = 8) for the online solution of HEPWMmethod,
beyond which (M ≥ 5.18) NLM method should be preferred

for the online operation of MMCCs. Secondly, a novel online
framework to solve symmetric and asymmetric HEPWM
methods using the proposed M-EO-LM algorithm is estab-
lished. A detailed comparison of the computational times
of online M-EO-LM and DE-NR algorithms are provided.
The M-EO-LM algorithm has outrun the DE-NR algorithm
for both the symmetric and asymmetric HEPWM methods.
Simulation and online experimental results presented for the
selected values ofM show the pre-eminence of the proposed
M-EO-LM algorithm for the complete online solution of the
symmetric and asymmetric HEPWM methods. Furthermore,
the optimization capability of the proposed M-EO-LM algo-
rithm is verified by evaluating and comparing its performance
with nine existing state-of-the-art algorithms for twenty-nine
unimodal, multimodal and composite benchmark test func-
tions. M-EO-LM has outperformed the existing algorithms
to prove its suitability for any optimization problem.

REFERENCES
[1] H. Akagi, ‘‘Classification, terminology, and application of the modular

multilevel cascade converter (MMCC),’’ IEEE Trans. Power Electron.,
vol. 26, no. 11, pp. 3119–3130, Nov. 2011.

[2] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, ‘‘Evolution
of topologies, modeling, control schemes, and applications of modular
multilevel converters,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 5,
no. 4, pp. 1631–1656, Dec. 2017.

[3] Z. Yang, P. Song, J. Song, X. Wang, and X. Li, ‘‘An MMC circulating cur-
rent suppressing controller based on bridge arm common-mode voltage,’’
IEEE Access, vol. 8, pp. 189471–189478, 2020.

[4] Z. Yang, K. Zhang, X. Li, Y. Li, and P. Song, ‘‘A control strategy for sup-
pressing submodule capacitor voltage fluctuation of MMC based on circu-
lating current voltage drop balance,’’ IEEE Access, vol. 9, pp. 9130–9141,
2021.

[5] F. G. Turnbull, ‘‘Selected harmonic reduction in static DC–AC invert-
ers,’’ IEEE Trans. Commun. Electron., vol. CE-83, no. 73, pp. 374–378,
Jul. 1964.

[6] H. S. Patel and R. G. Hoft, ‘‘Generalized techniques of harmonic elimina-
tion and voltage control in thyristor inverters: Part I—Harmonic elimina-
tion,’’ IEEE Trans. Ind. Appl., vol. IA-9, no. 3, pp. 310–317, May 1973.

[7] H. S. Patel and R. G. Hoft, ‘‘Generalized techniques of harmonic elimi-
nation and voltage control in thyristor inverters: Part II—Voltage control
techniques,’’ IEEE Trans. Ind. Appl., vol. IA-10, no. 5, pp. 666–673,
Sep. 1974.

[8] M. S. A. Dahidah, G. Konstantinou, and V. G. Agelidis, ‘‘A review of
multilevel selective harmonic elimination PWM: Formulations, solving
algorithms, implementation and applications,’’ IEEE Trans. Power Elec-
tron., vol. 30, no. 8, pp. 4091–4106, Aug. 2015.

[9] A. M. Amjad and Z. Salam, ‘‘A review of soft computing methods for
harmonics elimination PWM for inverters in renewable energy conversion
systems,’’ Renew. Sustain. Energy Rev., vol. 33, pp. 141–153, May 2014.

[10] K. P. Panda, P. R. Bana, and G. Panda, ‘‘FPA optimized selective harmonic
elimination in symmetric-asymmetric reduced switch cascaded multilevel
inverter,’’ IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2862–2870,May 2020.

[11] H. Zhao, T. Jin, S. Wang, and L. Sun, ‘‘A real-time selective harmonic
elimination based on a transient-free inner closed-loop control for cas-
caded multilevel inverters,’’ IEEE Trans. Power Electron., vol. 31, no. 2,
pp. 1000–1014, Feb. 2016.

[12] K. Yang, J. Hao, and Y. Wang, ‘‘Switching angles generation for selec-
tive harmonic elimination by using artificial neural networks and Quasi-
Newton algorithm,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE),
Milwaukee, WI, USA, Sep. 2016, pp. 1–5.

[13] S. Ahmad, A. Iqbal, M. Ali, K. Rahman, and A. S. Ahmed, ‘‘A fast
convergent homotopy perturbation method for solving selective harmonics
elimination PWM problem in multi level inverter,’’ IEEE Access, vol. 9,
pp. 113040–113051, 2021.

[14] A. M. Amjad, K. Mehran, S. Gadoue, and F. Blaabjerg, ‘‘Online harmonic
elimination pulse width modulation technique for modular multilevel cas-
cade converter,’’ Int. J. Electr. Power Energy Syst., vol. 133, Dec. 2021,
Art. no. 107242.

VOLUME 11, 2023 47375



A. M. Amjad et al.: Complete Online Solution of HEPWM Method Using M-EO-LM Algorithm

[15] F. Filho, H. Z. Maia, T. H. A. Mateus, B. Ozpineci, L. M. Tolbert, and
J. O. P. Pinto, ‘‘Adaptive selective harmonic minimization based on ANNs
for cascade multilevel inverters with varying DC sources,’’ IEEE Trans.
Ind. Electron., vol. 60, no. 5, pp. 1955–1962, May 2013.

[16] P. L. Kamani and M. A. Mulla, ‘‘Middle-level SHE pulse-amplitude
modulation for cascaded multilevel inverters,’’ IEEE Trans. Ind. Electron.,
vol. 65, no. 3, pp. 2828–2833, Mar. 2018.

[17] J. Hao, G. Zhang, K. Yang, M. Wu, Y. Zheng, and W. Hu, ‘‘Online
unified solution for selective harmonic elimination based on stochastic
configuration network and Levenberg–Marquardt algorithm,’’ IEEE Trans.
Ind. Electron., vol. 69, no. 10, pp. 10724–10734, Oct. 2022.

[18] K. Yang, X. Lan, Q. Zhang, and X. Tang, ‘‘Unified selective harmonic
elimination for cascaded H-bridge asymmetric multilevel inverter,’’ IEEE
J. Emerg. Sel. Topics Power Electron., vol. 6, no. 4, pp. 2138–2146,
Dec. 2018.

[19] IEEE Recommended Practice and Requirements for Harmonic Control in
Electric Power Systems, IEEE Standard 519, 2014.

[20] Z. Sarwer, A. Sarwar, M. Zaid, M. R. Hussan, M. Tariq, B. Alamri, and
A. Alahmadi, ‘‘Implementation of a novel variable structure nearest level
modulation on cascadedH-bridgemultilevel inverter,’’ IEEEAccess, vol. 9,
pp. 133974–133988, 2021.

[21] Y. Li, J. Yang, S. S. Choi, and Q. Zhao, ‘‘An analytical method to determine
the optimal switching of modular multilevel converter in HVDC system,’’
IEEE Access, vol. 9, pp. 13624–13635, 2021.

[22] S. Ali, J. B. Soomro, M. Mughal, F. A. Chachar, S. S. H. Bukhari, and
J.-S. Ro, ‘‘Power quality improvement in HVDC MMC with modified
nearest level control in real-time HIL based setup,’’ IEEE Access, vol. 8,
pp. 221712–221719, 2020.

[23] A. Faramarzi, M. Heidarinejad, B. Stephens, and S.Mirjalili, ‘‘Equilibrium
optimizer: A novel optimization algorithm,’’ Knowl.-Based Syst., vol. 191,
Mar. 2020, Art. no. 105190.

[24] S. Mirjalili, ‘‘Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective prob-
lems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, 2016.

[25] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, ‘‘Slime mould
algorithm: A new method for stochastic optimization,’’ Future Gener.
Comput. Syst., vol. 111, pp. 300–323, Oct. 2020.

[26] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[27] N. Yamashita and M. Fukushima, ‘‘On the rate of convergence of the
Levenberg–Marquardt method,’’ in Topics in Numerical Analysis (Com-
puting Supplementa), vol. 15, G. Alefeld and X. Chen, Eds. Vienna,
Austria: Springer, 2001, doi: 10.1007/978-3-7091-6217-0_18.

[28] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Human Sci., Apr. 1995,
pp. 39–43.

[29] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[30] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[31] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravita-
tional search algorithm,’’ J. Inf. Sci., vol. 179, no. 13, pp. 2232–2248,
2009.

[32] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp Swarm Algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[33] N. Hansen, S. D. Müller, and P. Koumoutsakos, ‘‘Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),’’ Evol. Comput., vol. 11, no. 1, pp. 1–18,
Mar. 2003.

[34] R. Tanabe and A. Fukunaga, ‘‘Success-history based parameter adaptation
for differential evolution,’’ in Proc. IEEE Congr. Evol. Comput., Jun. 2013,
pp. 71–78.

[35] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi, ‘‘LSHADE
with semi-parameter adaptation hybrid with CMA-ES for solving CEC
2017 benchmark problems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2017, pp. 145–152.

[36] X. Yao, Y. Liu, and G. Lin, ‘‘Evolutionary programming made faster,’’
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[37] J. J. Liang, P. N. Suganthan, and K. Deb, ‘‘Novel composition test func-
tions for numerical global optimization,’’ in Proc. IEEE Swarm Intell.
Symp. (SIS), Jun. 2005, pp. 68–75.

ABDUL MOEED AMJAD received the bachelor’s
degree in electrical engineering from the Uni-
versity of Engineering and Technology Lahore,
Pakistan, in 2011, and the master’s degree in
electrical engineering from Universiti Teknologi
Malaysia, Johor Bahru, Malaysia, in 2014.
He was a Lecturer with COMSATS Univer-
sity Islamabad (CUI), Lahore Campus, Pakistan,
from 2014 to 2018. In October 2018, he joined
as a Ph.D. Scholar with the School of Electronic

Engineering and Computer Science (EECS), Queen Mary University of
London, U.K. His research interests include modular converters, harmonic
elimination PWM method, and optimization algorithms.

KAMYAR MEHRAN (Senior Member, IEEE)
received the M.Sc. degree in control and automa-
tion and the Ph.D. degree in electrical and elec-
tronic engineering from Newcastle University,
U.K., in 2004 and 2010, respectively. He is cur-
rently a Senior Lecturer (an Associate Professor)
in electrical power engineering and the Director of
the Real-Time Power and Control System (RPCS)
Laboratory, School of Electronic Engineering and
Computer Science (EECS), Queen Mary Univer-

sity of London. From 2013 to 2015, he was a Research Fellow with The
University of Warwick, U.K., and from 2010 to 2013, he was a Research
Associate with Newcastle University. He also acted as the commercialization
manager for a university spin-off company. He has the expertise and strong
track record in developing novel control methodologies and condition moni-
toring systems for islanded DCmicrogrids, energy storage systems, and SiC-
based power electronics with over 80 Q1 refereed publications, and 3x book
chapters. He has an extensive experience in large collaborative industrial
projects and attracted £3.6M of external funding (£927k as PI) supported by
Innovate U.K., Royal Society, Newton fund, EPSRC, and industry. He also
collected more than eight years of professional experience in the industry.
He has been an invited speaker at several conferences and companies. Before
his academic career, he worked for eight years in the industry in various
software-related roles.

SHADY GADOUE received the B.Sc. (Hons.) and
M.Sc. degrees in electrical and electronic engi-
neering from Alexandria University, Egypt, in
2000 and 2003, respectively, and the Ph.D. degree
in power electronics and motor drives control sys-
tems from Newcastle University, Newcastle upon
Tyne, U.K., in 2009. In 2011, he joined the Electri-
cal Power Research Group, Newcastle University,
as a Lecturer. In 2016, he was with the Power and
Control Research Group, Imperial College Lon-

don, as a full time Visiting Research Scholar. In 2017, he joined the School
of Engineering and Applied Science, Aston University, Birmingham, U.K.,
as a Senior Lecturer. He joined the Queen Mary University of London, U.K.,
in 2021, as an Associate Professor, where he is currently an Associate Pro-
fessor in electrical and electronic engineering with the School of Electronic
Engineering and Computer Science. He has authored and coauthored more
than 70 articles in the area of control and identification algorithms of power
electronic converters and motor drive systems. He has been listed as one
of top 2% world scientists by Stanford University, in October 2020 and
October 2021, in energy engineering. His research interests include transport
electrification, electric propulsion, energy systems, power electronics and
their control systems, and the condition monitoring of batteries and energy
storage devices for electric vehicles.

47376 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-7091-6217-0_18

