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ABSTRACT Recognizing Textual Entailment (RTE) is among the most fundamental tasks in natural
language processing applications, such as question answering and machine translation. One of the main
challenges in logic-based approaches to this task is the lack of background knowledge. This study proposes
a logical inference system with phrasal knowledge by comparing their visual representations based on the
intuition that visual representations enable people to judge entailment relations. First, we obtain candidate
phrase pairs for phrasal knowledge from logical inference. Second, using a vision-and-language model,
we acquire the visual representations of these phrases in the form of images or embedding vectors. Finally,
we compare these obtained visual representations to determine whether to inject the knowledge correspond-
ing to the candidate. In addition to simple similarity between phrases, we also consider asymmetric relations
when comparing visual representations. Our logical inference system improved accuracy on the SICK dataset
compared with a previous logical inference system, SPSA (Selector of Predicates with Shared Arguments).
Moreover, our asymmetric evaluation functions using vision-and-language models are effective at capturing
the entailment relations of word pairs in HyperLex.

INDEX TERMS Natural language processing, recognizing textual entailment, vision and language.

I. INTRODUCTION
Recognizing Textual Entailment (RTE) [1], also known as
Natural Language Inference (NLI), is a key task in natu-
ral language processing (NLP) applications such as ques-
tion answering and machine translation. This task predicts
whether a given premise sentence entails a hypothesis sen-
tence. Logic-based approaches [2], [3], [4], [5], [6] and
machine learning approaches [7], [8], [9] are the primary
approaches to RTE. Logic-based approaches use logical for-
mulas to represent the linguistic meanings of sentences and
try to prove entailment relations between formulas. On the
other hand, machine learning approaches embed sentences
in a vector space and train end-to-end neural models for
RTE tasks. Machine learning approaches have achieved high
performance in RTE. However, they suffer from low inter-
pretability and explainability, and they have some limitations
in what they can do, such as their generalization ability [10].
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In this study, we focus on interpretable logic-based
approaches, which successfully provide semantic
representations of sentences with linguistically challenging
phenomena such as generalized quantifiers and comparatives.
Logic-based approaches tend to achieve high precision (the
number of correctly predicted entailment labels divided by
the total number of predicted entailment labels) on RTE tasks.
However, logical inference systems cannot correctly predict
entailment labels when they do not have the background
knowledge necessary to prove that a given premise entails a
hypothesis. This is a main reason for the low recall (the num-
ber of correctly predicted entailment labels divided by the
total number of entailment labels in all premise–hypothesis
pairs given to a system) of such systems [11]. Previous
logical inference systems [12], [13] have attempted to address
this problem by using text knowledge databases such as
WordNet [14] and injecting axioms as background knowl-
edge during a proof. However, these systems still lack the
knowledge necessary for completing the proof, especially
phrasal knowledge.
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FIGURE 1. The problem setting of RTE tasks with an example. An RTE task determines whether there is an entailment
relation between a given premise–hypothesis pair. To solve an RTE task with logic-based approaches, both
word-to-word knowledge and phrasal knowledge are needed. There is an entailment relation that the premise ‘‘A
puppy is under a bush.’’ entails the hypothesis ‘‘A small dog is under a tree.’’ The knowledge that ‘‘bush’’ entails
‘‘tree’’ can be acquired from word-to-word knowledge databases, but the phrasal knowledge that ‘‘a puppy’’ entails ‘‘a
small dog’’ cannot. Logical inference systems need to acquire this phrasal knowledge to prove the entailment relation.
Our system injects phrasal knowledge into the proof using visual representations of vision-and-language models.

Fig. 1 illustrates the problem setting of RTE where phrasal
knowledge is necessary for judging entailment relations
between texts. In this example, there is an entailment relation
that the premise ‘‘A puppy is under a bush.’’ entails the
hypothesis ‘‘A small dog is under a tree.’’ The knowledge
that ‘‘bush’’ entails ‘‘tree’’ can be acquired from word-to-
word knowledge databases, but the phrasal knowledge that
‘‘a puppy’’ entails ‘‘a small dog’’ cannot. Logical inference
systems need to acquire this phrasal knowledge to prove the
entailment relation.

To overcome the lack of phrasal knowledge, text databases
for phrasal knowledge, such as Paraphrase Databases
(PPDB) [15], can be used [16], [17] in addition to word-to-
word knowledge databases. Furthermore, phrasal knowledge
can be acquired using image databases [18] and labeled RTE
problems [13], [19]. However, since these approaches depend
on knowledge databases, it remains difficult to acquire
knowledge of long phrases.

At the same time, recent developments in deep learning
have stimulated research in tasks involving both vision and
language, such as visual question answering [20], image
captioning [21], multimodal machine translation [22], and
visual entailment [23]. DALL-E [24] is a text-to-image gen-
eration model that automatically generates images from text
prompts with high zero-shot performance. CLIP (Contrastive
Language-Image Pre-training) [25] is another vision-and-
language model that is pre-trained from Web databases to
classify images with text labels. The embedding vectors

of CLIP have been applied to various vision-and-language
tasks [26]. Given the development of vision-and-language
models, they can be applied to inject phrasal knowledge into
logical inference systems.

In this study, we aim to improve logical inference systems
by addressing the lack of phrasal knowledge required to solve
RTE problems. To achieve this goal, the main question of
our study is as follows: Can visual representations capture
entailment relations between phrases and improve the
performance of logical inference systems in RTE tasks?
This hypothesis is based on the intuition that visual repre-
sentations enable people to judge entailment relations. Given
the significant development of vision and language, we use
vision-and-language models to acquire visual representations
from texts. We define visual representations as images and
embedding vectors of vision-and-language models and inves-
tigate whether visual representations of phrases support the
knowledge from databases needed to judge entailment rela-
tions between texts.

In this context, an additional question arises: How can we
effectively evaluate the visual representations of phrases
to capture their entailment relations? Embedding vectors
of texts, specifically, are encoded with various semantic and
syntactic properties of words, and the challenge lies in effec-
tively extracting these properties. Although cosine similarity
is a well-known metric for determining similarity between
word embeddings [27], [28], it fails to consider vector norms.
Previous studies have shown that norms of word vectors
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represent the relative informativeness of words [29], [30],
[31], [32]. We investigate whether norms of the embedding
vectors of vision-and-language models can be used to capture
entailment relations between phrases.

In this study, we aim to improve the performance of
ccg2lambda1 [33], a logical inference system that obtains
logical formulas as semantic representations of sentences
based on Combinatory Categorial Grammar (CCG) [34] and
judges their entailment relations by natural deduction proofs.
We extract potential entailment phrase pairs from CCG syn-
tactic trees and semantic representations of input sentences.
We acquire visual representations (images or embedding vec-
tors) of these phrase pairs using vision-and-language models,
specifically CLIP and DALL-E. By evaluating each phrase
pair, we determine whether it has an entailment relation
using its visual representations. We propose several evalua-
tion functions for phrase pairs, evaluate our logical inference
system on the standard RTE dataset, SICK [35], and evaluate
the effectiveness of evaluation functions using embedding
vectors of vision-and-language models on graded lexical
entailment tasks.

The contributions of this paper are summarized as follows.
• We propose a novel method for injecting phrasal knowl-
edge into a logical inference system using vision-and-
language models.

• Weprovide functions for calculating the degree of entail-
ment relations between phrases from their visual repre-
sentations generated by vision-and-language models.

• Compared with its baseline system, our logical inference
system showed an increase in accuracy on the SICK
dataset.

• Our experimental results demonstrate that in a word pair
with an entailment relation p and h, and their CLIP
embedding vectors vp and vh, the norm of vh tends to
be greater than that of vp.

II. RELATED WORK
A. LOGIC-BASED APPROACHES TO RTE TASKS
Logic-based approaches offer interpretability by allowing the
pipeline process from input to output entailment relations to
be easily understood. They are effective for RTE problems
involving a wide range of linguistic phenomena. MartC-nez-
GC3mez et al. [33] proposed ccg2lambda, a higher-order
inference system that automates natural deduction proofs
on compositional semantics of natural language based on
CCG [34] parsers and event semantics. Haruta et al. [2],
[3] improved the performance of ccg2lambda for problems
involving comparatives by combining event semantics [36]
and degree semantics [37]. These approaches yielded high
precision and succeeded in solving complex RTE problems
such as generalized quantifiers and comparatives, which
present a challenge to machine learning approaches.

However, a main problem in logic-based approaches to
RTE tasks is how to acquire the background knowledge

1https://github.com/mynlp/ccg2lambda

required to solve the problems. To address this issue, MartC-
nez-GC3mez et al. [12] added the Selector of Predicates
with Shared Arguments (SPSA) mechanism to ccg2lambda.
This mechanism injects background knowledge on demand
through the use of an interactive natural deduction theorem
prover, Coq [38]. Nevertheless, the original SPSA is limited
in that it uses only word-to-word knowledge and does not
inject phrasal knowledge. Our system supplements SPSA by
injecting phrasal knowledge.

Yoshikawa et al. [6] proposed an alternative method for
extending ccg2lambda by introducing an efficient mechanism
for axiom injection based on Knowledge Base Completion
(KBC) models [39]. KBC models are machine learning mod-
els that have recently seen significant advancements. Their
approach improved the processing speed for solving RTE
problems compared with SPSA while maintaining competi-
tive accuracy. However, their method was unable to deal with
phrasal knowledge.

There are two problems with injecting phrasal knowledge:
one is how to extract arbitrary combinations of phrases,
and the other is how to inject phrasal knowledge. Yanaka
et al. [13] used natural deduction proofs of RTE problems in
ccg2lambda to tackle the first problem. They used subgraph
matching with variable unification to extract paraphrases.
Abzianidze [19] followed their approach and used the proof
processes of a tableau theorem prover. However, both of these
approaches were unable to deal with unseen paraphrases.

To solve the second problem with injecting phrasal knowl-
edge, Bjerva et al. [16] and Beltagy et al. [17] both used
WordNet and PPDB as lexical knowledge databases.Whereas
Bjerva et al. used paraphrase rules in PPDB at the text level
before parsing sentences, Beltagy et al. translated these para-
phrase rules into logical rules. Han et al. [18] used images to
tackle the same problem. Theymapped phrases to images and
combined their visual features with textual and logic features
from a logical inference system, thereby providing an RTE
classification model. They used a commercial API to retrieve
images from image databases. However, these previous meth-
ods depend on databases, which are limited in both quantity
and accuracy, especially for phrasal knowledge. We tackle
the problem of injecting arbitrary phrasal knowledge by using
vision-and-language models.

B. VISION-AND-LANGUAGE MODELS
Recently, there has been a significant surge in research on
tasks that involve both computer vision and NLP, referred to
as vision-and-language tasks, such as visual question answer-
ing [20], image captioning [21], multimodal machine trans-
lation [22], and visual entailment [23]. Models designed for
these vision-and-language tasks, called vision-and-language
models, are required to connect natural language descriptions
with their visual representations. Pre-training a large model
on large-scale general datasets and then fine-tuning it on
specific tasks is a common technique in these areas [40], [41],
[42], [43].
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FIGURE 2. Overview of the proposed method with an example. First, our system transforms a
premise and a hypothesis into CCG syntactic trees. It then obtains semantic representations
from these syntactic trees. Next, we try to prove whether the premise entails the hypothesis
using SPSA (Selector of Predicates with Shared Arguments). If SPSA outputs unknown, then we
try phrasal axiom injection, which consists of phrase pair extraction, acquisition of the visual
representations, and evaluation of the degree of entailment. If we succeed in phrasal axiom
injection, then we continue the proof by SPSA with the injected axioms. Otherwise, we finish
the proof with the result unknown. This process of proof by SPSA and phrasal axiom injection is
repeated until either yes or no is acquired as a result, or until the phrasal axiom injection fails
with the result unknown.

One such vision-and-language model, CLIP [25], used
both a text encoder and a visual encoder. It was trained
on a dataset of 400 million text and image pairs from the
Internet which inherently contains a high degree of noise.
The text and visual encoders independently encode the input
images and texts, respectively. They are pre-trained with a
contrastive loss, where the cosine similarity of the image and
text embeddings of the real pairs is maximized and that of
the incorrect pairs is minimized. As a result, CLIP encodes
similar images and texts into similar embedding vectors.

Another notable vision-and-language model is
DALL-E [24], which was developed for text-to-image gen-
eration tasks. The text encoder of DALL-E is based on
an autoregressive transformer [42], and its visual encoder
is based on a variational autoencoder [44]. DALL-E was
trained on 250 million text and image pairs from the Internet
with 12 billion parameters. Both CLIP and DALL-E exhibit
high zero-shot performance [26]. We hypothesize that these
vision-and-language models are useful for capturing phrasal
knowledge in logic-based approaches to RTE tasks.

C. EMBEDDING VECTORS OF TEXTS AND THEIR
SIMILARITY
Text embedding vectors were proposed on the premise that
texts can be assigned dense, low-dimensional vector rep-
resentations that capture linguistic relations between them.
Some models, such as the skip-gram negative-sampling
model [45], rely solely on distributional knowledge derived
from textual corpora and bring representations of similar
words in proximity. The word frequency ratio model [46]
leverages the idea that more general concepts tend to appear
more frequently within textual corpora. Santus et al. [47]
and Kiela et al. [48] combined symmetric cosine similarity
and asymmetric generality measures obtained from texts and
visual data, respectively. Gaussian embedding [49] represents
words as multivariate Gaussians instead of points in the
embedding space, which inherently generates asymmetry.

Other models complement distributional knowledge with
external linguistic constraints extracted from WordNet. The
POINCARÉ model [50] uses hyperbolic spaces to learn gen-
eral lexical entailment embeddings based on Poincaré balls
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FIGURE 3. Example of a CCG syntactic tree and a semantic representation for the sentence People are walking. CCG parsers assign a syntactic
category to each lexical item. Our system assigns a meaning, specified as a λ-term, to each leaf of the syntactic tree, which are then combined
compositionally according to semantic templates. In our semantic templates, which is based on Neo-Davidson Event Semantics, every verb is
decomposed into a one-place predicate over events and a set of functional expressions using auxiliary predicates for semantic roles, such as Subj.

with encoded hierarchy and semantic similarity obtained
fromWordNet. The LEARmodel [51] specializes aword vec-
tor space to emphasize asymmetric relations from WordNet
by using vector norms, achieving high performance in lexical
entailment tasks.

Cosine similarity is commonly used to determine the simi-
larity between word embeddings [27], [28] and is interpreted
as capturing the angular information of vectors. Empirical
evidence has demonstrated that cosine similarity effectively
captures word similarity [52]. It should be noted, however,
that cosine similarity disregards vector norms. Moreover, the
influence of word frequency information in the embedding
space for cosine similarity has been documented [53].

Word vectors have been shown to exhibit additive composi-
tionality, implying that their sum or average within a sentence
effectively captures the meaning of that sentence [30], [54].
Additionally, previous studies have shown that the norms of
word vectors within a sentence are dispersed [55]. In light of
these two observations, it has been suggested that the norm of
each word vector serves as a weighting factor in the additive
composition of a sentence representation [31]. In the skip-
gram negative-sampling model, the squared norm of word
embeddings is closely related to the Kullback-Leibler (KL)
divergence in the corpus, both theoretically and experimen-
tally [32]. The findings of previous studies have suggested
that the norms of word embedding vectors represent the
relative informativeness of the words. In this study, we assess
whether embedding vectors of vision-and-language models
have this property as well.

III. METHODOLOGY
A. SYSTEM OVERVIEW
We consider RTE problems consisting of premise–hypothesis
pairs annotated with three relations: entailment (yes), contra-
diction (no), and neutral (unknown). If the premise is true,
entailment (yes) indicates that then the hypothesis is also
true, while contradiction (no) indicates that it cannot be true.
Neutral (unknown), meanwhile, indicates that whether the
hypothesis is true or false is independent of the premise.

Our logical inference system is based on ccg2lambda [33].
We extend SPSA [12], a mechanism of axiom injection for
word-to-word knowledge, to perform phrase abduction.

Fig. 2 shows an overview of our system. First, our system
transforms a premise (P) and a hypothesis (H ) into CCG
syntactic trees (see Fig. 3 for an example) through CCG

parsers, deriving semantic representations of these texts based
on the syntactic trees. We provide the details of this process
in Section III-B.
Second, our system uses the theorem proving of Coq [38]

with SPSA to judge whether entailment (P → H ) or con-
tradiction (P → ¬H ) holds between the premise and the
hypothesis. Coq is an interactive natural deduction theorem
prover that is fully automatic with several built-in theorem-
proving routines known as tactics. During the proof process,
SPSA injects axioms for word-to-word knowledge. Addi-
tionally, our system injects axioms for phrasal knowledge
using visual representations (images or embedding vectors)
generated from a vision-and-language model (DALL-E or
CLIP) using the following proof process.

1) Try to prove whether the premise entails the hypothesis
using SPSA (Section III-C). If the result is yes or no,
then finish the proof. If not, then proceed to Step 2.

2) Try phrase abduction using a vision-and-language
model (DALL-E or CLIP) (Sections III-D1 and III-D2).
If at least one phrasal axiom is injected, then return
to Step 1. If not, then finish the proof with the result
unknown.

We provide an example of this proof process in Section III-E.

B. SYNTACTIC AND SEMANTIC PARSING
To start, our system parses the premise (P) and the hypoth-
esis (H ) using CCG [34] parsers, which assign a syntactic
category to each lexical item. CCG is a lexicalized grammar
formalism that provides a transparent interface between syn-
tax and semantics.

In the CCG syntactic trees, our system assigns a mean-
ing, specified as a λ-term, to each leaf of the syntactic
tree and combines compositionally according to semantic
templates. For semantic templates, we adopt Neo-Davidson
Event Semantics [36], in which a sentence is mapped to a for-
mula involving quantification over events. In Neo-Davidson
Event Semantics, every verb is decomposed into a one-place
predicate over events and a set of functional expressions using
auxiliary predicates for semantic roles, such as Subj (see
Fig. 3 for examples). This process of syntactic and semantic
parsing yields logical formulas for input sentences.

C. WORD ABDUCTION
Our system tries to prove the entailment relation (P → H )
and the contradiction relation (P → ¬H ) using Coq and the
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logical formulas of the input sentences. In the proof process
of Coq, the logical formulas are decomposed into sets of
formulas without logical connectives, which are known as
atomic formulas. The goal of the proof is to prove all atomic
formulas of the right-hand side of the right arrow (H or ¬H ),
which are referred to as sub-goals.

Coq searches for sub-goals that share the same predicate
with atomic formulas of the premise. If any are found, then
they are proved and the variables in their arguments are
unified.

If unprovable sub-goals remain, then the naive proof by
Coq fails. In such cases, SPSA searches for predicates in the
premise that share the same arguments with the unprovable
sub-goals. If any are found, then SPSA checks the linguis-
tic relations between the word of the premise and that of
the sub-goal using two word-to-word knowledge databases,
namely, WordNet [14] and VerbOcean [56]. If the linguistic
relations are recognized, then the corresponding axioms are
provided and injected into the proof process. This process of
word axiom injection is called word abduction.

D. PHRASE ABDUCTION
When the result of proof by SPSA is unknown, we proceed
to Step 2 of Section III-A. To perform phrase abduction,
we extract phrase pairs that are candidates for phrasal knowl-
edge and evaluate them by calculating the degree of their
entailment relations, as described in Section III-D1. We use
visual representations of vision-and-language models in the
evaluation step, which is explained in Section III-D2. After
the evaluation, the phrase pair with the highest evaluation
value is selected for each sub-goal. If the value is higher than
a certain threshold (set by preliminary experiments), then we
determine the phrase pair as a phrasal axiom. In the absence of
any entailment phrase pairs, no phrasal axioms are injected,
and the proof finishes with the result unknown. If there is
at least one entailment phrase pair, then the corresponding
axioms are injected into the proof process, and SPSA con-
tinues the proof. The phrasal axiom is formulated through
the conversion of the corresponding semantic representations
of both phrases into a Coq script.Â This is our proposed
mechanism of phrase abduction. The process of proof by
SPSA and phrase abduction is repeated until the result yes
or no is achieved, or until the phrase abduction fails with the
result unknown.

1) PHRASE PAIR EXTRACTION
We define a phrase as any part of a sentence corresponding to
an NP (Noun Phrase), a VP (Verb Phrase), a PP (Prepositional
Phrase), or an S (Sentence) in CCG syntactic trees. When
the result of proof by SPSA is unknown we extract phrase
pairs that are candidates for phrasal knowledge for each of the
unprovable sub-goals, using CCG syntactic trees and seman-
tic representations to extract phrase pairs. We extract all
phrases from the premise, but we extract only the minimum
phrase containing the unprovable sub-goal in the semantic

representations from the hypothesis. All pairs of extracted
phrases from the premise and hypothesis are regarded as
extracted phrase pairs.

2) PHRASE PAIR EVALUATION USING VISUAL
REPRESENTATIONS
We define visual representations as both images and embed-
ding vectors. To acquire visual representations of phrase
pairs, we use two vision-and-language models, namely,
DALL-E [24] and CLIP [25]. DALL-E, a text-to-image
generation model, generates images automatically from text
prompts. CLIP is pre-trained to classify images and encode
similar images and texts into similar embedding vectors.

We generate either
• images from DALL-E or
• embedding vectors from the encoder of DALL-E or
CLIP

as visual representations. For each phrase pair, we calculate
the degree of their entailment relations using their visual rep-
resentations. For this calculation, we define symmetric and
asymmetric evaluation functions for both embedding vectors
and images.

a: IMAGES
Using DALL-E, we generate two images each from the
premise and hypothesis of a phrase pair (four images in
total). We define two types of evaluation functions, namely,
symmetric and asymmetric. The symmetric function is given
by

SymIm(p, h)

= 1 −

∑
ip∈Ip

∑
ih∈Ih (f(ip, ih) + f(gray(ip), gray(ih)))

Z · |Ip| · |Ih|
, (1)

and the asymmetric function by

AsymIm(p, h)

= 1 −

∑
ip∈Ip minih∈Ih{f(ip, ih) + f(gray(ip), gray(ih))}

·|Ip|
,

(2)

where
• p and h represent the premise and hypothesis of a phrase
pair,

• Ip and Ih are the sets of images generated from p and h,
• gray is a function that transforms an image to grayscale,
• Z is a normalization constant, Z = 3000, that ensures
the return value is in the range of 0 to 1, and

• f is a function from AugNet [57] that calculates the
distance between two images.

The symmetric function SymIm calculates the average dis-
tance between all pairs of images generated from the two
phrases. In contrast, the asymmetric function AsymIm cal-
culates the averageÂ distance between the best image corre-
spondences. The design of the asymmetric function follows
the work of Han et al. [18]. Our preliminary experiments have
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FIGURE 4. Example of the proof process of our logical inference system. First, SPSA tries to prove sub-goals from the hypothesis in
the blue box using predicates in the orange box. It finds common predicates from the premise and hypothesis, proves them in the
hypothesis, and unifies the variables. SPSA also tries to find a predicate that shares an argument with unprovable sub-goal
squirt(y1) and entails the word ‘‘squirt’’ using two word-to-word knowledge databases, namely, WordNet and VerbOcean. However,
such a premise cannot be found, so SPSA does not inject anyÂ axiom and the result is unknown. Second, our system tries phrase
abduction using visual representations (images or embedding vectors) and the axiom ∀y .(water (y ) ∧ gun(y ) → squirt(y ) ∧ gun(y ))
is injected. Third, SPSA once again tries to prove the unprovable sub-goal squirt(y1) with the injected axiom. SPSA succeeds this
time, so SPSA finishes the proof with the result yes.

shown that using grayscale images in combination with color
images leads to better performance than using color images
alone. Therefore, we take the average distance between the
original images f(ip, ih) and the distance between grayscale
images f(gray(ip), gray(ih)) as the distance between images
ip and ih.

b: EMBEDDING VECTORS
Using the encoder of DALL-E or CLIP, we generate embed-
ding vectors for both the premise and hypothesis of a phrase
pair. To evaluate phrase pairs, we define three types of
evaluation functions, a symmetric function, an asymmetric
function, and their product, which are given by the following
expressions:

SymEm(p, h) = cos(vp, vh) =
(vp · vh)
|vp| · |vh|

(3)

AsymEm(p, h) =
|vh| − |vp|

(|vp| + |vh|)/2
(4)

MulEm(p, h) = SymEm(p, h) · AsymEm(p, h)

=
(vp · vh)
|vp| · |vh|

·
|vh| − |vp|

(|vp| + |vh|)/2
(5)

where
• p and h represent the premise and hypothesis of a phrase
pair,

• vp and vh are the embedding vector of phrases p and h,
respectively, and

• cos is the function used to calculate the cosine similarity
between two vectors.

The symmetric function SymEm gives the cosine similarity
between vp and vh. The asymmetric function AsymEm is
designed based on the approach proposed by Vulic et al. [51].
It gives the difference between the norms of vh and vp, then
normalizes the result by dividing it by the mean of the norms.
Finally, MulEm is obtained by multiplying the values of these
two functions.

E. EXAMPLE OF THE PROOF PROCESS
Fig. 4 shows an example of the proof process used by our
system with an input RTE problem with the premise ‘‘A
laughing child is holding a water gun.’’ and the hypothesis
‘‘A child is holding a squirt gun.’’ In this example, there
is an entailment relation between the premise (P) and the
hypothesis (H ), and our system tries to prove this relation
(P → H ).

The logical formulas for the premise (P) and the hypothesis
(H ), which are acquired through syntactic and semantic pars-
ing, are decomposed into the atomic formulas in the orange
and blue boxes, respectively. The goal of the proof is to prove
all of the sub-goals in the blue box.

First, in Step 1 of Section III-A, the proof is performed
through SPSA. Coq attempts to prove sub-goals in the blue
box and to prove sub-goals that share the same predicate with
atomic formulas of the premise in the orange box. As a result,
child(x2), gun(x2), hold(x2), Subj(e2) = x2, and Acc(e2) =

y2 are proved with an unproved sub-goal squirt(y1). Accord-
ingly, x2, y2, and e2 are unified to x1, y1, and e1, respectively.
SPSA tries to find logical formulas in the premise that have
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TABLE 1. Examples of RTE tasks in the SICK dataset.

TABLE 2. Results of RTE tasks on the SICK dataset. VR and EF denote
visual representation and evaluation function, respectively.

the argument y1, and water(y1) and gun(y1) are identified
as such formulas. However, the linguistic relations between
water and squirt , or gun and squirt , are not obtained from the
word-to-word databases. Consequently, no axiom is injected
by word abduction, and the proof is finished with the result
unknown.

Next is Step 2, in which our system attempts phrase abduc-
tion using a vision-and-language model (DALL-E or CLIP).
From the premise, the phrases 1⃝‘‘a laughing child is holding
a water gun’’ (S), 2⃝‘‘a laughing child’’ (NP), and 3⃝‘‘a
water gun’’ (NP) are extracted. From the hypothesis, only
4⃝‘‘a squirt gun’’ (NP) is extracted, which is the minimum
phrase that contains the unprovable sub-goal ∃y1.squirt(y1)
(see Fig. 2). All pairs of these phrases extracted from the
premise and hypothesis, namely (‘‘a laughing child is holding
a water gun’’, ‘‘a squirt gun’’), (‘‘a laughing child’’, ‘‘a squirt
gun’’), and (‘‘a water gun’’, ‘‘a squirt gun’’) are regarded as
extracted phrase pairs. In the evaluation step, the phrase pair
(‘‘a water gun’’, ‘‘a squirt gun’’) gets the highest evaluation,
and the evaluation value exceeds the threshold. Therefore, the
corresponding axiom ∀y.((water(y)∧gun(y)) → (squirt(y)∧
gun(y))) is injected, and our system returns to Step 1.

Finally, SPSA once again tries to prove the unprovable sub-
goal squirt(y1) with the injected axiom. This time it succeeds,
so the proof is finished with the result yes.

IV. EXPERIMENT I: RTE
A. DATASET
We used the SemEval-2014 version of the SICK dataset [35]
to evaluate our logical inference system on RTE tasks.

The SICK dataset is a source of English single-premise
RTE problems. This dataset was originally developed
to evaluate approaches of compositional distributional
semantics, and it contains problems involving various
lexical, syntactic, and semantic phenomena. Therefore, solv-
ing problems in this dataset requires both lexical and
phrasal knowledge. This dataset has been used to assess
the performance of logical inference systems, such as
SPSA. It contains problems with train/trial/test splits of
4500/500/4927 premise–hypothesis pairs and an entail-
ment(yes)/contradiction(no)/neutral(unknown) label distri-
bution of 0.29/0.15/0.56. The SICK dataset comprises
2,409 different words, with an average sentence length of
10.6 words (see Table 1 for examples). We evaluated our
system on the test set.

B. EXPERIMENTAL SETUP
We used three CCG parsers, C&C [58], EasyCCG [59], and
depccg [60], to mitigate parsing errors. In the case where one
result is yes and another no, our system outputs unknown.
In other cases, if at least one parser results in yes or no, then
our system outputs the result. The thresholds used in the eval-
uation step (III-D2) were determined based on the accuracy of
300 problems sampled from the train set of the SICK dataset.
We compared our results with those of SPSA [12], an RTE
classification model trained with images from dataset [18],
and the system without axiom injection (no axiom).

C. OVERALL RESULTS
Table 2 shows the results of logical inference systems on the
SICK dataset. Our system outperformed the baseline system,
SPSA, on nearly all the experimental conditions. The highest
accuracy was achieved on the condition CLIP–Embedding
Vector–SymEm (83.36%)without any training.Whenwe used
DALL-E as a vision-and-language model, using images as
visual representations rather than embedding vectors yielded
higher accuracy (83.26% vs. 83.17%).

D. ANALYSIS
Table 3 shows examples of the RTE results on the SICK
dataset, for which the result of our baseline system, SPSA,
was unknown. Fig. 5 shows images generated by DALL-E
when our system evaluated the phrase pairs in the problems
of these examples. ID 4589 is a successful example, which
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TABLE 3. Examples of the RTE results on the SICK dataset, for which the result of SPSA was unknown. We changed the following three conditions of the
experiment: (1) model: DALL-E or CLIP, (2) visual representation: Image or Embedding Vector, and (3) evaluation function: SymIm, AsymIm (for Image),
SymEm, AsymEm, or MulEm (for Embedding Vector). The answer can be either yes (Y, entailment), no (N, contradiction), or unknown (U, neutral). If the
result of a system matched the gold answer, then it is marked with ✓. If not, then it is marked with ✗.

FIGURE 5. Images generated by DALL-E from phrase pairs in the SICK dataset. The phrase pairs of ID 4589 ((a) and (b)) and ID 3184 ((c) and (d)) are
true phrasal knowledge and those of ID 6853 ((e) and (f)) and ID 558 ((g) and (h)) are false phrasal knowledge. The problems and the results of the
experiment are presented in Table 3.

requires recognizing the phrasal knowledge that ‘‘a hamster’’
entails ‘‘a small animal’’. Although SPSA could not rec-
ognize this entailment phrase pair, all of our systems with
DALL-E or CLIP, except for the condition CLIP–Embedding
Vector–AsymEm, could recognize this entailment phrase pair.
As a result, the corresponding axiom ∀x.hamster(x) →

(small(x) ∧ animal(x)) was injected, and the system proved
the correct result yes. Fig. 5 (a) and (b) show that similar
images were generated from the phrase pair.

The phrase pair for ID 3184 represents true phrasal knowl-
edge that ‘‘a man is trekking in the woods’’ entails ‘‘the
man is hiking in the woods’’. Fig. 5 (c) and (d) show that
similar images were generated from these two phrases. How-
ever, when we used the embedding vectors and asymmetric
functions, this phrase pair was mistakenly not recognized as

phrasal knowledge, and the result was unknown. This sug-
gests that asymmetric functions cannot recognize entailment
phrase pairs that are semantically similar and that symmetric
functions are adequate for injecting paraphrases.

Both phrase pairs for problem IDs 6853 and 558 represent
false phrasal knowledge that ‘‘a dog is running downhill’’
entails ‘‘a dog is running uphill’’ and ‘‘a dark dog and a
light brown dog are playing in the backyard’’ entails ‘‘a dark
dog and a light brown dog are fighting in the backyard.’’
However, similar images were generated from these two
phrases, shown in Fig. 5 (e), (f), (g), and (h), and the phrasal
knowledge was injected when we used either images or both
embedding vectors and symmetric functions. In contrast, this
false phrasal knowledge was not injected when we used both
embedding vectors and asymmetric functions. This suggests
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TABLE 4. Examples in Hyperlex. HyperLex is a standard dataset for
evaluating how well word representation models capture graded lexical
entailment.

that asymmetric functions contributed to reducing the over-
generation of axioms in some cases.

V. EXPERIMENT II: GRADED LEXICAL ENTAILMENT TASK
Capturing the entailment relations of texts is crucial for
injecting phrasal knowledge into logical inference systems.
To investigate whether vision-and-language models can cap-
ture entailment relations of phrases, we performed a detailed
analysis of embedding vectors of vision-and-language mod-
els on graded lexical entailment tasks.We tested the effective-
ness of our evaluation functions SymEm, AsymEm, andMulEm
in calculating word pairs’ degree of entailment (known as a
graded lexical entailment task) on HyperLex [61].

A. DATASET
We used HyperLex [61], which is a standard dataset for eval-
uating how well word representation models capture graded
lexical entailment. This dataset is grounded in the notions of
concept typicality [62] and category vaguness [63] from cog-
nitive science. HyperLex contains 2,616 word pairs (2,163
noun pairs and 453 verb pairs) scored from 0 to 6 by human
raters for the following question: ‘‘To what degree is X a
type of Y?’’ (see Table 4 for examples). Note that HyperLex
contains only word pairs and does not contain a phrase pair.

B. EXPERIMENTAL SETUP
For each word pair, we encoded these words into the embed-
ding vectors of DALL-E and CLIP. Using these embedding
vectors, we scored their degree of entailment with our evalu-
ation functions SymEm, AsymEm, and MulEm. We scored all
2,616 word pairs from HyperLex and computed Spearman’s
rank correlation with the ground-truth ranking, following
Nickel et al. [50].

C. RESULTS AND ANALYSIS
Table 5 shows performances for the graded lexical entail-
ment task on HyperLex. Vision-and-language models are
compared with distributional representation models that
rely solely on distributional knowledge derived from tex-
tual corpora, which are evaluated by Vulić et al. [61] (the
middle 5 rows: FREQ-RATIO [46], SGNS [45], SLQS-
SIM [47],VISUAL [48], andWORD2GAUSS [49]) and two
recent architectures (the bottom 2 rows: POINCARÉ [50]
and LEAR [51]), which complement the distributional

TABLE 5. Spearman’s rank correlation scores for the graded lexical
entailment task on HyperLex. The top two rows are the results for the
vision-and-language models (DALL-E and CLIP) with our evaluation
functions. The middle five rows are distributional models that contain
only distributional knowledge from textual corpora, which were
evaluated by Vulić et al. The bottom two rows are recent architectures,
which focus on lexical entailment and complement distributional
knowledge with external linguistic constraints extracted from WordNet.

knowledge with external linguistic constraints derived from
WordNet. The details of these distributional representation
models are given in Section II-C.

These results show that the scores calculated from the
embedding vectors of DALL-E do not reflect the degree of
lexical entailment, whereas those calculated from embedding
vectors of CLIP show a correlation. CLIP is outperformed
by POINCARÉ and LEAR models, which focus on lexical
entailment, but it still outperforms other distributional repre-
sentation models.

This suggests that CLIP embedding vectors with the asym-
metric function AsymEm and MulEm are capable of captur-
ing directional lexical entailment relations. The values of
AsymEm(p, h) and MulEm(p, h) become positive when the
embedding vector norm of the hypothesis phrase h is greater
than that of the premise phrase p. Therefore, the results imply
that in a word pair with an entailment relation p and h, and
their CLIP embedding vectors vp and vh, the norm of vh tends
to be greater than that of vp. This differs from the property
of distributional representation models where the norm of an
embedding vector represents the relative importance of the
word [31], [32].

VI. CONCLUSION
In this paper, we presented a novel approach for addressing
the lack of phrasal knowledge in RTE tasks by introduc-
ing a phrase abduction mechanism of logical inference sys-
tems. Our mechanism uses visual representations generated
from the vision-and-language models DALL-E and CLIP.
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For phrase pairs, we used two types of visual representations
(embedding vectors and images) and two types of evaluation
functions (symmetric and asymmetric).

Our inference system improved the accuracy of
ccg2lambda on the SICK dataset compared to a previous
system that used the word abduction mechanism SPSA.
Additionally, the results of the graded lexical entailment
task on HyperLex suggest that the asymmetric functions
we calculated from the embedding vectors of the CLIP
model capture the degree of lexical entailment relations more
accurately than those of previous distributional representation
models without external linguistic constraints. With visual
information, our inference system can be applied in a wide
range of domains such as object recognition, robotics, and
autonomous vehicles to ensure the reliability of operations.

However, there is phrasal knowledge that our symmetric
and asymmetric evaluation functions are unable to recognize.
Designing better evaluation functions is a task that we will
undertake in future work, as is determining how best to
complement information that is difficult to represent visually.
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