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ABSTRACT This paper proposes a computationally efficient two-stage machine learning based approach
using neural networks to solve the cluster assignment problem in a millimeter wave-non orthogonal multiple
access (mmWave-NOMA) system where each user’s individual successive interference cancellation (SIC)
decoding capabilities are taken into consideration. The artificial neural network (ANN) is applied in real
time to assign users to clusters taking each user’s instantaneous channel state information (CSI) and SIC
decoding capabilities as inputs. The algorithm is trained offline on cloud resources, i.e., not using the base
station (BS) compute resources. This training is done using a dataset obtained by offline computation of
input parameters using the optimization algorithms called NOMA-minimum exact cover (NOMA-MEC)
and NOMA-best beam (NOMA-BB) from our earlier work in this area. As a result, we term the proposed
algorithms in this paper as ANN-NOMA-MEC and ANN-NOMA-BB, respectively. The problem with
applying optimization techniques, even low-complexity heuristics, in live networks for user clustering is
that they require a very large number of computation steps to make a clustering decision. If these clustering
decisions are based on the instantaneous channel of hundreds of users, it becomes prohibitively complex
to implement in practical systems on a millisecond granularity as required by beyond 5G (B5G) systems.
Instead, our proposed approach takes all this complexity offline and even off the BS compute resources
and instead only applies a trained neural network to make such clustering decisions at a microsecond
granularity on hundreds of users. Simulation results show the effectiveness of the ANN-NOMA-MEC and
ANN-NOMA-BB schemes as the neural network trained on offline simulation data performs comparably
with the NOMA-MEC and NOMA-BB heuristics that is applying computationally intensive algorithms to
make every clustering decision in a live network.

INDEX TERMS Non-orthogonal multiple access (NOMA), successive interference cancellation (SIC),
neural networks (NN), millimeter-wave (mmWave), user clustering (UC).

I. INTRODUCTION
Non-orthogonal multiple access (NOMA), when run in the
mmWave spectrum has the ability to serve a large number of
connected users at a time in a high bandwidth spectrum, two
key requirements for beyond fifth-generation (B5G) commu-
nication systems. Such systems are referred to as mmWave-
NOMA systems. The mmWave channels are highly
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correlated, allowing for opportunities to form clusters of
spatially correlated users to be served by a single beam and
separated in the power domain through NOMA [1], [2], [3].
Two key aspects of achieving a good performance in any
NOMA system and more so in mmWave-NOMA systems
where the spatial correlation amongst users can be exploited
for efficient cluster formation to increase system throughput
are user clustering and user ordering [4]. User clustering
is the selection of users to serve in a NOMA clusters,
while user ordering is the order in which the successive
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interference cancellation (SIC) procedure is applied amongst
these clustered users.

The user clustering and ordering aspects are also important
in terms of the amount of processing the end-user is required
to undertake in a downlink (DL) NOMA system. Based on
the selected user ordering in a NOMA cluster, the strongest
user has to decode the signals of all other users in the SIC
procedure while the weakest user only has to decode its own
signal. It is clear that the number of users in the cluster and the
position in which any one user is placed in the SIC decoding
order determines how many other users signals a user needs
to decode in that cluster. In our prior work in this area in [1],
we termed this limitation as the SIC decoding capability of
the user and factored it into the user clustering scheme. In a
DL NOMA system, this SIC decoding capability of a user
equates to the number of other users signals the said user
is capable of decoding before decoding its own signal. This
SIC decoding capability number of each user is influenced
by its hardware and end-user capabilities [5], [6]; an IoT
device might not be able to decode any other user’s signals
in the SIC procedure while high-end smartphones could be
capable of processing upwards of ten other user’s signals.
As motivated in [1], it is important to consider each users SIC
decoding capability into the clustering and ordering problem;
as if not, we could end up in cluster formations where users
need to decode the signals of more users than they have the
hardware capability for which leads to infeasible solutions to
implement in practice. As a result, in [1], we considered a
heterogeneous NOMA system as one where each user has its
own SIC decoding capability. A homogeneous system was
also discussed in [1] as a system where all users can be
considered to have the same SIC decoding capability.

A. RELATED WORK
Optimizing the sum-rate of mmWave-NOMA systems
involves considering the user clustering, user ordering,
beamforming and power allocation schemes [4]. In [3],
these aspects were jointly optimized for a downlink (DL)
mmWave-NOMA systems. Another common approach is to
divide the user clustering and ordering, beamforming and
power allocation schemes into separate sub-problems. Since
we want to factor in each users individual SIC decoding capa-
bility into the clustering, we focus on this type of approach
where the user clustering and ordering aspects are tackled
first and then the power allocation is optimized for a given
set of cluster formation. For example, the user clustering
approach in NOMA systems presented in [15] formulates
the Karush–Kuhn–Tucker (KKT) conditions in a rate max-
imization optimization problem that assumes a fixed size of
clusters. In fact, limiting the number of users in a cluster is
a typical approach to limit the SIC decoding requirements
put on the end user in a homogeneous system, e.g., [7],
and in [16], the optimum cluster sizes from a performance
perspective is analyzed. Within a cluster, users are typically
ordered based on their effective channel gains to maximize

throughput and satisfy each users QOS requirement [17].
When it comes to mmWave-NOMA systems, several user
clustering schemes have been proposed in the literature
that exploit the high correlation amongst user channels in
mmWave systems [3], [18] by clustering correlated users
together to maximize system throughput [18], [19], [20]. The
cosine similarity metric is often used to determine the level
of correlation either between users [2], [8], between users
and random beams in [18] or between users and fixed beam
directions in [1]. Thus, these works in mmWave-NOMA
area frame a rate optimization problem the user clustering
and ordering aspects as the parameters to be optimized and
solve them by low complexity heuristics that typically involve
using the cosine similarity metric.

One issue with solving optimization problems, even low-
complexity heuristics, in live networks for user clustering is
that they require a very large number of computation steps
to make a clustering decision. If these clustering decisions
are based on the instantaneous channel of hundreds of users,
it becomes prohibitively complex to implement in practical
systems on a millisecond granularity as required by beyond
5G (B5G) systems. This is where machine learning has been
looked into as an enabler to solve the user clustering problem
inNOMAsystems. Thework in [21] classified user clustering
problems in mmWave-NOMA systems into joint resource
aware user clustering techniques such as the ones applying
the cosine similarity metric as described above and a second
class of algorithms called learning assisted user clustering
techniques to bring down the complexity. In [21], the com-
plexity of several user clustering schemes in the mmWave-
NOMA literature is analyzed and it is shown that a significant
run-time complexity is inherited by all schemes to make
clustering decisions on a millisecond granularity, especially
as the network size grows. However, the machine learning
techniques applyingK-means like clustering algorithms bring
down the complexity compared to traditional optimization
schemes.

There are twomainmachine learning based themes ofwork
that are relevant to the discussion in this paper. The first is
the theme of work in [2], [8], [9], [10], where the user clus-
tering and ordering problem in mmWave-NOMA systems is
solved using an unsupervised clustering ML approach. These
works exploit the high correlation amongst users’ channels
and the fact that mmWave propagation is dominated by the
LoS path to effectively employ K-means clustering. In [11],
an advancement on k-means for the cluster formation prob-
lem is proposed. Since the effects of multipath propagation
are limited in mmWave spectrum, the user clustering in
mmWave-NOMA systems comes down to finding spatially
correlated users with the available CSI at the BS. A concrete
clustering metric based on channel correlation among users
is proposed in [22]. This is precisely what unsupervised
clustering algorithms are capable of achieving without any
labeled training data. On a similar line, in [23], a multi-label
classification problem is framed to solve the user clustering
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TABLE 1. Comparison of this paper with existing literature.

problem. One other theme of work in general NOMA systems
is that from Kumaresan et al. in [12], [13], and [14]. The
authors in [14] propose a ANN-based user clustering frame-
work that learns from a training data set obtained through
simulation settings and a brute force search approach of all
possibilities [12]. The dataset is used to train the neural
network that is then applied to the clustering decisions in
the network. In [13], the same authors extended the machine
learning scheme to instead use the extreme machine learning
(ELM) method to solve the clustering problem. Finally, user
clustering solutions in other NOMA based system models
such as one incorporating device-to-device communication
proposed in [24] also run into similar problems of exponential
run-time complexity to solve the clustering problem in a live
network.

One important limitation with these schemes is that there
is no flexibility incorporated to account for the SIC decoding
capability limitations of each individual user. To address this,
in our previous work in this area in [1], we proposed a user
clustering and ordering scheme for a mmWave-NOMA sys-
tem that takes into consideration the SIC decoding capability
of each individual user in the system. The work in [1] frames
the user clustering and ordering problem as a cluster mini-
mization problem that requires the algorithm to consider each
users SIC decoding capability. To this end, two heuristics are
proposed in [1]:

1) A NOMA-minimum exact cover (NOMA-MEC) algo-
rithm for heterogeneous systems.

2) A NOMA-best beam (NOMA-BB) algorithm for
homogeneous systems.

In this work, we use these algorithms to build up the labelled
training dataset for our proposed neural network to learn
from, as discussed next.

B. MOTIVATION AND CONTRIBUTIONS
In order to actually deploy mmWave-NOMA systems, prac-
tical considerations need to be factored in. One example
is the availability of instantaneous CSI of large number of
users, and the complexity involved in making clustering deci-
sions with this large amount of CSI information. In order
to mitigate the availability of CSI, location aided [25] and
vision aided [26] clustering techniques have been proposed
in the literature as well as techniques to combat imperfect
CSI availability [27]. However, in this work we will assume
the full CSI of each user is available to the BS. Even so,
a user clustering and ordering problem (UCOP) in mmWave-
NOMA systems that relies on the instantaneous channel

information of hundreds of users, needs to find the right bal-
ance between performance and complexity while considering
practical limitations such as the SIC decoding capability of
the user and the availability of CSI in order to be usable in
practical deployments. In terms of performance, the UCOP
scheme needs to generate a clustering result that maximizes
or close to maximizes the system throughput while satisfying
each users minimum QOS constraint. However, to lead to a
feasible solution, the UCOP needs to factor in the SIC decod-
ing capabilities of the users in the system. For a homogeneous
system, that amounts to just limiting the number of users per
cluster while for heterogeneous systems, it means accounting
for each users SIC decoding capabilities. The NOMA-MEC
and NOMA-BB schemes proposed in [1] addressed these
requirements but the complexity of the algorithms was quite
large to be run at a millisecond granularity. As shown in [1],
depending on the parameter settings, up to 60,000 computa-
tion steps need to be executed to make a clustering decision
every millisecond. Due to the latency sensitive nature of
this computation, it cannot be offloaded to the cloud or an
external entity as the round-trip delay would be too large.
With low-cost and small cell BSs being increasingly studied
for B5G systems, there is a need to manage the computa-
tional resource needs available at the cell site. To this end,
we propose a novel machine learning based approach using
neural networks to factor in the SIC decoding capabilities of
the users and build a low-complexity scheme that produces
clustering results on par with NOMA-MEC and NOMA-BB
for heterogeneous and homogeneous systems, respectively.
We distinguish our work from the other machine learning user
clustering schemes in the NOMA literature by factoring in
the SIC decoding capabilities of the users into the machine
learning scheme. For example, compared to the unsupervised
clustering schemes in [2], [8], and [9], we use a supervised
learning scheme as it is a better fit to the clustering problem
once SIC decoding capabilities are considered. Compared
to the supervised learning schemes presented in [12], [13],
and [14], we distinguish ourselves again by studying a neural
network that is capable of forming clusters while factoring in
the SIC decoding capabilities of the users which these other
works do not take into consideration. Table 1 illustrates how
the system model and clustering problem formulation of this
paper is distinguished from existing work in the literature.

The proposed neural network is trained offline on
labelled data samples generated using the NOMA-MEC
and NOMA-BB algorithms. Concretely, for different pos-
sible inputs of user positions, channels and SIC decoding
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FIGURE 1. Illustrating the proposed ANN-NOMA-MEC and ANN-NOMA-BB networks learning offline from labelled training data obtained using the
NOMA-MEC and NOMA-BB algorithms and then applied to real user inputs in a live network.

capabilities, theNOMA-MECorNOMA-BB algorithm is run
and a labelled data set is generated. This labelled dataset is
used to train the neural netowrk. As a result, we term the
two proposed algorithms in this paper as ANN-NOMA-MEC
and ANN-NOMA-BB, for heterogeneous and homogeneous
systems, respectively. This training of the neural netowrk
can be done offline from the BS, possibly on cloud compute
resources. The trained neural network is then applied in the
live network with the input comprising of the users channels
and SIC decoding capabilities. This two-stage flow is illus-
trated in Fig. 1.

Applying this trained neural network model directly on the
users inputs allows for it to be run at the millisecond gran-
ularity that is required to make optimal clustering decisions
as users channels change or users enter or leave the system.
Users SIC decoding capabilities can also change over time
as a function of the battery level of the users. Hence, this
model continues to make a clustering decision considering a
whole fresh set of input everymillisecond or so, but in directly
applying a trainedmodel to do so, this is a far more reasonable
cost to take at the BS. Our contributions in this paper can thus
be summarized as follows:

• We propose two ANNs for user clustering factoring
in SIC decoding capability constraints in mmWave-
NOMA systems, namely ANN-NOMA-MEC and
ANN-NOMA-BB, for heterogeneous and homogeneous
systems respectively, that are trained offline using
labelled datasets generated from running the NOMA-
MEC and NOMA-BB algorithm on randomly generated
inputs of users channels and SIC capabilities.

• Simulation results from running the trained neural net-
work with test data shows that it performs comparably
to the heuristics it was trained from. This validates the
proposed approach of training networks to make cluster-
ing decisions offline and then applying the trainedmodel

directly in live networks to make clustering decisions on
a milisecond granularity.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. In Section II,
the system model for the mmWave-NOMA system is pre-
sented and the overall user clustering and ordering problem is
framed. Section III details the proposed neural network and
how it is trained to solve the user clustering and ordering
problem. Detailed simulation results for the proposed neural
network, including a performance comparison with NOMA-
MEC on the test data set are presented in Section IV. Finally,
concluding remarks are provided in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we outline the system model used and the
objective cluster minimization sub-problem to the overall rate
maximization problem and the relevant details of the NOMA-
MEC algorithm from [1] that the neural network uses to create
the data sets that it learns from.

There are N single-antenna users, each with a minimum
QoS constraint that need to be served. Each of these users
have their own individual end user signal processing capa-
bilities related to the SIC decoding procedure in NOMA that
needs to be modelled. These N users are served by a single-
cell BS having M antennas and operating in the mmWave
spectrum; where the mmWave channel between the BS and
user-u can be modelled in a similar way to [1] and [18] and
is given as

hu = a(θu)
αu

√
L
(
1 + rη

u
) , (1)

where a(θu) represents the steering vector, αu represents the
complex channel gain for user-u, L denotes the number of
paths, ru denotes the distance between the BS and user-u and
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η denotes the path loss exponent. Further, like [1], analog
beamforming (ABF) is used and only one beam can be trans-
mitted at a time, which can be equated to forming one beam
to serve one cluster of NOMA users per channel use, e.g., per
time slice. Let the entire coverage region, θ̄ , from −π/2 to
π/2 be covered by a set of B + 1 candidate beams that the
BS can create through ABF. Thus, a NOMA cluster of users
will be served on an orthogonal channel using one of these
B+1 beams. Each beam-b in this list of candidate beams has
the precoding vector,

wb = a(θ̄b), ∀b ∈ [0,B], (2)

where the parameter θ̄b is

θ̄b = −π/2 + (b× π/B). (3)

Thus, there are a set of B + 1 precoding vectors from (2)
that cover the coverage region of θ̄ = −π/2 to π/2, includ-
ing some possible overlap between the beams, depending
on the value of B. Using the same notations as [1], let
Bc represent this list of candidate beams, such that Bc =

{Beam-0, ..,Beam-B}, with their respective list of candidate
precoding vectors beingWc = {w0, ..,wB}.
There are N users in the system and they can be clustered

into K NOMA clusters, K ≤ N . Each cluster is served by
one of the B + 1 precoding vectors in the candidate list in
one orthogonal channel, e.g., time slice. LetC = {C1, ..,CK }

represent the K clusters that are selected to collectively serve
the N users in K time slices, where Ck refers to the NCk
users selected to serve in the cluster with index-k , NCk ≤ N .
Let beam-bk with a precoding vector wbk represent the beam
selected for cluster Ck . In each cluster, Ck , the BS applies
superposition coding (SC) as follows:

sk =

NCk∑
u=1

√
pusk,u, (4)

where pu represents the power allocated to user-u. The
received signal at user-u in cluster Ck is

yu = hHu wbk sk + ξu,

= hHu wbk
√
pusk,u︸ ︷︷ ︸

Desired signal

+hHu wbk

nk∑
u̸=v,v=1

√
pvsk,v︸ ︷︷ ︸

Inter-user interference

+ ξu︸︷︷︸
Noise

. (5)

We let πk (j) denote the user index for the j-th decoded
user in the cluster Ck serving NCk users, j ≤ NCk . The j-th
user needs to first decode the signals of users {πk (1), .., πk (j)}
before decoding its own signal in the SIC procedure. When
decoding user πk (j) at user πk (j′), j′ > j, the signal-to-
interference-plus-noise ratio (SINR) can be represented as

0
πk (j)
πk (j′)

=
pj|hH(j′)wbk |

2

|hH(j′)wbk |
2
∑NCk

v>j pv + σ 2
, (6)

where σ 2 is the noise power. If we let Rk denote the rate
achieved in NOMA cluster Ck , the effective sum rate of the

system, Rsum can be expressed as the sum of the rates from
each cluster, Rk , given that each cluster is served by one
channel. The effective sum rate can thus be represented as

Rsum =

∑K
k=1 Rk
K

=

∑K
k=1

∑
u∈Ck log2

(
1 + 0

πk (u)
πk (u)

)
K

, (7)

expressed in bits per second (bps) per channel-use.
The SIC decoding capability constraint of each user-u is

modelled as du [1]. For example, du = 4 implies a user
capable of decoding four other users’ signals. This impacts
the user ordering done within a cluster. If a user-u is placed
in cluster-k at position j, then the maximum value of j is
du. We let dmax = max(du), ∀u = [1, ..,N ], represent the
maximum decoding capability among the N users in the
system. A heterogeneous system allows each user to have its
own value of du, du ≤ dmax ; while a homogeneous system
puts the additional constraint that all users have the same
value of du = dmax.
The objective optimization problem that needs to be solved

is the same rate maximization problem as in [1], which we
will instead tackle with the neural network approach in this
paper and can be given as

max
{Ck },{wbk },{πk },{pu}

Rsum, (8a)

s.t. Ru ≥ log2(1 + 0min), ∀u = 1, ..,N (8b)

dπk (j) ≥ j− 1, j = 1, ..,NCk , ∀k = 1, ..,K ,

(8c)
NCk∑
i=1

pi ≤ P, ∀k = 1, ..,K , (8d)

where0min denotes the minimum SINRwith which each user
needs to be served, i.e., 0

πk (u)
πk (u)

≥ 0min, ∀u = [1, ..,N ],
(8b) represents the QoS constraint, (8c) represents the decod-
ing capability constraint, and (8d) represents the power per
channel constraint. As in [1] the problem can be boken down
into two sub-problems: (a) a joint user clustering, user order-
ing, and beamforming problem, and (b) a power allocation
problem.

In this paper, the user clustering and ordering problem is
what is relevant and can be given as

min
{ui,k },{bk },{πk }

K , (9a)

s.t.
K∑
k=1

ui,k = 1, ∀i = 1, ..,N , (9b)

bk ∈ Bu, ui,k = 1, ∀k = 1, ..,K , (9c)

dπk (j) ≥ j− 1, j = 1, ..,NCk , ∀k = 1, ..,K ,

(9d)

ui,k ∈ {0, 1}, (9e)

bk ∈ Bc, ∀k = 1, ..,K , (9f)
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where (9b) makes sure a user is placed in exactly one cluster,
(9c) assures that the beam chosen to serve a cluster of NOMA
users belongs tois contained in the user-beam list of each of
those users and (9d) is the key constraint that ensures the SIC
decoding capability constraints of each user in the system is
respected. It is worth noting that for homogeneous systems,
constraint (9d) can be simplified down to

N∑
i=1

ui,k ≤ dmax, ∀k = 1, ..,K , (10)

since all users have the same decoding capability and hence,
only the overall number of users per cluster needs to be
limited.

The objective function defined in (9a) represents an
NP-complete problem, a class of problems widely known for
its complexity in wireless communications and other fields
of study. NOMA-MEC and NOMA-BB are two heuristics
proposed to solve the problem in [1]. NOMA-MEC solves
the cluster minimization problem in (9a) for a heterogeneous
system while NOMA-BB is a lower complexity algorithm for
the simpler homogeneous system. While we refer the reader
to [1] for the details on the NOMA-MEC and NOMA-BB
algorithm, these algorithms are used to create the training data
set for the ANN-NOMA-MEC and ANN-NOMA-BB algo-
rithms proposed in this paper. In other words, by generating
datasets using the NOMA-MEC heuristic in a wide variety of
simulation settings and knowing its performance in terms of
Rsum, we establish the ground truth for the proposed artificial
neural netowrks, i.e., the truth with which the neural networks
are trained. We note that being heuristics, NOMA-MEC
and NOMA-BB are approximations to the real solutions.
However, the same neural network can just as easily be
trained on a dataset created from the user clustering solution
found from a brute-force style approach as well.

III. PROPOSED ALGORITHM(s)
In this section, we outline the proposed ANN-NOMA-MEC
and ANN-NOMA-BB neural netowrks in terms of the neural
network architecture in Section III-A and the detailed training
and testing steps in Section III-B.

A. NEURAL NETWORK STRUCTURE
The proposed neural network architecture to search and
learn underlying patterns in the datasets containing the user
clustering solutions generated from the NOMA-MEC and
NOMA-BB schemes is illustrated in Fig. 2. The neural net-
work architecture consists of three fully connected layers:
the input layer, a hidden layer and the output layer. The
first layer is the input layer where the number of neurons
is defined by the number of users N . Each neuron in this
layer receives a data sample t containing a vector of fea-
tures per user-u, F(t)

u . The relevant features of each user in
F(t)
u needed to train the neural network are defined by the

user-beam set, B(t)
u , containing the best b beams for user-u;

the users mmWave channel expressed through the physical

FIGURE 2. Proposed neural network structure for ANN-NOMA-MEC and
ANN-NOMA-BB.

departure angle between the BS and the user-u, θ (t)u , and the
distance between the BS and the user-u, r (t)u ; and finally the
SIC decoding capability of user-u, d (t)u . Thus, the F(t)

u user’s
feature vector will be a column vector with the following
structure:

F(t)
u =

[
B(t)
u , θ (t)u , r (t)u , d (t)u

]T
. (11)

Let nf be the number of features contained in the feature
vector. Finally, letF(t) be thematrix of user features presented
to the neural network at data sample t and is defined as

F(t)
=

[
F(t)
1 ,F(t)

2 , · · · ,F(t)
N

]T
. (12)

We can infer from (12) that the input to the neural network
will be a matrix, whose dimension will be defined by the
length of the feature vector, nf , and the number of users N ,
i.e., F(t)

∈ RN×nf . It is worth noting that nf can vary based
on the number of beams per user set, b, in Bu. For example,
if b = 2 beams in Bu, then nf = 5 after adding the other
features θu, ru and du. Thus, each configuration of N and
b will result in a different network size and, therefore, in a
different neural network.

The second layer is the hidden layer consisting ofH hidden
neurons denoted by h ∈ 1, 2, · · · ,H . The input feature
matrix, F(t), containing the relevant user information from
all input layer neurons (i ∈ 1, 2, · · · ,N ) are connected to
each neuron h present in the hidden layer. The selected hidden
layer in our neural network architecture is the powerful long
short-term memory (LSTM) layer, which makes each hidden
neuron to be modeled as an LSTM unit. Fig. 3 illustrates in
more detail the internal composition of hidden neurons and
their connections with respect to the overall structure of the
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FIGURE 3. Illustrating the fully connected structure of the hidden neurons
in the proposed neural network.

neural network as described later in this section. The output
layer is the final layer and has N number of neurons denoted
by o ∈ 1, 2, · · · ,N . The outputs from all neurons in the
hidden layer are connected to each neuron o, which provides
the estimated cluster assignment for the respective user-u, ŷu.
Our framework proposes a fully connected neural network

structure. In the data sample t , each user-u feature vector F(t)
u

is received by each input layer neuron. The fully connected
layout between the input and hidden layers allows the entire
input feature matrix F(t) to be processed by each hidden
neuron. As shown in Fig. 3, hidden neurons are composed
of a cell state denoted by c(t) and four internal components
defined by z(t), i(t), f (t) and o(t). These internal components
manage the information flow by combining the input features
F(t) weighted by the weights W (t)

z , W (t)
i , W (t)

f , and W (t)
o ,

respectively; the hidden neuron outputs of the previous data
sample v(t−1)

h weighted by R(t)
z , R(t)

i , R(t)
f , and R(t)

o , respec-
tively; and the biases bz, bi, bf , and bo. Particularly, f (t)

and i(t) add the cell state of the previous data sample c(t−1)

weighted by p(t)f and p(t)i , respectively; while o(t) adds the cur-

rent cell state c(t) weighted by p(t)o . Then, the components f (t),
i(t) and o(t) are regulated by an activation function defined
by σ while z(t) is regulated by the activation ρ. Finally, the
current cell state c(t) is obtained from c(t−1), f (t), i(t) and z(t)

while the output v(t)h is obtained from o(t) and an regulated
version of c(t) through the activation function ω. Concretely,
the idea behind the LSTMhidden layer is to maintain its state,
c(t), over time and regulate the flow of information through
nonlinear activation functions (σ , ρ and ω). Thus, learning in

the hidden neurons is given by recursively connecting their
cell states, c(t−1), and their outputs, v(t−1)

h , with their inputs
F(t). The above, gives rise to the STM and LTM concepts
where: STM, short-term memory, refers to the learning at
each data sample and is guided by the current output, v(t)h ;
while LTM refers to the learning over time, which is recorded
and remembered in the cell state c(t). In this way, the hidden
layer can remember relevant information and forget irrelevant
information from user features, in favor of learning com-
plex and unpredictable patterns to predict clustering solutions
from the NOMA-MEC and NOMA-BB heuristics in the final
layer.

The outputs of the hidden layer, v(t)h = v(t)1 , v(t)2 , · · · , v(t)H ,
are then passed through an activation function defined by ϕ,
to obtain a regularized version, h(t) = h(t)1 , h(t)2 , · · · , h(t)H ,
that feeds the final layer. The full connection between the
hidden and output layers allows each neuron in the final
layer to process h(t) by a linear combination weighted by
W (t)

y , whose final result is also regulated by the ϕ activation.
In this way, the neural network obtains the estimated cluster-
ing assignment of each user-u, ŷu, as a result of a series of
direct and indirect operations on the user features F(t) where
all the weights involved in the neural network structure we
have proposed intervene: W (t)

z , W (t)
i , W (t)

f , W (t)
o , R(t)

z , R(t)
i ,

R(t)
f , R(t)

o , p(t)f , p(f )i , p(t)o and W (t)
y . As we will see in the next

section, during the training phase, our neural network learns
to estimate clustering solutions from the NOMA-MEC and
NOMA-BB heuristics based on an iterative adjustment of
these weights.

B. TRAINING AND TESTING
In this section we outline the training and testing phases
for the proposed neural networks that applies to both ANN-
NOMA-MEC and ANN-NOM-BB. Algorithm 1 summarizes
the training phase in which our neural network will learn
to cluster users based on the clustering solutions offered by
the NOMA-MEC and NOMA-BB heuristics. Algorithm 2
summarises the testing phase by providing a method for
evaluating the neural network as it is fed by user features to
obtain the estimated clustering solution.

We begin with the training algorithm where we first need
to describe the input defined by the sets FT and YT . Specifi-
cally,FT = {F(1),F(2), · · · ,F(T )

} is a set containing the fea-
ture matrix F(t) obtained from (12) for each data sample t =

1, 2, · · · , T . On the other hand, YT = {y(1), y(2), · · · , y(T )
}

is a set containing the labeled user clustering vector y(t) for
each data sample t . Let yu be the actual cluster label of user-
u, obtained from the clustering solution of the NOMA-MEC
and NOMA-BB heuristics, the labeled vector following the
structure y(t) = [y1, y2, · · · , yu, · · · , yN ], can be seen as
the target clustering formation that the neural network must
learn to predict. In other words, each y(t) in YT will be in
charge of guiding the training of the neural network on each
training data sample t as we will describe later in this section.
As we see, the cluster numbering of each user-u in y(t) plays
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Algorithm 1 ANN Training

Input: FT , YT
Parameters: α, nepochs, H , Ttrain, Tvalid
Output: ANN, the Artificial Neural Network model

1 Step-1: Split FT , YT using Ttrain, Tvalid
2 – Get training sets FTtrain , YTtrain
3 – Get validation sets FTvalid , YTvalid
4 Step-2: Initializations
5 – InitializeW (0)

y ,W (0)
∗ , R(0)

∗ , p(0)i , p(0)f , p(0)o
6 – Initialize y(0), c(0)

7 – Initialize bias b∗

8 Step-3: Learning of the network
9 for e = 1 to nepochs do

10 for t = 1 to Ttrain do
11 Feed-forward computation:
12 – Vectorize F(t)

Ttrain
13 – Compute z(t), i(t), f (t), c(t), o(t)

14 – Compute v(t)h , h(t)

15 – Compute v(t)y , ŷ(t)

16 – Compute the loss L using Y (t)
Ttrain

17 Back-propagation and weight adjustment:
18 – Compute δ(t)vy , 1

(t)
vh , δ

(t)
vh

19 – Compute δ(t)o , δ(t)c , δ(t)f , δ(t)i , δ(t)z
20 – Compute δ

(t)
Wy
, δ(t)W∗

, δ(t)R∗
, δ(t)pi , δ

(t)
pf , δ

(t)
po

21 – AdjustW (t)
y ,W (t)

∗ , R(t)
∗ , p(t)i , p(t)f , p(t)o

22 MSE computation using YTtrain

23 Step-4: Validation
24 for t = 1 to Tvalid do
25 Feed-forward computation:
26 – Vectorize F(t)

Tvalid
27 – Compute z(t), i(t), f (t), c(t), o(t)

28 – Compute v(t)h , h(t)

29 – Compute v(t)y , ŷ(t)valid
30 MSE computation using YTvalid

an important role and it should be labeled in a manner that
can be easily learned by the neural network. Therefore, let
C = {C1,C2, · · · ,Ck , · · · ,CK } be the set of K clusters and
let bC = {b1, b2, · · · , bk , · · · , bK } be a set ofK beamswhere
each beam bk represents the most repeated beam among all
user-beam sets Bu involved with users in Ck , then, in y(t) all
users of a specific cluster Ck are labeled with a single number
based the smallest beam in bC . More explicitly, the users of
the cluster containing the smallest beam in bC will be labeled
as 1, the users of the cluster containing the second smallest
beam will be labeled as 2, and so on.

The goal of Algorithm 1 is to train a neural network based
on the structure captured in Figs. 2 and 3 so that it learns

Algorithm 2 ANN Testing

Input: ANN, FTtest , Ttest
Output: ŶTtest =

{
ŷ(1)test , ŷ

(2)
test , · · · , ŷ(Ttest )test

}
, the predicted

cluster formation of users for all Ttest data
samples

1 Step-1: Initializations
2 – Initialize y(0), c(0)

3 Step-2: Testing
4 for t = 1 to Ttest do
5 Feed-forward computation:
6 – Vectorize F(t)

Ttest
7 – Compute z(t), i(t), f (t), c(t) and o(t)

8 – Compute v(t)h , h(t)

9 – Compute v(t)y ,Oy(t)test
10 Store the predicted ŷ(t)test :
11 – ŶTtest {t} =Oy(t)test

to cluster users on its own. To do this, we break down the
training algorithm into four steps. In Step-1, we obtain the
training and validation sets by splitting the input sets FT and
YT . The training sets denoted by FTtrain and YTtrain are used
to train the neural network and are obtained by selecting Ttrain
number of data samples from FT and YT , respectively. The
validation sets denoted byFTvalid andYTvalid are used to assess
the performance of the neural network after training and are
obtained by selecting Tvalid number of data samples from FT
and YT , respectively. It should be noted that the data samples
for each set can be selected randomly but with no overlap
between each set. In Step-2, we initialize all the training
variables that require initialization at time step t = 0 with
zeroes or random values. This includes all the weights that
compose the network, the output and cell state of the hidden
layer denoted by v(0)h and c(0), respectively as well as the
biases involved in the four components of the hidden layer.

In Step-3, we perform the learning of the network based on
the user features and the labeled user clustering formation of
all data samples t = 1, 2, · · · , Ttrain contained in the training
sets FTtrain and YTtrain , respectively. Let e be a training epoch
in which the network is learning to estimate the desired user
clustering formations in YTtrain from the corresponding user
features in FTtrain , the training algorithm needs to go through
several epochs until it ensures that the estimated clustering
formation of the network is close enough to the desired ones.
The learning at each epoch e is performed by iterating through
the sets FTtrain and YTtrain where each iterative step is defined
by the data sample t . Let F(t)

Ttrain and Y
(t)
Ttrain be the user feature

matrix and the labeled clustering vector of the data sample
t from FTtrain and YTtrain , respectively, we break down the
learning in two stages. In the first stage the feed-forward
computation of the neural network is performed starting from
the feature matrix F(t)

Ttrain to finish computing the network loss
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L using the labeled clustering vector Y (t)
Ttrain . Then, in the

second stage the back-propagation is carried out to adjust
all the weights of the neural network where its learning is
reflected.

The feed-forward computation begins by vectorizing the
user feature matrix F(t)

Ttrain to convert it into a column vector.

The vectorization of the F(t)
Ttrain matrix is obtained by stacking

all its columns on top of one another. Let F(t)
v be the vector-

ized version of F(t)
Ttrain defined as,

F(t)
v = vec

(
F(t)
Ttrain

)
=

[
B(t)1 , · · · ,B(t)N , θ

(t)
1 , · · · , θ

(t)
N ,

r (t)1 , · · · , r (t)N , d (t)1 , · · · , d (t)N
]T

. (13)

We can infer from (13) that F(t)
v ∈ RNf ×1 is a column vector

containing the features of all users and whose length Nf is
defined by the number of elements in F(t)

Ttrain , i.e., Nf = N ·nf .
Next, the feed-forward uses the vectorized version F(t)

v
to compute the four internal components, {z, i, f , o} ,along
with the cell state of the hidden layer as outlined in Fig. 3,
as follows [28]:

z(t) = ρ
(
W (t)

z F
(t)
v + R(t)

z v
(t−1)
h + bz

)
, (14)

i(t) = σ
(
W (t)

i F
(t)
v + R(t)

i v
(t−1)
h + p(t)i ⊙ c(t−1)

+ bi
)

, (15)

f (t) = σ
(
W (t)

f F
(t)
v +R(t)

f v
(t−1)
h +p(t)f ⊙c(t−1)

+ bf
)

, (16)

c(t) = z(t) ⊙ i(t) + c(t−1)
⊙ f (t), (17)

o(t) = σ
(
W (t)

o F
(t)
v + R(t)

o v
(t−1)
h + p(t)o ⊙ c(t) + bo

)
. (18)

Let ∗ refer to any of the internal components of the hidden
layer {z, i, f , o}, then W (t)

∗ ∈ RH×Nf , R(t)
∗ ∈ RH×H , b∗ ∈

RH×1, ∗(t)
∈ RH×1. The operator ⊙ denotes the pointwise

multiplication between two vectors that must necessarily
have the same length. For example, in expression (17) the
operation z(t) ⊙ i(t) is performed, for which the block input
z(t) ∈ RH×1 and the input gate i(t) ∈ RH×1 are two column
vectors of length H . The result of this operation is another
column vector of length H in which each element reflects
the multiplication of the corresponding elements in z(t) and
i(t). Thus, we can deduce that the cell state c(t) ∈ RH×1

in which each element is associated to each hidden neuron
h = 1, · · · ,H . It is worth highlighting the recurrence of the
second term in the definition of the four internal components
of the hidden layer, v(t−1)

h ∈ RH×1, that represents the output
of the hidden layer in a previous iterative step. During the
first iteration, t = 1, v(0)h which was initialized in Step-2 is
applied.

Then, both the output of the hidden layer v(t)h and its reg-
ularised version h(t) are computed by applying the following

expressions,

v(t)h = ω
(
c(t)

)
⊙ o(t), (19)

h(t) = ϕ
(
v(t)h

)
. (20)

We can infer from (19) that v(t)h ∈ RH×1 is a vector of
length H in which each element represents the output of
each hidden neuron h = 1, · · · ,H . While h(t) is simply
the result of passing v(t)h through the activation function ϕ.
Similar to [14], the activation ϕ that we apply here is the ReLu
function for which each element in v(t)h is regulated depending
on its sign. Elements with positive sign are treated linearly,
while elements with negative sign are set to be zero. In this
way, h(t) ∈ RH×1 results in a column vector of length H
where each regulated element is associated to each neuron
h = 1, 2, · · · ,H .

Subsequently, both the output of the final layer v(t)y and
the estimated user clustering formation ŷ(t) are computed
following the expressions,

v(t)y = W (t)
y h

(t), (21)

ŷ(t) = ϕ
(
v(t)y

)
. (22)

In (21),W (t)
y ∈ RN×H represents a weight matrix containing

all the weights associated with the output layer. Specifically,
each row in W (t)

y is associated with each output neuron o =

1, 2, · · · ,N . Since each of these neurons is fed with the
vector h(t) the matrix multiplication defined in (21) results
in the vector v(t)y ∈ RN×1 in which each element is related to
a neuron o. Similar to (20), in (22) v(t)y is passed through the
ReLu activation function to obtain the estimated user cluster-
ing formation ŷ(t) ∈ RN×1 as a vector of length N , in which
each element represents the estimated cluster assignment of
the user-u, ŷ(t)u , for each u = 1, 2, · · · ,N .

Finally, feed-forward stage computes the network loss
denoted by L in which the estimated clustering formation ŷ(t)

is compared with the labeled clustering formation Y (t)
Ttrain by

the following expression,

L =
1
N

N∑
u=1

(
yu − ŷu

)2
. (23)

The back-propagation stage seeks to adjust the learnable
parameters involved in the network based on the minimiza-
tion of the network loss L obtained in the previous stage.
As pointed out in [28], at each iterative step t the back-
propagation begins by applying the generalized delta rule to
get the delta vectors δ(t)vy and 1(t)

vh that enable the update of
weights for the output and hidden layers, respectively, and
can be expressed as

δ(t)vy = ϕ′

(
v(t)y

)
⊙ e′(t)y , (24)

1(t)
vh = ϕ′

(
v(t)h

)
⊙ e′(t)h , (25)

where ϕ′ represents the derivative of the ReLu activation
function upon v(t)y and v(t)h . On the other hand, e′(t)y represents
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the derivative of the network loss while e′(t)h = (W y)T δ(t)vy .
Next, we compute the accumulated gradient vector δ(t)vh , which
can be defined as the combination between 1(t)

vh and the
recurrent dependencies according to the expression,

δ(t)vh = 1(t)
vh + R(t−1)

z δ(t+1)
z + R(t−1)

i δ
(t+1)
i

+ R(t−1)
f δ

(t+1)
f + R(t−1)

o δ(t+1)
o , (26)

such that R(t−1)
∗ (where ∗ can be z, i, f , o) represent recurrent

weights that were adjusted at the previous iterative step;
while δ

(t+1)
∗ represent the gradient vectors associated with the

four components of the hidden layer at t + 1. Subsequently,
we compute the delta vectors δ(t)o , δ(t)c , δ

(t)
f , δ

(t)
i , and δ(t)z

according to,

δ(t)o = δ(t)vh ⊙ ω
(
c(t)

)
⊙ σ ′

(
ô(t)

)
,

δ(t)c = δ(t)vh ⊙ o(t) ⊙ ω′

(
c(t)

)
+ po ⊙ δ(t)o

+ pi ⊙ δ
(t+1)
i + pf ⊙ δ

(t+1)
f + δ(t+1)

c ⊙ f (t+1),

δ
(t)
f = δ(t)c ⊙ c(t−1)

⊙ σ ′(f̂
(t)
),

δ
(t)
i = δ(t)c ⊙ z(t) ⊙ σ ′(î

(t)
),

δ(t)z = δ(t)c ⊙ i(t) ⊙ ρ′(ẑ(t)),

where î
(t)
, f̂

(t)
and ô(t) are vectors defined from (15), (16)

and (18), respectively, but without applying the activation
function σ ; ẑ(t) is a vector defined from (14) but without
applying the activation function ρ; while ρ′, ω′ and σ ′ are
the derivatives of the activation functions tanh and sigmoid,
respectively.

Based on the computed delta vectors, the gradients δ
(t)
Wy
,

δ
(t)
W∗

, δ
(t)
R∗
, δ(t)pi , δ(t)pf and δ(t)po used to adjust the weights are

calculated as follows:

δ
(t)
Wy

= δ(t)vy ⊗ h(t), δ(t)pi = c(t) ⊙ δ
(t+1)
i ,

δ
(t)
W∗

= δ(t)∗ ⊗ F(t)
v , δ(t)pf = c(t) ⊙ δ

(t+1)
f ,

δ
(t)
R∗

= δ(t+1)
∗ ⊗ v(t)h , δ(t)po = c(t) ⊙ δ(t)o ,

with ∗ being any of the four internal components in the hidden
layer {z, i, f , o} and the operator ⊗ representing the outer
product between two vectors. Unlike pointwise multiplica-
tion, the outer product ⊗ performs a matrix computation in
which the second vector is transposed. For example, if we
wish to compute the gradient δ(t)Wf

= δ
(t)
f ⊗F(t)

v = δ
(t)
f

[
F(t)
v

]T ,
for which if δ

(t)
f ∈ RH×1 and

[
F(t)
v

]T
∈ R1×Nf the result of

this operation is the matrix δ
(t)
Wf

∈ RH×Nf .
Finally, similar to the work in [14], we apply the stochas-

tic gradient descent (SGD) scheme in order to perform the
adjustment of all the weights associated with our neural
network. Mathematically, the adjustment of the weights can

be achieved by following the expressions,

W (t)
y = W (t−1)

y + αδ
(t)
Wy

, p(t)i = p(t−1)
i + αδ(t)pi ,

W (t)
∗ = W (t−1)

∗ + αδ
(t)
W∗

, p(t)f = p(t−1)
f + αδ(t)pf ,

R(t)
∗ = R(t−1)

∗ + αδ
(t)
R∗

, p(t)o = p(t−1)
o + αδ(t)po ,

where α is a high-impact scalar parameter in the training of
the network which defines the learning rate that regulates
how much the weights are adjusted at each iterative step.
At the end of step-3, the mean square error (MSE) metric is
computed which measures the performance of the network at
the end of each epoch and is defined as,

MSE =
1

Ttrain

Ttrain∑
t=1

(
Y (t)
Ttrain − ŷ(t)

)2
. (27)

In Step-4 of Algorithm 1, the performance is assessed at
the end of each epoch e using the validation sets, FTvalid
and YTvalid , whose data samples have not been used dur-
ing learning and, therefore, helps measure the generalization
capability of the network. To do this, we iteratively go through
FTvalid and YTvalid running the feed-forward stage described
in Step-3 but using F(t)

Tvalid at each iterative step in order
to obtain the corresponding estimated clustering formation
ŷ(t)valid . Finally, we compute the MSE metric using ŷ(t)valid and
Y (t)
Tvalid to measure the validation performance. If the valida-

tion MSE is relatively high, then the learning needs to go
through more epochs until the validation MSE reaches an
acceptable performance.

The training algorithm is highly influenced by the param-
eters Ttrain, α, H and nepochs. In particular, Ttrain defines the
number of training data samples selected from FT and YT
that are used for network learning. If Ttrain is too small the
learning of the network in Step-3 can be highly compromised
because the weights would be adjusted for a small set of
solutions from the NOMA-MEC and NOMA-BB heuristics,
as the case may be. This would reduce the generalization
capability of the network, resulting in a low validation MSE.
The learning rate α controls how much the network weights
are adjusted during Step-3 at each iterative step t . In other
words, this parameter defines how fast the network learns.
Considering that α can take values between 0 and 1, a desired
value of α should be low enough for the network to converge
to something useful, but high enough that it can be trained
in a reasonable time. In this sense, a smaller value of α

requires more training epochs since only small changes are
made to the weights at each adjustment; while a large value
of α results in rapid changes and requires fewer training
epochs but can lead to a sub-optimal set of weights. On the
other hand, the design parameter H directly influences the
complexity of the training algorithm. A large value ofH leads
to an exaggerated number of neurons in the hidden layer,
making the neural network structure very large and therefore
very slow. However, if H is too small, it reduces the ability
of the hidden layer to learn to remember desired patterns as
well as to forget undesired patterns. Finally, the parameter
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nepochs which defines the number of times the learning works
through the complete FTtrain and YTtrain sets, is a critical
parameter as it ensures the convergence of the network to an
acceptable performance. A desirable value of nepochs should
be large enough so that the train MSE is low enough while
the validation MSE is not affected. Therefore, the design of
the neural network relies on an appropriate choice of these
four parameters in order to find an optimal combination that
leads to a high performing network that can be trained in
an acceptable amont of time. In Section IV, we illustrate
the tuning process of these four parameters for the proposed
neural netowrk.

In the testing algorithm described in Algorithm 2, the
input is defined by the artificial neural network ANN and
the testing set FTtest . The ANN is a network that has been
trained through Algorithm 1 for which all weights involved
have been optimally adjusted. The FTtest set containing Ttest
feature matrices from FT is used to test the ANN in order
to obtain the corresponding estimated clustering formations
returned in ŶTtest . To do this, we break down Algorithm 2 into
two steps. In Step-1 we simply need to initialize the output
and cell state of the hidden layer denoted by y(0) and c(0),
respectively, to consider that these have initial values when
t = 0. The initial values can be zeros. In Step-2, we perform
ANN testing by iterating through FTtest where, at each itera-
tive step t = 1, 2, · · · , Ttest , the feed-forward stage described
in Algorithm 1 is performed based on the feature matrixF(t)

Ttest
from FTtest to obtain the estimated clustering formation ŷ(t)test .
Then each ŷ(t)test is orderly stored in the set ŶTtest to ensure
that the output of the testing algorithm contains all the test
solutions estimated by the ANN.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, we illustrate simulation results to show the
process of fine-tuning the neural network training algorithm
parameters and then compare the performance of the network
against the heuristics from which it was trained. We work
with a total dataset of T = 12000 samples obtained by
running the NOMA-MEC and NOMA-BB heuristics and
unless otherwise stated, the number of training samples used
is 70%of the data set, i.e., Ttrain = 8400. Table 2 shows
the simulation settings used in this section. For the simu-
lations related to the tuning of neural netowrk parameters,
we present the ANN-NOMA-MEC case as it is the more
complicated network given that it supports heterogeneous
systems where each user has its own individual SIC decoding
capability presented to the network to factor into the cluster-
ing algorithm. By going through different controlled settings
of hidden neurons, H , learning rate, α, training data samples,
Ttrain and number of epochs, nepochs, we train different neural
networks with the objective of choosing the combination of
parameters that optimizes the validation performance of the
ANNs. In particular, to measure the validation performance,
we use both the MSE metric and the effective sum rate
Rsum [1] in the simulation runs. TheMSEmetric introduced in

TABLE 2. Simulation parameters.

Section III, is chosen because it is commonly used to measure
the performance of an ANN model, while Rsum provides us
with a performance measure in terms of the user clustering
formation predicted by the ANN. We also run simulations
for different network sizes, i.e., using different configura-
tions of number of users N and number of best b beams
per user, to demonstrate the stability of the proposed neural
network structure in ANN-NOMA-MEC and ANN-NOMA-
BB, respectively. Finally, the effective sum rate for our
optimally trained ANN-NOMA-MEC and ANN-NOMA-BB
networks are benchmarked with the original NOMA-MEC
and NOMA-BB heuristics, respectively.

We start by investigating the effect of the number of hid-
den neurons, H , on the performance of the proposed neu-
ral network as the number of users in the network grows.
In Fig. 4, we run simulations for different choices of H for
an ANN-NOMA-MEC neural network trained on a dataset
of 8400 samples obtained from NOMA-MEC heuristic with
b = 2. As seen in Fig. 4, in general, an ANN-NOMA-MEC
setting with H = 1, i.e., a single hidden neuron, leads to the
highest MSE which implies the lowest performance, because
the clustering formations predicted by the network are very
poor and are further away from the clustering formations
solved by the NOMA-MEC heuristic. At H = 10, we get
good performance at 50 users but the performance deterio-
rates as the number of users is further increased. In general,
when H = 50 we observe the best MSE performance for all
users. However, when we go to even higher number of hidden
layer neurons, the neural netowrk starts to overfit to the
training data and the performance deteriorates when tested
on the validation dataset. Therefore, we use H = 50 hidden
neurons in the further simulations.

We now move to study the impact of the learning rate,
α, on the performance of ANN-NOMA-MEC. To do this,
in Fig. 5, we compare both the MSE performance (left axis)
and the effective sum rate Rsum (right axis) measured by the
training algorithm when using learning rates of 0.001 and
0.01, while keeping the other training parameters fixed with
H = 50 and b = 2. It is worth noting that a lower MSE and
a higher value of Rsum are indicators of better performance.
It is clear from the results in Fig. 5a and Fig. 5b, which are
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FIGURE 4. Effect of the number of neurons in the hidden layer, H , on the
performance of ANN-NOMA-MEC for different numbers of users, N , with
b = 2.

FIGURE 5. Impact of the learning rate, α, on MSE and Rsum for different
numbers of users, N , at (a) nepochs = 1 and (b) nepochs = 10.
ANN-NOMA-MEC with b = 2.

presented at nepochs = 1 and nepochs = 10, respectively, that at
α = 0.01, the training algorithm finds it easier to control the
learning of the ANN-NOMA-MEC network, which leads to

FIGURE 6. Rsum at different learning epochs, e, and different training data
samples, Ttrain. ANN-NOMA-MEC with N = 200 users and b = 2.

better MSE performances that translate into better estimates
of clustering formations and, therefore, this leads to higher
effective sum rates. Hence, we use α = 0.01 as the learning
rate in the simulations that follow.

Through the simulations in Fig. 6 and Fig. 7, we illustarte
the impact of the parameters nepochs and Ttrain on the per-
formance of ANN-NOMA-MEC during learning. In Fig. 6,
we can observe that setting the training algorithm with
nepochs = 1 is inadequate for any value of Ttrain, which
implies that the learning must go through more than one
epoch for the ANN to better adjust its weights in order to
achieve better estimates of clustering formations. The results
between nepochs = 10 and nepochs = 20 are comparable for all
values of Ttrain, which suggests that the network has reached
its learning peak at around the tenth epoch. At nepochs = 10,
we see that with Ttrain = 8400, i.e., 70% of the total samples,
we achieve the highest performance. We illustrate this further
with the simulation results in Fig. 7, where we compare both
the MSE performance (left axis) and the effective sum rate
Rsum (right axis) measured by the training algorithm when
considering 6400, 7200 and 8400 training data samples, while
fixing the other parameters according to H = 50, α =

0.01 and nepochs = 10. From Fig. 7, it is clear that Ttrain =

6400 is an insufficient number of samples for the network to
train with for optimal performance. At Ttrain = 8400 training
samples, we find the best network performances, with the
lowest validation MSEs, leading to the highest Rsum. There-
fore, Ttrain = 8400 training samples are used in the next set
of simulations.

In this way, the parameters of ANN-NOMA-MEC and
ANN-NOMA-BB can be fine-tuned and for further simula-
tions, we set the training algorithm to work with H = 50
hidden neurons, a learning rate α = 0.01, Ttrain = 8400 train-
ing data samples and nepochs = 10 training epochs. Using
this combination of parameters, we can train ANN-NOMA-
MEC and ANN-NOMA-BB offline from a dataset created
by the NOMA-MEC and NOMA-BB parameters, respec-
tively, and then apply them to make clustering decisions in
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FIGURE 7. Analyzing the effect of the number of training data samples
Ttrain on MSE and Rsum considering different numbers of users, N .
ANN-NOMA-MEC with b = 2.

FIGURE 8. Evolution of ANN-NOMA-MEC learning through 20 epochs with
N = 200 and b = 2. Training in offline mode.

a live network. In Fig. 11, we illustrate the evolution of both
MSE training and MSE validation through 20 epochs for an
ANN-NOMA-MEC network trained in offline mode focused
on a system of N = 200 users and considering b = 2 best
beams. As the figure shows, there is an aggressive reduction
of the training MSE through the first 7 epochs where the
ANN progressively adjusts its clustering formation estima-
tion to the desired solutions. In parallel, a similar behavior
can be observed with the MSE validation also, but with a less
aggressive reduction rate. From epoch e = 10, both train-
ing MSE and validation MSE converge to an approximately
constant performance measure that is kept until training ends.
This confirms the hypothesis that running the ANNs offline
up to epoch-10 allows the ANN-NOMA-MEC network to
effectively learn to predict the clustering formations of the
heterogeneous system at hand and, therefore, this ANN is
suitable to be applied directly in live networks.

Finally, using the neural network parameters as described
earlier, we run the ANN-NOMA-MEC for different settings
of number of users, N and choices of number of best beams

FIGURE 9. Evaluation of different ANN-NOMA-MEC models trained
offline with different configurations of N and b, benchmarked with the
NOMA-MEC heuristic. (a) Performance Rsum and (b) Number of user
clusters, K .

per user set, b, and compare it against the clustering outputs
provided by the NOMA-MEC heuristic. Later, we do the
same for ANN-NOMA-BB and compare it against NOMA-
BB for homogeneous systems. In Fig. 9a and 9b, we show
the effective sum rate Rsum and the number of clusters K ,
respectively, obtained from the estimates of clustering forma-
tions returned by the ANN-NOMA-MEC testing algorithm,
considering Ttest = 1800 testing data samples. We plot that
against the performance achieved by the clustering results
from the baseline heuristic, NOMA-MEC. In general, based
on Fig. 9a, we can see that the performance Rsum is quite
stable between the different configurations of N and b, which
suggests us that the networks have learned similar patterns
from the NOMA-MEC heuristic. Although in the cases where
b = 2 and b = 3 the spectral efficiency of the networks
is visibly lower with respect to the original heuristic, the
plot scale reflects that these values are very close. Therefore,
we can infer that our ANN-NOMA-MEC models are able
to attain the near-optimal Rsum performance as compared to

45684 VOLUME 11, 2023



A. S. Rajasekaran, H. Yanikomeroglu: Neural Network Aided User Clustering in mmWave-NOMA Systems

FIGURE 10. Evaluation of different ANN-NOMA-BB models trained offline
with different number of users, N , benchmarked with the NOMA-BB
heuristic for different values of the SIC decoding capability, dmax.
(a) Performance Rsum and (b) Number of user clusters, K .

NOMA-MEC heuristic. Furthermore, as seen in Fig. 9b, the
original behavior of the NOMA-MEC heuristic is such that
for each number of users in the heterogeneous system, the
number of clusters required to serve the N users, i.e., K ,
decreases as b increases. This same behavior is followed by
the ANN-NOMA-MEC models but showing slightly larger
values. In any case, through Figs. 9a and 9b, we can assert that
the ANN-NOMA-MEC scheme we have proposed is shown
to be effective enough to closely follow the behavior of the
NOMA-MEC heuristic. Similarly, in Fig. 10, we evaluate the
homogeneous case by comparing the performance of ANN-
NOMA-BB with its respective baseline heuristic, NOMA-
BB. Unlike the heterogeneous case, the NOMA-BB heuristic
is designed to alwaysworkwith b = 1while solving homoge-
neous systems where the SIC decoding capability dmax is an
input parameter. This allows us to evaluate ANN-NOMA-BB
models through different configurations of dmax as reflected
in Fig. 10. Once again, we see that the performance of
ANN-NOMA-BB closely follows the NOMA-BB heuristic

FIGURE 11. Comparison of a brute force search (BFS) with NOMA-MEC
and ANNs trained on both the NOMA-MEC heuristic and the BFS.

it learned from both in terms of Rsum and number of clusters
predicted, K . Since NOMA-BB operates on a homogeneous
system which is simpler in terms of the underlying patterns
of the data, ANN-NOMA-BB is able to more closely match
or even slightly exceed the Rsum that NOMA-BB achieves;
unlike ANN-NOMA-MEC which has to learn much more
complex data patterns in heterogeneous systems and so we
saw a slight decrease in Rsum compared to its baseline heuris-
tic of NOMA-MEC.

The results from Fig. 9 and Fig. 10 show that the neural
networks that were trained offline for both homogeneous
and the more complex heterogeneous systems can achieve
performance on par with the baseline heuristics it was trained
on when applied in live networks. While the training and
fine tuning of the neural network parameters is a tedious
process, this can be done offline and off the BS compute
resources, e.g., on cloud resources. When the trained ANNs
are applied directly for NOMA clustering in live networks by
the BS compute resources, it is a low complexity algorithm.
This compared to the baseline heuristics of NOMA-MEC
and NOMA-BB that execute thousands of operations to find
the optimal cluster assignment on a millisecond granularity.
Hence, the proposed ANN-NOMA-MEC and ANN-NOMA-
BB allow for practical realizations of NOMA in mmWave
systems that need to consider a mix of users with different
SIC decoding capability constraints.

Finally, we show that the proposed approach generalizes
well to datasets other than one prepared using the NOMA-
MEC heuristic. To do this, we create a dataset for a het-
erogeneous system with b = 2 using a brute force search
(BFS) of all possible clustering options as opposed to one
obtained using the NOMA-MEC heuristic. We then train the
sameANNon this dataset and term this as ANN-NOMA-BFS
to indicate that it has been trained on the BFS dataset. The
results are shown in Fig. 11 where it is firstly worth noting
that BFS performs marginally better than the NOMA-MEC
heuristic, as expected. The results in Fig. 11 also show that
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the ANN-NOMA-MEC performs nearly on par as the ANN-
NOMA-BFS, indicating there was not much performance
lost from using the dataset generated using the NOMA-MEC
heuristic as opposed to a full brute force search.

V. CONCLUSION
In this paper, we proposed a neural network aided machine
learning approach to the user clustering and ordering problem
in mmWave-NOMA systems that can factor in the individual
SIC decoding capability of each user in the system. The
proposed neural networks, called ANN-NOMA-MEC and
ANN-NOMA-BB, are trained offline on datasets generated
from running simulated settings using the NOMA-MEC and
NOMA-BB heuristics. By training the neural network offline
using cloud compute resources, the heavy computational
steps are executed away from the BS compute resources.
Instead, in the live network, where clustering decisions have
to be made at a millisecond granularity, the trained neu-
ral network can be directly applied to output a clustering
result when provided each user’s mmWave channel and SIC
decoding capability as input. Simulation results show the
effectiveness of the ANN-NOMA-MEC and ANN-NOMA-
BB schemes as the neural network trained on offline simu-
lation data performs comparably with the NOMA-MEC and
NOMA-BB heuristics that is applying computationally inten-
sive algorithms to make every clustering decision in a live
network.

This research can be extended to consider user clustering
problems in digital beamforming systems where multiple
clusters can be formed and served at the same time, lead-
ing to inter-cluster interference that needs to be mitigated.
With a large and diverse enough dataset, it would be inter-
esting to learn if artificial neural networks can also learn
the underlying patterns involved in cancelling out the inter-
cluster interference on top of the SIC decoding capability
constraints as considered in this paper. Since ANN-NOMA-
MEC relies on instantaneous channel conditions, another
future direction is to consider the impacts of imperfect CSI on
the performance. Thus, one extension of this work is to con-
sider non-CSI based feedback, e.g., location based feedback,
in the training of the neural network for making clustering
decisions.
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