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ABSTRACT Globalization of markets involves new strategies and price policies from professionals that
contribute to global competitiveness. Airline companies are changing tickets’ prices very often considering a
variety of factors based on their proprietary rules and algorithms that are searching for the most suitable price
policy. Recently, Artificial Intelligence (AI) models are exploited for the latter task, due to their compactness,
fast adaptability, and many potentials in data generalization. This paper represents an analysis of airfare price
prediction towards finding similarities in the pricing policies of different Airline companies by using AI
Techniques. More specifically, a set of effective features is extracted from 136.917 data flights of Aegean,
Turkish, Austrian and Lufthansa Airlines for six popular international destinations. The extracted set of
features is then used to conduct a holistic analysis from the perspective of the end user who seeks the most
affordable ticket cost, considering a destination-based evaluation including all airlines, and an airline-based
evaluation including all destinations. For the latter cause, AI models from three different domains and a total
of 16 model architectures are considered to resolve the airfare price prediction problem: Machine Learning
(ML) with eight state-of-the-art models, Deep Learning (DL) with six CNN models and Quantum Machine
Learning (QML) with two models. Experimental results reveal that at least three models from each domain,
ML, DL, and QML, are able to achieve accuracies between 89% and 99% in this regression problem, for
different international destinations and airline companies.

INDEX TERMS Airfare price, artificial intelligence, deep learning, machine learning, prediction model,
pricing models, regression, quantum machine learning.

I. INTRODUCTION
Approximately 50 years ago airline flights were considered
a luxury. Airline companies were launching more domestic
flights than international while pricing policies for flight
tickets were static. To increase profitability, airline com-
panies adopted management and economical software sys-
tems to perform route optimizations, reservation adaptation,
and dynamic pricing. An evolution in airline companies
was the adoption of yield management [1], which was a
variable pricing strategy based on understanding, anticipat-
ing, and influencing consumer behaviour so as to reach
the highest revenues. As a consequence, airline companies
started to pay more attention to customers’ preferences and
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experiences during flights, simultaneously increasing the des-
tinations at an international level. Thus, airline flights became
accessible to all potential consumers since dynamic pricing
and extra flight services increased the competition between
airline companies. Moreover, in recent years, the ability to
shop online revolutionized many different fields and became
a trend among modern people, seeking the most favorable
offers and prices. Currently, there are several websites that
support secure flight booking, listing the same flight routes
from all airline companies towards getting the most competi-
tive flight deals.Moreover, sharing flight experiences through
rating systems provides a great amount of useful informa-
tion produced daily by airline customers, that are exploited
by pricing policy systems to adapt the airfare price, even
minutes before a flight. To this end, it is clear that market
globalization and technology evolution have affected airline
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companies at a level where the mainstream price optimization
systems may not track the changes and reach the adaptation
speed that is required. The latter increased the demand for
more sophisticated algorithms and software for dynamic price
policy optimization. For this reason, Artificial Intelligence
(AI) algorithms are currently considered for airfare price esti-
mation, towards achieving efficient and more realistic results
with higher speed.

Artificial Intelligence attracts high interest from the
research community in many research fields. Machine Learn-
ing (ML) was the first introduced domain of AI by Walter
Pitts and Warren McCulloch [2] in 1943 where a mathemati-
cal model of a biological neuron was proposed with no learn-
ing capabilities. Seven years later, in 1950, Frank Rosenblatt
proposed the perceptron . . . . . . (()) [3] as the first neural net-
work (NN) with learning abilities. Perceptron was an inspi-
ration for researchers to design and implement subsequently
many well-known ML models like SVM [4], kNN [5], and
Boosting methods [6]. ML models couldn’t robustly gen-
eralize without a supporting feature extraction mechanism.
The latter requirement was handled by the Deep Learning
(DL) domain, increasing the computational demands and
reducing the execution time. The flagship for the rise of
the DL domain was the introduction of convolutional neural
networks (CNN) [7] by Fukushima in 1980 who used a NN
for visual pattern recognition. A distinct boost towards this
effort came from Yann LeCun in 1990 [8], who used CNN
models with backpropagation learning in order to recognize
handwritten digits from images. DL models have automated
the feature extraction process giving the capability to fab-
ricate more complex algorithms and applications [9], [10]
that impact human daily lives. However, even today, due
to the huge data growth rate and despite the evolution of
computational hardware (GPUs), there is still a need for faster
and more compact ML and DL algorithms.

An attempt to overcome the confronted limitations of ML
and DL algorithms, is the combination of quantum mechan-
ics under quantum computing techniques with ML and DL
methods. The quantum computing domain was formed in
the 90s where quantum algorithms have been proposed for
dealing with challenging problems like number factoriza-
tion Shor’s algorithm in 1994 [11] or Grover’s algorithm
in 1997 [12]. These algorithms became the reason for the
fabrication of quantum computers with IBM leading the
field. During the same decade, quantum machine learning
(QML) started to grow with the introduction of quantum
neural networks (QNN) [13] in 1999, where quantum circuits
and Grover’s algorithm were used to mimic neural network
procedures. That work inspired many researchers to exper-
iment with the QML domain. Therefore, during the years
1990-2010, a lot of QML algorithms were introduced, includ-
ing quantum multilayer perceptron (QMLP) [14], quantum
support vector machine (QSVM) [15] and more. Until today,
quantum machine learning is expanding even in the industry
with applications and algorithms that are executed in real
quantum hardware, despite the fact that the available quantum

hardware is limited and the computational demands of QML
models for a classical computer are very high. Moreover,
many QML methods are highly related to classical methods,
such as the QNN training for classical data, where the opti-
mizer and loss are computed based on their classical form.
The above facts enhanced the evolution rate of QML in the
market and research.

This work comes as a follow-up of a previous work [16] on
Airfare price prediction. A set of features that characterize
a typical flight are extracted and used under the scheme of
airfare price prediction for different airline companies and
destinations in order to highlight their level of competition
and provide a holistic approach to the problem. Moreover,
the range of ML, DL, and QML models’ applicability and
performance is examined holistically in airfare price pre-
diction. Two experiments are conducted; in the first experi-
ment, the problem is studied from the destination perspective
(destination-based approach) for each airline company, and
the AI models from the above three domains are applied to
the same set of destinations for different airline companies
in order to highlight similarities among the performance of
models; in the second experiment, the ML, DL, and QML
models are applied in datasets for each Airline company
(airline-based approach), independently from the destination.
It should be highlighted here, that this work is the first
reported attempt towards a holistic approach to the problem
of airfare price prediction, where the problem is examined
as a whole, covering both approaches, from the side of des-
tinations and from the side of airline companies. Moreover,
it should be noted that QML has never been applied before to
the airfare price prediction problem, as far as our knowledge.

Based on the above, the main contributions of the proposed
work can be summarized as follows:

1) Investigation of the relation of pricing policies among
different airline companies.

2) Investigation of features’ influence to the airfare prices
prediction problem.

3) Application of QML models in airfare price prediction
for the first time in the literature.

4) Comparative performance analysis of ML, DL and
QML models for airfare price prediction.

The rest of this paper is organized as follows: Section II
summarizes the related work on airfare price prediction.
In Section III materials and methods are introduced, refer-
eeing to data and algorithms that have been used for the
implementation of this work. Section IV describes the exper-
imental setup, while in Section V the experiment results are
presented and discussed. In Section VI, quantum machine
learning results are presented and compared to classical mod-
els. Finally, Section VII concludes the paper and presents
further potential research directions.

II. RELATED WORK
Market globalization along with the evolution of airfare price
policies resulted in a great amount of relevant information
and, subsequently, high research interest in airfare price
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prediction. In terms of AI and data analysis, this information
is translated to data with many attributes and in amounts
that could be characterized as big data, especially when the
change rate of air ticket prices and services is such high.
The airfare price prediction problem can be exploited under
various scopes, like customer segmentation, ticket purchase
timing, air tickets demand prediction, and more, as presented
in a review by Abdella et al. [17] regarding the target appli-
cation problem and the solutions. In general, the subject of
airfare price prediction is in the spotlight for three decades;
a search on Scopus on the term ‘‘airfare price prediction’’
returned 24 documents, from 2003 to date, with most of the
work being implemented in the last three years. Vu et al. [18]
implemented an airfare price prediction application with two
MLmodels, exploiting features around time to describe Viet-
namese national airline company flights. Compared to the
proposed approach, fewer models have been presented and
only one airline company has been considered, while the
main focus was on consumers’ target applications. In [19],
a different approachwas presented. A custom recurrent neural
network (RNN) was constructed and compared to classical
ML models in airfare price prediction under events like a
basketball match. Features that described basketball matches
and airline flights were combined in one dataset, achieving
high prediction accuracies. The same approach was followed
in [20]. The authors proposed a framework that could gather
information for air tickets from various sources, such as
consumers’ interests, air tickets availability, distance, and
more, to predict airfare prices by using ML models. In [21],
airfare price prediction was implemented in the domestic
markets of USA and India. The authors exploited ML mod-
els and reported an 88% score in price prediction. In [22],
Joshi et al. adopted a similar approach with fewer ML mod-
els, by investigating new features, like flight duration, and
achieved up to 90% prediction score. In [23] feature selection
algorithms were applied along with hyperparameter methods
to find the optimal model parameters and set of features for
flight description in order to predict airfare price prediction.
In [24] explainability for the problem under study has been
introduced towards a deeper insight into themodels that could
provide an efficient solution, in order to give robust and
explainable predictions.

In general, all related works are based on similar
approaches. The proposed work differs in the following dis-
tinct points: (1) in the selected feature sets, (2) the data collec-
tion sources and (3) the target of the application. Compared
to all previous research on the same field, the present work:
(4) exploits more technologies and (5) attempts to extract
useful information for airline companies’ competition and
consumers’ behavior, through the (6) comparative perfor-
mance of several algorithms that are introduced to the prob-
lem for the first time, (7) providing two evaluation perspective
approaches towards a holistic investigation of the problem
under study. It is obvious that the diversity of the proposed
approach makes a direct comparison with other methods
meaningless, since there is no point of common reference,

and this would not lead to any conclusion. Comparative per-
formance analysis is therefore provided with common points
of reference (dataset, features, target of application) within
this work, between the selected ML, DL and QML models
for the problem of airfare price prediction.

III. MATERIALS AND METHODS
In this section, the proposed holistic approach is described,
focusing on the used data and the selected methods. Datasets,
features description and visualization material are presented
to highlight the level of competition and globalization affec-
tion in airfare tickets between destinations from different
airline companies. Moreover, in this section, the ML, DL,
and QMLmodels that are employed are presented and a short
description for each one is given to underline the differences
in performance and capabilities between them.

Fig. 1 graphically illustrates the steps of the proposed
methodology. In the first step of the methodology, four air-
lines and six destinations are considered. The extracted fea-
tures are applied to eight ML and six DL models towards
evaluating the best performing model. Evaluation is per-
formed in two different perspectives. In the first experiment,
destination-based evaluation takes place, where the same
set of destinations are applied to the models regardless the
airline. In the second experiment, airline-based evaluation
is examined, where the data from each airline company is
applied to the models, for all destinations. The best two
performing ML models of the first step of the methodology
are used in the second step and are extended to the quantum
domain. More specifically, in the second step of the method-
ology, the two best performing airlines and their best three
performing destinations from step 1 are examined, towards
comparing ML models and the corresponding QML models.
Comparative evaluation is considered from the same two
perspectives as in step 1.

A. DATA PRESENTATION AND DESCRIPTION
The focus of this work is on the prediction of airfare prices
for six different destinations for four airline companies. The
airline companies are: Aegean Airlines, Austrian Airlines,
Lufthansa Airlines and Turkish Airlines. The destinations of
interest are the following:

1) Thessaloniki (SKG) – Amsterdam (AMS), (1907 Km)
2) Thessaloniki (SKG) – Stockholm (ARN), (2157 Km)
3) Thessaloniki (SKG) – Brussels (BRU), (1812 Km)
4) Thessaloniki (SKG) – Paris (CDG), (1863 Km)
5) Thessaloniki (SKG) – Lisbon (LIS), (2747 Km)
6) Thessaloniki (SKG) – Vienna (VIE), (985 Km)
The flight data are collected for the period of one year.1 It

should be clarified here that flight data are not for exactly
one year, due to the fact that some airline companies did
not provide the same flights for all destinations all over the
year, mainly due to demand variations. Table 1 summarizes

1The dataset is provided via GitHub: (https://github.com/
MachineLearningVisionRG/AirD)
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FIGURE 1. The proposed holistic approach to airfare price prediction.

TABLE 1. Number of data flights for each destination and airline
company.

the amounts of data flights for each destination and for each
airline company.

As it can be observed from Table 1, Aegean has the biggest
number of flights; this is attributed to the fact that Aegean
is a Greek company and therefore it is on its national base
since SKG airport is in Thessaloniki, Greece.Moreover, it can
be observed that the number of flights exposes similarities
between airline companies. More specifically Aegean, Turk-
ish and Austrian share similar amounts of flights for some
destinations (e.g., for Turkish airlines, from SKG to ARN and
BRU, etc.). Amsterdam (AMS) and Paris (CDG) are among
the most popular destinations for Aegean, Turkish and Aus-
trian airlines. As destinations’ distance increases, the number
of flights is increased too, according to Table 1. A reason
for this might be the capacity of variations in airfare ticket
characteristics, like services, which increases the possibility
for higher profits for the airline company.

In this work, the most descriptive features that affect the
airfare price and were publicly available, were selected. For
each flight data, a set of eight features (0:7) was used. Due to

the difficulty of collecting flight data manually, Data Mining
techniques were applied to acquire as many data as possible.
Finally, for each flight the following eight features were
considered:

1) Feature 0: Departure time
2) Feature 1: Arrival time
3) Feature 2: Days left until departure (0 - 350+)
4) Feature 3: Day of week (1-7)
5) Feature 4: Number of intermediate stops (0 - 2)
6) Feature 5: Number of free luggage (0 - 2)
7) Feature 6: Overnight flight (yes - 1 or no - 0)
8) Feature 7: Flight class (three-digit number, each

digit 0 - 5)
Regarding feature 7, note that flight class is a three-digit

integer number. Each digit independently represents a flight
class, considering up to three correspondences per voyage.
For instance, if the third digit of fight class is not zero,
it means that the flight had two intermediate stops, thus, the
voyage involved three corresponding flights in total, and each
of the three digits informs about the involved ticket class.
If the third digit is zero, it means that there was no third flight
(only two flights) and so on. Every digit’s value is ranged
from 0 to 5, depending on the flight class of each of the
corresponding flights, as follows:

1) Economy class– 1
2) Economy Standard class – 2
3) Economy Premium class – 3
4) Business class – 4
5) First class – 5
6) No flight – 0
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In what follows, a feature correlation analysis is presented
based on the Pearson correlation [25] coefficient, in order
to justify the eight features’ selection and to highlight sim-
ilarities among airline companies pricing policies through
data analysis. Pearson correlation coefficient takes values
in the range -1 and 1 for each combination of features. Its
mathematical formulation is:

r =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(1)

In Equation (1) xi and yi are the values of the data sample,
x̄ and ȳ represent the mean of feature values and r is the
correlation coefficient. The results of Pearson correlation
for the airfare price dataset for all destinations and airline
companies, are presented in Fig. 2 in the form of heatmaps.

Austrian and Turkish airlines, as it can be observed from
Fig. 2(b) and Fig. 2(d) have very few flights in the selected
destinations and, thus, the number of stops (feature 4) has
a low diversity and the correlation coefficients of this value
equal to zero. A first notice is that Aegean displays more light
colors in its heatmap, translated to less correlations between
features in destinations of greater distance (SKG_ARN,
SKG_LIS) compared to other destinations which seem to
have darker color values, translated to stronger correlations.
The same observation can be made for Austrian, Turkish
and Lufthansa, but only in the destination SKG_ARN. It is
also important to mention that for every airline company and
destination, it seems that flight class (feature 7) and price have
a strong correlation despite the differences in the number of
flights of each company. Based on this fact, it is easy to con-
clude that flight class has a strong impact on the competition
between airline companies. In Fig. 3, the heatmaps of Pearson
correlation coefficient for each airline company are presented
with the destination as an extra feature (feature 8).

As observed in Fig. 3, flight class and destination display
a strong correlation with price for every airline company.
Moreover, Austrian and Lufthansa have similar correlations
for departure and arrival time, while Aegean and Turkish
have opposite correlations for the same two features. A more
general notice is that Aegean and Turkish airlines have more
diversity in correlations between features, while Austrian and
Lufthansa tend to be smoother. Finally, considering Fig. 2
and Fig. 3, similarities between airline companies and their
price policies can be highlighted despite the huge differences
between the amounts of flights from each company. It can be
concluded that by conducting a small data analysis, market
globalization and competition level can be spotted between
airline companies and their flight destinations. In what fol-
lows, the AI models that have been used in this work are
presented along with their characteristics.

B. MODELS PRESENTATION AND DESCRIPTION
In this section the total of the 16 selected models from the
three domains (ML, DL, QML) are presented and analyzed
along with their characteristics.

TABLE 2. Selected machine learning (ML) models.

Starting from theML domain, eight state-of-the-art models
were selected and presented in Table 2.
AdaBoost regressor [26] comes from the ‘Boosting’ family

of algorithms, forming a strong learner from a composition
of weak learners. Very often these learners are Decision
Trees [27] where iteratively AdaBoost adapts their errors
and combines them sequentially to create a strong ensemble
model that will decrease bias and variance in the training
data. A disadvantage of this algorithm is its sensitivity to
noise and overfitting with the increase of dataset features and
size. Bagging regressor [28] adopts a variation of the same
approach as AdaBoost. Weak learners in Bagging are created
in parallel and, thus, independently of each other, while in
AdaBoost they are created sequentially. In addition, Bagging
decreases the variance more than the bias and it is proposed
to resolve overfitting issues. A reported disadvantage is its
sensitivity to noise data and the construction of ideal global
solutions in a large number of features and data. Finally
from Boosting family, Gradient Boost algorithm [29] is also
selected. Gradient Boost can produce new models (often
Decision Trees) to be maximally correlated with the negative
gradients of a loss function (often Mean Squared Error) to
minimize it with minimum iterations. Through this learning
process, Gradient Boost models have achieved remarkable
performances in pattern recognition applications. A disad-
vantage of these models is in large-scale datasets, where they
might stack in local minima, leading to underfitting problems.
The Decision Tree Regressor is the oldest Tree-based model.
It can separate data iteratively based on given parameters,
where leaves make predictions and nodes partition input
data. Decision Tree algorithms have human understandable
interpretations and have achieved high performances in many
applications. Their disadvantage is that they may be unstable
in a high number of features and data, leading to large sizes
of trees. Thus, they can perform more robustly at a local than
a global level which is preferable in more complex problems.
Random Forest [30] algorithm provided the solution to Deci-
sion Tree disadvantages, using majority voting from boosting
algorithms or averages on randomdecision trees to control the
increase and structure of the trees during the learning process.
Random Forest share the same disadvantages as Decision
trees in more complex data, however they report better per-
formances. Extra Tree [31] or Extremely Randomized Tree
is an algorithm similar to Random Forest with the difference
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FIGURE 2. Pearson correlation coefficients heatmaps for each destination: (a) Aegean airlines correlation coefficients; (b) Austrian airlines correlation
coefficients; (c) Lufthansa airlines correlation coefficients; (d) Turkish airlines correlation coefficients.

FIGURE 3. Pearson correlation coefficient for each airline company.

that, the construction of decision rule and selection of split
values is random. Support Vector Machines (SVM) [4] apply
kernel functions in a generalization learning process which is
a different approach compared to the previous ML models.
More specifically, SVM attempt to construct a hyper-plane in
a high dimensional feature space that will separate training
data based on the target. The high dimensional feature space
is acquired through kernel functions such as radial base,
linear, and polynomial. Kernel functions give the capabil-
ity to separate data linearly even if it is uncertain, through
data transformation in a higher dimensional feature space.

SVM performance is proven robust in handling sparse or
large datasets but suffers from increased training time with
sensitivity in feature scale. Finally, Multi-Layer Perceptron
(MLP) [3] was also selected. MLP is the first proposed
neural network with an architecture of one input layer, one
or more hidden layers and an output layer. Each neuron is
connected to each one in the next layer with a weight value.
Using backpropagation as a learning method, weight values
are adjusted to minimize the loss function and approximate
the target values. The advantage of MLP is the large fea-
ture handling and the automated feature extraction process.
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TABLE 3. Selected deep learning (DL) models.

However, MLP has been proven sensitive in feature scaling
under complex problems, as well as computationally costly
especially under hyperparameters tuning.

To this end, the above-mentioned ML models have been
selected in this work for airfare price prediction, based on
their efficient mechanisms, and considering their state-of-
the-art performances during the previous years. It should be
mentioned that MLP is the basic architecture that inspired
the DL domain to produce more sophisticated and complex
neural network architectures to overcome performance dis-
advantages and achieve more robust features in the feature
extraction phase.

The selected six models in this work from the DL domain
are included in Table 3.

From 1989 until today the DL domain is specialized in the
formation of large and complex neural network architectures
with most known the CNNs [7], in order to solve challenging
problems with complex data like images. Under some level
of complexity, handcrafted features cannot produce robust
descriptions of data and so ML models cannot perform well.
Based on this fact, the DL models have automated the feature
extraction procedure and under large architectures (especially
in network depth) rich features can be produced even for
complex data. The most common model scheme of the DL
domain is CNN, which consists of five fundamental units.
First, the most important layer is the Convolutional Layer,
which consists of convolutional filters (or kernels). Each filter
is convolved with the input 2D data to produce feature maps.
Kernels are randomly initialized, and they slide in the input
data where the dot product is calculated in each slide. Kernel
values, namely weights, adjust during training. Second, the
pooling layers are applied to sub-sample the feature maps
to produce smaller maps, maintaining most of the domi-
nant features. The pooling process is applied with various
methods like average, min-max, or custom methods. Then,
activation functions take place to map input data with target
values through the weighted summation of convolutional
layers neurons weights. Thus, it is determined if neurons are
contributing to the corresponding target value of a given input
data or not. Activation functions give the ability to CNNs to
form non-linear correlations between input and target data.
Finally, a Fully Connected Layer is usually used to make
predictions for input data. Despite the model’s architecture,
CNN requires a learning process like backpropagation [8].
In this process, an optimization algorithm is applied to min-
imize the loss function which accepts a target and predicted

TABLE 4. Selected quantum machine learning (QML) models.

values in order to calculate the error between them. Based
on the above technology, VGG [32] was proposed in 2014 by
the Visual Geometry Group, under a variety of architectures
from 11 to 19 layers with max-pooling adoption. The VGG
model has been characterized as state-of-the-art, having small
filter sizes, and a large network architecture consisting of
61 to 140 million parameters in VGG19. In the next year,
ResNet was proposed to overcome the gradient vanish prob-
lem. However, while the depth of the CNN network increased
the dimension of the features also increased and in con-
tradiction, the loss was optimized to local minima. In that
case, a part of the network usually at the start had a low
contribution to the prediction. This phenomenon was noticed
in VGG and attempted to be resolved by ResNet [33] where
multiple residual blocks were used to shorten the connections
between layers and, thus, the network could take more lay-
ers with stable performance and simpler architecture. It was
also proposed under various architectures with 85 million
parameters in Resnet50. Finally, MobileNetV2 [34] was also
selected in this work, as a CNN architecture that focuses on
the balance between performance and speed. It consists of
3 convolutional layers with a filter size of 1 × 1 in order
to reduce computation time. In addition, the latest version
MobileNetV3 [35] was proposed for mobile processing units
having less than 2 million parameters.

A disadvantage of the DL technology is that operates
non-optimally and is based on statistical methods, consider-
ing that CNN treats neuron weights as a whole, even though
some weights might not have a high contribution to the
predictions of an input datum. This fact justifies the long
training times that are required. Based on the above, it is
clear that the CNN models’ design needs improvement, and
thus an effort was given by the research community during
the last years to produce sophisticated mechanisms that will
make CNN architectures more robust and exclusive to the
problem through attention mechanisms, custom losses, and
layers or even model design under new domains on which
these models will be structured in a more compact way and
with more generalization capabilities.

Towards this direction, the QML domain was formed with
some well-known models mainly from the ML domain to be
implemented under quantum mechanics and quantum com-
puting principles. The selected QML models in this work are
presented in Table 4.

Unfortunately, to date, there are many limitations in the
QML domain, such as the availability of quantum hardware
and the high computational demands by quantum simulations
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on classical machines. Thus, hybrid algorithms are proposed
that operate between classical and quantum data rather than
fully quantum. Until today, it is not clear how to express
everything under quantum mechanics principles. Therefore,
depending on the target application problem, QML mod-
els may shift between full and hybrid forms. When QML
models are used to solve quantum problems every part of
the process could be expressed under quantum mechanics
and computing rules since input data and target values are
quantum states. In contrast, when QML models are applied
in classical data, encoding is required in quantum states and
decoding of the output quantum state is required to obtain the
target value. Under this scheme, the optimization algorithms
that are being used for learning remain classical. This fact
is observed mainly in regression problems, where the output
is a numerical value, rather than in classification, where the
output labels are mapped with qubit states that are described
from probability distributions. QML models are benefited
from quantummechanics principles due to the fact that qubits
are the basic information unit, since 2N classical states can be
found for N number of qubits. The latter gives a tremendous
capacity in information encoding compared to classical bits.
Additionally, qubits based on quantum mechanics can be
observed also as particles or waves. This gives the capability
to store information in its particle form and process it as a
signal. Another advantage is the entanglement under which
all the possible states of a qubit can exist simultaneously
which provides a great parallelization process ability. A dis-
advantage is that during qubit measurement the entanglement
state is lost and, thus, a new circuit has to be formed and exe-
cuted. Moreover, entanglement produces noise, which affects
neighbor qubits, resulting in unstable quantum states.

To this end, QSVM [15] is proposed in this work, with ker-
nel function described through entangled qubits in the same
number as the features set. Entanglement is applied through
rotation gates and the optimal weight value is approximated
to form the hyperplane that will optimally separate data.
Considering that a qubit can fit more states than a classical
bit, the feature space dimension of the quantum kernel can be
much higher than the classical and, thus, the data separation
hyperplane can be approached optimally and quicker under
quantum hardware. Especially in classification problems,
QSVM has proven its superiority over the classical SVM
in many well-known benchmark datasets for applications
related to cancer, fraud detection, etc. Unfortunately, there are
very limited real-world applications using QSVM since as the
number of features increases the number of qubits increases
too, and thus, the computational demands are extremely high
for simulation on classical machines, considering that the
available quantum hardware has a limit in the number of
qubits and availability in general.

Neural networks have succeeded in remarkable results in
many applications with many capabilities, leading to classi-
cal neural networks under quantum implementations. More
specifically QMLP [14] architecture consists of parameter-
ized quantum circuits with tunable phase parameters, which

represent neuron weights. Input data are encoded as two
angles of a qubit and, thus, the number of qubits is double the
number of features. This increase of qubits amount is applied
to increase the dimension of the feature space that creates
redundancy, resulting in possible feature enhancement. With
this first step, classical data are transformed into quantum
states of untangled qubits which, in other words, can be
expressed as a high dimension feature map in multidimen-
sional Hilbert space. Next, a variational circuit is applied to
entangle the encoded qubits and tune the phase parameters
of rotation gates to extract the enhanced feature map. Finally,
a measurement is applied for all qubits in one. The measured
value represents the network weight of a given input datum,
and a classical linear model is applied to estimate the pre-
dicted value as an output layer. In general, there is no prior
rule regarding the quantum circuit design and the quantum
gates selection for each problem. This verifies the fact that
this technology is very new, and it might provide solutions
to present and future challenges of ML and DL models.
Under the learning process, a classical optimization algorithm
and classical loss function are required to adjust the phase
parameters of the quantum circuit based on the minimiza-
tion of the loss between the predicted and real target value.
The latter is the most applicable structure of the quantum
neural network that is similar to the classical one with some
additions. Quantum circuits or quantum layers have more
compact structures since qubits can encode a huge amount
of information and thus complex features can be extracted
even form small architectures. Exploiting entanglement from
quantum mechanics, QMLP can process all possible combi-
nations for a given datum in parallel resulting in a tremen-
dous speed-up. Unfortunately, this speed cannot be noticed
at the moment since information encoding from classical
to quantum state puts a huge time overhead in the process.
Another problem is that in general quantum computing works
under linear principles, while non-linear principles do not
exist; thus, QMLP architecture applies classical activation
functions, often sigmoid, to map input and quantum weight
values to the output.

Based on the above, the scope of the presented holistic
approach is to apply all the above-mentioned 16 models from
ML, DL, and QML domains, for airfare price prediction, and
comparatively analyze the results. In the following section,
the experimental setup followed in this work is presented in
detail.

IV. EXPERIMENTAL SETUP
In this work, two experiments are conducted in order to
cover the proposed holistic approach for the target application
problem. In the first experiment, namely the destination-
based approach, the selected models fromML, DL, and QML
domains are used to find the best choice for each destina-
tion per Airline Company. With this experiment, it can be
concluded the optimal set of models that describe the same
destinations for separate airline companies, having similar
airfare price prediction accuracies. To accomplish that, the
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entire dataset was split for each destination for each airline
company. More specifically, 24 datasets were created for four
airline companies and six destinations. In the second experi-
ment, namely the airline-based approach, the same strategy as
the first experiment was followed, with the intention this time
to locate the best models for each airline company that could
describe all six destinations at the same time. For this reason,
the dataset was split into four parts, based on the four selected
airline companies. After that, a new feature was added to
the four datasets, which describe the destination, ranging
from 0 to 6, to make the dataset of the second experiment
more distinct among the ML, DL, and QML models. For
DL models the datasets features’ values are normalized and
converted to images in order to be used as inputs in the CNN
models.

QMLmodels were excluded at this phase since 28 different
experiments would take a very long time to be processed,
considering the amounts of flights in Table 1. This exception
is also justified by the units of time during the learning
process of the models from each domain, where for ML
and DL the training process took hours and, therefore, for
QML models would require days for only one destination.
To computationally verify this, consider that in order to sim-
ulate on a classical computer a six-dimensional qubit state,
a 64-dimensional vector is required since 26 = 64. This
computation for a classical computer is hard since bits can
be only in one state at a time. Based on the proposed dataset
of features, 8 qubits are used for the first experiment and
9 for the second. Thus, the dimensions are 256 and 512,
respectively, for each datum. In addition, the computational
branches in QMLP are doubled for the weight values of
feature and, thus, 65.536 and 262.144 dimensions, respec-
tively, are finally required, translated in millions of flops for
a classical machine. Based on the above, only the comparison
of QML with ML models for only two airlines, Austrian
and Turkish, have been conducted, only for the three best
destinations from each of the two selected airline companies.

In general, for each experiment including the QML
domain, the prediction accuracy (%) was measured and
recorded, using Cross Validation method after a fit-and-
predict phase completed with a dataset split in 80% percent
for training and 20% for validation. The prediction accuracy
is measured by R-squared (R2) score metric:

R2 = 1 −

∑ (
yi − ŷi

)2∑
(yi − y)2

(2)

where, yi is the target value, ŷi is the predicted value and y
is the mean of all target values. In Equation (2), the numer-
ator is the sum squared of regression, which is the differ-
ence between predicted and real values. The denominator
is the sum of the total squared and expresses the distance
of the real data from the mean of the total. R2 score measures
the variation between the predicted and input data and takes
values from 0 to 1. For the error rate, Mean Squared Error

TABLE 5. Frameworks for the implementation of the experiments.

is selected:

MSE =
1
n

∑n

i=1

(
yi − ŷi

)2 (3)

where, yi is the real value and ŷi is the predicted value and
the sum of squared differences between these two values is
divided by the total number of data, expressing the distance
of each input datum from the regression line that is formed
by each model. Thus, the less the error, the closer to the
regression line the input datum is.

Table 5 includes information regarding the software frame-
works that were exploited to conduct the experiments at each
domain.

From PyTorch [36] all the presented CNN [7] models were
applied along with the learning process on a GPU unit. From
Scikit-Learn [37] all the MLmodels were used and fitted on a
CPU unit. From PennyLane [38] QMLP network was formed
and executed on a simulator that benefited CPU unit. Under
the same principles, QSVM was applied from the Qiskit
framework [39]. The hardware specifications where all the
above experiments have been conducted are presented below:

• CPU: AMD Ryzen™Threadripper™2920X, 12 cores
(24 threads), 3.5GHz base clock.

• RAM: 32 GB DDR 4.
• GPU: NVIDIA GeForce RTX 2060 SUPER 8 GB
VRAM.

• STORAGE: Viper M.2 vpn100 3450 MB/s-read,
3000 MB/s-write.

In what follows, the experimental results for the ML and
DLmodels are comparatively presented and analyzed, includ-
ing ML and DL models, for four airline companies and six
destinations, by conducting two experimental approaches.
Then, the best ML models are compared with the QML
models’ performance results for two airline companies and
three destinations, for the same two experimental approaches.

V. EXPERIMENTAL RESULTS OF STEP 1: ML VS DL
In this section the results for both experimental approaches,
for each ML and DL model are presented, by using the data
of four airlines and six destinations.

A. FIRST EXPERIMENT OF STEP 1: THE
DESTINATION-BASED APPROACH
Tables 6 to 9 include the experimental results for each air-
line company and destination for the first experiment. The
best scores for each destination are marked in bold in the
Tables. An observation that can be derived from the following
tables is regarding the model with the best score for each
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TABLE 6. First experiment results (R2) for the aegean airline. Best results for each destination are marked in bold.

destination, as for all destinations by considering the Mean
performance (last column of each Table). Therefore, infor-
mation about airfare price policies and competition levels
between airline companies can be extracted.

From Table 6 it is obvious that the best models for each
destination are the neural networks from theDL domain. Bag-
ging, Multilayer Perceptron, Random Forest, and Extra-Tree
from the ML domain are following in performance. Accord-
ing to Table 6, it can be concluded that for the Aegean airline,
AMS and VIE are the most important destinations compared
to the rest of the destinations, since at these destinations
almost all models achieve their highest scores, greater than
86%. Based on Table 1, AMS is the destination with the
highest number of flights for Aegean and based on Fig. 2(a) it
seems that for AMS there are many available flights despite
the variety of ticket classes, so the distribution of prices is
normal. The same fact involves the VIE destination. Addi-
tionally, in Fig. 2(a), VIE has darker color compared to the
rest destinations, and since it is the closest destination to
SKG it can be concluded that there are many flights to VIE
with similar prices. Based on the above it can be assumed
that Aegean ticket price strategy aims to attract a variety
of consumer groups for AMS destination, rather than VIE,
where ticket classes and a variety of services are limited.

In Table 7 the best model for the Austrian airline is
Extra-Tree-Regressor with 99% in VIE destination. It can
be observed that ML and DL achieve the highest scores
with less difference between them, compared to the previous
airline company performances. This is justified considering
the number of flights fromTable 1, asAustrian airlines have at
least 50% fewer flights than Aegean. Even with fewer flights
for each destination compared to Aegean in CDG, LIS and
VIE, all models achieve high performance scores. In addition,
according to Fig. 2(b), Austrian airline has stronger corre-
lations for these destinations. Thus, it seems that Austrian
airline attempts a competitive policy with many flights that
have similar ticket classes and number of stops along with
the amount of luggage. On the contrary, for the destinations
AMS and BRU, price and ticket classes have high variation
with small number of flights, which justifies the results of the

DL models. It seems that AMS and BRU are not among the
destination that Austrian tries to compete with.

For the case of Lufthansa, as it can be seen in Table 8,
the results were very poor compared to the other airlines in
general. The best model is the MLP in CDG destination from
the ML domain. Based on Table 8, the highest and similar
results of the models are in AMS, ARN and CDG, which can
be justified by the number of flights in Table 1. It seems that
Lufthansa tries to be more competitive with Aegean Airline
rather than Austrian since VIE is not in the scope of concern
for its price policy. Finally, Lufthansa seems to differ from all
airline companies in its general price strategy, since for four
out of six destinations ML and DL models have the highest
difference in performance compared to the rest of the airlines.

Finally, for the Turkish airline, it can be observed in Table 9
that the best scoring destinations include LIS, AMS, CDG
and VIE. More specifically, for destination AMS, the best
models are AdaBoost and Random Forest with a score of
93%. For LIS the best models are from both ML and DL
domains with scores of up to 97%. For Turkish airline, almost
in all destinations, the models bring similar results, except
for ARN destination, revealing that it is not so preferable
due to its price strategy. In general, based on the results of
Table 9, Turkish airline attempts to be competitive through
similar ticket classes and prices, considering its number of
flights. A final notice is that Turkish and Austrian have more
similar price strategies since ML and DL models for four out
of six destinations share common performances.

In Table 10 the three best scoring destinations for each
airline company are presented. From Table 10 it can be con-
cluded that destination AMS is the best for Aegean, VIE for
Austrian, CDG for Lufthansa and LIS for Turkish airlines.
Another fact is that destination CDG is among the best per-
forming for all airline companies. In general, it seems that all
airline companies are being competitive with Aegean airline,
which has the most flights. The latter can be observed espe-
cially in VIE destination, which is the nearest to SKG and,
thus, the ticket prices for each airline company are similar but
with different number of flights and services. Another notice
that justifies this fact is, that even Lufthansa is the second
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TABLE 7. First experiment results (R2) for the Austrian airline. Best results for each destination are marked in bold.

TABLE 8. First experiment results (R2) for the Lufthansa Airline. Best results for each destination are marked in bold.

TABLE 9. First experiment results (R2) for the Turkish Airline. Best results for each destination are marked in bold.

TABLE 10. Summary of the experimental results.

biggest airline company in SKG, it does not concern much
for VIE destination.

Finally, one model is able to better approach the airfare
price prediction problem for all destinations and for each

airline company. Based on the previous conclusions, a second
experiment is conducted to prove the extracted assumptions.
From a technological point of view, it seems that the complex-
ity of the problem is not very high and both ML and DLmod-
els can achieve similar scores especially in Austrian airline,
however with DL models ranking first in most of the cases.
Even for destinations where price tickets are not normal dis-
tributed (imbalanced data), DL models performed better due
to their inherent mechanisms that give the ability to produce
more rich features like max pooling in VGG or non-linear
activation functions. Moreover, MobileNet performed better
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TABLE 11. Results (R2) for the second experiment. Best scores for each airline are marked in bold.

TABLE 12. Quantum models first experiment results (R2) for the Austrian Airline. Best performances for each destination are marked in bold.

in most of the cases. The latter verifies the relatively low com-
plexity of the problem under study. Considering the model
structure and the target application, MobileNets could be the
most suited models for traveler’s applications considering
that they would adapt and predict tickets prices with high
scores even in a mobile device.

B. SECOND EXPERIMENT OF STEP 1: THE AIRLINE-BASED
APPROACH
Table 11 summarizes the experimental results from the sec-
ond experiment, in which airlines were studied indepen-
dently, for all destinations.

In Table 10, all models were comparatively evaluated for
all destinations, giving similar results per Airline, with DL
models ranking first in all cases. Turkish Airlines report
a higher performance, reaching 97% with MobilNetV3.
ML models did not perform so well in the experiment with
Turkish airline, compared to the first experiment. In general,
the superiority of DL models in a higher amount of data is
clear compared to the ML domain.

A reason for this poor performance could be that Turkish
airline has 8391 data flights for six different destinations,
having a distribution of many low-price tickets and a small
number of more expensive tickets, which mainly affects the
ensemble models. In contrast, DL models prove that they
can adjust weights along with the features and targets in a
more flexible way, and by using supplementary methods like
pooling, they can achieve a higher score under more complex
data.

VI. EXPERIMENTAL RESULTS OF STEP 2: ML VS QML
For the comparison of QML with ML models, the two best
performing models of ML domain of the first step of the

experiments were extended to the quantum domain, for the
two best performing airlines and their three best performing
destinations. Therefore, in this step of the methodology, only
Austrian and Turkish Airlines have been considered (based
on Table 2) for only three destinations: CDG, LIS, VIE
for Austrian (based on Table 7) and AMS, CDG, VIE for
Turkish (based in Table 9). In what follows, experimental
results for the selected destinations and airlines are presented
for both experiments (destination-based and airline-based
approaches).

A. FIRST EXPERIMENT OF STEP 2: THE
DESTINATION-BASED APPROACH
Table 12 summarizes the results of the first experiment.
As it can be observed, QMLP clearly holds the first place
compared to classical MLP and SVM, achieving enhanced
performances by 3% and 8%, respectively, based on the
Mean performance for all three destinations. Since QMLP
has a more compact structure based on Table 4 with a sim-
ilar feature enhancement capacity to a CNN, its generaliza-
tion capability is very high. Regarding the pair of models
SVM and QSVM, quantum kernels have proven better, com-
pared to the classical since they can construct larger feature
dimensions that might lead to linear data separation even
under complex data structures or sparse patterns. In addition,
it should be noted that QMLmodels are examined not at their
full potential, since not all the capabilities of their learning
process are feasible to be explored due to huge time and
resource requirements. In Fig. 4, a comparative illustration
is presented, including all domain models for the Austrian
airline and the three selected destinations.

Considering that Austrian airline has a small number of
flights for the three selected destinations which are close to
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FIGURE 4. Bar plot for all domain models in three destinations of Austrian airline.

TABLE 13. Quantum models first experiment results (R2) for the Turkish Airline. Best performances for each destination are marked in bold.

each other, the performance scores for all domain models
result in small differences between them. Even so, QML
models perform better and closer to DL domain models,
compared to ML, especially for QMLP which ranks first
among all models in all cases. This performance similarity
between QML and DL models is justified from the dimen-
sions of features space under quantum principles that are
closer to CNN rather to ML models, but with a simpler
structure considering that 16 qubits represent 8 flight fea-
tures and their corresponding neurons. The dimension of a
qubit is 2N in classical machines, where N is the number of
qubits, therefore, for the proposed problem QMLP constructs
a 65.356-dimensional feature map. Moreover, the classical
gradient-based optimization algorithm requires the construc-
tion and evaluation of several quantum circuits in its gradient
iteration which is computation costly. All above justify higher
hardware resource demands of QML in a classical machine,
compared to the other two domains. Results for Turkish
airlines are included in Table 13.

It is clear that QML models overall perform better than
classical ML models based on the results of Table 13. In two
out of the three destinations, QML models performed better,
justifying their superiority. QSVMcan construct a hyperplane
through a quantum kernel with much higher dimensional
feature space than classical kernels and, thus, the separation
of Turkish flights data is much bigger than with SVM despite
the fact that there are only a few flights in the dataset with
imbalanced price groups. QMLP also shares the same advan-
tage compared to MLP, since the feature map is in higher

dimensional feature space, plus the variational circuits which
exploit entanglement to tune and feature enhance at the same
time, leading to higher redundancy than classical models, and
therefore, leading to better results. QMLP has a much more
compact structure with much bigger generalization capabili-
ties.

Even so, the difference in the results included in Table 13
is not as high as it should be, for the reason that QMLmodels
have huge time and resource demands as already mentioned
and, thus, the optimal time of the training process was not
achieved. However, under quantum hardware machine spec-
ifications, this process is expected to be very fast, and the
structure of thesemodels can be characterized as very small in
parallel. Fig. 5 illustrates the bar plots for all domain models
for the three selected destinations of the Turkish airline.

It is clear that QSVM and QMLP come first compared to
ML models in all three destinations, not only as a matter
of score but also as a matter of sustainability, despite the
diversity of data involved in the above destinations. It can
be concluded that QML performance is comparable to the
performance of DL domain models. A general notice is that
QML models seem to have the generalization capabilities
of DL models, but with a simpler structure according to
quantum hardware capacities. It should be mentioned that
QML models however, come last with respect to speed and
flexibility of resources management. In the following sub-
section, the comparison between ML and QML continues by
conducting the second experiment, referring to all destination
flight datasets for the two airline companies.
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FIGURE 5. Bar plot for all domain models in three destinations of Turkish airline.

FIGURE 6. Bar plot for all domain models in three destinations of Turkish and Austrian airlines.

B. SECOND EXPERIMENT OF STEP 2: THE AIRLINE-BASED
APPROACH
In the second experiment, all destinations are considered
for the two airline companies. Results are summarized in
Table 14. Based on the experimental results, QML models
reveal the optimal performance for both airlines. Despite
Austrian airline’s imbalanced distribution of airfare price
groups and a few number of flights, still results are ranking
high for all models. However, for QSVM, the above fact
seems to have a smaller impact compared to SVM, reporting
a score difference of 4%. For QMLP and MLP the same
notice can be made. The Turkish airline shares common
strategies with Austrian, but with a more normal distribution
in airfare prices and services groups. Same with the previous
airline company, QML models come first compared to ML

models for Turkish airline flights. Another similar conclusion
to the previous experiment’s, is that QML models achieve
performance scores closer to DL models rather than to ML
models, as it can be observed from the bar plots illustrated in
Fig. 6.

Despite their similar performance to DL models, QML
models are competitive and among the best models with
almost similar performances for both airline companies.
However, QML models’ performance cannot be deployed in
real-world applications towards tracking and adjusting airfare
price predictions based on a variety of sources for feature
values. The latter is the main disadvantage of QML models,
which will take time to be covered. ML models have shown
the poorest average performance. Considering the evolution
and growth of data amounts and the involved complexity of
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TABLE 14. Quantum models second experiment results (R2) for Turkish and Austrian airlines. Best performances for each airline are marked in bold.

the problem under study, ML models are not recommended
for airfare price prediction. Finally, considering the factor
of computational efficiency, DL models are the most suited
for the problem, since they can be executed in a variety of
devices, which shows flexibility in the manageability of com-
putational resources with higher potential in the approxima-
tion of optimal solutions for airfare price prediction problem.

VII. DISCUSSION AND CONCLUSION
In this work, the focus is on the airfare price prediction holis-
tic approach, considering different datasets and technologies
that could be applied. To this end, four airlines and six desti-
nations were considered. To resolve the problem under study,
eight ML models, six DL models, and two QML models
have been employed and comparatively evaluated. Experi-
mental results reveal that at least three models from each
domain ML, DL, and QML are able to achieve accuracies
between 89% and 99% in this regression problem, for differ-
ent international destinations and airline companies. Results
reveal that by using AI models and flight features that are
available to customers before purchase, the airline company
ticket price policy can be efficiently analyzed. More features
are publicly available and by using the above technologies,
robust simulations for flight tickets’ price optimization and
customer demand could be approximated, towards providing
rich information to airline companies to build their optimal
price strategy. However, even under a small set of features,
all model domains are able to extract patterns from the given
flight data and can find similarities between them. In this
work, two different approaches have been investigated and
analyzed: one based on the destinations (for all airlines) and
one based on the airline companies (for all destinations).
Future work from the perspective of the airline-based target
application, could include the same airline companies and
destinations studied from different airports to examine if
the information could be efficiently extracted. Moreover, the
same problem could be studied as a classification problem
through customer segmentation, based on the flight features
set.

From a technological point of view, QML models have
been studied under a regression application, which is limited
in the literature, since the advantage of QML models in
classical data is controversial, considering the limitations and
the available quantum resources alongwith the computational
demands in classical machines. Despite limitations like the
number of qubits and noise levels in quantum machines,
the availability of quantum hardware must be increased and

become friendlier in order to pave the way for QML solutions
to be applied to more real-world applications.

In this work, QML models for airfare price prediction
achieved higher results in most cases compared to ML and
DL models, despite the reported disadvantages and con-
fronted difficulties. It could be therefore concluded that future
approaches to airfare price prediction based on the QML
domain could provide efficient solutions, especially with the
expectation that the amount, complexity, and diversity of
data will grow. Future work around QML methods in airfare
price prediction, includes the investigation of various differ-
ent methods for data encoding in quantum states, and more
quantum models like quantum Boltzmann machines, which
will be able to generate flight data based on given air tickets
feature sets and distributions. The resulted QML-based appli-
cation could be used as an airfare price policy generator.
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