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ABSTRACT Recent research on image and video processing using convolutional neural networks has
shown remarkable improvements, especially in the area of single image super-resolution(SISR). The primary
target of SISR is to recover the visually appealing high-resolution (HR) output image from the original
degraded low-resolution (LR) input image. However, most recent convolutional neural networks (CNNs)-
based image super-resolution frameworks often used a deeper and broader network architecture that requires
a sizeable computational resource, risk of overfitting, increases computational complexity, andmorememory
consumption, as well as takes more processing time during the evaluations. To address these issues, we have
presented a Squeeze-and-ExcitationNext for Single Image Super-Resolution approach, known as SENext.
In brief, the squeeze-and-excitation blocks (SEB) are used in our network architecture with a view to
reduce the computational cost and adopt the channel-wise feature mappings to recalibrate the features
adaptively. Furthermore, local, sub-local, and global skip connections are employed between each SEB to
enable the feature reusability and stabilize training convergence smoothly. Instead of hand-designed bicubic
upsampling at pre-processing step, we have performed post-upsampling at the later stage to reconstruct the
high-resolution image. Extensive quantitative and qualitative experiments are performed on the benchmark
test dataset, including Set5, Set14, BSDS100, Urban100, and Manga109. These experimental evaluations
validate the superiority of the SENext over other deep CNN image SR methods in terms of PSNR/SSIM,
FLOPs, Number of parameters, processing speed, and visually pleasing effect.

INDEX TERMS Convolutional neural networks, LeakyReLU activation function, squeeze-and-excitation
block.

I. INTRODUCTION
One of the most significant research area in convolutional
neural network-based image processing is a single image
super-resolution (SISR). SISR function is to reconstruct the
visually appealing high-resolution (HR) output image from
the input low-resolution (LR) image. However, SISR is still
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a difficult task and is considered as an inverse and ill-posed
problems and numerous algorithms [1], [2], [3], [4], [5] have
been discussed. Although these algorithms have improved
the condition of LR image, but performance is not satis-
factory and has more computational complexity. Recently,
deep convolutional neural networks (CNNs) captured the
market of image SR, and the research community shifted
from the old hand-designed approach to a new deep CNN-
based approach. Initially, Dong et al. recovered a new idea
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and proposed a shallow-type super-resolution convolutional
neural network (SRCNN) [6] architecture to reconstruct a
better HR image from the bicubic interpolated generated LR
input image. SRCNN [6] consists of three basic types of
CNN layers: patch extraction, mapping, and reconstructed
layers. Apart from the success of SRCNN [6] in the image
super-resolution, it has various limitations, containing slow
training speed, weak real-time restoration, bicubic interpo-
lation as a pre-processing stage, and large convolution ker-
nels used during the model design. In response to these
problems, the same author has proposed the revised ver-
sion of SRCNN [6] and replaced the bicubic interpola-
tion with a learnable upsampling transposed convolutional
layer to accomplish post-upsampling SR named fast super-
resolution CNN (FSRCNN) [7]. Furthermore, larger kernel
sizes of SRCNN [6] are replaced with smaller kernels to
boost up training efficiency and reconstruction quality. FSR-
CNN [7] improved the performance and decreased the com-
putational cost compared to the previous SRCNN [6]. The
main drawback of FSRCNN [7] is the capacity of a network
is limited. Kim et al. first time follow the idea of visual
geometry group network (VGGNet) [8] to proposed a Very
Deep Super-Resolution (VDSR) [9], which pushed up the
network and serially stacking multiple layers up to 20. The
performance of the VDSR [9] model significantly improved
over previous models. This method suggested that deeper
model architecture is the better and to increase the visual
quality of the HR image. Initially, a sub-pixel layer-based
model used in image super-resolution was suggested by Shi
et al. and named as an efficient sub-pixel convolutional neural
network (ESPCN) [10] to decrease the computational burden
as well as revise the upscaling process. In this approach,
the authors change the pre-stage upscaling bicubic operator
with a sub-pixel convolution layer, and features are recov-
ered from the original low-dimensional space to decrease the
model processing time during the training as well as testing.
Kim et al. suggested a new way of architecture known as
deeply-recursive convolutional network (DRCN) [11] and
replaced the serial way of a combination of CNN layers with
a recursive manner. This architecture’s main benefit is to
constantly maintaining network parameters, but the training
convergence process is too slow.

Additionally, to obtain better reconstruction performance,
the SR models used the concept of a deeper model and
stacking the side layer by the side. In some cases, the
model depth increases up to 100 layers observed [12].
A super-resolution model’s performance can be enhanced
by increasing its spatial depth, but doing so will suffer a
significant computational expense and memory usage. Fur-
thermore, deep CNN-based methods employed the bicubic
pre-processing operation as shown in Figure 1, such as
SRCNN [6], VDSR [9], and DRCN [11]. The main issue
with these approaches having a more computational cost and
reconstructing HR images having blurry results. To lessen the
computational complexity and increase the processing speed

FIGURE 1. Pre-processing interpolation-based image super-resolution
architectures of (a) SRCNN [6], (b) VDSR [9], and (c) DRCN [11].

of image SR models inspired by the Squeeze-and-excitation
networks (SENet) [13] and Single image super-resolution
with recursive squeeze and excitation networks (SESR) [14],
we proposed a Squeeze-and-ExcitationNext for Single Image
Super-Resolution named SENext. In our SENext method,
squeeze-and-excitation block (SEB) is added to develop the
interdependencies between respective channel and reweight-
ing the new features.

Furthermore, single local skip connection-based image
super-resolution approaches face the loss of feature infor-
mation at the subsequent end of the layers and act as a
dead layer. This issue creates the vanishing gradient problem
occurring in the training phase [8], [15], [16]. Our proposed
model handles this issue with the support of global and local
skip connections. In addition, selecting the proper activation
function is crucial for developing deep CNN methods. Rec-
tified linear unit (ReLU) activation function are currently the
most popular activation function. As Krizhevsky et al. [8],
suggested that ReLU activation function performs a faster
speed of the training and reduce the saturation problems.
Still, several recent papers address the issues of exploding
(i.e., retraining too much information) during the training [8],
[15], [16]. It is desirable to suggest a novel activation func-
tion to address the abovementioned shortcomings. In con-
trast to ReLU and PReLU activation functions, the novel
non-linear activation function proposed in this work is a
LeakyReLU (LReLU) [15]. The main contribution of our
proposed method is as under:

i) To reduce the computational cost and obtain the faster
convergence during the training phase, we have replaced
standard ResNet blocks with squeeze-and-excitation block
(SEB) blocks which is inspired by the Squeeze and Excita-
tion networks. Compared to other image SR methods, our
suggested model outperformed them by a factor of ×2, ×3,
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×4, and ×8 benchmark not only in speed but also in terms of
computational cost.

ii) The deeper model faces the problems of Dying ReLU,
which means the condition in which many ReLU neurons
send output values as zero, and the whole network gets stuck
and never improves the performance. We have replaced the
ReLUwith the LReLU activation function to initiate the dead
features introduced by zero gradients.

iii) The single local and global skip connection does not
reconstruct the visually pleasing high-quality HR image and
introduces blurry artifacts to the HR output image. We have
adopted a different approach and extracted the features infor-
mation from the multi-local, sub-local, and global skip con-
nections to reconstruct the visually pleasing, high-quality HR
image.

The remaining sub-section of our work is explained as
follows. Section II discusses the related work of deep CNN
image SR methods. Section III explains the proposed method
for SISR in detail. In section IV, we discussed the exper-
imental results with other state-of-the-art methods. Finally,
section V explains the conclusions and future work.

II. RELATED WORK
The objective of SISR is to reconstruct the visually appealing
HR output image that contains detailed information from
a LR input image. Conventional methods [1], [2], [3], [4],
[5] was resolve the image SR problem differently, but deep
learning-based CNN architecture used an effective and effi-
cient way. In this section, we will mainly discuss the recent
deep learning-based image SR approaches. The first deep
learning-based solution to the SISR problem proposed by
Dong et al. [6] named as super-resolution convolutional neu-
ral network (SRCNN). SRCNN [6] model depends on three
CNN layers to predict the output from the interpolated version
of the upscaled image to reconstruct the HR image. Although,
there is some weakness in this model. First, the proposed
model used bicubic interpolation to upscale the original LR
image, but bicubic interpolation introduced blurry results and
did not design for this purpose. Second, image reconstruction
information is still not satisfactory. The third is the slow con-
vergence rate which takesmore training time.Wang et al. [17]
introduce the sparse prior network for reconstructing the HR
image, known as the Sparse Coding Network (SCN) [17].
The computational performance of SCN is also improved to
earlier SR method [6]. Wang et al. modified the model and
replaced the non-linear mapping with a set of coding sparse
sub-networks [18]. The main disadvantage of SCN [17] net-
work architecture is the higher computational cost, leading
to many problems in real-time applications. To speed up the
reconstruction process of image super-resolution, Dong et al.
introduced the fast super-resolution CNN (FSRCNN) [7]
architecture. FSRCNN [7] is an upgraded and faster ver-
sion of the SRCNN [6] design. The straightforward network
design of FSRCNN used one deconvolution layer and four
CNN layers to upsample the original input LR imageswithout
using interpolation techniques. Compared to SRCNN [7]

performs better and has lower computational complexity, but
still it has a smaller network capacity. Efficient sub-pixel con-
volutional neural network (ESPCN) [10] is a simple, efficient,
and fast image super-resolution method, that can apply to
real-time image and video applications. A Very Deep Super-
Resolution (VDSR) network with residual skip connection
was introduced by Kim et al. [9] which was modeled after
the visual geometry group network (VGGNet) used in the
ImageNet for classification [8] task. VDSR employed the
global residual learning connection with a faster convergence
rate to lower the training complexity. The VDSR [9] method
uses the bicubic interpolation-based upscaled input image
rather than the actual pixel values resulting in increased
memory usage and high computational costs. In addition,
Kim et al. presented a Deeply Recursive Convolutional
Network (DRCN) [11] for an image SR framework that
employs several convolution layers. The key advantage of
DRCN [11] is that it has constant training parameters (num-
ber of parameters). Although there are more recursions, the
main drawback of DRCN [11] is that it slows the process
of training convergence. The authors also applied the skip
connection recursively to enhance model performance. The
residual encoder-decoder networks (RED) are a notion that
Mao et al. extend and proposed the RED [19] model. In this
approach authors used a residual learning with symmetric
convolution operation to obtain the better performance. As a
result, these findings support the idea that ‘‘the Deeper the
Better.’’ Contrarily, a shallow and deeper, fast deep learning-
based approach was proposed by Romano et al. named Rapid
and Accurate Image Super-Resolution (RAISR) [20]. In this
approach, the author classifies the input image patches con-
cerning the angle of patches, coherence, and strength to learn
the mappings from the original LR image to reconstruct the
HR image. To rebuild the HR image, Lai et al. developed
a deep Laplacian Pyramid Super-Resolution Network (Lap-
SRN) [21], a novel image SR design. The LapSRN [21]
architecture is based on many pyramid layers, each of which
has a deconvolution layer acting as an upsample. Denoising
convolutional neural networks (DnCNNs) were suggested by
Zhang et al. [22] to speed up the development of an extremely
deep convolutional neural network design. The DnCNNs net-
work stacks convolutional neural networks with Batch Nor-
malization (BN) layer before the ReLU activation function,
just like the SRCNN [6] network. Despite producing positive
results, the model is computationally expensive because it
uses a BN layer. Excessive use of convolution operations will
limit the advancement of image super-resolution technology,
especially for low-power computing devices. To resolve said
issue, Zheng et al. [23] proposed the concept of a lightweight
information multi-distillation network (IMDN). To further
improve the performance of SR methods Tai et al. [24] devel-
oped a 52-layer Deep Recursive Residual Network called
DRRN. Ledig et al. [25] use a deep CNN with residual
skip connections having 16 blocks to recover the upsampled
version of an output image. Lim et al. [26] suggested an
improved deep super-resolution network architecture to boost
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the model’s training effectiveness and win the NTIRE 2017
SR Challenge [27] as well as produced the cutting-edge
results named as enhanced deep super-resolution network
(EDSR). Tai et al. proposed the deepest model for image
restoration is a very deep persistent memory network (Mem-
Net) and used several memory blocks to create persistent
memory [28]. MemNet consists of cascaded memory blocks,
which fuse the global features.

Yamanaka et al. [29] developed a deep convolutional neu-
ral network-based framework for image SR to combine the
parallel CNN layers with skip connections. The two networks
they use most frequently are the SR image reconstruction net-
work and a feature extraction network for extracting features
from various levels. Compared to VDSR [9], this model is
shallower. Han et al. proposed a dual state recurrent networks
(DSRN), which transmits information from the LR image
state to the HR image state [30]. Authors update the signal
information at each step before forwarding it to the HR
state. A multi-scale residual network (MSRN) was created
by Li et al. [31] and used the features fusion at various
sizes by employing an adaptive feature detection strategy.
This method utilized the full hierarchical-based feature type
information to recreate the super-resolved HR image. Ahn
et al. [32] suggested a method for handling multi-scale infor-
mation and learning residuals in LR feature space to select
an appropriate paths [32]. Furthermore, this method [32]
provides modules for scale-specific upsampling types with
multiple shortcut connections. Choi et al. [33] used a recur-
sive neural network and proposed a fast and efficient image
SR with block state-based recursive network (BSRN). This
type of network architecture tracks the current information
status for image features. Zhang et al. [34] proposed the
super-resolution network for multiple degradations (SRMD)
to reconstructs the HR image by concatenating a LR image
with its degradation mapping function. Furthermore, SRMD
also designed another fine-tuning-based architecture named
as noise-free degradation (SRMDNF) model [34]. Multi-
scale inception-based super-resolution (SR) using deep learn-
ing (MSISRD) approach was proposed by Muhammad and
Aramvith [35], to utilize the inception block to reconstruct the
multi-scale feature information for image SR. In MSISRD
approach author employed the concept of asymmetric con-
volution operation to reduce the model’s computational cost.
Wang et al. [36] demonstrated a dilated convolution neu-
ral network designed to expand the receptive field without
expanding the kernel size. Furthermore, in [36] a shallow
network architecture only increased the size of the recep-
tive field. End-to-end image super-resolution via deep and
shallow convolutional networks architecture provided short
and long-range multi-scale information and replaced bicubic
interpolation operation replaced with transposed CNN layer
to reconstruct the HR image [37]. Yang et al. [38] proposed
a transposed layer-based network architecture with large-
scale components known as a deep recurrent fusion network
(DRFN). Su et al. [39] suggested a unique structure, which

entails several sub-networks to reconstruct the HR image
gradually and LR feature map used as an input for each sub-
network. In image super-resolution, arbitrary enlargement
factor is a challenge in real-time applications. Hui et al. [40]
suggested an information distillation network (IDN) method
to reconstruct the HR out image. In IDN [40] approach
authors directly extract the features information from the
original input LR image. IDN [40] uses a multiple cascaded
information distillation block (DBlock) to reconstruct the
residual-based high quality output image in HR domain.
Hung et al. [41] proposed a super-sampling network (SSNet)
architecture to significantly reduces the number of parame-
ters and multiplication operations due to the used of depth-
wise separable convolution operation. Barzegar et al. [42]
suggested a modest framework to avoid the training issue in
the deeper network architecture. Multi-scale Xception Based
Depthwise Separable Convolution for Single Image Super-
resolution (MXDSIR) was proposed by Muhammad et al.
[43]. MXDSIR employed a depthwise separable convolution
operation to reduce computational complexity. Hsu et al. [44]
were motivated by a capsule neural networks to extract addi-
tional possible feature information for image SR and created
the two networks for image SR, such as the Capsule Image
RestorationNeural Network (CIRNN) and the CapsuleAtten-
tion and Reconstruction Neural Network (CARNN). For SR
objectives and to learn the features information at various
phases, Liu and Ait-Boudaoud [45] presented a new hier-
archical convolutional neural network (HCNN) architecture.
The HCNN method involves a three-step hierarchical proce-
dure based on the edge branch extraction, the edge reinforce-
ment branch, and the SR image reconstruction branch. Prior
knowledge and very sensitive to noise issued SR algorithm
discussed in [46]. In this approach, the author fuses the infor-
mation of multi-scale image information in a non-linear man-
ner and uses a cascading-basedmulti-scale global mechanism
to capture the non-local feature information. Xiao et al. [47]
introduced the idea of a powerful lightweight multi-scale
feature extraction super-resolution network (MFEN) archi-
tecture. In the design of MFEN multi-scale feature extraction
blocks (MFEBs) are stacked side-by-side to obtain multi-
scale with hierarchical feature information. Xiao et al. [47]
also proposed a simple version ofMFEN known asMFEN_S.
To resolve the issues of network depth as well as width,
Qin and Zhang proposed an Attentive Residual Refinement
Network (ARRFN) [48] method. Generally, the architecture
of ARRFN consists of feature extraction, multi-scale sepa-
rable upsampling blocks, and attentive residual refinement.
Li et al. proposed an adjustable SR network (ASRN) [49],
which is easily adjusts the network depth of the proposed
ASRN model.

III. PROPOSED METHOD
In this section, we have discussed a detailed expla-
nation of our proposed network architecture for SISR
known as Squeeze-and-ExcitationNext for Single Image
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FIGURE 2. The proposed framework of Squeeze-and-ExcitationNext for Single Image Super-Resolution (SENext).

Super-Resolution (SENext), as shown in Figure 2. The pro-
posed framework mainly consists of two paths with four
different types of blocks such as shallow feature extraction
block (SFEB), squeeze-and-excitation block (SEB), split-
concatenate block (SCB), and finally capsule unit block
(CUB) with the support of special upper branch block (UBB).
The information transfer pathway passes low, mid, and
high-frequency information from the original low-resolution
images. In our proposed method, do not change the size of
the input image. Initially, we extract the feature information
from the original LR input image, add them, and pass through
the SCB, followed by the CUB block. To reconstruct the
visually pleasing HR output, we used all feature information
with a special upper branch, and then the resultant output pass
through the learning-based transposed convolution layer.

A. SHALLOW FEATURE EXTRACTION BLOCK (SFEB)
According to the survey of [26] and [50], the shallow fea-
ture F0 is extracted from the original LR input image using
only one or two 3 × 3 convolutional layers followed by the
ReLU activation function, as shown in Figure 3(a) and 3(b).
The design of said block is straightforward, but it cannot
extract the complete shallow features information from the
original LR input image. Furthermore, total network archi-
tecture depends on the initial shallow feature extractions,
and sometimes essential feature information is lost when a
network architecture is significantly deeper. To extract the
complete low and high-level features information from the

FIGURE 3. Different types of Shallow feature extraction blocks are
(a) Single layer shallow feature extraction block (b) Two-layer shallow
feature extraction block, and (c) Our Proposed Shallow feature extraction
block (SFEB).

original LR input image, we adapt the improved version
of Figure 3(b) architecture with the use of local skip SL
and global skip SG connections as shown in Figure 3(c).
Our proposed, designed shallow feature extraction block is
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FIGURE 4. Original fire block (squeeze and expand stage block).

explained as:

x0 = HSFEB(xLR ↓), (1)

whereHSFEB(.) represents convolution operation, and (xLR ↓)
is the original input LR image. After obtaining the shallow
features x0 is then used as the input of SEB.

B. SQUEEZE-AND-EXCITATION BLOCK (SEB)
For image and computer vision-based applications, the
SqueezeNet deep CNN architecture mainly focuses on com-
putational cost and model efficiency [51]. The first basic
architecture of the SqueezeNet block is commonly known as
a fire module, as shown in Figure 4. The whole architecture
consists of two stages: a squeeze stage that applies a series of
1 × 1 kernel and the expanded stage use 3 × 3 kernels both
followed by a conventional ReLU) activation function. The
number of squeeze filters that can be learned is always less
than the volume of the input. Consequently, the squeeze stage
may be considered a dimensionality reduction process that
also captures the pixel correlations between input channels.
The output of the squeezing phase relates to the expansion
phase, which combines learning 1×1 and 3×3 convolutions.
To reduce the vanishing gradient issue during the training as
well as decrease the computational complexity, we proposed
an improved squeeze-and-excitation block (SEB) by stacking
a series of 1×1 convolution layers in each phase and using the
LReLU activation function in place of the ReLU activation
function as shown in Figure 5. Suppose the proposed SEB
contains N number of Blocks, then xn−1 and xn be the input
and output of the nth SEB block. The resultant output of xn
feed to the SCB block.

xn = Hn(xn−1), = Hn(xn−1)(. . . (H1(x0)) . . .), (2)

C. SPLIT-CONCATENATION BLOCK (SCB)
Residual learning is one of the most crucial technique to
ease the training for large-scale networks [52]. A global
skip connection was implemented by Kim et al. in [9] and
could concentrate on predicting the residual skip connection
learning. Furthermore, residual skip connection technique
moved the extracted feature information through every block
using the short-term skip connections [53]. Numerous efforts
have altered the structure of original ResNet [52] was first
time developed for the image recognition task and obtained
the remarkable performance. Several versions of the residual
learning-based construction blocks are shown in Figures 6(a)
and 6(b). The SRResNet building block [25] differs from
the original ResNet block [52], due to the lacking of an
activation layer following element-wise addition. The two
BN layers were eliminated from SRResNet to create the
EDSR building blocks [26]. The authors of EDSR [26] are
recommended that BNwould not be appropriate for the image
super-resolution task. Thus, our proposed model adopts a
split-concatenate block without BN, as shown in Figure 6(c).
Initially, HR features are split into two branches with a kernel
size of 3×3 and 5×5 to take the benefit of small as well as a
sizeable receptive field both followed by another 3 × 3 filter
with LReLU activation function to prevents gradients from
saturating and mitigates the risk of vanishing gradients.

D. CAPSULE UNIT BLOCK (CUB)
To minimize the feature map dimension and merge long-term
features with skip connections to rebuild the high-quality HR
image discussed in Squeeze Unit [54]. To follow the concept
of [54], we proposed a particular capsule unit block (CUB)
with a global skip connection, as shown in Figure 7. The
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FIGURE 5. Proposed fire module used as a squeeze and excitation (SEB) block.

FIGURE 6. The structures of different residual learning blocks.
(a) SRResNet [25], (b) EDSR [26], and (c) Our proposed Split-Concatenate
Block (SCB).

FIGURE 7. Proposed Capsule Unit Block (CUB) with local skip connection.

design of the proposed CUB block consists of one bottle-
neck layer followed by LReLU and one 3 × 3 filter. The
bottleneck layer recalibrates the information with a sub-local
skip connection to overcome parameter growth and build an
efficient architecture. The concatenated output is used by one
convolution layer of filter size is 3 × 3.

E. UPPER BRANCH BLOCK (UBB)
Implementation of Inception [55] network architecture-based
block before the transpose layer to extract the multi-scale

FIGURE 8. Proposed Upper Branch Block (UBB) with global skip
connection.

features information is to increase the computational cost.
Furthermore, inception block used before the transposed
layer is to availability of a max-pooling layer. The max-
pooling layer is to lose the features information, which leads
to drop the performance of the model [56], [57]. Furthermore,
5 × 5 kernel size is more time-consuming and expensive.
To resolve these issues, we proposed an alternate design with
a simple upper branch block (UBB) with a small kernel size
as shown in Figure 8. We removed the max-pooling layer
operation with a residual skip connection. In the UBB block,
we utilized 10 CNN layers having a filter size is 3 × 3 with
the support of the LReLU function, except the last layer. The
resultant LR features are concatenated and fed through the
learning-based deconvolution layer with a filter size is 3×3 to
recover the visually pleasing HR reconstructed output image.

IV. EXPERIMENTAL RESULTS
In this section, we assess the effectiveness of our SENext
model on different public datasets. Initially, we discuss the
training and testing datasets; then, we will explain the exper-
imental evaluations with state-of-the-art methods. Training
was performed on a combination of two datasets, such as
100 image of DIV2K [27] and 300 images of BSDS300 [58].
The same combination is observed in [50] and [59]. Addition-
ally, we apply the data augmentation technique to decrease
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FIGURE 9. The performance comparison in terms of model parameters
versus PSNR tested on the image dataset of Set5 with upscale factor ×2.

the chances of overfitting and increase the efficiency dur-
ing the training. For experimental calculations we used the
five benchmark test datasets, such as Set5 [60], Set14 [61],
BSDS100 [58], Urban100 [62] and Manga109 [63]. The
original low-resolution image is obtained using MATLAB
bicubic operation for enlargement scale factor ×2, ×3, ×4,
and ×8. Adam optimizer used for training purposes with
0.0001 initial learning rate. The proposed methods used the
Windows 11 operating system having one GPU (GeForce
NVIDIA RTX 2070 GPU) with Core (TM) i7-9750H CPU
of an Intel(R)@ 2.60GHz having 16.0 GB RAM system. The
training and testing phase is performed under Keras 2.6.0with
TensorFlow 2.6.0 environment.

A. QUANTITATIVE COMPARISONS WITH EXISTING
STATE-OF-THE-ART-METHODS
The quantitative comparison analysis of five benchmark test
datasets is present in a Table 1. Our proposed SENext quan-
titatively compare with fourteen methods, such as Bicubic,
SRCNN [6], FSRCNN [7], VDSR [9], DRCN [11], Lap-
SRN [21], DRRN [24], MemNet [28], ASRN [49], IDN [40],
SRMDNF [34], MFEN_S [47], CARN [32], and IMDN [40].
As seen in Table 1, our SENext quantitative (PSNR/SSIM)
results are significantly outperformed as compare to state-
of-the-art methods. Performance of SENext model is better
on almost test datasets except Set5 scale factor 3× and 4×.
Furthermore, on all over average our model obtained higher
value of PSNR/SSIM than other methods.

B. COMPARISON ANALYSIS BASED ON THE NUMBER OF
MODEL PARAMETERS
Figure 9, shows the comparison of computational cost of
our SENext model in terms of size of the network K-times
parameters versus PSNR. By employing the squeeze-and-
excitation blocks, our SENext network model shrinks the size
of the model than other deep CNN image SR models. The
proposed model evaluates the performance on Set5 [60] test
dataset with an enlargement scale factor of ×2. SENext has a
parameters about 85% lower than the VDSR [9], 95% lower
than the DRCN [11], 88% lower than the LapSRN [21], 66%

FIGURE 10. Quantitative evaluation of average PSNR and SSIM of existing
SR methods with an enlargement factor ×2.

FIGURE 11. Quantitative evaluations of PSNR versus running time on
Set5 with enlargement factor ×2.

lower than the DRRN [24], 86% lower than theMemNet [28],
57% lower than theASRN [49], 82% lower than the IDN [40],
94% lower than the SRMDNF [34], 87% lower than the
MFEN_S [47], 94% lower than the CARN [32], and 86%
lower than the IMDN [40].

C. COMPARISON ANALYSIS BASED ON THE IMAGE
QUALITY METRICS
In this subsection, we compare the performance of exist-
ing image super-resolution methods using PSNR/SSIM in
Figure 10. The quantitative results shows that our SENext
attains the best quantitative performance of existing deep
CNN image SR methods. Using a squeeze-and-excitation
block with local and global skip connection, our proposed
model has obtained the peak value in both quality metrics
(PSNR/SSIM).

D. QUANTITATIVE ANALYSIS OF RUN TIME VERSUS PSNR
In this section, we assess our SENext model’s performance
in terms of runtime time versus PSNR, as seen in Figure 11.
To assess the state-of-the-art approaches using an Intel
CPU i7-9750H having 2.60 GHz with supported card of
NVIDIA GeForce RTX 2070 GPU (16 GB Memory). For
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TABLE 1. Presents the quantitative assessment of image SR methods with our SENext. The reported results of average values of PSNR/SSIM of factors
×2, ×3 ×4, and ×8. Red color with bold quantitative values is recorded as the best value. The blue color with underlined quantitative values is indicated
as the 2nd best value.

evaluation purposes, we used the GitHub codes provided by
the researchers. The trade-off between CPU time of execu-
tion versus PSNR on Set5 [60] enlargement factor ×2 is
present in Figure 11. Our proposed method is faster than
recent state-of-the-art methods except then shallow models
(SRCNN and FSRCNN). Furthermore, our proposed SENext
attains less computation cost regarding floating point opera-
tions (FLOPs), as shown in Figure 12.

E. PERCEPTUAL QUALITY COMPARISON
Figure 13, 14, 15, 16, and 17 shows the perceptual quality of
enlargement factor ×4 and ×8 image SR test datasets includ-
ing BSDS100 [58], Urban100 [62] and Manga109 [63]. The
results on challenging enlargement scale factor ×8 observed
that more blurry results were generated by Bicubic, RFL [5],
SelfExSR [62], SRCNN [6], and FSRCNN [7]. However, it is

FIGURE 12. Quantitative evaluations of PSNR versus FLOPs on Set14
enlargement factor ×4.

a difficult effort to improve an image for an enlargement
factor of ×8. Our SENext successfully recovers the fine
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TABLE 2. Overall summary of state-of-the-art deep learning-based image SR methods.

FIGURE 13. Visual perceptual quality-wise improvement of image 21077 obtained from BSDS100 dataset with ×4 enlargement factor.

FIGURE 14. Visual perceptual quality-wise improvement of image 87046 obtained from BSDS100 dataset with ×4 enlargement factor.

texture detail and effectively suppresses the artifacts, because
our approach follow the concept of SqueezeNet [51] in which
size is extremely compact for mobile applications and has
only 1.2 million parameters but achieves an accuracy similar
to AlexNet [64]. During the design of SqueezeNet, the archi-
tecture used 26 convolution neural network layers without a
fully-connected layer. SqueezeNet achieves a top-1 accuracy

of 57.4% and a top-5 accuracy of 80.5% on ImageNet [64].
The potential applications of SqueezeNet techniques are vari-
ous in the field of image and computer vision tasks. The main
versatile application of SqueezeNet in healthcare [64] and
self-driving cars [66], where compact and efficientmodels are
highly desirable. Self-driving cars rely heavily on real-time
object detection to safely navigate through their environment.
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FIGURE 15. Visual perceptual quality-wise improvement of image 050 obtained from Urban100 dataset with ×4 enlargement factor.

FIGURE 16. Visual perceptual quality-wise improvement of img060 image from Urban100 image test dataset with ×8 enlargement factor.

FIGURE 17. Visual perceptual quality-wise improvement of MAD_STONE image from Manga109 image test dataset with ×8 enlargement factor.

SqueezeNet has been used to improve the efficiency and accu-
racy of object detection in self-driving cars by quickly identi-
fying objects such as pedestrians, cars, and traffic signs while

consuming minimal computational resources [65]. Another
major application of SqueezeNet used is in the field of medi-
cal imaging, where real-time image processing and diagnosis
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TABLE 3. Quantitative evaluations with and without SFEB on
enlargement factor ×4.

has been utilized to increase the effectiveness of medical
imaging systems, including computed tomography (CT) and
magnetic resonance imaging (MRI) scanners [66]. Quick CT
image analysis and diagnosis can lead to better patient care
and treatment results. Furthermore, face-mask detection [67]
is also a central application of SqueezeNet to resolve the
critical problems in security and surveillance. Finally, overall
summary of state-of-the-art deep learning-based image SR
methods present in Table 2.

F. ABLATION STUDY
1) MODEL ANALYSIS WITH SHALLOW FEATURE EXTRACTION
BLOCK
Design of a shallow feature extraction block as a backbone
of deep CNN model. In this ablation study we compare a
results of a model with a shallow feature extraction block
and without shallow feature extraction. For quantitative abla-
tion study purposes, we have trained two models separately,
such as the SENext model with and without SFEB. Both
models are trained on the same specification of GPU dis-
cussed in Section IV. For training purposes, we used only
the Yang91 [1] image dataset. The quantitative experiment
performs on benchmark test datasets such as Set5, Set14,
BSDS100, Urban100 andManga109 with enlargement factor
×4 as shown in Table 3. Results in Table 3 clearly shows that
a model with SFEB achieves better performance as compared
to without SFEB.

2) MODEL ANALYSIS WITH DIFFERENT BLOCK
ARRANGEMENTS
Amore comprehensive ablation study of our proposed blocks
can be found in Table 4. In this experiment, we investi-
gated the effects of various combinations of blocks. The
eight networks were trained for super-resolution application
with enlargement factor ×4 and have the same configura-
tion of training as well as validation parameters. We used
the 100 images of a DIV2K [27] dataset for training and
91 images from Yang91 [1] for validation with 16 batch sizes
having 100 epochs. In Table 4 PSNR value is reported and
observed that the baseline network (without any block) gives

TABLE 4. Ablation study of different blocks, including SFEB, SEB, and
SCB. The quantitative value of average PSNR calculated on Set14
enlargement factor ×4 on 100 epochs.

FIGURE 18. Performance Analysis of loss versus epoch of activation
functions.

the lowest PSNR value (28.11 dB), but the best performance
(28.48 dB) is observed when all blocks are used in the model.

3) MODEL ANALYSIS WITH ACTIVATION FUNCTION
Maas et al. [15] evaluated a variant of ReLU with a gradi-
ent more amenable to optimization, which leads to Leaky
ReLU [1]. Most common problems facing ReLU activation
function is a Dying ReLU, which resolve by LReLU. For this
ablation study purpose, we trained a three different model,
such a model used only ReLU activation function, and other
two models used LReLU activation with different value of
α. The value of α is non-zero value over the entire domain,
which allows a small leakage to activate the dead neurons.
In Figure 18 and 19 results shows that network with LReLU
has a more quick convergence and help networks to train
faster. Furthermore, a model with LReLU having value of
α = 0.2 is less loss and higher value of PSNR as compare
to LReLU with α = 0.5 and ReLU activation functions.

4) MODEL ANALYSIS WITH SELECTION OF OPTIMIZERS
The selection of an optimizer plays a crucial role during
the training to optimize the model efficiency and reduce the
chance of overfitting. Our proposed SENext model is trained
on four optimizers: Adam [68], Adamax, an enhanced ver-
sion of Adam, Root Mean Squared Propagation (RMSprop),
and Stochastic Gradient Descent (SGD). The experimental
results with loss function as shown in Figure 20. Adam
optimizer shows a more stable pattern as compare to other
optimizers. RMSprop (green line) decreases slowly with
more ripples after 400 iterations as compared to Adam. All
optimizers were trained on 1000 epochs with the base model.
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FIGURE 19. Performance Analysis of PSNR (dB) versus epoch of
activation functions.

FIGURE 20. Performance analysis for selection of Optimizers.

FIGURE 21. Performance Analysis of Datasets (Number of Images) Versus
Avergae Time on all test datasets.

For Training purposes we used 100 images obtained from
a DIV2K dataset [27] and for validation used 91 images of
Yang91 dataset [1] having batch size is 16.

5) MODEL ANALYSIS IN TERMS OF MEAN INFERENCE TIME
The inference time is an important factor of image super-
resolution methods other than the SR performance. In this

part of ablation we shows the inference test time on publicly
available datasets such as Set5, Set14, BSD100, Urban100
and Manga109 with enlargement factor 2×, 3×, 4× and 8×
as shown in Figure 21. Form the Figure 21, it is clearly
seen that as the higher enlargement factor increasing the more
processing time as compared to small scale factor, because
input image having 2× enlargement factor is higher than 8×
enlargement factor. Therefore, the computational cost of 2×
input image is higher than 8× enlargement factor.

V. CONCLUSION AND FUTURE WORK
In this study presents a novel two-stage squeeze (compress)
and expanded method for Squeeze-and-ExcitationNext for
Single Image Super-Resolution (SENext). Proposed SENext
used SFEB, SEB, SCB, CUB, and UBB blocks with the sup-
port of local and global residual skip connection. The SFEB
blocks are extract the low-frequency feature from the original
LR an input image. The resultant new feature information
are add to the remaining blocks through a long and short
skip paths. Implementation of SEB side-by-side reduces the
computational cost of the network and calculates the high-
frequency features information. The use of extensive sub-
local skip connections helps to reduce vanishing gradient
problems during the training. In addition, to activate the dead
neurons in the model during the training, we replaced the
conventional ReLU activation function with LReLU. Further-
more, the comparative analysis and ablation study shows the
efficiency of a squeeze and excitation network to reduce lots
of parameters and computational cost. Extensive evaluations
on five benchmark test datasets showed that our SENext
model also improves the reconstruction results in both quan-
titative and qualitative criteria on challenging upsampling
factor of ×4 or ×8. In future, we will further optimize our
model to introduce multi-path learning with dense global and
local skip connections under complex scenarios.
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