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ABSTRACT Action recognition is a challenging task that requires understanding the temporal relationships
between frames. However, capturing and processing spatio-temporal and motion features is computationally
expensive, making it difficult to apply to practical situations. We propose a novel approach called the
Spatio-Temporal-Wise (STW) network to address this problem. The STW network inserts STW blocks,
consisting of a Spatio-Temporal Fusion Module and a Temporal-Wise Module, into an existing 2D CNN. This
approach requires very little additional computational overhead but brings huge performance improvements
in recognizing human actions. The proposed method is evaluated on several public datasets, including
Something-Something v1 & v2, Kinetics-400, UCF101, and HMDBS51. STW achieved comparable or better
performance on these datasets compared to state-of-the-art methods. Notably, the STW network improves
recognition accuracy by 26.6% and 34.6% on the Something-Something v1 & v2 datasets, respectively,
with less than 2% additional computational overhead. The results demonstrate that the STW network
can significantly improve performance in action recognition tasks while requiring only a small additional
computational overhead, which represents a promising direction for developing more efficient and effective
approaches to handling temporal reasoning in action recognition, which may have important applications in

the future.

INDEX TERMS Action recognition, video understanding, temporal reasoning.

I. INTRODUCTION

Due to the rapid development of video technology, an enor-
mous amount of video data is generated every day. This
includes videos shared on social networking sites and mon-
itoring videos. For instance, statistics show that YouTube
uploads 300 hours of video data per minute. These videos
have significant intrinsic values, and their analysis can pro-
mote technological and social progress. However, manual
analysis of this vast amount of video data is impossible,
which has led to the need for intelligent and efficient video
analysis methods. Video understanding has become prevalent
in many fields, including video recommendation and surveil-
lance, and has gained extensive attention from both industry
and academia. Action recognition is a crucial issue in video
understanding, and researchers have extensively explored it
in the past decades, as evidenced by several studies [1],
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[2], [3]. Human actions involve numerous factors, including
body movements and human-object interaction. Unlike image
recognition, video data is a high-dimensional and structured
data type, and its processing requires consideration and min-
ing of the temporal structure of the video. Thus, action recog-
nition necessitates a strong temporal reasoning ability.
Convolutional networks have become the mainstream
approach for many image-based tasks, such as image clas-
sification, and have been extended to video motion recog-
nition. However, recent work by Adam [4] argues that such
powerful deep learning architectures may not be well-suited
for temporal reasoning, even though they are powerful static
vision processors. Videos differ from static images in that
they contain a temporal dimension. The temporal and spatial
structures of videos are different, and simply using image
convolution methods may not effectively capture the rela-
tionship information across time. For example, as shown
in Figure 1, it is impossible to distinguish between ‘“Push-
ing something from right to left” and “Pushing something
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from left to right” using RGB pictures. Many methods that
are effective for scene-related tasks may not achieve good
results for temporal-related tasks. Therefore, action recogni-
tion requires special processing of the temporal dimension.

Currently, there are two main types of action recognition
methods. The first uses a two-stream neural network [2],
with RGB frames as the spatial stream and optical flow as
the temporal stream. Optical flow can capture object motion
information between adjacent frames, which can avoid inter-
ference from factors such as the background. For action
recognition, sparse sampling is often used to obtain semantic
information on a larger temporal scale since the semantic
changes between adjacent frames are slow, and action often
spans dozens of frames [1]. However, optical flow can only
represent motion information between adjacent frames and
cannot capture motion information over a larger temporal
span. In the case of sparse sampling, the optical flow’s per-
formance is not significantly better than that of RGB pic-
tures, and it must be used in combination with RGB streams
to achieve good results. However, extracting optical flow
requires significant computing resources, making it challeng-
ing to apply two-stream methods to online action recogni-
tion. The second type of method uses a 3D convolutional
network [3], [5], [6] to directly capture spatio-temporal infor-
mation from RGB frames by extending the convolution in
the temporal dimension. The performance of 3D convolution-
based methods is better than 2D convolution-based methods
using a single stream. Nevertheless, simply extending 2D
CNN to 3D CNN results in a significant increase in compu-
tational overhead. Therefore, like the two-stream method, 3D
CNN is also challenging to apply practically.

To achieve performance comparable to two-stream and 3D
CNNs, while avoiding their huge computational overhead,
we propose a novel Spatio-Temporal-Wise (STW) network.
STW is composed of a Spatio-Temporal Fusion Module
(STFM) and a Temporal-Wise Module (TWM). STFM is
designed to capture spatio-temporal features by encoding
adjacent frames and fusing them to create a frame that con-
tains all the information of three frames for spatio-temporal
fusion. TWM follows the idea of extracting optical flow
to capture motion features. It enhances regions with sig-
nificant motion changes and extracts motion features using
element-subtraction temporal-wise. The two modules are
combined into an STW block in parallel, which does not
change the feature’s shape, making it easy to insert into
any existing 2D CNN network with very little computational
overhead.

We conducted several experiments on temporal-related and
scene-related datasets, and the results show that STW can
achieve comparable or better performance than two-stream
and 3D CNN methods by only using RGB images as input.

The main contributions of our work can be summarized as
follows:

o« We propose two specialized modules, the Spatio-

Temporal Fusion Module (STFM) and the Temporal-
Wise Module (TWM), to capture distinct spatio-temporal
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and motion features, respectively. The STFM is designed
to fuse spatial and temporal information in video frames,
while the TWM is specialized in capturing motion
features. By separating the two types of features and
processing them with dedicated modules, we achieve
improved accuracy in action recognition tasks.

o The STW block incorporates both modules and can be
seamlessly integrated into any 2D CNN with minimal
computational overhead, making our approach highly
practical and scalable. In addition, this is the first
instance where temporal-wise has been employed to
capture motion features for action recognition.

e Our proposed approach, STW, demonstrates signif-
icant improvements in recognition accuracy on the
Something-Something v1 & v2 datasets [7], achieving
gains of 26.6% and 34.6%, respectively, with less than
2% additional computational overhead. Additionally,
on the Kinetics-400 [8], UCF101 [9], and HMDBS51 [10]
datasets, STW achieves comparable or superior perfor-
mance to current state-of-the-art methods.

Il. RELATED WORK

In the early years, action recognition mainly focused on
recognizing scenes and objects. In recent years, the task of
action recognition has gradually evolved to recognize abstract
actions with temporal information.

A. CNNs IN ACTION RECOGNITION
1) 2D CNNs
2D CNNs [1], [2] are capable of recognizing images within
a single frame. Many video classification methods [11] that
are based on 2D CNNs aggregate predictions from different
frames to classify videos. To capture both spatial and tem-
poral features in a video, [2] developed a two-stream CNN
that takes RGB images as input for spatial features and opti-
cal flow images as input for motion features. Reference [1]
(TSN) proposed a sparse temporal sampling strategy that
employs a two-stream structure and combines spatial and
temporal stream networks using a weighted average.

In contrast to these methods, the Spatio-Temporal-Wise
Network (STW) only uses RGB images as input, avoiding
the high computational cost of optical flow extraction.

2) 3D CNNs

3D CNNs [3], [5], [6], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22] can capture spatio-temporal information
directly from RGB frames by extending the convolution in
the temporal dimension. To learn appearance and motion
features from raw video volumes, [3] proposed C3D, a 3D
CNN based on VGG models. To apply pre-trained 2D convo-
lution filters to 3D convolutions, [8] developed an inflation
technique. Other approaches, such as [23], combines 2D and
3D CNNs, while [5] and [18] employ 2D and 3D convolutions
in different layers. Reference [16] decomposed the 3D CNN
into a spatial 2D convolution and a temporal 1D convolution.
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Pushing something from left to right

FIGURE 1. The actions in the Something-Something datasets have a strong temporal sequence. Some of the actions are similar and
deceptive. It is impossible to distinguish “Pushing something from right to left” and “Pushing something from left to right” by scene

information.

Another approach, [20], captures appearance and temporal
information using parallel slow and fast paths.

In contrast to these methods, the Spatio-Temporal-Wise
Network (STW) uses a 2D CNN as its backbone and cap-
tures temporal information by inserting STW blocks into the
network. This approach achieves a comparable effect to 3D
CNNs while saving a significant amount of computational
overhead.

B. TEMPORAL MODELING IN ACTION RECOGNITION

Temporal information is crucial for recognizing actions
involving motion over time, such as “open the door” versus
“close the door”’. 3D CNNs provide a direct way to model
temporal information. To extract and aggregate frame fea-
tures over time, [24] combines CNN and LSTM. To capture
temporal relations at multiple scales, [25] propose a temporal
relation reasoning module that extracts the appearance fea-
tures of different frames individually and uses MLPs to infer
frame relations. Another approach, [26], shifts parts of the
channels along the temporal dimension to facilitate informa-
tion exchange between adjacent frames. Several other meth-
ods, such as [25], [27], [28], [29], [30], and [31], enable 2D
networks to sense temporal changes by designing a temporal
processing module. These modules extract temporal features
by modeling temporal relations between frames and integrat-
ing them into the feature representation of each frame. With
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the emergence of Transformer [32] in computer vision, [33],
[34], [35], [36] use the Transformer’s encoder to replace the
convolution module in the traditional CNN backbone and
extract global temporal dependencies.

The Spatio-Temporal-Wise Network (STW) captures both
spatio-temporal features and motion features through two
parallel modules. The spatio-temporal module fuses spatio-
temporal information, while the motion module extracts
regions where motion is significant.

Ill. APPROACH

In this section, we will describe the proposed Spatio-
Temporal-Wise Network (STW). Firstly, we will provide
technical details of the Spatio-Temporal Fusion Module
(STFM). Next, we will introduce the Temporal-Wise Module
(TWM) in detail. Finally, we will show how to combine these
two modules into an STW block and insert it into an existing
2D CNN.

A. SPATIO-TEMPORAL FUSION MODULE

The original 2D CNN makes separate inferences and predic-
tions for each frame and combines the results at the end of the
network. However, this approach does not allow for informa-
tion exchange between frames during the inference process,
which limits the capture of low-level spatio-temporal fea-
tures. To address this issue, we propose the Spatio-Temporal
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FIGURE 2. STW Block: T frame feature maps are fed into STFM and TWM for capturing spatio-temporal and motion features, respectively. The shape of
the captured features matches the input features, and the features from both modules are combined using element-wise addition before being passed to

the residual branch in the residual block.

Fusion Module (STFM), which encodes and merges adjacent
channels during inference to capture both spatial and tempo-
ral information at each stage. Importantly, this module can be
implemented with minimal computational cost.

As illustrated in Figure 2, given an input feature map
squence X = {x1,x2,...,x7}, in which x; € REXH*W for
three adjacent frames x;_1, x; and x;41, we use 2D convolu-
tion to reduce their number of channels to %, % and %:

l[ = COanD(.xt_] , 9)
m; = Conv2D(xy, ¢)
r; = Conv2D(x141, ¢) ()

where 6, ¢ and ¢ are the parameters of the convolutional
layers. To keep the shape of the output feature consistent with
the shape of the input feature, we set é + % + % =1

Since x; represents the current frame and plays a dominant
role in capturing the information at time ¢, it requires a
larger output channel number to retain more information
about the current time step. On the other hand, x;_; and
x;41 represent the frames of the previous and the next time
steps, respectively, and play a supplementary role in capturing
the information at time ¢. Therefore, their output channel
numbers can be relatively smaller than that of x;. As a result,
we experimented with several settings and ultimately chose
to set o, B, and y to 4, 2, and 4, respectively. The results
from experiments using different settings can be found in
Section IV-DI.

Then we concatenate these three downsampled features
maps {l;, m;, r;} together to obtain the final fused feature
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map y;:
y; = Concat(l;, m;.ry) @)

The simplest way to fuse three frames is to average their
values, but this approach does not produce good results. The
Spatio-Temporal Fusion Module (STFM) achieves signifi-
cant performance improvements by encoding and concatenat-
ing frames. This method of concatenating channels is similar
to the TSM approach of shifting channels. However, unlike
TSM, STFM encodes and stacks all channels of three adjacent
frames, preserving all information from the three frames.
TSM, on the other hand, only shifts part of the channels of
adjacent frames. This manual method of moving channels
based on experience cannot be optimized and only retains part
of the channels in the current and adjacent frames, leading to
information loss.

B. TEMPORAL-WISE MODULE

Videos typically contain a large number of scenes and objects.
Both scene and object information can help recognize motion
for action recognition tasks related to scenes. However,
scene and object information may affect recognition perfor-
mance for temporal-related tasks due to the need to capture
subtle human actions accurately. Optical flow can extract
motion information between frames and remove background
information. Inspired by this, we aim to remove useless
background information from each frame and only retain
regions that contain motion changes. Channel-wise attention
is widely used to enhance semantic information in static
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FIGURE 3. Three different architectures of block: (a) Parallel;
(b) STFM=TWM; (c) TWM=STFM.

images, and we hope to use it to enhance motion regions and
capture motion features of frames based on temporal infor-
mation. Therefore, we propose the Temporal-Wise Module.
Given an input feature map X € RT*CXHXW e first
reshape its shape from 7 x C x H x WtoC x T xH x W:

XTxCxHxW )'ZCXTXHXW (3)

Then we convolve X with a3 x 1 x 1 convolutional layer with
out-channel of only 1 and obtain U !*T*H*W.

U = Conv3D(X, 1) @)

where A is the parameter of the convolutional layer Conv3D.
The channel is reduced to 1 to save computational overhead.
Its computational overhead is the same as depth-wise convo-
lution, but it can aggregate the information of all channels.

After that, we perform a Sigmoid operation on U to get the
weight S and element-wise multiply each channel of X by §
to obtain V:

S = Sigmoid(U)
V=X-8§ )

Finally, we subtract V from X to get the motion features Z
and reshape Z from C x T x H x WtoT x C x H x W:

Z=X-V (6)

Operating temporal-wise on the frame without subtracting
the original frame does not yield desirable results. This is
because the background interference remains despite enhanc-
ing the action regions. However, after subtracting the original
frame, the extracted feature is similar to optical flow, cap-
turing information from three frames. The unique advantage
of this method is that these three frames can be sparsely
sampled without requiring them to be adjacent. This opera-
tion eliminates background interference information, and the
resulting motion features significantly improve the model’s
performance. This demonstrates that background interference
plays a crucial role in motion recognition, and the proposed
method effectively addresses this issue.
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C. SPATIO-TEMPORAL-WISE NETWORK
This section describes how to construct two modules to create
an STW block and develop a Spatio-Temporal-Wise network.

Figure 3 shows two ways to combine the STFM and
TWM methods to form an STW block: vertical and par-
allel connections. We obtain two types of connections in
the vertical connection by changing the order of STFM and
TWM. For parallel connections, we aggregate the output
features of STFM and TWM using element-wise summa-
tion. In our experiments, we found that the parallel com-
bination was more effective than the vertical combination.
Further details about the experimental results are described in
Section IV-D3.

The overall architecture of the STW block is illustrated
in Figure 2. We input 7 frame feature maps into STFM
and TWM, respectively, for spatio-temporal feature capture
and motion feature capture. Since the input and output fea-
tures of STFM and TWM have consistent shapes, the STW
block can be easily inserted into any existing 2D CNN.
We choose ResNet-50, commonly used by state-of-the-art
methods, as the backbone to insert the STW block to ensure
a fair comparison. Similar to TSM [26], we place the STW
block inside the residual branch of a residual block.

IV. EXPERIMENTS

The following section is divided into three parts. Firstly,
we provide an overview of the datasets used and the imple-
mentation details of our proposed method. This is followed
by an evaluation of the effectiveness of our proposed method,
where we compare its performance with state-of-the-art
methods on publicly available action recognition datasets.
Finally, we conduct ablation studies to analyze the impact of
various aspects of our proposed method.

A. DATASETS

Public action recognition datasets can be broadly classified
into two categories based on their characteristics: temporal-
related datasets and scene-related datasets. In this study,
we primarily focus on Something-Something (vl & v2)
datasets [7], as they are particularly sensitive to temporal
relations, and our proposed method, STW, is designed to
extract temporal reasoning information. However, we also
evaluate the performance of STW on scene-related datasets
and achieve promising results. Our experimental evaluation
is conducted on the following datasets.

1) SOMETHING-SOMETHING v1 & v2

Something-Something vl & v2 emphasize modeling tempo-
ral relations and are therefore referred to as temporal-related
datasets. Both versions of Something-Something consist
of 174 action classes, with some classes being similar
and potentially confusing. Most actions are challenging to
recognize accurately without temporal information, such
as differentiating between ‘‘Pushing something from left
to right” and “Pushing something from right to left”.
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Something-Something v1 contains 108,499 videos, while v2
contains 220,847 videos.

2) KINETICS-400, UCF101, AND HVIDB51

UCF101 [9], Kinetics-400 [8], and HMDB51 [10] are
early and widely used datasets. These datasets are called
scene-related datasets because they consist of many
scene-based actions with weak temporal characteristics.
Many of the videos in these datasets can be identified by
the background or objects in the static frame. For instance,
recognizing the basketball or the basketball court is suf-
ficient for predicting the action of ‘“Playing Basketball”
accurately. Kinetics-400 comprises 240,000 training videos
distributed across 400 classes, while UCF101 collected
13,320 videos representing 101 distinct actions. HMDBS51
contains 51 classes with a total of 6,849 videos.

B. IMPLEMENTATION DETAILS

We employed ResNet-50 as the backbone of our model and
incorporated the STW block into the residual branch of all
residual blocks.

1) TRAINING

The model was trained using ResNet-50 as the backbone and
the same training strategy as TSN [1]. Firstly, each video was
divided into T segments of equal duration. Then, one frame
was randomly sampled from each segment, and the resulting
T frames were used as input into the network as a clip. The
short side of the frame was resized to 256, followed by center
cropping and scale-jittering to obtain a cropped image of size
224 x 224. The outputs of the T frames were averaged to pro-
duce the final result. We trained our model using a mini-batch
size of 64. For the Something-Something and Kinetics-400
datasets, we used ImageNet pre-trained models for training.
The model was trained for 50 epochs, with the learning
rate starting from 0.01 and decreasing by 10 at 30, 40, and
45 epochs. For the UCF101 and HMDBS51 datasets, we used
models pre-trained on Kinetics for finetuning, set the learning
rate to 0.001, reduced the learning rate by a factor of 10 for
every 15 epochs, and trained for a total of 50 epochs. The
optimizer is a mini-batch SGD with a momentum of 0.9 and
weight decay of Se-4. For the Something-Something datasets,
we set 7 to 8 and 16, while for Kinetics-400, UCF101, and
HMDBS51, T was set to 16.

2) INFERENCE

To match the training strategy, we resized the shorter side to
256, extracted crops, and then resized them to 224 x 224.
For the Something-Something datasets, we used only 1 clip
as input, with each clip consisting of either 8 or 16 frames
and each frame having 1 crop. On the other hand, for
the Kinetics-400, UCF101, and HMDBS51 datasets, we uti-
lized 10 clips as input, with each clip containing 16 frames
and each frame consisting of 3 crops: left, middle, and
right.
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C. COMPARISON WITH THE STATE-OF-THE-ART

We compared STW with the current state-of-the-art method,
and to ensure a more intuitive and fair comparison, we listed
the following details: backbones used, pre-training datasets,
number of frames, and GFLOPs.

1) SOMETHING-SOMETHING

Table 1 displays the results of Something-Something v1.
STW uses only one clip as input, with each clip consisting
of either 8 or 16 frames, and only the middle crop is used
for each frame. We only listed methods that utilized RGB as
input to ensure a fair comparison. Furthermore, when using
8 frames as input, STW achieved a 26.6% higher accuracy
than TSN, which served as the baseline in the validation set.
Compared to TSM pre-trained on Kinetics-400, STW only
used ImageNet as pre-training, but its accuracy with 8 frames
already exceeded TSM accuracy with both 8 and 16 frames,
and it was close to the ensemble TSM with 16 and 8 frames.
Notably, STWi¢rgr achieved the highest validation and test
sets accuracy. Compared with 3D methods such as 13D and
S3D, STW demonstrated higher accuracy and lower compu-
tational overhead.

Table 2 presents the results of Something-Something v2.
TSM’s result was fused with 10 clips, each containing either
8 or 16 frames and 3 crops per frame, whereas STW utilized
only 1 clip that contained 8 or 16 frames, with each frame
using only 1 crop. With only 8 frames, STW achieved higher
accuracy than all other methods while also having much
lower computational overhead, demonstrating its strong tem-
poral modeling capabilities.

Itis worth noting that our STW is implemented by inserting
STW blocks into the TSN network with ResNet2D-50 as
the backbone network. As shown in the GFLOPs column
of Table 1 and Table 2, when using ResNet2D-50 as the
backbone network and 8 frames, the computation of the
TSN network is 33 GFLOPs, while our STW computation is
33.5 GFLOPs. Therefore, in reality, STW only increases com-
putation by less than 2% compared to the baseline, namely
TSN ResNet2D-50.

2) KINETICS-400, UCF101, AND HVIDB51

We compared STW with numerous competitive methods on
Kinetics-400, UCF101, and HMDBS51. Given that videos
are longer, we used 16 frames as input. For UCF101
and HMDBS51, we finetuned STW that was pre-trained on
Kinetics-400, and all the accuracies were averaged over the
three splits of the datasets. The experimental results are
shown in Table 3 and Table 4.

The computational overhead of STW is among the smallest
of all the listed methods, except for TSN. On Kinetics-400,
STW achieved an accuracy that was 2.6% higher than that of
densely sampled TSN. However, the performance improve-
ment was less evident for the Something-Something dataset
for two reasons. Firstly, because the temporal characteristics
of scene-related datasets are weak, there is no strong temporal
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TABLE 1. Comparison with the state-of-the-art on Something-Something v1.

Method Backbone Pretrain Frames GFLOPs | Top-1 Val | Top-1 Test
TSN [1] ResNet2D-50 ImgNet 8f 33 19.7% -
TRN-Multiscale [25] BNInception ImgNet 8f 33 34.4% 33.6%
TRN-Multiscale [25] ResNet2D-50 8f 33 38.9% -
S3D-G [18] Inception ImgNet 64f 71 48.2% -
13D [37] ResNet3D-50 ImgNet+ 306 41.6% -
NL I3D [37] ResNet3D-50 K400 32f x 2 334 44.4% -
NL I3D+GCN [37] ResNet3D-50+GCN 606 46.1% 45.0%
ECO [23] 16 64 41.6% -
ECO [23] BNIncep+Res3D-18 K400 92}0 267 46.4% )
TSM [26] ImgNet+ 8f 33 43.4% -
TSM [26] ResNet2D-50 K400 16f 65 44.8% -
TSMEg,, [26] 16f + 8f 98 46.8% -
STWgy 8f 34 46.3% 41.7%
STWi6f ResNet2D-50 ImgNet 16f 67 48.7% 43.9%
STWigfisf 16f +8f 100 49.9% 45.2%
TABLE 2. Comparison with the state-of-the-art on Something-Something v2.
Method Backbone Pretrain Frames GFLOPs | Top-1 Val | Top-1 Test
TSN [1] ResNet2D-50 ImgNet 16f x 10 1950 30.0% -
TRN [25] BNInception ImgNet 8f 33 48.8% 50.9%
TSM [26] 8f x 10 990 59.1% -
TSM [26] ResNet2D-30 | ImgNet+K400 | 50" 1 | 1950 59.4% 60.4%
TEFE [38] ResNet2D-50 8f TmgNet 90 59.6 -
TANet [31] ResNet2D-50 8f ImgNet 34 60.5 -
MKE-Net [39] | ResNet2D-50 8f TmgNet 34 612 -
STWsg¢ 8f 34 61.7% 60.8%
STWi6s ResNet2D-50 ImgNet 16f 67 63.0% 62.1%
STWigsisf 16f + 8f 100 64.6% 63.7%
TABLE 3. Comparison with the state-of-the-art on Kinetics-400.
Method Backbone Pre-train GFLOPsxviews | Top-1 Top-5
I3Dg4 ¢ [6] Inception v1 ImgNet 108 x N/A 72.1% | 90.3%
[3Dg4 s +TSN [1] Inception v1 ImgNet 108 x N/A 73.5% | 91.6%
NL+I3D32 ¢ [40] ResNet-50 ImgNet 70.5 x 30 74.9% | 91.6%
NL+I3D12g¢ [40] ResNet-101 ImgNet 359 x 30 77.7% | 93.3%
LGD-3D 1957 [41] ResNet-101 ImgNet N/Ax N/A | 79.4% | 94.4%
TSN [1] Inception V3 ImgNet 3.2 x 250 72.5% | 90.2%
ECOg, [23] BNIncep+Res3D-18 | From Scratch N/A x N/A 70.7% | 89.4%
R(2+1)D3ay [5] ResNet-34 Sports-1M 152 x 10 74.3% | 91.4%
S3D-Ggy s [18] Inception v1 ImgNet 71.4 x 30 74.7% | 93.4%
STWi6rx10 ResNet-50 ImgNet 67 x 30 751% | 91.7%

TABLE 4. Comparison with the state-of-the-art on UCF101 and HMDB51.
The accuracies are averaged over all 3 splits.

Method UCF101 | HMDBS51
TSN [1] 93.2% -
I3Dgy [6] 95.6% 74.8%
P3D g [16] 88.6% -
S3D-G g% 10 [18] 96.8% 75.9%
R(2+1)D 16fx10 [5] 96.8% 74.5%
ECOpg,, [23] 94.8% 72.4%
STWi6fx10 96.2% 73.3%

relationship between the sampled frames, and the effects
obtained by interacting information between the frames are
limited. Therefore, STW, designed specifically for temporal
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modeling, may degrade into a common TSN in some cate-
gories. Secondly, the accuracy on Kinetics-400 is very high
and close to saturation accuracy, leaving little room for per-
formance improvement. Compared with more sophisticated
3D methods such as S3D and R(241)D, STW outperformed
them with higher accuracy by 0.4% and 0.5%, respectively.
On UCF101, the accuracy of STW was higher than I3D but
not as good as S3D and R(2+1)D. This could be attributed
to the fact that the 3D network only performs 3D convolution
on a few consecutive frames, thus providing local temporal
modeling. In contrast, STW is a global temporal model for
sparsely sampled frames of the entire video. This shows that
the semantic change of the entire video is slow, and it is more
effective to model atomic actions locally in temporal.
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TABLE 5. Camparison of different fusion methods and setting in STFM.

Method | Top-1Val | Top-5 Val
Average Pooling 32.8% 60.2%
Conv2d(16 : 8/7 : 16) & Concat 39.2% 68.9%
Conv2d(8 : 4/3 : 8) & Concat 41.5% 70.4%
Conv2D(4 : 2 : 4) & Concat 42.6% 73.5%

TABLE 6. Impact of STFM, TWM, and STW.

Method | Top-1 Val | Top-5 Val

TSN 19.7% 46.6%
TSM 42.1% 72.7%
STFM 42.6% 73.5%
TWM 41.9% 72.3%
STW 46.3% 76.6%

TABLE 7. Comparison of different stage effects.

Stage | Block | Top-1Val | Top-5 Val

2 3 40.0% 70.2%
3 4 41.1% 71.5%
4 6 43.9% 73.7%
5 3 43.1% 73.8%
2-5 16 46.3% 76.7%
3-5 13 45.9% 76.1%
4-5 9 45.6% 76.1%

D. ABLATION STUDIES

In this section, we conducted ablation studies on Something-
Something v1. All the models used ResNet-50, pre-trained on
ImageNet, as the backbone with an input length of 8 frames.

1) FUSION METHODS AND SETTING IN STFM

Firstly, we conducted an ablation study on the spatio-temporal
information fusion method of STFM. As shown in Table 5,
the results of reducing the channel number of adjacent
3 frames using 2D convolution and concatenating them are
significantly better than directly averaging the information of
the three frames. We tried three different settings for channel
reduction. When the «, 8, and y were set as 16 : 8/7 : 16,
the information contained in the previous and next frames
was too limited because they only retained 1/16 of the
channel number. Thus, the temporal interaction effect was not
satisfactory. As the parameters gradually adjustedto4 : 2 : 4,
we obtained better results. Therefore, we set the STFM with
a4 :2:4 channel reduction ratio as the final setting.

2) IMPACT OF STFM AND TWM

Then we conducted experiments on STFM and TWM sep-
arately. As illustrated in Table 6, compared to training
using only TSN, STFM and TWM showed performance
improvements of 22.9% and 22.2%, respectively. This con-
firms that STFM and TWM can capture spatio-temporal and
motion features. Furthermore, compared with TSM, STFM’s
accuracy was 0.5% higher, emphasizing the importance of
preserving all channel information. After integrating the two
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TABLE 8. Comparison of three combinations.

Combination Type | Top-1Val | Top-5 Val
Parallel 46.3% 76.6 %
Vertical STFM=TWM 42.1% 73.3%
Vertical TWM=-STFM 41.8% 73.5%

modules, the accuracy of STW was improved by approxi-
mately 4%, proving that STFM and TWM exhibit certain
coupling and complementarity.

3) COMBINATION OF TWO MODULES

After establishing the effectiveness of the two modules,
we experimented with different combinations of the modules.
As illustrated in Figure 3, there were two ways to combine
STFM and TWM: vertical and parallel. In the vertical con-
nection, we experimented with changing the order of STFM
and TWM. For parallel connections, we utilized element-
wise sum operation to aggregate the output features of STFM
and TWM.

As shown in Table 8, the performance of the par-
allel connection mode was much better than the verti-
cal mode. Notably, the accuracy of vertical connections
was lower than that of a single module. The accuracy
of STFM=TWM was slightly lower than STFM, and the
accuracy of TWM=-STFM was also slightly lower than
TWM. This could be attributed to the inherent differences in
spatio-temporal features and motion features, and the mod-
ules below tended to disrupt the features captured by the
modules above, thus reducing accuracy.

4) STAGE TO INSERT STW BLOCKS

We experimented by inserting STW blocks at different stages
of ResNet-50. As indicated in Table 7, the performance
improved as the stage increased. The performance improve-
ment of stage 4 was greater than stage 5 because stage 4
had 6 blocks inserted, while stage 5 had only 3 blocks. The
feature maps captured by ResNet’s later layers had a higher
semantic level, indicating that capturing spatio-temporal and
motion features of high-level semantic features was better
than capturing them at lower levels. Therefore, when com-
puting resources were limited, inserting blocks in the later
layers was preferable.

E. VISUALIZATION AND QUANTITATIVE ANALYSIS

We have visualized the classification accuracy of Baseline
TSN and STW on some highly confusing categories in
Something-Something v1, and the visualization results are
shown in Figure 4. The categories in the figure are highly
confusing, with only minor differences in left-right or front-
behind directions. TSN, which only has temporal fusion but
lacks temporal modeling and reasoning capabilities, performs
poorly in these categories, but its accuracy improves signif-
icantly after the insertion of the STW Block. This further
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FIGURE 4. Comparing the accuracy of some confusing action categories
on Something-Something v1.

demonstrates the STW Block’s strong temporal reasoning
ability.

V. CONCLUSION

In this paper, we propose a novel temporal modeling approach
called the STW network, which is simple yet effective. The
proposed model comprises two modules, namely STFM and
TWM, each with a distinct role in temporal modeling. The
STFM module integrates spatio-temporal information and
extracts relevant features, while the TWM module focuses
on improving motion characteristic recognition by enhancing
the action region. Experimental results demonstrate that the
STW network exhibits strong temporal modeling capabili-
ties, outperforming existing state-of-the-art models on popu-
lar datasets, including Something-Something, Kinetics-400,
UCF101, and HMDB. Furthermore, the proposed model
achieves this with less than 2% additional computational
overhead, making it a practical and efficient solution. STW
network is a promising approach for temporal model-
ing, which can effectively capture spatio-temporal features
and motion characteristics while maintaining computational
efficiency.
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