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ABSTRACT This paper proposes a fault diagnosis method based on an improved residual network (ResNet)
for complex chemical processes. The method can automatically and efficiently extract fault features from
the extensive data generated by the chemical operation process. The improvement is carried out in three
aspects. Firstly, 1D convolution is introduced in the construction of the model to reduce the number of
parameters and training time, and shortcut connections are used to alleviate the network degradation problem
of traditional deep neural networks. Second, a residual-CBAM module is proposed by combining residual
networks with Convolutional Block Attention Module (CBAM). This module can effectively reduce the
interference of invalid targets and improve the characterization ability of the model. Finally, based on the
backbone path of the network, the branching path after spatial pyramid pooling (SPP) is introduced to enable
the network to extract features from different angles of the feature map and further aggregation, which
improves the robustness of the model. The Tennessee-Eastman (TE) process is used as the experimental
object to compare the improved ResNet with several other deep learning models. The experimental results
show that the improved ResNet model achieves the best fault diagnosis results. The t-SNE method was used
to visualize the fault classification process by the improved ResNet model, and the effectiveness of the
improved ResNet model was further analyzed and verified.

INDEX TERMS Fault diagnosis, chemical process, ResNet, CBAM, SPP, Tennessee Eastman process.

I. INTRODUCTION
Abnormal variations in chemical process variables that
exceed normal thresholds are called faults. There are various
methods for fault detection and diagnosis (FDD). However,
fault diagnosis methods can be broadly classified into three
categories qualitative knowledge-based methods [1], model-
based methods [2], and data-driven methods [3], as summa-
rized by Venkatasubramanian et al.

Qualitative knowledge-based and model-based methods
can no longer meet the needs of modern complex industrial
systems because of the extreme reliance on expert knowledge
and experience and the difficulty of mathematical modeling
[4], [5]. The data-driven methods only need to establish a
fault diagnosis model based on the offline process data of
the system and then substitute the online data into the model
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to achieve accurate fault detection and diagnosis through
analysis and judgment, which has obvious advantages over
the previous two methods and is gradually becoming a hot
spot for research [6].

Data-driven fault detection and diagnosis methods can be
further divided into statistical and machine-learning meth-
ods. The statistical methods extract features by analyzing
the statistics of the system variables, which in turn enables
fault diagnosis. Common statistical methods include prin-
ciple component analysis (PCA) [7], [8], [9], partial least
squares (PLS) [10], [11], independent component analysis
(ICA) [12], [13], [14], kernel principle component analy-
sis (KPCA) [15], linear discriminant analysis (LDA) [16],
etc. Machine learning methods can be divided into shallow
learning methods and deep learning methods. Among the
shallow learning methods include support vector machines
(SVM) [17], [18], K-nearest neighbors (KNN) [19], Gaus-
sian mixture models (GMM) [20], artificial neural networks
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ANN [21], [22], etc. However, the two methods are difficult
to deal with data with strong nonlinear relationships. In order
to further improve the accuracy of fault detection and diagno-
sis, another method of machine learning, deep learning, has
achieved good results.

The essence of deep learning is the process of learn-
ing features through networks at multiple levels, which has
a more robust feature extraction capability when dealing
with nonlinear and non-normally distributed data compared
to traditional machine learning methods, and the original
data is transformed to obtain abstract features that will be
learned autonomously [23]. Since Yann Le Cun proposed
the Convolutional Neural Network (CNN) in 1998, it has
been continuously optimized and applied to more practical
models [24].

In 2013, Tamilselvan et al. were the first to propose apply-
ing deep learning methods to fault diagnosis [25]. Xie and
Bai proposed a fault diagnosis method for chemical processes
based on hierarchical DNN (HDNN), which can adaptively
mine the available fault features from the measured signals
[26]. Zhang and Zhao proposed a fault diagnosis model based
on a scalable deep confidence network (DBN), which extracts
each fault feature in the spatial and temporal domains through
DBN sub-networks separately and performs fault classifi-
cation after training with a full two-layer back propagation
network [27]. For time-series fault data, Zhao et al. proposed
a long short-term memory neural network (LSTM) method,
which can adaptively learn the original data’s dynamic tem-
poral information. The results showed that the model has
better fault diagnosis capability [28].

In this paper, firstly, to address the problem of a large
number of model parameters and slow training time, the
CNN and ResNet models are constructed by incorporating
1D convolution in the model instead of 2D convolution,
which reduces the number of parameters of the model, thus
improving the efficiency of modeling and reducing the time
cost of the algorithm. Secondly, in order to reduce the inter-
ference of invalid targets and make the model more focused
on several faults with low diagnostic accuracy, we continue
to improve on the already constructed ResNet model by
combining ResNet with the Convolutional Attention Module
(CBAM) and propose the Residual-CBAM module, so that
the characterization ability of the model can be improved.
Finally, to enhance the generalization ability and robust-
ness of the model, spatial pyramid pooling (SPP) is intro-
duced to make the model extract features from multiple
perspectives. Experiments are conducted for the TE process
to evaluate the fault diagnosis performance of the proposed
method.

The paper is organized as follows. Section II of this paper
introduces the basic theory of the improved ResNet, includ-
ing the basic structure of ResNet, the convolutional block
attention module (CBAM), and the branch-and-stem path of
spatial pyramidal pooling. Section III introduces the chem-
ical process fault diagnosis method based on the improved
ResNet. The comparative experimental results of different

models for TE process fault diagnosis are given in Section IV.
Finally, Section V concludes the paper.

II. RELEVANT THEORY
A. ResNet
With the emergence of convolutional networks, more and
more scholars have devoted themselves to the study of con-
volutional networks. Therefore, several problems were soon
exposed, one of which is that as the depth of the net-
work increases, parameter optimization becomes more and
more difficult, leading to more training and testing errors in
multi-layer networks than in multi-layer networks, i.e., net-
work degradation problems. To solve this problem, He et al.
proposed the residual network (ResNet) in 2015 [29], where
they introduced shortcut connections in the network structure,
which can pass the input directly to the output across multiple
layers of the network. The effect is that instead of fitting the
underlying network, only the modified residuals based on the
original input constant mapping can be fitted. If the input
mapping is already optimal, then the residuals module must
only fit a zero mapping. However, in practice, the constant
mapping could be more optimal, and the later network only
needs to fit the output of the previous network with the
truly desired residuals. The results show that the problem of
network degradation can be effectively mitigated. The struc-
ture of ResNet is similar to the results of the convolutional
network and consists of the following components.

1) CONVOLUTIONAL LAYER
The convolutional layer is a core component of the
CNN model and a fundamental component of the ResNet
model. In general, the input to the convolution layer is
three-dimensional data ofHWC , whereH denotes the height,
W denotes the width, and C denotes the number of channels,
which can be understood as the input consisting of C two-
dimensional feature maps of size H×W . The main purpose
of the convolutional layer is to extract features from the input
feature map by convolutional kernels, and one convolutional
kernel extracts one kind of feature. The input data generally
contains multiple features, so a complete convolutional layer
usually contains multiple convolutional kernels and multiple
output feature maps. The formula for the convolution layer is
defined as (1).

Yi,j,0 = bo +

∑
m

∑
n

∑
k
Xi−m,j−n,kFm,n,k,o (1)

where X is the input feature map, F is the convolution kernel,
b is the bias, Y is the output featuremap, i represents the index
of the height of the input feature map, j represents the index
of the width of the input feature map, and k represents the
index of the channel of the input feature map. m represents
the index of the height of the convolution kernel, n represents
the width of the convolution kernel, and o represents the index
of the channel of the output feature map. This model has two
2D convolutional kernel sizes, 3 × 3 and 1 × 1, respectively.
To process the timing data more conveniently, in addition
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to 2D convolution, this model also uses 1D convolution,
which differs from 2D convolution in that it only performs
convolution operations in a one-dimensional direction with a
convolution kernel size of 2 × 1. The expression for the 1D
convolution operation is changed to (2).

Yi,0 = bo +

∑
m

∑
k
Xi−m,kFm,k,o (2)

At this point in the 1D convolution, i represents the index of
the length of the input feature map, m represents the index of
the length of the convolution kernel, k represents the index
of the channel of the input feature map, and o represents the
index of the channel of the output feature map.

2) CONVOLUTIONAL LAYER
This model uses the Rectified Linear Unit(ReLU) and Sig-
moid activation functions.

ReLU is a segmentation function, which is formally
defined as (3).

f (x) = max {0,x} =

{
x, x ≥ 0
0, x< 0

(3)

The Sigmoid function is a saturation activation function,
which is formally defined as (4).

σ =
1

1 + e−x
(4)

3) SHORTCUT CONNECTIONS
Shortcut connections are the core part of the ResNet model
and the key to the superior performance of the ResNet model
over the ordinary CNN model. As the number of layers
increases, the network degenerates. As the number of layers
grows, the training set’s loss rate decreases, then saturate,
and increases when the depth of the network is increased.
However, this is not overfitting because the training loss rate
decreases all the time in overfitting.When the network degen-
erates, the shallow network can achieve better training results
than the deep network, and if the features of the lower layer
are passed to the higher layer, the results should be at least
as good as the shallow network. In the forward transmission
process, as the number of layers deepens, the feature infor-
mation contained in the input feature map decreases layer by
layer after several convolution operations, and the addition
of constant mapping in the residual network ensures that the
network at layer l+ 1 must contain more feature information
than that at layer l. The ResNet was born based on this
idea of directly connecting different network layers using
constant mappings. The ResNet model’s main architecture
is composed of several stacked residual blocks. The residual
blocks can be expressed as (5).

y = F (x, {Wi}) + x (5)

where x and y are the input and output of the residual block,
F (·) is the residual mapping to be learned, and Wi is the
parameter to be learned. F(·) + x is the summation of the

elements in the corresponding positions. If the two dimen-
sions are the same, they can be added directly, and if the
dimensions are different, the method of averaging pooling
and then padding ‘‘zero’’ is used to make the dimensions
match.

4) POOLING LAYER
The pooling layer is used to downsample its previous layer. Its
role is to reduce the size (length, width, number of channels)
of the previous layer because the pooling layer does not con-
tain parameters, so it can significantly reduce the amount of
computation, memory usage, and number of parameters, and
shorten the training time of the network, to achieve a certain
scale, spatial invariance, and reduce overfitting. This model
uses multiple pooling, max pooling, global max pooling, and
global average pooling. Max pooling is partitioning the input
image into multiple rectangular regions; for each subregion,
a maximum value is an output. Global max pooling is a
special kind of max pooling, except that instead of splitting
out several rectangular regions, the maximum value is taken
for all elements of the entire feature map and output to the
next layer. Global average pooling is similar to global max
pooling but differs from global max pooling in that it averages
all elements of the entire feature graph before outputting them
to the next layer..

5) FULLY CONNECTED LAYER
The final output layer of the improved ResNet model is a fully
connected layer with a softmax classifier. The input of this
layer is the output neurons of the previous maximum pooling
layer, and the number of final output neurons is generally set
to the number of work condition types. The softmax function
is used as a classifier after the fully connected layer to evalu-
ate the probability that the input data belongs to each type of
working condition. This function is also a activation function,
and its output can be considered a probability distribution,
so it is generally used as a classifier only in the last layer.
This function can be defined as (6).

yj =
ezj∑K
k=1 e

zk
, j= 1, . . . ,K (6)

where zj is the jth output feature of the fully connected layer,
which is the jth input of the softmax function, yj can be
considered as the probability that the input data belongs to
the jth category of working conditions, andK is the number of
working conditions categories. Among these K probabilities,
the model takes the working condition corresponding to the
maximum value as the result of the diagnosis.

Meanwhile, the cross entropy loss function represents the
error between the actual output and the desired output of
the network output layer. The cross entropy loss function is
defined as (7).

L
(
tj, yj

)
= −

∑k

j=1
tj ln

(
yj

)
(7)

where yj is the probability that the input data belongs to the jth
category of faults, tj is the final output of the network, which
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is the output of the softmax function, and K is the number of
working condition types.

B. CONVOLUTIONAL BLOCK ATTENTION MODULE
The attention mechanism is essentially a resource alloca-
tion mechanism, which can change the resource allocation
according to the importance of the target of attention so
that the resources are tilted more toward the object that
needs to be focused on. The Convolutional Block Attention
Module (CBAM) incorporates both channel attention and
spatial attention mechanisms to improve the overall detection
accuracy of the model [30].

The channel attention operation is performed first, which
can be calculated from (8). The input feature map X (H ×

W × C) is subjected to global maximum pooling and global
average pooling based on height and width to obtain two
1 × 1 × C feature maps, which are then sent to two fully
connected layers respectively, with weights shared between
the two fully connected layers. Then, the summation opera-
tion is performed on the features after the output of the two
fully connected layers. The final channel attention feature
map is generated by the sigmoid activation function so that
the weights of each feature map are obtained.

The second step performs the spatial attention operation,
which can be calculated from (9). The output feature map
of the above step after the channel attention module is the
input feature map of the spatial attention module. The input
feature map is subjected to global max pooling and global
average pooling based on channels, and 2 H ×W × 1 feature
maps are obtained. Then a channel splicing operation is per-
formed on these 2 feature maps. At this point, the number of
channels of the feature map is 2. After another convolution
operation, the feature map is downscaled to 1 channel. Then,
the sigmoid activation function is used to generate the output
space attention mechanism feature map, so that the weights
of each feature point on the feature map are obtained. Finally,
the output feature map that has gone through the attention
mechanismmodule is shortcut-connected with the output that
initially went through two separate convolution operations to
obtain the residual attention module.

Mc (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F)))

(8)

Ms (F) = σ (f ([AvgPool (F) ;MaxPool (F)])) (9)

C. THE SPATIAL PYRAMID POOLING LAYER
Spatial Pyramid Pooling (SPP) is to obtain multiple output
feature maps of different sizes from an input feature map
after the pooling operation, flatten these feature maps into
1D arrays, and then stitch these 1D arrays, and finally send
the stitched feature maps to the fully connected layer for
classification [31]. The spatial pyramid pooling layer has
the following two advantages: first: it can solve the defects
caused by the different sizes of input images. Second: it shows

the robustness of the algorithm due to the feature extraction
and aggregation of a feature map from different angles. The
pooling kernel size and step size are calculated using the fol-
lowing formula: windowsize = M/N (roundedup), stride =

M/N (roundeddown), where M is the input feature map size,
and N is the output feature map size. The dimensions of
the three feature maps of the spatial pyramid output used in
this model are 4 × 4, 2 × 2, and 1 × 1, respectively. The
feature map of this model is divided into two paths after three
residual attention modules. One of the paths is to reconstruct
the input feature map for feature map reconstruction and then
perform a one-dimensional convolution operation, which is
the backbone path. The other path is the spatial pyramid
pooling branch, which turns the input feature map into 4× 4,
2×2, and 1×1 by spatial pyramid pooling, then flattened and
stitched into a one-dimensional array. This allows the features
of the input feature maps to be extracted in two ways, after
which the extracted featuremaps are fusedwith the trunk road
for feature fusion, which helps the subsequent model for fault
diagnosis.

III. FAULT DIAGNOSIS METHOD BASED ON
IMPROVED ResNet
The structure of the improved ResNet fault diagnosis model
proposed in this paper consists of convolutional layers, acti-
vation function layers, residual-CBAM modules, pooling
layers, a spatial pyramid pooling layer, and fully connected
layers. The model can be divided into two main parts,
as shown in Figure 1 and Figure 2.

The input data is originally a set of one-dimensional time-
series data, so it needs to go through a fully-connected layer
first to expand the dimensionality of the channels. Then the
feature map is reconstructed into a two-dimensional feature
map. Then, the structure of the proposed residual-CBAM
module is shown in Figure 1. Each residual-CBAM module
contains two convolutional layers as well as spatial attention
and channel attention mechanisms. The input feature map is
first passed through a convolutional layer with a convolu-
tional kernel size of 3× 3, followed by a convolutional layer
with a convolutional kernel size of 1 × 1. The 1 × 1 convo-
lutional kernel does not change the size of the current feature
map. Its primary role is to follow the 3 × 3 large receptive
field convolution kernel and further purify the features by a
small receptive field convolution kernel to obtain a residual
feature. After passing through the two convolutional layers,
the output feature map passes through the spatial and channel
attention mechanisms. Thus the output feature map of each
layer is obtained. Then, each part of the output feature map
is connected by shortcut connections to form the residual-
CBAM module. The reconstructed feature maps go through
3 residual-CBAM modules.

After the three residual-CBAM modules, the model will
be divided into two paths, as shown in Figure 2. One path
reduces the obtained two-dimensional feature map into a one-
dimensional array, and feature extraction is performed by
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FIGURE 1. The first part of the improved ResNet model.

FIGURE 2. The second part of the improved ResNet model.

1D convolution in the network backbone. In contrast, the
other path performs feature extraction by spatial pyramid

pooling, and the output is also a one-dimensional array after
spatial pyramid pooling. The features of the two paths are
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FIGURE 3. Fault diagnosis process based on improved ResNet model.

fused. The final step goes through a fully connected layer
and a softmax classifier to output the fault classification
results.

The fault diagnosis method based on improved ResNet can
be divided into the following steps, and the specific process
is shown in Figure 3.

1) Collection of historical data and pre-processing of data,
tagging;

2) Building the improved ResNet model;
3) Training and validation of the constructed model using

historical data;
4) Get the trained model;
5) Collection of online data and pre-processing of data,

tagging;
6) Using the trained model for online real-time

processing;
7) Output fault diagnosis results.

IV. SIMULATION EXPERIMENT AND ANALYSIS
A. DATASET INTRODUCTION AND PREPROCESSING
The TE data generated by the TE experimental platform is
used as a data source to verify the performance of the pro-
posed improved ResNet fault diagnosis method. Tennessee
Eastman (TE) process is a model based on an actual chemical
process and is widely used to evaluate the performance of pro-
cess monitoring methods. A modified version of the TE pro-
cess is used as the simulation platform, and the flow chart of
the TE process is shown in Figure 4. Normal condition data
and fault data can be collected from the Simulink simulation
module of MATLAB. The collected TE data include normal
data and 21 types of fault data for a total of 22 operating con-
ditions. Each operating data set consists of 800 data sets, each
consisting of 53 process variables, and of these 53 variables,
there are 12 operational variables and 41 measured variables.
However, the data set contains only 52 variables because
one variable that was not manipulated, the stirring speed,

FIGURE 4. Flow diagram of TE process.

was removed. The details of all faults are shown in Table 1.
Faults 1-7 are related to step changes in the process variables
of the experimental process; faults 8-12 are related to random
fluctuations in some of the process variables; fault 13 is
related to changes in the kinetic characteristics of the reactor;
faults 14 and 15 are related to valve sticking; and fault 21 is
caused by the valve being in a constant position. This paper
uses the z-score standardization method to pre-process the
data. The formula is defined as (10).

Z (x) =
x − x̄√∑

(x−x̄)
n−1

(10)

where x is the original data, Z (x) is the standardized data,
and x̄ is the mean of the original data. To transform it into a
data set with a mean zero variance of one. Finally, because
the multi-classification problem is to be solved, the tags need
to be processed for one-hot encoding, specifically by trans-
forming these 22 working conditions into the corresponding
22 one-dimensional arrays for subsequent classification with
the model.

B. MODEL PERFORMANCE COMPARISONS
This study implements this improved ResNet model on the
open-source machine learning software library TensorFlow.
For the hyperparameter settings, the batch size is 128, the
number of iterations is 100, the learning rate is 0.0003,
the loss function is cross entropy loss, and Adam is used as
the optimizer.

To evaluate the model’s performance, accuracy, precision,
recall, and F1 score are used as evaluation metrics. Figure 5
shows the confusion matrix.

In the confusion matrix: True Positive(TP): an instance is
positive and is predicted to be positive; False Negative(FN):
an instance is positive but is predicted to be negative; False
Positive(FP): an instance is negative but is predicted to be
positive; True Negative(TN): an instance is a negative class,
but is predicted to be a negative class. However, it is difficult
to measure the performance of a model based on the number
of TP and TN alone when faced with massive data. This led to
the secondary evaluation indicators: accuracy, precision, and
recall. Accuracy can be calculated from (11), which repre-
sents the proportion of all correct results in the classification
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TABLE 1. TE process failure types.

FIGURE 5. Confusion matrix.

model to the total number of observations. Precision can be
calculated from (12), which represents the proportion of cor-
rect predictions in the classification model among all results
with Positive predictions. Recall can be calculated from (13),
which represents the proportion of model prediction pairs
among all the results for which the true value is Positive.
By using the above secondary indicators, the results of the
number of confusion matrices can be transformed into a
ratio between 0 and 1, which can be easily measured in a
standardized way. Then a tertiary index, F1 score, is derived
from Equation (14), which combines precision and recall and

TABLE 2. Comparison of the results of different fault diagnosis models.

is calculated by taking the harmonic mean of the two. The F1
score ranges from 0 to 1, with 1 representing the best model
output and 0 representing the worst model output.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1score =
2×Precision× Recall
Precision+ Recall

(14)

This paper selected two traditional machine learning mod-
els, MLPC, Adaboost, and modern deep learning models,
CNN and ResNet, as fault diagnosis intelligence models and
the improved ResNet model, for comparison experiments.
The results obtained are shown in Table 2.

As can be seen from Table 2, the accuracy of the improved
ResNet model proposed in this paper is 96.69% on the test
set, which is significantly better than the accuracy of 89.77%
of the original ResNet model and several other fault diagnosis
models. The network structure of the CNNmodel is similar to
that of the ResNet model. The size of the convolutional kernel
and the number of convolutional layers remain the same, but
the residual structure is missing. The accuracy on the test
set is 84.00%. In contrast, the accuracy of models using
traditional machine learning methods like MLPC is 79.91%
and Adaboost 34.13%, both below 80%, indicating that these
modern convolution-based deep learning models have higher
fault diagnosis accuracy.

This paper verifies whether the introduction of 1D convo-
lution can improve the model performance. We conducted
experiments with the same dataset, using 1D dimensional
convolution to construct CNN and ResNet models with the
same number of network layers, and compared the experi-
ments with the DCNN proposed in the paper [32]. The CNN
and ResNet models used in the experiments have three con-
volutional layers, a max pooling layer, three fully connected
layers, and a softmax classifier. They have the same number
of layers, but ResNet has one more shortcut connection than
CNN, and the network structure is shown in Figure 6 and
Figure 7.
Since the paper [32] only experimented with the top twenty

faults, we also selected the top twenty faults when comparing
the three models. Also, as in the article [32], the fault diag-
nosis rate (FDR) is used, and the formula of FDR is shown
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FIGURE 6. The structure of the CNN model.

FIGURE 7. The structure of the ResNet model.

in (15), which is the same as the formula for the recall.

FDR =
TP

TP+ FN
(15)

The experimental results are shown in Table 3. According
to the experimental results, the average FDR of the ResNet
model constructed using 1D convolution in this paper is the
highest among the three models, indicating that introducing
shortcut connections is practical and can alleviate the network
degradation problem. The average fault diagnosis rate of the
CNN model is as high as 88.1%, which is almost the same
compared to the 88.2% fault diagnosis rate of the DCNN
model, with a difference of only 0.1%. However, Table 4
shows that the floating point operations of CNN and ResNet
built with 1D convolution are much lower than those of
DCNN, and the training time is also shorter, indicating that

the introduction of 1D convolution can better handle the
temporal data and effectively reduce the computation of the
model. Nevertheless, the FDR for fault 3, fault 9, fault 15, and
fault 19 need further improvement, so there is still room for
improvement.

In this paper, to further verify whether the introduction
of CBAM and SPP can improve the model performance,
the Proposed ResNet in this paper is constructed based on
ResNet constructed using one-dimensional convolution, and
the CNN, ResNet, and Improved ResNet are used to conduct
comparison experiments against the TE process. Precision
and recall (also known as FDR) can evaluate the diagnostic
performance of a model for a single fault, but they are usu-
ally contradictory. High precision leads to low recall, while
high recall leads to low precision, which makes compari-
son difficult. Therefore, a three-level evaluation metric, the
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TABLE 3. FDR of DCNN, CNN and ResNet.

TABLE 4. FLOPs and training time of DCNN, CNN and ResNet.

F1 score, is used as the judging criterion. F1 score combines
precision and recall and can evaluate different models more
effectively. Table 5 shows the F1 scores of the three models
for one normal condition and 21 fault conditions. As we can
see from the experimental results, the F1 scores of different
faults also vary greatly, and the F1 scores of CNN are lower
in the face of fault 3, fault 9, fault 15, and fault 19, and even
less than 60% in faults 3 and 9, as shown in Figure 8. Nev-
ertheless, it is still less than 80%. To solve this problem, the
improved ResNet model introduced the attention mechanism
and increased the depth of the network to make the model
more focused on the diagnosis of these types of faults, and
the results showed that the improved ResNet model with the
residual-CBAM module achieved the highest F1 scores for
faults 3, 9, 15, and 19, which are difficult to solve by CNN and
ResNet. At the same time, in order to prevent the improved
ResNet model from focusing too much on these local fea-
tures, a branching path of spatial pyramidal poolingwas intro-
duced in addition to the main path of the network, enabling
the network to extract richer features frommultiple scales and
focus on more comprehensive information, thus improving
the generalization ability and robustness of the improved
ResNet model. The results show that the F1 scores of the
model are almost all above 90%, and although the F1 scores

TABLE 5. F1 score of CNN, ResNet and Improved ResNet.

FIGURE 8. F1 scores of three models for faults 3, 9, 15, 19.

of several faults are not the highest, they are not very different
from those of the other two methods. Figures 9 and 10 also
show the three methods’ accuracy and loss rate curves. The
comparison can lead to the conclusion that the addition of
the attention mechanism and spatial pyramid pooling in the
model helps improve the model’s classification performance,
and the improved ResNet model is more suitable for fault
diagnosis.

Finally, after studying the fault diagnosis effects of the
three models for individual categories, the ROC curves
of the CNN model, the ResNet model, and the improved
ResNet model are plotted in this paper in order to show
the overall classification results of the models more intu-
itively. The horizontal coordinate is the false positive
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FIGURE 9. Accuracy curves of the three models.

FIGURE 10. Loss curves for the three models.

rate (FPR), which represents the proportion of actual neg-
ative instances in the positive class predicted by the model
to all negative instances. The formula for calculating FPR
is as (16). The vertical coordinate is the true positive rate
(TPR), which represents the proportion of the actual positive
instances to all positive instances in the positive class pre-
dicted by the classifier. The formula for calculating TPR is
as (17).

FPR =
FP

FP+ TN
(16)

TPR =
TP

TP+ FN
(17)

The closer the ROC curve is to the upper left corner,
the better the diagnosis is. Figure 11 shows the average
ROC curves for each category of the four models, where
Figure 11(a)-(c) show the ROC curves of CNN, ResNet,
and Improved ResNet. Another more straightforward way
to judge the performance of a model is the area under the
ROC curve (AUC), where the closer the value of AUC is
to 1, the better the model performance. We can learn that the

FIGURE 11. ROC curves for different models. (a) CNN. (b) ResNet.
(c) Improved ResNet.

AUC value of the improved ResNet is 0.9887, which is closer
to 1 than CNN with ResNet, so the overall classification
performance of the ResNet model is also the best after the
improvement.
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FIGURE 12. Visualizing the training process of the improved ResNet model using the t-SNE method. (a) input layer. (b)layer
Conv2d_1. (c)layer Conv2d_3. (d)layer Conv2d_6. (e)layer Conv1d. (f)layer Dense_8. (g) layer Dense_9. (h)output layer.
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C. HIERARCHICAL FEATURE LEARNING VISUALIZATION
In this paper, to facilitate the understanding of the classifica-
tion process of the improved ResNet model, it is necessary to
understand and recognize the feature learning process of the
network. However, since the features learned by the model
are high-dimensional, it is not easy to visualize the results
obtained from the output of each layer. To address this issue,
we use the t-distributed Stochastic Neighbor Embedding
(t-SNE) method, which can be used to visualize the feature
learning process of the improved ResNet model. The t-SNE
algorithm serves to visualize the high-dimensional data in
the form of two-dimensional coordinates. It is modeled
as a Gaussian distribution in the original high-dimensional
space, while it can be modeled as a t-distribution in the
two-dimensional output space. The goal of the process
is to find the transformation that maps high-dimensional
space to two-dimensional space and to minimize the gap
between the points in these two distributions. The input layer,
layer Conv2d_1, layer Conv2d_3, layer Conv2d_6, layer
Conv1d, layer Dense_8, layer Dense_9, and output layer are
selected, and the high-dimensional output features of these
network layers are embedded in a two-dimensional scatter
plot using the t-SNE method and displayed as shown in
Figure 12(a)-(h). Initially, the data samples of the input layer
are displayed in a mixed state. After several convolutional
layers with the attention mechanism module, the samples
are gradually clustered into the corresponding classes. The
two-dimensional scatter plot of the final output layer shows
clear clustering of the samples, indicating the effectiveness of
the improved ResNet model for fault diagnosis tasks.

V. CONCLUSION
In order to better diagnose the faults in chemical processes,
we proposed a new ResNet model, and the improved ResNet
model can accurately diagnose the types of chemical process
faults. Performance evaluation experiments were conducted
using the TE process. Based on the test data results of the TE
process, the effects of 1D convolution, shortcut connection,
residual- CBAM module, and spatial pyramid pooling on the
model performance are discussed, and the following conclu-
sions are obtained.

1. Aiming at the TE process data, which are time-series
data, the CNN model is constructed by improving the con-
volutional kernel and using one-dimensional convolutional,
which is more suitable for processing time-series data as the
primary computational convolution. On top of it, we also
constructed ResNet, which introduces shortcut connections,
but the structure of each layer of the network is similar to
prevent the network degradation problem. The constructed
CNN and ResNet are used for TE process fault diagnosis and
compared with DCNN for experiments. The results show that
the ResNet fault diagnosis model achieves the best results.
The model has excellent performance, few parameters, and a
short training time.

2. Aiming at the poor fault diagnosis effect of a part of
faults, an improved ResNet model is proposed based on

ResNet. The improved ResNet model is compared with CNN
and ResNet models for TE process fault diagnosis, and the
experimental results show that the improved ResNet model
not only improves the fault diagnosis effect of 3, 9, 15, and
19 using the attention mechanism but also uses spatial pyra-
mid pooling to avoid the model from over-focusing on certain
features so that the generalization ability and robustness of
the whole model can be improved. The improved ResNet
model achieves the best experimental results, indicating that
introducing the attention module, and spatial pyramid pool-
ing technique, can significantly improve the model’s perfor-
mance in fault diagnosis.

3. Using the t-distributed Stochastic Neighbor Embedding
(t-SNE) method, we can reduce the high-dimensional fea-
tures inside the improved ResNet model to two dimensions.
The final two-dimensional scatterplot shows the improved
model’s effectiveness for fault diagnosis tasks.
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