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ABSTRACT The electrification of transport has proved to be a breakthrough to uplift the sustainable and
eco-friendly platform in the global sector in which electric vehicles (EVs) are considered indispensable.
In particular, creating intelligent energymanagement in the power distribution system integrated with electric
vehicle charging stations (EVCS) as a new entity is one of the most important challenging tasks. The
implementation of the EVCS network infrastructure should facilitate the adoption of the spatiotemporal
electricity demand for EVs. The intelligent decision for the transmission, distribution, energy allocation
and charging station placement by the control center or central aggregator is only possible by correctly
forecasting its usage, occupancy, and energy or charging demand. Techniques like data analytics have
enabled to extract data from the EVCS on a daily basis to store and process all the recorded data. To overcome
the above-mentioned challenges related to energy demand forecasting for EVCS network, this work proposes
two encoder-decoder models based on convolutional long short-term memory networks (ConvLSTM)
and bidirectional ConvLSTM (BiConvLSTM) in combination with the standard long short-term memory
(LSTM) network. Data on energy demand from EVCS located in four different cities is used in the proposed
models. All datasets are preprocessed to make them suitable for the multi-step time-series learning models
in order to make the framework data-centric. The suggested architectures are built on the ConvLSTM and
BiConvLSTM to extract the key features from the spatiotemporal data of the energy demand data of the
EVCS distributed over the time and space. The predicted outcomes generated by the suggested strategy are
compared with conventional deep learning models and traditional machine learning techniques.

INDEX TERMS Electric vehicle, electric vehicles charging station, energy demand forecasting, ConvLSTM,
BiConvLSTM, EVCS dataset.

I. INTRODUCTION
Electric vehicles (EVs) have been considered as a promising
candidate for reducing global CO2 emissions and climate
change. In this direction, electric power utilities have made
EV charging programs as an integral part to aid with the
regulation of CO2 releases. EV charging takes place usually at

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong .

home, workplace, or roadside public electric vehicle charging
stations. Among the three categories, the publicly available
charging station for EVs has reached 1.8 million in number
across the world in 2021. Compared to other years, the growth
of electric vehicle charging stations (EVCS) installations
has been substantially slower during the pandemic created
by COVID-19. The average yearly growth rate was nearly
60% between 2015 and 2020 in the case of China [1]. The
modern power grid, interchangeably known as the smart grid,
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has become a collaborative platform of multiple technolo-
gies connected to a common network like renewable energy
sources like wind turbines, photovoltaics, and EVs. It is
the reinvention of how energy is generated, transmitted, and
distributed, using multiple technologies to provide a reliable
and cost-effective way. The smart grid has integrated many
new actors, such as prosumers, consumers, and aggregators,
each of them having an important role to play. This led to
a transition from a rigid centralized system to a versatile
decentralized system [2]. Further, the integration of EVs in
the distribution network keeps on adding to the peak load
consumption of the grid, if not checked on time can prove
to be disastrous. In the survey Sun et al. [3] conducted with
EV drivers, it was found that public charging stations were
used by 80% of respondents the most of the time to recharge
their vehicles. Most of the EVCS operate throughout the
day to fulfill the battery of incoming EVs. The EVs need
timely coordination with the electric vehicle supply equip-
ment (EVSE), to regulate the charging process with ease and
increase the EV owner’s satisfaction. The increased density of
the adoption of EVs in urban areas has made it challenging
to minimize intermittency and instant energy consumption
from the grid. Therefore, it has become crucial to estimate
the energy consumption prior to building a new infrastruc-
ture for EVs. As the EV penetration rate increases, develop-
ing spatial-temporal EV charging-power demand models is
needed. Predicting the demand ahead of time is important for
the EVCS operator in order to regulate the supply-demand
and manage the limited resources for charging. There is a
very few ongoing research work that focuses on creating
a framework to forecast the energy demand of the EVCS
network.

In order to optimize the consumption from the power grid,
the proper management of the demand supply in an efficient
and secure manner is needed. In particular, forecasting the
energy demand of the EVCSwith the methods detailed in this
work can offer highly valuable ways of decision-making for
various stakeholders of the rising EV industry (e.g., EVCS
operators, aggregators, and independent system operators).
The independent system operators or the local aggregators
have to schedule the production from the power grids in
advance to avoid inflation in peak demand caused by the
adoption of the EVs, which can lead to power outages [4].

Recent research works proved that high computing tech-
nologies with increased storage memory and processor speed
have opened up many opportunities for artificial intelligence,
big data, and the internet of things. Deep learning and
machine learning have became the promising candidates for
solving complicated problems in different domains, includ-
ing healthcare, manufacturing, electricity, finance, security,
transportation, education, social media, and many more. The
development of the information and communication tech-
nology (ICT), along with the deep learning models and
high-performance computing architectures has made it pos-
sible to collect, analyze, and preprocess the data from the
smart grid to learn features from spatiotemporal data making

a robust solution. One of the aforementioned applications is
estimating power or energy usage, where deep learning archi-
tectures have produced cutting-edge work. Among the deep
learning models encoder-decoder based architectures have
been able to produce mindblowing results in case of machine
translation, speech recognition, and time series application
etc.,

This work aims to investigate the state-of-the-art and
novel deep learning models based on encoder-decoder net-
work architecture using convolutional long short-term mem-
ory networks (ConvLSTM) and bidirectional ConvLSTM
(BiConvLSTM). The proposed encoder-decoder architec-
tures consists ConvLSTM and BiConvLSTM based encoders
in combination with LSTM based decoder to build the frame-
work for EVCS energy demand forecasting. Four different
open datasets have been used for training each model in order
to achieve higher accuracy with good generalization and
less error rate. These datasets cover all common formats of
charging behaviour, usually in the public charging facilities.
The porposed framework considers the fact that the EV users
are mostly using the public fast charging facility in order to
alleviate the longer charging durations. The main objectives
of this work are as follows:

- Propose two different encoder-decoder model based
on ConvLSTM structure namely ConvLSTM-BiLSTM and
BiConvLSTM-LSTM. Standard ConvLSTM has the ability
to capture the long and short-term memory of energy demand
data sequences and comprises both temporal and spatial
information. In case of BiConvLSTM structure that learns
temporal properties in a cascaded and deeper way, i.e., the
ConvLSTM units in the backward layer are built upon the
forward layer, to exchange the information between units in
both directions.

- In order to address the aforementioned difficulties, the
proposed architectures are tested on four different EVCS
datasets to achieve the generalization and scalability of the
deep learning model.

- Validate the proposed models using a real dataset for low
error rate and high accuracy compared to the conventional
deep learning models.

II. RELATED WORK
A. EVCS COMMUNICATION INFRASTRUCTURE
Smart grids provide a well built infrastructure for the wired
and wireless communications owing to the development of
technologies and protocols like 5G, open charge point pro-
tocol (OCPP), etc. to support the EV mobility. Vehicle-to-
everything (V2X) energy transfer takes place through the
internet of electric vehicles (IoEV) platform. Charging start
and end time varies according to EV user mobility statistics.
IoEV will enable connectivity among EVCS. Figure 1 shows
a schematic diagram for the IoEV which mainly consists of
four layers for grid integration of EVs and EVCS. The vehicle
layer comes first in which EVs are integerated with the EVCS
at the time of parking in order to charge their batteries. In the

VOLUME 11, 2023 67351



F. Mohammad et al.: Energy Demand Load Forecasting for EVCS Network

FIGURE 1. Schematic diagram for IoEV for grid integration of EVs and EVCS.

edge layer EVs communicate with road side units (RSUs)
to wirelessly share their vehicle status information (VSI)
whenever in need of charging. The central control center
(CCC) collects, controls and manages the data received from
the RSUs through the cloud layer. The CCC can be a utility
company or load aggregator. During the EV charging session,
the vehicle is connected to the charging station. Both vehicles
and stations have to follow certain communication standards
and protocols, established by the society of automotive engi-
neers (SAE) [5].

The energy drained from the grid during the time between
the start and finish of the charging session is the energy
demand for an EV. The amount of load placed on the grid is
determined by the EVCS chargingmode, such as level 1 (slow
charging) or level 2 (rapid charging), the charge duration, and
the average parking duration, which varies widely across the
EVCS network [6], [7].

B. ENERGY CONSUMPTION FORECASTING MODEL
A growing number of researchers are now interested in mod-
eling EV charging using data-driven techniques. The sum-
mary of recent research on the energy demand forecasting
for electric vehicle charging is shown in Table 1, which has
been widely characterized based on modeling methodolo-
gies such as statistical, machine learning, deep learning, and
reinforcement learning. In order to provide information and
predictive analytics, the changing trends in EV customer’s
charging behavior has made an impact on the power genera-
tion and distribution [8]. Authors in [9] gave a comprehensive
description of the methods that can be utilized to assess and
forecast the charging behavior of EVs using supervised and
unsupervised machine learning. Machine learning methods
such as random forest algorithm proved to be the better

prediction algorithm for charging station groups, which effec-
tively tracks the estimated daily charging capacity of different
charging stations based on the actual recorded data [10]. Lee
et al. employed a bayesian inference learning to forecast the
level of charge of the energy storage level of charge in hybrid
electric vehicles [11].

For an accurate estimation of the energy consumption of
electric vehicles, authors in [12] and [13] presented the use
of machine learning techniques known as support vector
machines. In order to anticipate the amount of energy used
at the University of California’s electric vehicle charging
stations, Majidpour et al. [14] proposed time-weighted dot
product (TWDP) dissimilarity measure to improve the accu-
racy and processing of the forecasting task. Forecasting the
power consumption of the EV, [15], [16] came up with an
emsemble technique. After surveying the traditional machine
learning and statistical models, conventional approaches fail
to offer forecasting models with a high predictive accuracy.
As a result, deep learning techniques producing the state-of-
the-art results in different domains including the time-series
forecasting have been frequently applied to energy demand
forecasting tasks [17], [18], [19], [20], [21].

In case of EVCS energy demand forecasting, the research
is still in the progress to achieve the high accuracy. Long
short-term memory, which is a recurrent neural network
(RNN) based architecture, has been widely used to forecast
the energy demand of the electric vehicle in the case of a sin-
gle household or public charging station [22], [23], [24], [25].
In case of [26], the authors implemented empirical mode
decomposition-arithmetic optimizer algorithm-deep long-
short term memory on the EV charging dataset of Georgia
Tech, Atlanta, USA. LSTM-based architectures have been
often used to overcome the issue of vanishing and exploding
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TABLE 1. Summary of the literature review regarding electric vehicle energy demand forecasting.
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gradients of the standard RNN. Zhou et. al. proposed a
methodological framework based on LSTM network com-
bined with bayesian probability theory using EVCS data
from the Caltech campus [27]. Similar approach has ben
used in [28] on MID2008 survey open dataset for EV user
mobility behaviors. In [29], charging data has been used
for forecasting using ensemble LSTM with feed-forward
neural network. Further, research has been done using the
convolutional neural network in combination with queuing
model to produce favourable results for EVCS demand fore-
casting [30]. In [31], the authors introduced a hierarchical
probabilistic model based onGradient boosted regression tree
for electric vehicle load forecasting using the real data form
Netherlands. Most of the above models are LSTM based
which mostly deal with the temporal characteristics of the
data but unable to tackle the issue of spatially distributed
data. Hüttel et al. considered the both the spatio and temporal
behavior of the EVCS data to increase the accuracy of the
forecasting result which led them to propose the temporal
graph convolutional networks [32]. To reduce the overhead of
the communication in the EVCS network and timely update
the forecasting model, the authors in [33] introduced the
federated learning.

In case of spatio-temporal based models discussed use the
EVCS data from a particular area which does not provide
generalization capability. Similarly many other approaches
were put to use for EV charging demand forecasting. Zhang
et al. [36] introduced an extreme learning machine algorithm-
based prediction-based optimal energy management of elec-
tric vehicles that also provided the driver torque demand
forecast. Simultaneously, reinforcement learning is finding
its way in demand forecasting, [37] provides a review of
RL algorithms for EV charging management. While as [38]
proposedQ-learning algorithm based approach to forecast the
EVCS energy demand for multiple charging like uncoordi-
nated, coordinated and smart.

Most of the forecasting models discussed in this section
have the following shortcomings: First, the forecasting task
circulates around the energy consumption of the individ-
ual EVs at residential places or a single EVCS, and few
research works have focused on the city wide EVCS net-
work energy demand consumption. Second, the traditional
forecasting models lack the competency to deal with the
spatiotemporal data of the energy demand of electric vehicle
charging stations. The standard deep learning-based models,
despite being good at handling temporal correlation, have too
much redundancy for geographically dispersed data. When it
comes to prediction, dealing with data simultaneously in both
space and time coordinates is a challenging task. With the
advancement in the LSTM based encoder-decoder architec-
tures like ConvLSTM [39], [40], [41] and BiConvLSTM [42]
proved to be the promising candidates for the forecasting
tasks. The basic element of this architecture contains con-
volutional structures in both input-to-state and state-to-state
transitions. This work uses the ConvLSTM-BiLSTM and
BiConvLSTM-LSTM based encoder-decoder architectures

to create better forecasting results than the standard models
in order to address the issue of energy demand forecasting of
EVCS network with the superior accuracy results.

C. DECISION VARIABLES FOR ELECTRIC VEHICLE
CHARGING INFRASTRUCTURE
The penetration rate and grid integration of renewable energy
sources (RES), including photovoltaic, energy storage sys-
tems (ESS), and EVs, continues to climb [43], [44]. With the
changing trend of the energy management business model,
an increasing number of energy consumers are making the
shift to becoming energy prosumers. Energy prosumers have
the option of using RES to generate some of the energy they
require locally while distributing the excess to other con-
sumers. Prosumer can support the electricity system at peak
timeswhen the grid energy cannot suffice the demand. By this
way the participants can make the profit for themselves and
avoid the power outages to a large extent. To make decisions
more flexibly, a framework that can predict the future energy
trend in the electric distribution system is required. Machine
learning algorithms has paved a way to optimize the usage of
the energy in a smart grid [44] with the help of forecasting.

1) ENERGY TRADING
The transactive energymarket (TEM) is gaining greater atten-
tion as distributed energy resources (DER) deployments such
as solar panels and battery energy storage systems and EV and
EVCS integration on distribution networks increase. Authors
in [46] determine TEM prices for energy trading amongst
EVs at an EVCS housed inside office buildings with rooftop
PVs using a dynamic pricing methodology. A management
system for EV charging services in commercial buildings
with on-site PV generating was presented in [47]. From
the viewpoint of energy trading, EVs can exchange energy
via vehicle-to-grid (V2G), grid-to-vehicle (G2V), vehicle-to-
vehicle (V2V), and vehicle-to-home (V2H). In all the forms
of charging, where energy traders can offer competitive prices
to the EVs. Energy trading for EVs faces several difficulties,
including those related to demand volatility, capacity and
time volatility, customer satisfaction, fairness standards, pri-
vacy protection, battery, and energy consumption capacities,
voltage and current instability caused by unexpected charging
injection on the power system, pricing and frequency reg-
ulation issues, communication, and charging methods [48].
Therefore, forecasting the future demand of electric vehicles
can lead to improved peer-to-peer energy trading.

2) CHARGING AND DISCHARGING SCHEDULING
For adequate and well-balanced energy consumption in
charging stations with numerous entities, such as producers,
consumers, and prosumers, an intelligent power management
strategy must be put in place. The charging and discharge
schedule of EVs is a crucial issue that needs to be addressed.
It is fair for the EV or ESS to be charged during off-peak hours
based on the hourly fluctuation of demand at the EVCS or
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smart home while considering the hours with low, average,
and peak demand [49]. So, it makes sense that they charge
when the total demand is low, depending on the need for
electricity. Further, EV charging schedules need to be set
according to the next day trip to avoid range anxiety [50].
On the other hand, the best times to discharge are during
periods of high electrical demand. EVCS provides incen-
tivization in charging/discharging costs in order to increase
the advantages of EVCS for operators and EV owners by
including customers in the efficient use of energy [51].

To tackle the uncertainty of geographically distributed
temporal EVCS data, this paper proposes a spatio-temporal
EV energy demand forecasting model for a public electric
vehicle charging station network in a realistic traffic scenario.
To the best of the authorsb knowledge, this article is the first
attempt to investigate encoder-decoder architecture employ-
ing ConvLSTM and its variant BiConvLSTM techniques for
predicting the energy demand of EVCS network. Four differ-
ent electric vehicle charging station networks in four different
cities are considered to analyze the performance, robustness,
and generalization of the proposed EVCS demand forecasting
model. In a single city, there are lot of EVCS which are geo-
graphically dispersed, this is due to the increasing penetration
of the EV in that area (university campus, residential, market,
etc), together with the timely use of the EVs throughout
the day finally leads to the spatial distribution of energy
demand data of the EVCS network. In order to incorporate
spatial dependencies in addition to long-short term model-
ing, ConvLSTM replaces all of its linear operations with
convolution layers. A ConvLSTM layer increases the spatial
scale of the intermediate representations without affecting
the global, long-term spatiotemporal properties of the data.
This encoding happens throughout the LSTM’s recurrent
operation. The two properties are incorporated into a single
ConvLSTM cell which gives it an upper hand over the other

conventional deep learning models. While in case of BiCon-
vLSTM the ConvLSTM units in the backward layer are built
upon the forward layer. Thus, the forward ConvLSTM units
share the sequential information with the backward layers.
In proposed model, both ConvLSTM and BiConvLSTM has
been cascaded with LSTMmodule to collect more spatial and
temporal features, greatly enhancing the capacity of the Con-
vLSTM for temporal learning. In order to predict the EVCS
future consumption the model should map the relationships
between the input features and target with high precision. The
more the predicted and actual energy demand values becomes
closely correlate the good the proposed model is reliable and
robust. The model algorithm is exclusively reliant on the data
of the historical events, such as the arrival and departure of
EVs, daily electricity consumption, etc.

III. ELECTRIC VEHICLE CHARGING STATION NETWORK
DATASET
An intelligent communication system paves up new opportu-
nities to develop and improve electric vehicles and mobility
services, which makes mobility safer, more efficient, and
more convenient. By seamlessly connecting users, electric
vehicles, and services over the internet, drivers also get a
fascinating experience leading to an increase in the smart
data-driven technologies coming into existence, heightening
the appeal of electromobility in general [52]. A high-quality
dataset is essential for the development of strong artificial
intelligence-based predictive models [53], [54], [55], [56].
As the EVCS datasets are usually time series dataset. Gen-
erally, time series dataset consists of multiple data points
that are adjacent based on a specific time step. For the deep
learningmodel training, four datasets are used. These datasets
come from four different cities, namely Dundee and Perth in
the United Kingdom (UK) and Boulder and Palo Alto in the

FIGURE 2. Electric vehicle charging station distribution in four different cities a) Palo
Alto city b) Boulder city, c) Dundee city, and d) Perth city.
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United States of America (USA). The fields shared across
all these datasets are the session start and end times and the
energy consumed in kilowatt hours. One more characteristic
of these datasets is that they provide EVCS location, which
can help in designing spatiotemporal models, as shown in
Figure 2. All datasets used in this work have some specific
attributes related to EVCS, EV, and charging event which are
described below:

1. EVCS attributes: EVCS data includes an ID, name of
the station, location address and area zip code. Further,
it also has information like MAC address, latitude and
longitude of the station, and each charging pile with the
charging ports, either level 1, level 2, or DC fast charge.

2. EV attributes: EV share the information which contain-
ing a EV ID and registred zip code (which is usually the
zip code of the driver’s residence).

3. Charging event data: includes the start date and time of
the charging event, end date and time of the charging
event, charging duration, average stay duration, initial
state of charge (SOC), final SOC, transferred energy,
Greenhouse Gas (GHG) saving, and information on how
was the charging event ended (e.g., terminated by cus-
tomer or server).

A. PALO ALTO DATASET
The Palo Alto dataset contains various metadata on the
charging transaction given in Appendix. Figure 2a shows
the distribution of the EV charging stations over the Palo
Alto using the Google maps based on the address, longitude,

and latitude fields of the dataset [57]. It also consists of EV
charging transactions at those locations. The dataset spans
from 2011 to 2013, having 10000 transactions with 28 fields.
The energy demand (kWh) for a charging event is minute
based, which is the target to predict. The energy demand is
aggregated into a daily energy demand for each of the stations
in Palo Alto.

B. BOULDER DATASET
The City of Boulder dataset has 48 public EVCS located at
city facilities, the recreation centers and downtown parking
garages [58]. Appendix, Table 3 provides the description of
the dataset consisting of 12 fields with total of 36,326 charg-
ing transactions. Figure 2b depicts the distribution of EV
charging stations locations in the City of Boulder. The dataset
ranges from January 2018 to November 2021. EV charging
stations are distributed over the City of Boulder using the
address field of the dataset by employing Google Maps.

C. DUNDEE DATASET
A modern and effective EV fleet will be deployed around
the city as part of a smart city project led by Dundee
City Council [59]. Through close collaboration with the
Scottish Electric Vehicle Association (EVAS) and its mem-
bers, Dundee has already made its public charging stations
available. The real data obtained from 58 electric vehicle
charging stations situated in Dundee city, Scotland, during
2017 and 2018. The actual data collected from these sta-
tions between those years was accurate. In particular, the

FIGURE 3. Proposed framework of the EVCS charging demand forecasting system.
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FIGURE 4. Architecture of the ConvLSTM cell and ConvLSTM layers stacked in an encoder network stacked in an
encoder network.

FIGURE 5. Overview of the BiConvLSTM Cell.

dataset has 52,475 transactions. Table 3 in Appendix shows
the detailed description of the dataset which includes identi-
fication number, transaction ID for each EVCS, EV charg-
ing date, EV charging time, and consumed energy (kWh).
Figure 2c shows the distribution of the EV charging stations
over the City of Dundee based on the address field of the
dataset.

D. PERTH DATASET
EVCS located around the Perth city as shown in figure 2d,
which are under the ChargePlace Scotland scheme. The Perth
dataset includes anonymous data from each individual charg-
ing session. It consists of three years data ranging from
January 2016 to December 2019. Each row has 10 fields
with a total charging session of 66,665. It has 41 electric
car charging points at the Broxden Park and Ride including
rapid chargers as well as fast chargers. Charge Place Scotland
will soon offer differential tariffs which will attract the EV

customers to take advantage of cheaper off-peak energy usage
and also allow more targeted overstay fees that would allow
users to charge their EV during the night without amounting
penalty fees [60]. Description is given in Table 3 Appendix.

IV. PROPOSED FRAMEWORK
The future smart power grid needs to understand the flex-
ibility potential of assets like EVs and other intermittent
resources in order to coordinate the operation between the
producers, consumers, and prosumers. This section proposes
an ideal forecasting model to address the aforementioned
issue and enhance the forecasting accuracy. In order to con-
struct a forecasting model, many elements must be addressed,
such as the quantity of data, the input covariates and output
target variable, the choice of algorithm, etc. The publicly
accessible datasets that give information on EV charging
sessions. The task of load forecasting is made simpler by the
big number and the well-engineered data [61].
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In this work, an energy demand forecasting framework is
proposed to build an efficient energy management system for
electric vehicles in order to create optimal schedule charging
transactions considering the constraints of the power grid.
Figure 3 illustrates the framework of the proposed EVCS
energy demand forecasting model. The framework consists
of the following modules:

i. EVCS infrastructure
ii. Energy demand forecasting model for EVCS network
iii. Middleware layer: EVCS Big Data Analysis
iv. Application layer: Model Training and Prediction

A. ELECTRIC VEHICLE CHARGING STATION NETWORK
INFRASTRUCTURE
In recent years, it has become more crucial to take into
account intelligent charging algorithms and various uses of
EV batteries for auxiliary service offering. In order to collect
the data from a smart EVCS network and since EVs are
a variable resource, having a reliable and adequate charg-
ing infrastructure is crucial. The highest amount of energy
delivered per public EVCS with a specific power capacity is
described by usage. Thingvad [62] provides a useful summary
of the energy and charging infrastructure required. Similarly,
in [63], the authors provided an overview explaining the
EVCS infrastructure, EV mobility, and charging behaviour.
The availability of public charging infrastructure benefits
intercity travel, emergency fast charging, and EV owners
who cannot set up charging stations at home. Additionally,
public charging stations can assist EV users in overcoming
range anxiety when traveling long distances. Further, the
developments in information technology and communica-
tion data generation, data processing, and control are trans-
forming the transportation sector from model-driven systems
into data-driven intelligent transportation systems (ITS). The
data-driven model provides a hands-on solution using artifi-
cial intelligence.

B. ENERGY FORECASTING MODEL FOR EVCS NETWORK
Machine learning and its derivative deep learning are cur-
rently contending with one another to improve accuracy
and decrease error rates for tasks involving classification or
regression. Given the high degree of uncertainty and dynamic
nature of the data on EV power usage, forecasting tasks must
effectively address these fundamental problems. Inaccurate
input-to-target mapping results from uncertainty, particularly
for statistical or linear models. Due to the non-linear nature
of the energy data, deep learning models offer a strong
architecture to deal with this randomness. Encoder-Decoder
based deep learning model proved to be one the promising
architecture to be used in time-series forecasting. In this
paper, two state-of-the-art encoder-decoder architectures are
employed. The spatiotemporal encoding is done using two
different encoders based on standard ConvLSTM and its
variant BiConvLSTM. The decoder part consists of standard

LSTM architecture. The architectures for both encoders and
decoders are described below.

1) SPATIOTEMPORAL ENCODER ARCHITECTURE
2) CONVOLUTIONAL LONG SHORT-TERM MEMORY
A ConvLSTM layer learns spatiotemporal dependency in
the time-series energy consumption dataset. The encoder
network consisting of ConvLSTM is used to fully ana-
lyze spatiotemporal correlation information by utilizing the
convolution and recurrence operations as compared to sim-
ple LSTM. The ConvLSTM layer can regain the lost spa-
tial information along with the temporal representations
during the training. Convolution and recurrence operations
are used for both input-to-input and state-to-state transi-
tions making the final state have a large receptive field.
Figure 4 shows the internal cell structure of the Con-
vLSTM, and the placement of ConvLSTM layers in the
encoder-decoder architecture, which receives the input data
through the input layer and forwards it to the encoding
layers which is then transferred to the decoding layer via
flattening layer to produce the forecasting results. The Con-
vLSTM model was first introduced to study precipitation
nowcasting [39].

ConvLSTM consists of an input gate it , an output gate ot ,
a forget gate ft , and a memory cell Ct . These gates act as con-
trolling pathways to access, update, and clear memory cell.
Equation (1)-(6) defines the operations in the ConvLSTM
network:

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (1)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ) (2)

C̃t = tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

(4)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo) (5)

Ht = ot ◦ tanh(Ct ) (6)

where Xt denotes the input of the current cell, Ct−1 and Ht−1
are state and output of the last cell, respectively. ‘∗’ denotes
the convolution operation and ‘◦’ denotes the Hadamard
product.W•,W•,W• denotes the 2-D convolution filters with
a k ∗ k kernel size. The definitions of, bi, bf , and bo are
similar to that of simple LSTMarchitecture, however, the data
dimensions and processing methods are different. When the
training of ConvLSTM begins as the input arrives, the new
data will be accumulated to the memory cell Ct if the input
gate it is activated. Similarly, the past cell statusCt−1 could be
forgotten if the forget gate ft is switched on.Whether the latest
memory cell’s value Ct will be transmitted to the final state
Ht is further controlled by the output gate ot . ConvLSTM
can extract a more useful feature representation than CNN
due to this unique structure. Additionally, in comparison to
LSTM, the three gate mechanism implementations use 3D
tensors to expand from one-dimensional tomulti-dimensional
convolution operation.
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3) BIDIRECTIONAL CONVOLUTIONAL LONG SHORT-TERM
MEMORY
The word bidirectional depicts the two directions, forward
direction and backward direction. The BiConvLSTM used
in this work is the enhancement to the standard ConvL-
STM. In [40], the work provides a detailed description of
the BiConvLSTM architecture and its application for object
detection in video frames. The concept is similar to that of
bidirectional LSTM in which the input flows in the both
directions and has the potential of utilizing information from
both sides. In case of BiConvLSTM the ConvLSTM units in
the backward layer are built upon the forward layer to capture
the temporal characteristics in both directions as shown in
Figure 5. This cascaded layer architecture makes it possible
for the forward ConvLSTM units to exchange their sequential
knowledge with the backward layers. BiConvLSTM architec-
ture is expressed in the following equations:

iBt = σ (WHF

i ∗ HF
t +WHB

i ∗ HB
t+1 + bi) (7)

f Bt = σ (WHF

f ∗ HF
t +WHB

f ∗ HB
t+1 + bf ) (8)

oBt = σ (WHF

o ∗ HF
t +WHb

o ∗ Hb
t+1 + bo) (9)

CB
t = f Bt ◦ CB

t+1 + iBt ◦ C̃t (10)

C̃t = tanh(WHF

c ∗ HF
t +WHB

C ∗ HB
t+1 + bC ) (11)

HB
t = oBt ◦ tanh(CB

t ) (12)

The final output considering bidirectional spatiotemporal
information is given by Equation as follows:

Yt = tanh(WHF

y ∗ HF
t +WHB

y ∗ HB
t−1) (13)

where HF and HBindicates the hidden states from forward
and backward ConvLSTM units, and Y t indicates the final
output considering bidirectional spatiotemporal information.
The ConvLSTM units in the forward layer receive spatial
feature maps {X t}Tt=1 from T frames as inputs, and output
forward sequential feature maps {HF

t }Tt=1 according to Eq.
1-6. The deeper layer is constituted of the backward units that
receive the output features from the forward layer {H t}

T
t=1 as

inputs. Then the forward features {HF
t }Tt=1 and the backward

features {HB
t }Tt=1 are combined for final outputs: {Y t}Tt=1

using Eq. 11. In this way, information is encouraged to flow
between the forward and backward ConvLSTM units, and
deeper spatiotemporal features can be extracted by the back-
ward units.

In a standard ConvLSTM, the dependencies of the forward
direction are processed. However, all the information in a
sequence should be fully considered, therefore, it might be
effective to consider backward dependencies. It has been
proved that analyzing both forward and backward temporal
perspectives enhanced the predictive performance.

4) TEMPORAL DECODER ARCHITECTURES
a: LSTM
The LSTMs are specifically designed RNN based archi-
tecture to support sequences of input data and has solved

FIGURE 6. Standard LSTM cell unrolled.

the problem of vanishing or exploding gradients of the
conventional RNN. Modeling long-range relationships suc-
cessfully involve learning the intricate dynamics of the tem-
poral ordering of sequential input using an internal memory.
Figure 6 representes the unrolled structure of the standard
LSTM cell. The LSTM can be configured into an encoder-
decoder architecture, enabling the model to be applied to both
variable length input sequences and the generation of variable
length output sequences over a temporal range. Contribution
of LSTM is recurrent connections, memory cell Ct , and the
self parameterized and controlling gates, which essentially
control the flow of the state information. LSTM as a temporal
decoder takes the input from the encoder as time series data.
In encoder part, the entire input sequence, the hidden state or
output of encoder model represents an internal learned repre-
sentation as a fixed-length vector. This vector is then provided
as an input to the LSTM decoder model that interprets it as
the output sequence. LSTM decoder network finally outputs
a 3D vector with the same input sequence of dimensions as
[samples, timesteps, features].

b: BIDIRECTIONAL LSTM
One of the variants of the conventional LSTM is bidirectional
long Short-Term Memory (BiLSTM), one of the recurrent
neural networks, which can process both past and future
information, whereas traditional LSTMs can only do with
one-way transmission of information. The working principle
of BiLSTM is that the same output connects two LSTM
networks with opposite timings. Figure 7 shows the BiL-
STM architecture’s unrolled structure. The forward LSTM
can receive the input sequence’s past data information, while
the reverse LSTM can obtain the input sequence’s future
data information. Each level of the bidirectional LSTM
network gives the forward and backward layer output to
the activation layer, a neural network, and the output of
this activation layer is taken into consideration. This output
also includes information about or a relationship between
past and future datapoints. The hidden state H t of BiL-
STM at time t includes two sets forward HF

t and back-
ward HB

t . The BiLSTM is mathematically expressed as
follows:

HF
t = LSTM (Ht−1,Xt ,Ct−1) (14)

HB
t = LSTM (Ht+1,Xt ,Ct+1) (15)

Ht = [HF
t ,HB

t ] (16)
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FIGURE 7. An overview of bidirectional LSTM.

C. PROPOSED DEEP LEARNING ARCHITECTURE
Although fully connected standard LSTM can single hand-
edly deal with the temporal characteristics of the timeseries
data but is unable to read the spatial attributes. To address this
issue, two encoder-decoder based architectures are proposed
which can efficiently deal with the spatiotemporal correlation
of the timeseries data [64].

1) ConvLSTM AND BiLSTM BASED ENERGY DEMAND
FORECASTING MODEL
ConvLSTM is an improvement over traditional LSTM that
uses convolutional structures to read the spatiotemporal
nature of input-to-state and state-to-state transitions. Two
networks, an encoding network and a forecasting or decod-
ing network, have been built to solve the spatiotemporal
sequence forecasting problem as shown in Figure 8. The
initial states and cell outputs of the forecasting network are
copied from the last state of the encoding network using the
flatten layer and repeat vector layer. The enhanced design
of ConvLSTM is that the gates, cell state, hidden state, and
inputs X1,X2, . . . ,Xt are changed to 3D tensors with the last
two dimensions as spatial. The encoder network determines
the future state of a 3D cell using the inputs and the past
state information of its neighbouring cells by virtue of the
convolution operator.

In this architecture, the encoder module is made up of
ConvLSTM layer to gain consistency in knowledge about the
spatial behaviour of the data, while as the decoder module
consists of bidirectional LSTM. The feature maps produced
by the ConvLSTM are forwarded to the flatten layer to
reorder them from the spatial dimensions to one dimensional
array that can then be used as input to the decoding process.
This 1D array is reproduced into a 2D array by passing via the
repeat vector layer. For each time step in the output sequence,
the internal representation of the input sequence is iterated
over many times. The LSTM decoder will be shown this
series of vectors.

The input layer takes the data, which is then transferred to
the ConvLSTM layer. After the data preprocessing step, the
timeseries EVCS network data is fully polished as the input
data to train the model. The ConvLSTM encoder input layer
receives the input data in the shape of a tuple [n, t, r, c, ch]

where

- n samples

- t timesteps
- r number of rows
- c number of columns
- ch channels.

The input matrix is one-dimensional sequence of total
power consumption, which can be interpreted as one rowwith
7 or 14 columns, depending on what amount of datapoints are
taken as input to make the forecast. Each timestep of data is
defined as an image of dimension r∗c. In the encoder part,
there is one ConvLSTM layer which is equipped with 1 ×

3 kernels having a total number of kernels or filters of 64 and
the activation function is set as rectified linear unit (ReLU).

The encoder block can have one or more ConvLSTM
layers stacked depending upon themodel selection, therefore,
in the later section, we have provided an intensive ablation
study for choosing the number of layers and other hyperpa-
rameters. To connect the encoder and decoder blocks, there
are flatten layer and repeat vector. The RepeatVector layer
regenerates the input to produce the output with the dimen-
sions of [1, 7, 1] which is passed to decoder part. The deoder
has three BiLSTM layers and each BiLSTM layer consists of
200 units of neurons with ReLU activation function. Further,
in the decoder part L2 regularization is employed which is
also known as kernel-regularizer, to improve the accuracy of
the model. After that, an fully connected layer is placed to
interpret each time step in the output sequence prior to the
final output layer, which could be just a single step. There
should be seven sequential values for a week prediction.
It means that each time step provided by the decoder will be
processed using the same fully connected layer and output
layer. In order to achieve this, the interpretation layer and
output layer must be wrapped in a time-distributed, fully
connected wrapper that enables the wrapped layers to be used
for each time step from the decoder.

2) BiConvLSTM AND LSTM BASED ENEGY DEMAND
FORECASTING MODEL
The BiConvLSTM and LSTM is an encoder-decoder archi-
tecture consisting of single BiConvLSTM in the encoding
layer and two stacked LSTM layers in the decoding module
as shown in Figure 9. Optimal number of layers and number
of neurons in each layer has been verified by doing multiple
experiments. This enhancement of the ConvLSTM is done
to verify the applicability of the BiConvLSTM in the case of
energy demand forecasting. BiConvLSTM can be considered
as of the forward and backward standard ConvLSTM. There-
fore, it has two sets of training parameters for backward state
and forward state respectively. The equations in the section
C, II ellaborates the structure and the flow of the information
in the BiConvLSTM cell.

D. MODEL TRAINING AND PREDICTION
In this work, our focus is to provide a weekly forecast,
therefore, the forecasting horizon will be the daily aggre-
gate energy consumption of EVCS network in a particular
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FIGURE 8. ConvLSTM and BiLSTM based encoder-decoder architecture for EVCS energy demand forecasting.

FIGURE 9. BiConvLSTM and LSTM based encoder-decoder architecture for EVCS energy demand forecasting.

area. The data should be separated into normal weeks, each
of which starts on sunday and ends on saturday. This is a
practical and realistic technique to apply the model’s selected
framework, allowing for the prediction of the coming week’s
power consumption. It is useful during modeling, as models
may be used to forecast a certain day of the week or the
entire series. Working backwards from the training dataset,
the split method is used to divide the data into standardweeks.
Wemust manually choose a dataset length that can be amulti-
ple of seven in order to divide the entire number of datapoints
into standard weeks if the datapoints are not automatically

separated into weeks. Restructuring of the final dataset into
train and test data is done using the split function, which
takes start and end index of the train and test sets. The most
effective deep learning architecture for the EVCS energy
demand forecasting task is determined by the selection of
neural network hyperparameters, including the batch size of
the training set, number of hidden layers, activation function
in the hidden layers, dropout, optimization algorithm, number
of training epochs, etc.

In the case of ConvLSTM + BiLSTM based architecture,
the encoder network has multiple ConvLSTM layers stacked
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over one another. Similarly, in the decoder network side,
multiple BiLSTM layers are put to play. We choose a single
ConvLSTM layer in the encoder network and three cascaded
BiLSTM layers in the decoder network, which outperforms
other competing model architectures for energy demand fore-
casting task. In the encoder network, the ConvLSTMoperates
over the data by considering it as an image and convolves
over it spatiotemporally, and the final output in the form of
feature map is then passed to a flatten layer. The flatten layer
outputs 1D vector of length 1536 which is passed as input
to RepeatVector layer which produce the output of matrix 7
× 1536. The output is now an input to the decoder network
which consists of BiLSTM layers. The BiLSTM layer per-
forms operations over the input following the equation in
section II. The output of the decoder layer is fed to the first
TimeDistributed − FullyConnected layer having 100 hidden
neurons and then to the second TD-FC layer having one
neuron to produce the prediction result of the energy demand
of a single day which is aggregated with other consecutive six
outputs to give the final forecasting result of the whole week.

In the case of BiConvLSTM − LSTM architecture,
we choose single BiConvLSTM in encoder network and two
layers LSTM in the decoder network as model architecture
for the energy demand forecasting task. During the training
process, we simultaneously employed multiple architectures
to validate the performance in terms of error rate by using loss
function called MSE. The BiConvLSTM does the same work
but in the both directions because it comprises of ConvLSTM
block with two sets of the hidden state HF

t ,HB
t and cell state

CF
t ,CB

t . The (H
F
t ,CF

t ) is for the forward pass and (H
B
t ,CB

t )
is for the backward pass. The model can make predictions
using the fit model. There is not any fixed way to select
the optimal number of layers in both encoder and decoder,
we just use random way by comparing the error using the
loss function called mean square error (MSE). Section V
provides the ablation study and list the performance when
different variants of this model are employed. In decoder
network, multiple LSTM layers are stacked and each LSTM
layer has the activation function ReLU. We use the walk
forward validation method to validate the model, which is
similar to the k-fold cross validation [65]. In order to prevent
the model from becoming overfit, this approach forecasts at
each time step using a sliding window methodology. In order
to accelerate training, we used two alternative regularization
techniques. The first is dropout, which leaves 50% of the
hidden neurons untrained in order to simplify the model.
L2 regularization, commonly known as Ridge Regression,
comes in second. L2 regularization is set at 0.001 by default.
The model is trained for 100 epochs with different batch sizes
of 32, 64, 128, and 256 using the Adam optimizer. Finally,
after continuous experimentation, the batch size of 64 has
been selected as it provides the better results in terms of loss
function and time complexity. Variable batch size affects the
training time of the deep learning model, smaller batch takes
a long time to train, while as larger batch size takes less time.

To evaluate the performance of a specific model, we calculate
the average loss value of that model.

V. PERFORMANCE EVALUATION
A. PERFORMANCE METRICS
1) MEAN SQUARE ERROR
The mean absolute error calculates the mean of the absolute
differences between the predicted energy demand ŷ(i) and
the actual energy demand y (i) over the whole dataset of
N samples. The MSE actually measures the average of the
squares of the error. It strictly gives a positive value that
decreases as it tends to approach zero.

MSE =
1
N

∑N

i=1

[
y (i) − ŷ(i)

]2 (17)

2) MEAN AVERAGE PERCENTAGE ERROR
Mean average percentage error is a measure of the prediction
accuracy of a forecasting method in the statistical analysis
of the dataset. It is the most commonly used error metric to
measure the performance of the model. Since it depicts the
value in percentage, whichmakes it always positive, it usually
expresses the accuracy as a ratio defined by the formula:

MAPE =
100
N

∑N

i=1

∣∣y (i) − ŷ(i)/y(i)
∣∣ (18)

In the above equations y (i) is the actual or real value, ŷ(i)
is the predicted value, and N is the total number of samples.

3) ROOT MEAN SQUARE ERROR
The root mean square error is also sometimes called root
mean square deviation (RMSD). It represents the square root
of the differences between predicted energy values ŷ(i) and
actual energy values y (i) or is the square root of the average
of squared errors over the whole dataset of N samples. The
RMSE is a single indicator of predictive power that combines
the sizes of predictions errors for numerous data points.
RMSE is a metric for accuracy that may be used to evaluate
forecasting mistakes across many models for a given dataset.

RMSE =

√
1
N

∑N

i=1

[
y (i) − ŷ(i)

]2 (19)

B. EVCS BIG DATA ANALYSIS
Like drivers of conventional cars known as internal combus-
tion engine vehicle (ICEV), all EV drivers have comparable
driving habits. Transiting from an ICEV to an EV shouldn’t
significantly alter regular travel patterns. Daily trip from
home to work or to shopping centers remains same. Electric
vehicle charging stations network in each city considered in
this work follows similar trend in case of energy consump-
tion. The dataset from the city of Palo Alto, which spans a
period of six years, is followed by those from Perth, which
spans four years, Boulder, which spans just over two years,
and Dundee, which spans two years. The data analysis is
processed using the following steps:
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TABLE 2. Average results forecasting performance of proposed models versus other state-of-art models in terms of RMSE, MAPE, and MSE.

1) DATA ACQUISITION AND DATA COLLECTION
Reliable, quicker, and more effective communication has
emerged during the last few years as a critical component of
the smart city implementation. Understanding the potential
effects of EV charging on the electrical system is the key goal.
Vehicle-to-infrastructure, vehicle-to-vehicle, and vehicle-to-
pedestrian are all parts of V2X. V2X communication infras-
tructure utilizes the technologies like IoT, 5G, and LoRa for
the transfer of the data packets [66]. The aggregator or the
utilities collect data inferring the customer EV charging and
usage patterns in order to inform future schedules and prices.

2) DATA CLEANING AND AGGREGATION
After collecting the data from different devices using the
communication infrastructure, it might be difficult to examine
unstructured data in such formats since it can be stored in
a variety of sources. Data warehouses are used as a result.
A data warehouse is a hub where data is consolidated from
several databases. To find and eliminate false or corrupted
data from the dataset, the data cleaning method is used. The
raw data needs cleaning to improve the data consistency to
train the model for making the prediction. This step is neces-
sary because the raw data have a lot of noisy datapoints and
missing data. In other words, data cleaning aids the overall
data analysis. The next step after cleaning is data aggregation
which is often used to provide statistical analysis of data to
create useful summary data for further analysis.

3) DATA RESAMPLING AND DATA TRANSFORMATION
The dataset is framed in this study to downsample the hourly
frequency of power consumption to total daily consumptions,
which decreases the data samples of the aggregated load on
a daily basis as compared to the original dataset. Energy
usage is used for training purposes as a single variable. This
approach bases its preprocessing on the target horizon that
will be anticipated. This work is associated with daily power
consumption predictions, which require the aggregated daily
load. The resample () is a method of the Pandas dataframes

that can be used to summarize data by date or time. Therefore,
the resample () method together with sum () is evoked
by passing the argument ‘D’ which allows the data indexed
by datetime to be grouped by adding up all values for each
resampling period, i.e., day in this case [67].

The data normalization step is employed after the data
resampling step has been completed. The purpose is to adjust
the numerical differences among the data points by scaling
each input variable separately by subtracting the mean and
dividing by the standard deviation to shift the distribution
such that the mean equals zero and the standard deviation
equals one. Due to the substantial variances in the target
data, the standardization technique aids in enhancing the
performance of the model training process and speeds up
training [68]. To start training the deep learning model, train-
ing data and testing data need to be transformed in the same
way. The data standardization is formulated as presented in
equation (29):

z =
x − µ

σ
(20)

where x is an original value, µ is the mean value of x, σ is
the standard deviation of the dataset and z is the normalized
value. Data transformation using the standardization removes
the mean and scales each feature/variable to unit variance.
This operation is performed feature-wise in an independent
way.Meanµ and standard deviation σ and standard deviation

µ = 1/
N

N∑
i=1

(xi) (21)

σ =

√√√√1/
N

N∑
i=1

(x i − µ)2 (22)

4) DATASET FORMATION
After going through all of the above processes of cleaning,
resampling, and standardizing, the data is now liable for the
deep learning models to be trained. Dataset obtained after the
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FIGURE 10. Illustration of training loss and validation loss using different architectures for the Palo
Alto dataset, and lower figure shows the predicted vs actual charging demand.

preprocessing step is completely a kind of time series data
which follows a particular trend. All the variables, including
feature vectors as well as target variables, are sequentially
recorded data points at regular intervals having a frequency
depending upon the time horizon, which may typically be
hourly, daily, weekly, monthly, and yearly. As this study
revolves around daily energy forecasting but the actual data
is non-uniformly distributed hourly electricity data, which
implies that after going through all the data preprocessing,
the final dataset size has been reduced. In the case of Boulder
City, the actual data points are 65,272, and the final prepro-
cessed dataset has 1,431 data points.

C. EXPERIMENTAL RESULTS AND DISCUSSION
This section provides the experimental results of the Con-
vLSTM and BiConvLSTM based architectures in case of
daily energy demand forecasting for electric vehicle charging

stations. For the elucidation ConvLSTM−BiLSTM is repre-
sented as proposed model-I and BiConvLSTM − LSTM as
proposed model-II. In Figure 10, the training and validation
curves depicts the generalization potential of all the models,
where the orange curve represents validation loss and the
blue curve for training loss. This is given as MSE metric.
Further, it provides visual graphs which depict how strongly
the forecasting curve follows the actual curve over a test
sample for a week. While as Table 2, provides the results
of the two proposed models which are compared with the
five conventional models namely LSTM, CNN, CNN-LSTM,
LSTM-LSTM, and BiLSTM-BiLSTM. The performance of
the proposedmodels on the four different datasets is evaluated
using the MAPE, RMSE, and MSE.

In the case of Palo Alto dataset, the proposed model-I
manages to decrease the RMSE by about 23.41%, 23.74%,
34.56%, 38.63%, 20.13%, and 2.74% compared to the
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TABLE 3. Description of datasets.

CNN-LSTM, LSTM-LSTM, BiLSTM-BiLSTM, and its vari-
ant proposed model-II respectively. Likewise, when we eval-
uated MSE, it continued to hold an upper hand over the other
models, while in terms of MAPE, the proposed model-II
manages a superior performance. In the case of the Boulder
dataset, the proposed model I continues to outperform in
terms of RMSE with respect to other models with a mark
of 46.09%, 34.56%, 60.56%, 45.38%, 59.89%, and 20.49%,
similarly it manages to potentially reduce MAPE with a
percentage of 22.07%, 18.54%, 37.46%, 35.5%, 20.07%,
and 16.93% respectively. In terms of MSE, the proposed
model-II performs better by achieving 54.02%, 49.04%,

24.81%, 34.21%, 31.21%, and 6.65% decrease compared to
other models. In the case of the Dundee dataset, the pro-
posed model-I improves the performance by 25.43% and
33.3% as compared to the CNN-LSTM model, in terms of
RMSE and MSE respectively. While as in terms of MAPE,
the CNN outperforms all other models followed by pro-
posed model-II. In the case of the Perth dataset, after fore-
casting the aggregated EV energy consumption for daily
basis, the proposed model-I stands first by having 30.23%,
11.11%, 25.28%, 12.54%, 13.42%, and 1.64% least error
rate in terms of RMSE comparing to other listed models.
Proposed model-II shows remarkable performance in terms
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TABLE 4. Comparison of LSTM based encoder-decoder models in terms of RMSE, MAPE, and MSE.

TABLE 5. Comparison of CNN and LSTM based encoder-decoder models in terms of RMSE, MAPE, and MSE.

TABLE 6. Comparison of ConvLSTM and BiConvLSTM based encoder-decoder models in terms of RMSE, MAPE, and MSE.

of MAPE and MSE by attaining the value of 94.96 and
1.49 respectively which much less as compared to conven-
tional models. Overall the two proposed models outperforms

the conventional state-of-art encoder-decoder based deep
learning models, proposed model-I followed by the proposed
model-II.
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To create the deep learningmodels, we combined the Keras
library with TensorFlow in the backend [69]. The NVIDIA
GeForce GTX 970 graphics card, Intel Core i7 processor
with 8GBRAMandMicrosoftWindows 10 operating system
were used for all the trials.

D. ABLATION STUDY
In order to select the feasible model architectures for the
forecasting task, we employed several deep learning archi-
tectures to confirm the best model. We examine the effects
of changing the number of layers in the encoder as well
as the decoder network by implementing different versions
of the baseline models to validate the generalization of the
proposed models. To improve the performance, by changing
the number of layers the error is reduced by a good percentage
as compared to considered baseline models of the LSTM-
LSTM, BiLSTM-BiLSTM and CNN-LSTM. All the exper-
imental results are given in the appendix section Table 4 and
Table 5. While as Table 6, depicts the prediction error of
the different versions ConvLSTM and BiConvLSTM based
architectures. The average output results of the two proposed
models as compared to the results of the modified baseline
architectures as well as their own modified versions are still
outstanding.

VI. CONCLUSION
This work proposed two unique encoder-decoder based deep
learning architectures called ConvLSTM and BiConvLSTM,
to overcome the challenges of energy demand forecasting for
the network of electric vehicle charging stations. Datasets
from four locations (two regions in the UK and two in the
USA) were used. Several benchmark algorithms were also
contrasted with the suggested method in order to judge the
robustness of the proposed approach. The effectiveness of
these forecasting systems have been evaluated using three
error metrics: RMSE, MSE, and MAPE. The acquired find-
ings showed that the suggested models outperformed the
benchmarks. For example, considering all the four datasets
the average performance of the two proposed models (pro-
posed model-I and proposed model-II) versus other state-
of-art models was 33.31% and 28.19% better in terms of
RMSE. Further improvement to enhance the performance of
the suggested models could be done by using hyperparameter
tuning techniques of the deep learning architectures, by using
multi-variate EVCS dataset including average daily drive,
and charging cost, and residential EV energy demand dataset.

APPENDIX
See Tables 3–6.
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