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ABSTRACT Neuropeptides (NPs) are a kind of neuromodulator/ neurotransmitter that works as signaling
molecules in the central nervous system, and perform major roles in physiological and hormone regulation
activities. Recently, machine learning-based therapeutic agents have gained the attention of researchers
due to their high and reliable prediction results. However, the unsatisfactory performance of the existing
predictors is due to their high execution cost andminimum predictive results. Therefore, the development of a
reliable prediction is highly indispensable for scientists to effectively predict NPs. In this study, we presented
an automatic and computationally effective model for identifying of NPs. The evolutionary information
is formulated using a bigram position-specific scoring matrix (Bi-PSSM) and K-spaced bigram (KSB).
Moreover, for noise reduction, a discrete wavelet transform (DWT) is utilized to form Bi-PSSM_DWT and
KSB_DWT based high discriminative vectors. In addition, one-hot encoding is also employed to collect
sequential features from peptide samples. Finally, a multi-perspective feature set of sequential and embedded
evolutionary information is formed. The optimum features are chosen from the extracted features via
Shapley Additive exPlanations (SHAP) by evaluating the contribution of the extracted features. The optimal
features are trained via six classification models i.e., XGB, ETC, SVM, ADA, FKNN, and LGBM. The
predicted labels of these learners are then provided to a genetic algorithm to form an ensemble classification
approach. Hence, our model achieved a higher predictive accuracy of 94.47% and 92.55% using training
sequences and independent sequences, respectively. Which is ∼3% highest predictive accuracy than present
methods. It is suggested that our presented tool will be beneficial and may execute a substantial role
in drug development and research academia. The source code and all datasets are publicly available at
https://github.com/shahidawkum/Target-ensC_NP.

INDEX TERMS Neuropeptides, ensemble classification, multi-perspective vector, discrete wavelet trans-
form, SHAP analysis, bigram-position specific scoring matrix.
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I. INTRODUCTION
Neuropeptides (NPs) are short peptides, usually less than
100 amino acids [1]. The 3D structures of neuropeptides are
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smaller and less complex than the proteins. Compared to
traditional neurotransmitters, NPs have more receptor recog-
nition sites [2]. As a result, the NPS is highly selective
for a specific target and has minimal side effects. In the
immune systemNPs, act as neurotransmitters and behave like
hormones in the endocrine system. NPs perform a key part
in developmental processes and other biological activities
[3]. Whenever the nervous system adapts to new challenges
like stress, injury, and drug abuse NPs are especially impor-
tant indicated by many studies [4], [5]. NPs induced neural
activity as well as numerous other features of non-neuronal
cells, i.e. social behavior, food uptake, and energy usage.
Matured NPs are retained in closely packed vesicles and
released under controlled conditions in response to a stimulus
[6], [7]. Binding to a G protein-coupled receptor initiates a
signaling pathway [8]. Prepropeptides are the precursor of
NPs that undergoes alternative splicing and produce one or
many bioactive peptides. To produce functionally active neu-
ropeptides, neuropeptide precursors (NPPs) go through sev-
eral regulated cleavages. Prominently, these cleavage sites are
identified by a cluster of basic amino acids [9]. To treat a vari-
ety of neurological disorders these NPs have paved the way
for the development of novel therapeutic strategies. In nema-
todes, approximately 250 neuropeptides have been identified
[10]. Echinoderms and cicadas are two well-known sources
of neuropeptides. The neurosecretory glands of cicadas are
rich source of neuropeptides [11]. In insects, over 30 differ-
ent families of NPs have been identified with their diverse
roles and structure. The majority of these molecules have an
impact on the insect’s physiology. Though, the activities of
these molecules are dependent on the age and the type of
species [12].

A unique set of challenges were faced while designing
drugs for Alzheimer’s disease (AD) [13]. The key biologi-
cal feature of AD is the altered amyloid-beta biochemistry
which is considered one of the potential drug targets for AD.
However, due to their low intrinsic toxicity, peptide-based
drugs may be a viable option for treating the symptoms of
a variety of AD diseases. Neurological conditions such as
stroke, pain, brain tumors, psychiatric disorders, and neu-
rodegeneration are treated with effective and precise peptide-
based drugs [14]. Many methods have been developed to
identify neuropeptides. Liquid chromatography-tandemmass
spectrometry, genetic analysis, and receptor binding assay
were the traditional approaches for identifying neuropeptides
[15]. The experimental process is considered very costly and
laborious. Due to the recent success of machine learning
applications in drug development and discovery for the effec-
tive analysis of bioactive peptides. Therefore, considering
its significance, several machine learning based computa-
tional models have been developed for the prediction of NPs
[9]. Jiang et al. presented a stacking-based ensemble model
called NeuroPpred-Fuse for predicting NPs [16]. The peptide
samples were trained via six different sequential representa-
tion techniques. Further, to decrease the vector size of the

hybrid features, a feature selection is also employed. The
proposed model reported an accuracy of 90.60%. Similarly,
Hasan et al. proposed a NeuroPred-FRL predictor for the
prediction of NPs [17]. Whereas, the numerical descriptors
were formulated from the peptide samples via evolutionary,
physiochemical properties, and sequential descriptors. The
formulated features were then passed through a 2-step feature
selection to gather the best features. Finally, the formulated
vectors were measured via the random forest. Subsequently,
Kang et al. presented NeuroPP for discrimination of NPs [6].
NeuroPP used frequency-based extraction schemes namely,
AAC, TPC, and DPC to represent training samples. Further-
more, the optimal features were selected via ANOVA-based
feature selection. Moreover, Bin et al. used a Binary profile,
Composition, and Physicochemical properties-based hybrid
feature vector for the prediction of NPs [18]. The predictive
results were examined via several hypothesis learners and
then an ensemble learning algorithm is utilized to further
improve the predictive results.

Additionally, the existing computational models were
developed via conventional machine learning models to
examine the predictive performance of the extracted
descriptors. Though, these methods were not considered
cost-effective and had low prediction performance. There-
fore, to handle such situations, it is required to develop an
automatic and computationally efficient predictor to correctly
discriminate NPs and non-NPs. The evolutionary structure
information was explored from the amino acid sequences
using novel bigram-PSSM extended with discrete wavelet
transform (Bi-PSSM_DWT), and k-spaced bigrams extended
with discrete wavelet transform (KSB_DWT). Apart from
the evolutionary descriptors, one-hot features were also
formulated via (one-hot encoding). Furthermore, to develop
a cost-effective model, we applied the SHapley Additive
exPlanations (SHAP) approach to choosing optimal features
from the multi-perspective hybrid vector of evolutionary
features such as Bi-PSSM_DWT + KSB_DWT, and one-hot
sequential features [19]. SHAP-bruta interprets the signifi-
cance of each feature in a multi-perspective vector. To train
and evaluate the model, various hypothesis learners such as
ETC [20], SVM [21], [22], ADA [23], XGB [24], FKNN [25],
and LGBM [26]. The predicted labels of these individual
classifiers were provided to the genetic algorithm (GA) to
develop an ensemble classifier [27] to improve the predictive
outcomes of the model. The graphical abstract of our pro-
posed model is illustrated in Figure 1.

II. MATERIALS AND METHODS
A. DATASET
To develop an automatic predictor, the selection of a valid
training dataset is an essential step. To effectively exam-
ine the predictive analysis of our predictor, we used the
same training samples that were previously presented in
the PredNeuroP predictor [17], [18]. Initially, the dataset
comprised 5948 laboratory-evaluated positive samples (NPs)
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from diverse taxa-derived NeuroPep databanks [1]. Among
the whole sequences, the samples whose sequence lengths
are higher than 100 residues and less than 5 residues
are eradicated. Furthermore, on the remaining sequences,
a CD-HIT tool was also employed to eradicate homologous
peptide samples. Where the threshold value of 0.9 was used
to remove peptide samples, whose similarities are greater
than 90%. Hence, 2435 NPs are selected. On the other hand,
a similar redundancy removal approach was used on negative
samples (non-NPs), and finally, 2435 non-NPs are selected.
Moreover, 80% of the whole dataset is used for the training
dataset (NPs =1940 and non-NPs =1940) and the remaining
20% of peptide sequences are employed for testing. The
overfitting and generalization ability of the proposed train-
ing model was measured using independent sequences. The
independent dataset comprises 495 NPs and 495 non-NPs.
Additionally, it was ensured that the sequences of the training
data were not used in testing data.

FIGURE 1. Proposed NPs predictive model.

B. FEATURE FORMULATION METHODS
1) ONE-HOT ENCODING
One hot encoding is a sparse formulation technique that has
been extensively utilized to numerically represent the peptide
sequences. Apart from the other techniques, one hot encod-
ing represents binary features without affecting the sequence
ordering of the amino acids in a peptide sample. Whereas,
each residue of a peptide sequence is numerically converted
to a feature vector having dimensions of 20 features. The final

feature set is generated by assigning ‘‘1’’ against matched
residue and for unavailable amino acid residues ’0’ will be
placed. The working procedure of one hot encoding using
peptide sample ‘‘APLMGFQHVR’’ is graphically illustrated
in Figure 2. In addition, to effectively train the machine learn-
ing models, a feature vector of equal dimension is required.
Hence, the length of the peptide samples is organized by
adding some dummy alphabets (Padding) [28]. Keeping the
same procedure, the peptide sequences of the whole training
dataset are represented in equal length. However, it was also
investigated that adding these dummy alphabets has no bio-
logical or functional effect on a peptide sequence. In other
words, padding allows us to generate a fixed-length input
vector of a protein sample regardless of its original length.
Additionally, padding can increase the efficiency of the train-
ing model by allowing the algorithm to process batches of
sequences in parallel, rather than processing each sequence
individually.

FIGURE 2. One-hot encoding for peptide sequence ‘APLMGFQHVR’.

2) K-SEPARATED BIGRAMS (KSB)
KSB was initially presented by Saini et al.which computes
the association among those amino acid residues that are
non-adjacent in a protein sample. The bigram probabili-
ties are obtained from the sequential evolution probabili-
ties in a PSSM Matrix [29]. Where k-spaced bigrams in a
non-adjacent manner are separated by K amino acid residues
in the sample, while k represents the positional distance
among the bigrams [30]. The complete mechanism can be
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summarized via the following equation (1); Where R repre-
sents the PSSM matrix having H number of rows, H denotes
the size of the amino acid sample in matrix R, and 20 columns
mean 20 valid amino acids. The transition of the pth amino
acid to the qth amino acid can be represented as follows:

Tp,q(K ) =

H−K∑
i=1

Ri,pRi+K ,q (1)

where, 1 ≤ p ≤ 20, 1 ≤ q ≤ 20, and 1 ≤ k ≤ K

T (K ) = [T1,1(K ), . . . . . .T1,20(K ),

. . . ,T20,1(K ), . . . ,T20,20(K )] (2)

The above equation represents a matrix T(k) which consists
of 400 features for amino acid transition for a single value
of K. In the KSB formulation scheme, the protein samples
are examined using different values of K, such as K = 1
2, and 3, as shown in Table 1. However, keeping the issue
of computational cost and its highest predictive rates of the
classifiers, we consider the feature vector using K=2.

3) BIGRAM POSITION-SPECIFIC SCORING MATRIX
(BI-PSSM)
Bi-PSSM examines the evolutionary feature extraction strat-
egy that computes the intrinsic pattern of the protein sam-
ples via different alignments of various protein families [31].
Along a protein sequence, Bi-PSSM replaces the occurring
frequencies of the amino acid residues at a particular posi-
tion [22], [32]. The resultant vector of a Bi-PSSM matrix
contains the negative and positive scores of the amino acid
residues. The negative scoring value shows the low occurring
frequency of the amino acids and the positive value represents
the high frequent occurrence of the amino acid substitution
in an alignment [33]. The resultant PSSM feature space ‘‘K’’
can be shown as follows:

K =


k1,1 k1,2 · · · k1,20
k2,1 k2,2 · · · k2,20
...

...
...

...

kL,1 kL,2 · · · kL,20


20×L

(3)

where ki,j denotes the ith residue of the jth amino acid along
a sequence. L is the length of a biological sample and twenty
are the number of amino acids in a protein.

4) DISCRETE WAVELET TRANSFORM (DWT)
DWT is a transformation filter-based noise compression
and elimination approach. DWT divides an input sig-
nal of the protein into two sub-parts namely wavelets
[34]. While, one wavelet contains high-frequency coeffi-
cients namely detailed coefficients, and 2nd wavelet keeps
low-frequency coefficients called the approximation coeffi-
cients [35]. Moreover, it is also observed from recent stud-
ies, that low-frequency wavelet is more informative than the
high-frequency wavelet. Hence, to extract highly effective
information, the low-frequencywavelet is further divided into

TABLE 1. Prediction analysis of KSB formulation method using values
of K.

several levels as given in Figure 3. Where HF represents
high-frequency coefficients, and LF are the low-frequency
coefficients. In DWT, the input is divided into several scales
(levels). Whereas, the detailed coefficients and approxima-
tion coefficients of a signal can be represented by 2k , where
k denotes the number of decomposed levels. DWT can be
formulated as follows:

B(s, t) =

√√√√√1
s

a∫
0

z(a)ψ(
a− t
s

)da (4)

where z(a) denotes the input signal,B(s, t) show the transform
values/ coefficients for the specific position on the wavelet
periods and signal. ψ( a−ts ) represents the wavelet function,
while s is the scaling variable and t denotes the translation
variable.

The detailed coefficients and approximation coefficients
for a signal z(a) can be formulated as:

Wi,L[x] =

N∑
K=1

c[m]S[2x − m] (5)

Wi,H [x] =

N∑
K=1

c[m]R[2x − m] (6)

where c[m], S, and R represent the input signal of the peptide
sequence, low pass filter, and high pass filter, respectively.
Wi,L[x], and Wi,H [x] denotes the detailed coefficient, and
approximation coefficient of input samples, respectively.

In this computational model, the Bi-PSSM features are
transformed using DWT for signal de-noising. We evaluated
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DWT up to 5 levels and generated 260, 520, 780, 1040, and
1300 feature vectors for level-1, level-2, level-3, level-4, and
level-5, respectively. The predictive results of the model were
examined via five different level of features. Among which
level-3 features shows produce significant results. The fea-
tures of level-1 and level-2 achieved lower performance due
to less informative patterns as compared to level-3. Similarly,
level-4 and level-5 also depicted lower results due to redun-
dant motifs that impair the model performance. Therefore,
we select DWT upto level-3 to form a novel feature extraction
approach called Bi-PSSM-DWT. It was also observed that
further decomposition of DWT levels leads to similar and
redundant features which may affect the model performance.

FIGURE 3. Three levels decomposition of DWT.

C. SHAP FEATURE SELECTION
Undoubtedly, determining the biological importance of the
formulated numerical descriptors is not an easy task. The
classificationmethods are also called ‘‘black boxes’’ owing to
their intricate internal mechanisms. To comprehend and rec-
ognize the significance of individual features of the extracted
space is a challenging task for a machine learning model
[36]. Shapley Additive exPlanations (SHAP) interpretation
is a global technique to evaluate the significance of each
numerical feature based on aggregations of SHAP values
[37]. The interpretable evaluation using a classificationmodel
also deals the issues that occur due to the lack of feature
directivity [38]. In this paper, the predictive results of the
XGBmodel are higher as compared to other models [39]. The
procedure for selecting the optimal features via the SHAP
algorithm can be described as follows:

Initially, we select an objective function ‘K’, then the Shap-
ley value ‘δD’ of each extracted descriptor D ∈ F was com-
puted. Finally, only high-ranked features ‘R’ were selected,
where R<d = |F|. The resultant Boruta-SHAP plot showing
the high-ranked features was summarized in Figure 4. Where
each row denotes the ranked feature and each point corre-
sponds to the SHAP value of each instance. The red point

indicates the high-ranked features, while the bluer points
indicate the smaller value of the feature; the abscissae rep-
resent the SHAP values. Keeping the same procedure, the
entire visualization of the entire model was measured via
SHAP interpolation. The positive SHAP-value of a feature
predicts that features diving towards NPs class and the neg-
ative SHAP-value represents the prediction to the non-NPs
class.

D. ENSEMBLE LEARNING
Ensemble learner is an optimized classification algorithm that
has been extensively employed for computing and predicting
biological sequences via machine learning and deep learning
because of its high generalization abilities and prediction
results. The key objective of ensemble learning is to con-
catenate the predicted labels of the individual classification
algorithms to develop an ensemble learning model that can
enhance the predicted outcomes of a classifier with a minimal
error rate. Instead of traditional classifiers, ensemble classi-
fication is highly reliable due to its minimum variance hap-
pens due to erroneous results of classical machine learners.
Therefore, different ensemble learning models have been uti-
lized for the prediction of different biological types i.e., anti-
cancer peptide [40], subcellular localization [41], antifreeze
proteins [42], antiviral peptides [34], Recombination spots
[27], antifungal peptides [35], nucleosome positioning [43],
and enhancer functions [44]. Consequently, we developed
a genetic algorithm (GA) based ensemble learning model
to further examine the predicted labels of the individual
classifiers obtained via different extracted feature vectors.
It is a heuristic learning approach that has been effectively
applied in the bioinformatics area to solve different predic-
tion problems with significant predictive results [45]. In a
GA-based ensemble model that randomly chooses a specific
population from the whole chromosomes and then different
operators of genetic algorithm are employed to obtain the best
performance results [46], [47].

At first, we calculated the prediction labels of five different
traditional machine learning models, such as ETC, LGBM,
SVM, XGB, and ADA. Then all the predicted labels are then
provided to GA to develop an ensemble model as follows:

EnCi = ADA⊕ LGBM ⊕ SVM ⊕ ETC ⊕ XGB (7)

In eq. (6), EnCi denotes the proposed ensemble model, and⊕

signifies the fusing operator utilized to combine the predicted
labels of the single learner. The EnCi model using different
classification learners can be formulated as follows:

Let us consider a machine learning model ‘ML’ for a
protein sample ‘R’ is:

{ML1,ML2,ML3,ML4,ML5} ∈ {C1,C2} (8)

where ML1,ML2,ML3,ML4,ML5 represents the individ-
ual classifier and C1,C2 denotes the predicted classes
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(NPs, non-NPs).

Ei =

5∑
i=1

δ(MLiCr ) where r = 1, 2 (9)

δ(MLi,Cr ) =

{
1, if MLi ∈ Cr
0, otherwise

}
(10)

Finally, the predictive results EnCi using GA are measured
as:

GA_EnCi = Max(W1E1,W2E2,W3E3,W4E4,W5E5) (11)

where GA_EnCi shows the GA-based ensemble classifica-
tion model, ‘Max’ denotes the higher predictive result, and
W1, . . . ,W5 represents the optimal weight adjustment for an
individual classifier.

E. FRAMEWORK OF THE PROPOSED MODEL
In this study, we presented an ensemble learning-based
prediction model for the prediction of neuropeptides. Ini-
tially, the training sequences are formulated using one-
hot encoding-based sequential features. In addition to the
sequential features, Bi-PSSM_DWT, andKSB_DWTare also
applied to extract embedded evolutionary features from the
peptide sequences. Additionally, we used aMulti-perspective
Descriptors strategy, by combining the feature vectors of
the aforementioned methods. The Multi-perspective vector
consists of 1140 features, representing 20 features of one hot
encoding, 720 features of Bi-PSSM_DWT, and 400 features
of KSB_DWT. The training cost of the hybrid vector will
be high due to the feature dimension of the training vector.
Therefore, to reduce the computational cost of the proposed
approach, we applied XGB-based SHAP feature selection to
obtain 158 optimal features from the whole vector. In the
next phase, six different machine-learning models are trained
using the extracted features.While training themodels, a train
and split ratio of 80:20 is used to divide the training dataset.
Moreover, to form an ensemble learning model, the pre-
dicted labels of the individual classifiers are provided to
the genetic algorithm to boost the prediction results. Our
predictor reported the highest prediction results than exist-
ing models using the training as well as the independent
dataset. The framework of our proposed model is illustrated
in Figure 1.

F. PREDICTION MEASUREMENT PARAMETERS
In learning algorithms, several parameters are utilized to eval-
uate the prediction abilities of a learning model [48]. Where
the evaluation parameters determine a prediction model and
whether the required objectives of a research problem are
effectively addressed or not [22], [25]. Therefore, various
prediction metrics have been applied in the literature to cal-
culate the predictive results of a machine-learning model
[49], [50], [51]. However, collecting the optimal parameters
highly depends on the distribution of samples in a classifier.
In order to compute the performance rates, initially, a con-
fusion matrix is generated. Where a table is maintained by

TABLE 2. Optimal parameters of genetic algorithm for ensemble
classifier.

keeping the actual labels of a problem and its predicted labels.
By properly maintaining the confusion matrix, the predictive
results of our study are examined via the following evaluation
parameters.

Accuracy = 1 −
NP+

− + NP−

+

NP+ + NP−
(12)

Sensitivity = 1 −
NP+

−

NP+
(13)

Specificity = 1 −
NP−

+

NP−
(14)

Mcc =

1 −

(
NP+

−+NP−
+

NP++NP−

)
√(

1 +
NP−

++NP+
−

NP+

) (
1 +

NP+
−+NP−

+

NP−

) (15)

where NP+ denotes the positive sequences and NP− denotes
non-negative sequences. Similarly, NP−

+ shows the false-
negative predictions, and NP+

−, represents an error of false
positive, the model falsely determines the true instances as
false.

III. RESULTS AND DISCUSSIONS
In this study, the predictive rates of the extracted vectors
are examined via a k-fold CV test. Where the 10-fold CV
is applied to randomly divide the features into 10 folds of
equal size [49]. Among the 10 folds, 9 folds are employed for
model training and the samples of one fold are kept for model
testing. Additionally, a Stratified looping method is also used
by randomly splitting training 100 times, and then the mean
results are calculated to achieve reliable outcomes. In the
below subsections, the predicted outcomes of the numerically
formulated vectors using training samples and test samples
using various classification models.
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TABLE 3. Prediction rates of training dataset via hybrid descriptors.

A. PARAMETER SETTING OF GENETIC ALGORITHM
In GA, choosing the best parameters is a crucial step that
leads to achieving the maximum predictive outcomes of a
machine learning problem. Initially, the chromosomes of GA
were represented in bit-string form. A population of ‘‘80’’
was randomly chosen from the whole size to obtain the
best results. Whereas the high population may boost predic-
tive rates, it can directly increase the execution time of the
model. Additionally, a tournament-selection approach was
used to pick potential parents from the existing population.
For the production of off-springs, we used a rank scaling
parameter. Additionally, an intermediate crossover method
is used having a value of 0.7 and a uniform distribution is
selected to mutate the genetic diversity for the next gen-
erations. Hence, an improved GA model was ended with

the optimal parameters. The complete details of the optimal
parameters selection are provided in Table 2. After applying
these parameters higher predictive rates of the training model
are achieved as given in Figure 5.

B. RESULTS ANALYSIS OF CLASSIFICATION MODELS
BEFORE FEATURE SELECTION
The predictive outcomes of the learning models using formu-
lated feature spaces are given in Table 3. The performance of
all feature vectors is examined by each learning by computing
its predictive accuracy (ACC), sensitivity (Sen), specificity
(Spe), AUC, and MCC. ETC with KSB_DWT descriptor
obtained an accuracy of 83.09%, a sensitivity of 83.21%,
a specificity of 82.99%, an MCC of 0.66%, and an AUC of
0.92. FKNN achieved 84.02% accuracy, 91.66% sensitivity,
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75.54% specificity, 0.68MCC, and 0.90 AUC. Compare with
ETC, FKNN boosted the accuracy, sensitivity, AUC, and
MCC, while the specificity of the model reduced. Ada classi-
fier achieved lower performance than ETC and FKNN. XGB
showed better performance than Ada and achieved 82.62%
accuracy, 80.69% specificity, 84.58% specificity, 0.65 MCC,
and 0.91 AUC. The LXGB achieved 83.19% accuracy while
SVM decreased the performance. The best results were
reflected by ensemble learning and attained 91.08% ACC,
92.36% Sen, 90.81%, Spe, 0.83 MCC, and 0.92 AUC.
On the other hand, Bi-PSSM_DWTdescriptors, showed good
performance while some classifiers decreased the predic-
tion results. The accuracies secured by ETC, FKNN, Ada,
XGB, LXGB, SVM, and Ensemble-GA are 85.35%, 80.02%,
79.25%, 82.88%, 84.02%, 82.37%, and 91.93%, respectively.
Compared with the KSB_DWT descriptor, ETC, LXGB, and
Ensemble-GA with Bi-PSSM_DWT improved the results,
while the remaining classifiers reduced the performance. Fur-
ther analyzing the performance of classifiers over the one-hot
sequential features, ETC consistently shows better perfor-
mance than other classifiers. The accuracy of ETC is 85.23%
while FKNN is 76.80%. Similarly, Ada obtained an accuracy
of 81.88%, while 83.11% is secured by XGB. Among all
classifiers, Ensemble-GA attained the best accuracy with
89.56%. Normally, single descriptor features are less infor-
mative. To boost the performance of a model, features are
fused to gain a multi-perspective feature vector. On the
hybrid feature set, all classifiers enhanced the performance
and attained 86.56%, 81.02%, 82.92%, 84.09%, 85.15%,
84.47%, and 92.36% accuracies by ETC, FKNN, Ada,
XGB, LGBM, SVM, and Ensemble-GA, respectively. These
results verified that fused features can enhance the model’s
performance.

C. RESULTS ANALYSIS OF CLASSIFIERS AFTER THE SHAP
FEATURE SELECTION APPROACH
Previous models have proved that learning models increase
performance outcomes via an optimized feature vector [52],
[53], [54]. In this regard, the SHAP feature selection approach
is implemented to choose the optimal feature space and
summarized the results in Table 4. The optimal feature vec-
tor is then evaluated by ETC, FKNN, Ada, XGB, LGBM,
SVM, and Ensemble-GA classifiers using the 10-fold CV.
ETC yielded an accuracy of 86.34%, a sensitivity of 87.93%,
a specificity of 84.74%, anMCC of 0.73, and anAUC of 0.94.
Comparedwith the ETC classifier, the performance outcomes
of FKNN and Ada are not satisfactory, while XGB reflected
better performance. Onward, LGBM achieved 86.08% accu-
racy and SVM attained 83.17% accuracy. On the other hand,
our proposed ensemble learning model achieved the highest
prediction results having an accuracy of 94.47%, a sensitivity
of 97.32%, a specificity of 93.81%, an MCC of 0.91, and
an AUC of 0.97. These results confirm that the Ensemble
strategy can discriminate NPs more accurately.

FIGURE 4. SHAP interpolation using hybrid descriptors.

TABLE 4. Prediction rates of hybrid vector using SHAP feature selection.

D. PREDICTION COMPARISON OF OUR MODEL WORK
WITH PRESENT STUDIES
The predictive outcomes of our predictor and its compari-
son with the existing models via training and independent
set are given in Table 5. Our proposed model via train-
ing sequence achieved an accuracy of 94.47%, a sensitiv-
ity of 97.32%, a specificity of 93.81%, an AUC of 0.98%,
and an MCC of 0.91, respectively via training sequences.
Our model reported significant results by improving the
accuracy by 2.57%, sensitivity by 7.82%, MCC by 0.07%,
and AUC by 0.02 then NeuroPred-FRL [17]. A predic-
tion model is said to be reliable if it has a high general-
ization power for unseen data (independent data). In this
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TABLE 5. Comparison of proposed study with existing methods.

FIGURE 5. Performance of GA via training dataset.

regard, we used an independent dataset to validate the
effectiveness of the proposed study, the detailed predic-
tive result of the independent set is illustrated in Table 5.
It shows that our proposed predictor obtained the highest
outcomes than existing approaches. Our model improved
by ∼2.15% accuracy, ∼5.64% sensitivity, ∼ 6% MCC, and
∼0.02 % AUC than NeuroPred-FRL [17]. Similarly, our
model boosted 2.15% accuracy, 5.64% sensitivity, 6%MCC,
and 0.01% AUC than NeuroPpred-Fuse [16]. The current
study surpassed all other existing tools on all evaluation
parameters. The achieved outcomes demonstrate the effi-
ciency of the proposed study.

IV. CONCLUSION AND FUTURE INSIGHTS
NPs play critical roles in a variety of biological processes
and the pharmacological industry. In this study, a successful
attempt has been performed for the accurate prediction of
NPs using GA-based Ensemble learner and SHAP interpre-
tation for the selection of optimal features from the heteroge-
neous feature set. The proposed approach reported remark-
able predictive rates over the existing machine learning mod-
els applied for the prediction of NPs. The improved results
of our predictive model are due to various reasons i.e. the
suitable sequence formulation technique, selection of optimal
descriptors using novel Shap analysis, and an effective model
training algorithm. The achieved results confirm that our
proposed model will be effectively performed a key role in
identifyingNPs in drug development due to their superior dis-
criminative and generalization abilities. In our future model,
we will try to establish a publically available web server for
the proposed work and make further efforts to develop more
capable approaches, such as feature selection or advanced
deep neural networks to further improve the predictive results
of NPs.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENT
Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023TR140), Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

REFERENCES
[1] Y. Wang, M. Wang, S. Yin, R. Jang, J. Wang, Z. Xue, and T. Xu,

‘‘NeuroPep: A comprehensive resource of neuropeptides,’’ Database,
vol. 2015, Apr. 2015, Art. no. bav038.

[2] T. Hökfelt, T. Bartfai, and F. Bloom, ‘‘Neuropeptides: Opportunities for
drug discovery,’’ Lancet Neurol., vol. 2, no. 8, pp. 463–472, Aug. 2003.

[3] D. R. Nässel and M. Zandawala, ‘‘Recent advances in neuropeptide sig-
naling in drosophila, from genes to physiology and behavior,’’ Prog. Neu-
robiol., vol. 179, Aug. 2019, Art. no. 101607.

[4] L. Carniglia, D. Ramírez, D. Durand, J. Saba, J. Turati, C. Caruso,
T. N. Scimonelli, and M. Lasaga, ‘‘Neuropeptides and microglial activa-
tion in inflammation, pain, and neurodegenerative diseases,’’ Mediators
Inflammation, vol. 2017, pp. 1–23, Jan. 2017.

[5] J. Gonçalves, J. Martins, S. Baptista, A. F. Ambrósio, and A. P. Silva,
‘‘Effects of drugs of abuse on the central neuropeptide y system,’’Addiction
Biol., vol. 21, no. 4, pp. 755–765, Jul. 2016.

[6] J. Kang, Y. Fang, P. Yao, N. Li, Q. Tang, and J. Huang, ‘‘NeuroPP:
A tool for the prediction of neuropeptide precursors based on optimal
sequence composition,’’ Interdiscipl. Sci., Comput. Life Sci., vol. 11, no. 1,
pp. 108–114, Mar. 2019.

[7] L. Funkelstein, M. Beinfeld, A. Minokadeh, J. Zadina, and V. Hook,
‘‘Unique biological function of cathepsin L in secretory vesicles
for biosynthesis of neuropeptides,’’ Neuropeptides, vol. 44, no. 6,
pp. 457–466, Dec. 2010.

[8] G. Jékely, ‘‘Global view of the evolution and diversity of metazoan
neuropeptide signaling,’’ Proc. Nat. Acad. Sci. USA, vol. 110, no. 21,
pp. 8702–8707, May 2013.

[9] P. Agrawal, S. Kumar, A. Singh, G. P. S. Raghava, and I. K. Singh,
‘‘NeuroPIpred: A tool to predict, design and scan insect neuropeptides,’’
Sci. Rep., vol. 9, no. 1, pp. 1–12, Mar. 2019.

[10] J. J. Knickelbine, C. J. Konop, I. R. Viola, C. B. Rogers, L. A. Messinger,
M. M. Vestling, and A. O. W. Stretton, ‘‘Different bioactive neuropeptides
are expressed in two sub-classes of GABAergic RME nerve ringmotorneu-
rons in Ascaris suum,’’ ACS Chem. Neurosci., vol. 9, no. 8, pp. 2025–2040,
Aug. 2018.

49032 VOLUME 11, 2023



S. Akbar et al.: Identifying NPs via Evolutionary and Sequential Based Multi-Perspective Descriptors by Incorporation

[11] C. E. Jones, C. B. Otara, N. D. Younan, J. H. Viles, and M. R. Elphick,
‘‘Bioactivity and structural properties of chimeric analogs of the starfish
SALMFamide neuropeptides S1 and S2,’’ Biochimica Biophysica Acta
(BBA)-Proteins Proteomics, vol. 1844, no. 10, pp. 1842–1850, Oct. 2014.

[12] S. Chowa, J. Lubawy, A. Urba, and G. Rosi, ‘‘Cardioregulatory functions
of neuropeptides and peptide hormones in insects,’’ Protein Peptide Lett.,
vol. 23, no. 10, pp. 913–931, Sep. 2016.

[13] B. Jobke, T. McBride, L. Nevin, L. Peiperl, A. Ross, C. Stone, and
R. Turner, ‘‘Setbacks in Alzheimer research demand new strategies, not
surrender,’’ PLOS Med., vol. 15, no. 2, Feb. 2018, Art. no. e1002518.

[14] C. S. Mocanu, M. Niculaua, G. Zbancioc, V. Mangalagiu, and
G. Drochioiu, ‘‘Novel design of neuropeptide-based drugs with β-sheet
breaking potential in amyloid-beta cascade: Molecular and structural deci-
phers,’’ Int. J. Mol. Sci., vol. 23, no. 5, p. 2857, Mar. 2022.

[15] K. Boonen, B. Landuyt, G. Baggerman, S. J. Husson, J. Huybrechts, and
L. Schoofs, ‘‘Peptidomics: The integrated approach of MS, hyphenated
techniques and bioinformatics for neuropeptide analysis,’’ J. Separat. Sci.,
vol. 31, no. 3, pp. 427–445, Mar. 2008.

[16] M. Jiang, B. Zhao, S. Luo, Q. Wang, Y. Chu, T. Chen, X. Mao,
Y. Liu, Y. Wang, X. Jiang, D.-Q. Wei, and Y. Xiong, ‘‘NeuroPpred-Fuse:
An interpretable stacking model for prediction of neuropeptides by fusing
sequence information and feature selection methods,’’ Briefings Bioinf.,
vol. 22, no. 6, Nov. 2021, Art. no. bbab310.

[17] M.M. Hasan, M. A. Alam,W. Shoombuatong, H.-W. Deng, B.Manavalan,
and H. Kurata, ‘‘NeuroPred-FRL: An interpretable prediction model for
identifying neuropeptide using feature representation learning,’’ Briefings
Bioinf., vol. 22, no. 6, Nov. 2021, Art. no. bbab167.

[18] Y. Bin, W. Zhang, W. Tang, R. Dai, M. Li, Q. Zhu, and J. Xia, ‘‘Prediction
of neuropeptides from sequence information using ensemble classifier
and hybrid features,’’ J. Proteome Res., vol. 19, no. 9, pp. 3732–3740,
Sep. 2020.

[19] J. Chen, S. Yuan, D. Lv, and Y. Xiang, ‘‘A novel self-learning feature selec-
tion approach based on feature attributions,’’ Expert Syst. Appl., vol. 183,
Nov. 2021, Art. no. 115219.

[20] L. Abhishek, ‘‘Optical character recognition using ensemble of SVM,MLP
and extra trees classifier,’’ in Proc. Int. Conf. Emerg. Technol. (INCET),
Jun. 2020, pp. 1–4.

[21] S. Akbar, M. Hayat, M. Tahir, and K. T. Chong, ‘‘CACP-2LFS: Classi-
fication of anticancer peptides using sequential discriminative model of
KSAAP and two-level feature selection approach,’’ IEEE Access, vol. 8,
pp. 131939–131948, 2020.

[22] F. Ali, S. Ahmed, Z. N. K. Swati, and S. Akbar, ‘‘DP-BINDER: Machine
learning model for prediction of DNA-binding proteins by fusing evolu-
tionary and physicochemical information,’’ J. Comput.-Aided Mol. Des.,
vol. 33, no. 7, pp. 645–658, Jul. 2019.

[23] L. Dou, X. Li, L. Zhang, H. Xiang, and L. Xu, ‘‘IGlu_AdaBoost: Identifi-
cation of lysine glutarylation using the AdaBoost classifier,’’ J. Proteome
Res., vol. 20, no. 1, pp. 191–201, Jan. 2021.

[24] N. Wang, M. Zeng, Y. Li, F.-X. Wu, and M. Li, ‘‘Essential protein predic-
tion based on node2vec and XGBoost,’’ J. Comput. Biol., vol. 28, no. 7,
pp. 687–700, Jul. 2021.

[25] S. Akbar, M. Hayat, M. Iqbal, and M. Tahir, ‘‘IRNA-PseTNC: Iden-
tification of RNA 5-methylcytosine sites using hybrid vector space of
pseudo nucleotide composition,’’ Frontiers Comput. Sci., vol. 14, no. 2,
pp. 451–460, Apr. 2020.

[26] L. Deng, J. Pan, X. Xu, W. Yang, C. Liu, and H. Liu, ‘‘PDRLGB: Precise
DNA-binding residue prediction using a light gradient boosting machine,’’
BMC Bioinf., vol. 19, no. S19, pp. 135–145, Dec. 2018.

[27] M. Kabir andM. Hayat, ‘‘IRSpot-GAEnsC: Identifing recombination spots
via ensemble classifier and extending the concept of Chou’s PseAAC
to formulate DNA samples,’’ Mol. Genet. Genomics, vol. 291, no. 1,
pp. 285–296, Feb. 2016.

[28] S. D. Ali, H. Tayara, and K. T. Chong, ‘‘Identification of piRNA disease
associations using deep learning,’’ Comput. Struct. Biotechnol. J., vol. 20,
pp. 1208–1217, Jan. 2022.

[29] J. Wang, B. Yang, J. Revote, A. Leier, T. T. Marquez-Lago, G. Webb,
J. Song, K.-C. Chou, and T. Lithgow, ‘‘POSSUM: A bioinformatics
toolkit for generating numerical sequence feature descriptors based
on PSSM profiles,’’ Bioinformatics, vol. 33, no. 17, pp. 2756–2758,
Sep. 2017.

[30] D. Sun, Z. Liu, X. Mao, Z. Yang, C. Ji, and Y. Liu, ‘‘ANOX: Predicting the
antioxidant proteins based on multi-source heterogeneous features,’’ Anal.
Biochem., vol. 2021, Jan. 2021, Art. no. 114257.

[31] M. Waris, K. Ahmad, M. Kabir, and M. Hayat, ‘‘Identification of DNA
binding proteins using evolutionary profiles position specific scoring
matrix,’’ Neurocomputing, vol. 199, pp. 154–162, Jul. 2016.

[32] J. Luo, L. Yu, Y. Guo, and M. Li, ‘‘Functional classification of
secreted proteins by position specific scoring matrix and auto covari-
ance,’’ Chemometric Intell. Lab. Syst., vol. 110, no. 1, pp. 163–167,
Jan. 2012.

[33] M. Kabir, M. Arif, F. Ali, S. Ahmad, Z. N. K. Swati, and D.-J. Yu,
‘‘Prediction of membrane protein types by exploring local discriminative
information from evolutionary profiles,’’ Anal. Biochem., vols. 564–565,
pp. 123–132, Jan. 2019.

[34] S. Akbar, F. Ali, M. Hayat, A. Ahmad, S. Khan, and S. Gul, ‘‘Prediction
of antiviral peptides using transform evolutionary & SHAP analysis based
descriptors by incorporation with ensemble learning strategy,’’ Chemomet-
ric Intell. Lab. Syst., vol. 230, Nov. 2022, Art. no. 104682.

[35] A. Ahmad, S. Akbar, M. Tahir, M. Hayat, and F. Ali, ‘‘IAFPs-EnC-GA:
Identifying antifungal peptides using sequential and evolutionary descrip-
tors based multi-information fusion and ensemble learning approach,’’
Chemometric Intell. Lab. Syst., vol. 222, Mar. 2022, Art. no. 104516.

[36] T. Chen, X. Wang, Y. Chu, Y. Wang, M. Jiang, D.-Q. Wei, and Y. Xiong,
‘‘T4SE-XGB: Interpretable sequence-based prediction of type IV secreted
effectors using eXtreme gradient boosting algorithm,’’ Frontiers Micro-
biol., vol. 11, p. 2228, Sep. 2020.

[37] C. S. Kumar,M.N. S. Choudary, V. B. Bommineni, G. Tarun, and T. Anjali,
‘‘Dimensionality reduction based on SHAP analysis: A simple and trust-
worthy approach,’’ in Proc. Int. Conf. Commun. Signal Process. (ICCSP),
Jul. 2020, pp. 558–560.

[38] D. Fryer, I. Strumke, and H. Nguyen, ‘‘Shapley values for feature
selection: The good, the bad, and the axioms,’’ IEEE Access, vol. 9,
pp. 144352–144360, 2021.

[39] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses,
T. Adams, D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, and
S.-I. Lee, ‘‘Explainable machine-learning predictions for the prevention
of hypoxaemia during surgery,’’ Nature Biomed. Eng., vol. 2, no. 10,
pp. 749–760, Oct. 2018.

[40] S. Akbar, M. Hayat, M. Iqbal, and M. A. Jan, ‘‘IACP-GAEnsC: Evolution-
ary genetic algorithm based ensemble classification of anticancer peptides
by utilizing hybrid feature space,’’ Artif. Intell. Med., vol. 79, pp. 62–70,
Jun. 2017.

[41] W. Wattanapornprom, C. Thammarongtham, A. Hongsthong, and
S. Lertampaiporn, ‘‘Ensemble of multiple classifiers for multilabel
classification of plant protein subcellular localization,’’ Life, vol. 11, no. 4,
p. 293, Mar. 2021.

[42] X. Xiao, M. Hui, and Z. Liu, ‘‘IAFP-ense: An ensemble classifier
for identifying antifreeze protein by incorporating grey model and
PSSM into PseAAC,’’ J. Membrane Biol., vol. 249, no. 6, pp. 845–854,
Dec. 2016.

[43] M. Tahir, M. Hayat, and S. A. Khan, ‘‘iNuc-ext-PseTNC: An efficient
ensemble model for identification of nucleosome positioning by extending
the concept of Chou’s PseAAC to pseudo-tri-nucleotide composition,’’
Mol. Genet. Genomics, vol. 294, no. 1, pp. 199–210, Feb. 2019.

[44] B. Liu, K. Li, D.-S. Huang, and K.-C. Chou, ‘‘IEnhancer-EL: Identifying
enhancers and their strength with ensemble learning approach,’’ Bioinfor-
matics, vol. 34, no. 22, pp. 3835–3842, Nov. 2018.

[45] B. Chowdhury and G. Garai, ‘‘A review on multiple sequence alignment
from the perspective of genetic algorithm,’’ Genomics, vol. 109, nos. 5–6,
pp. 419–431, Oct. 2017.

[46] J. Lin, H. Chen, S. Li, Y. Liu, X. Li, and B. Yu, ‘‘Accurate predic-
tion of potential druggable proteins based on genetic algorithm and
bagging-SVM ensemble classifier,’’ Artif. Intell. Med., vol. 98, pp. 35–47,
Jul. 2019.

[47] S. Akbar, A. Ahmad, M. Hayat, A. U. Rehman, S. Khan, and F. Ali,
‘‘iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous
feature representation and genetic algorithm based ensemble learning
model,’’ Comput. Biol. Med., vol. 137, Oct. 2021, Art. no. 104778.

[48] S. Akbar, M. Hayat, M. Tahir, S. Khan, and F. K. Alarfaj,
‘‘CACP-DeepGram: Classification of anticancer peptides via deep
neural network and skip-gram-based word embedding model,’’ Artif.
Intell. Med., vol. 131, Sep. 2022, Art. no. 102349.

[49] S. Akbar and M. Hayat, ‘‘iMethyl-STTNC: Identification of
N6-methyladenosine sites by extending the idea of SAAC into Chou’s
PseAAC to formulate RNA sequences,’’ J. Theor. Biol., vol. 455,
pp. 205–211, Oct. 2018.

VOLUME 11, 2023 49033



S. Akbar et al.: Identifying NPs via Evolutionary and Sequential Based Multi-Perspective Descriptors by Incorporation

[50] S. Akbar, A. U. Rahman, M. Hayat, and M. Sohail, ‘‘CACP: Classify-
ing anticancer peptides using discriminative intelligent model via Chou’s
5-step rules and general pseudo components,’’ Chemometric Intell. Lab.
Syst., vol. 196, Jan. 2020, Art. no. 103912.

[51] F. Ali, S. Akbar, A. Ghulam, Z. A. Maher, A. Unar, and D. B. Talpur,
‘‘AFP-CMBPred: Computational identification of antifreeze proteins by
extending consensus sequences into multi-blocks evolutionary informa-
tion,’’ Comput. Biol. Med., vol. 139, Dec. 2021, Art. no. 105006.

[52] M. Arif, S. Ahmad, F. Ali, G. Fang, M. Li, and D.-J. Yu, ‘‘TargetCPP:
Accurate prediction of cell-penetrating peptides from optimized multi-
scale features using gradient boost decision tree,’’ J. Comput.-Aided Mol.
Des., vol. 34, no. 8, pp. 841–856, Aug. 2020.

[53] O. Barukab, F. Ali, and S. A. Khan, ‘‘DBP-GAPred: An intelligent method
for prediction of DNA-binding proteins types by enhanced evolutionary
profile features with ensemble learning,’’ J. Bioinf. Comput. Biol., vol. 19,
no. 4, Aug. 2021, Art. no. 2150018.

[54] J. Hu, X. Zhou, Y. Zhu, D. Yu, and G. Zhang, ‘‘TargetDBP: Accu-
rate DNA-binding protein prediction via sequence-based multi-view fea-
ture learning,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 17, no. 4,
pp. 1419–1429, Jul. 2020.

SHAHID AKBAR received the bachelor’s degree
in computer science and information technol-
ogy from the Islamic University of Technology,
Bangladesh, in 2011, the M.S. and Ph.D. degrees
in computer science from Abdul Wali Khan Uni-
versity Mardan (AWKUM), Pakistan, in 2015. His
research interests include bioinformatics, biomed-
ical engineering, and machine learning.

HEBA G. MOHAMED was born in Alexandria,
Egypt, in 1984. She received the B.Sc. and
M.Sc. degrees in electrical engineering from Arab
Academy for Science and Technology, in 2007 and
2012, respectively, the Ph.D. degree in electrical
engineering from the University of Alexandria,
Egypt, in 2016, and the Associate Professor degree
from Egypt, in 2022. In 2016, she was an Assistant
Professor with the Alexandria Higher Institute of
Engineering and Technology, Ministry of Higher

Education, Egypt. Since 2019, she has been an Assistant Professor with
the Faculty of Engineering, Communication Department, Princess Nourah
bint Abdulrahman University, Saudi Arabia. Her research interests include
cryptography, wireless communications, mobile data communications, the
Internet of Things, and computer vision.

HASHIM ALI received the Ph.D. degree in com-
puter science from Abdul Wali Khan University
Mardan (AWKUM), Pakistan. He is currently an
Assistant Professor with the Department of Com-
puter Science, AWKUM. He is proficient in com-
puter systems both theoretically and practically.
His research interests include cloud computing,
software testing, agile processes, energy-efficient
systems, and enterprise systems.

AAMIR SAEED received the Ph.D. degree in
wireless communication from Aalborg University,
Denmark. He is currently an Assistant Profes-
sor with the Department of Computer Science
and IT, University of Engineering and Technology
at Peshawar. His research interests include big
data structures (LSM and Bloom filters), micro-
services architecture, and the IoT with security in
focus.

AFTAB AHMED KHAN received the Ph.D. degree
in electronics engineering from the University
of York, U.K., in 2019. He is currently a Lec-
turer with the Department of Computer Science,
Abdul Wali Khan University Mardan (AWKUM),
Pakistan. His research work is related to improve-
ment in performance in ultra-dense high-capacity
networks. His research interests include radio
resource management, topology management to
improve system performance, and overall energy

efficiency in ultra-dense high-performance wireless networks.

SARAH GUL received the Ph.D. degree in biological science from the
University of Ulm, Germany. He is currently an Assistant Professor with the
Department of Biological Sciences, FBAS, International Islamic University
Islamabad, Pakistan. His research interests include cancer genetics, molecu-
lar medicine, and machine learning.

ASHFAQ AHMAD, photograph and biography not available at the time of
publication.

FARMAN ALI received the master’s degree in
computer science from theUniversity of Peshawar,
and the M.S. degree in computer science from
Abdul Wali Khan University Mardan (AWKUM),
Pakistan. He is currently a subject Specialist of
computer science in elementary and secondary
education with KPK, Pakistan. His research inter-
ests include machine learning, bioinformatics, and
image processing.

YAZEED YASIN GHADI received the Ph.D.
degree in electrical and computer engineering
from The University of Queensland. He is cur-
rently an Assistant Professor of software engineer-
ing with Al Ain University. He was a Postdoctoral
Researcher with The University of Queensland,
before joining Al Ain University. He has published
more than 80 peer-reviewed journal and confer-
ence papers and he holds three pending patents.
His current research interests include developing

novel electro-acousto-optic neural interfaces for large scale high resolution
electrophysiology and distributed optogenetic stimulation. He is the recipient
of several awards. His dissertation on developing novel hybrid plasmonic
photonic on chip biochemical sensors received the Sigma Xi Best Ph.D.
Thesis Award.

MUHAMMAD ASSAM received the B.Sc. degree
in computer software engineering from UET
Peshawar, Pakistan, and the M.Sc. degree in soft-
ware engineering from UET Taxila, Pakistan.
He is currently a Lecturer with the Department of
Software Engineering, University of Science and
Technology at Bannu, KP, Pakistan. His research
interests include brain–computer interface, com-
puter vision, artificial intelligence, natural lan-
guage processing, and medical image processing.

49034 VOLUME 11, 2023


