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ABSTRACT The use of network connected devices has grown exponentially in recent years revolutionizing
our daily lives. However, it has also attracted the attention of cybercriminals making the attacks targeted
towards these devices increase not only in numbers but also in sophistication. To detect such attacks,
a Network Intrusion Detection System (NIDS) has become a vital component in network applications.
However, network devices produce large scale high-dimensional data which makes it difficult to accurately
detect various known and unknown attacks. Moreover, the complex nature of network data makes the feature
selection process of a NIDS a challenging task. In this study, we propose a machine learning based NIDS
with Two-phased Hybrid Ensemble learning and Automatic Feature Selection. The proposed framework
leverages four different machine learning classifiers to perform automatic feature selection based on their
ability to detect the most significant features. The two-phased hybrid ensemble learning algorithm consists
of two learning phases, with the first phase constructed using classifiers built from an adaptation of the One-
vs-One framework, and the second phase constructed using classifiers built from combinations of attack
classes. The proposed framework was evaluated on two well-referenced datasets for both wired and wireless
applications, and the results demonstrate that the two-phased ensemble learning framework combined with
the automatic feature selection engine has superior attack detection capability compared to other similar
studies found in the literature.

INDEX TERMS Feature selection, feature engineering, classification, machine learning, ensemble learning,
anomaly detection, intrusion detection system.

I. INTRODUCTION to the point that the number of network devices is expected to

Network connectivity has become an integral part of our daily
lives to the point that even a few minutes of unexpected
downtime in connectivity can result in severe disruptions.
Wired ethernet networks such as IEEE 802.3 have played a
major role in connecting network capable devices for the past
several decades and will continue to play a major role for the
foreseeable future [1]. The introduction of wireless standards
such as IEEE 802.11 further boosted the use of connected
devices due to the mobility and portability provided by such
networks [2]. The recent emergence of Internet-of-Things
(IoT) has further accelerated the growth of wireless networks
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reach 29 billion within the next decade [3].

With this growing popularity, the security and privacy
aspects of both wired and wireless networks have gained
considerable traction in recent years [4]. These security con-
cerns are typically addressed by a Network Intrusion Detec-
tion System (NIDS) that sits at the center of a network
performing constant monitoring of ingress and egress pack-
ets to detect attacks. Zarpelao et al. [5] classified NIDSs
that are in use today into three different categories based
on their detection technique: specification-based, signature-
based, and anomaly-based. Similar taxonomies can be found
in [6], [7], and [8]. A specification-based NIDS works by
defining the normal expected behavior of a network and
any deviation from this expected behavior is flagged as an
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anomaly or “an attack”. They tend to have a low false posi-
tive rate because the rules are manually derived. However, the
process of manual rule induction to profile the normal system
behavior is a major drawback of such systems, especially
when used in a larger network. A signature-based NIDS
works by detecting signatures of known attacks. It can have
a low false positive rate because the signature detection can
be fairly accurate for known attacks, provided the feature set
is small enough for signature generation. However, manual
identification of signatures from high-dimensional network
data can be unreliable and prone to human error. Moreover,
a signature-based NIDS cannot detect new and unknown
attacks (also known as zero-day attacks) as it only flags
a matching signature to a previously known attack. Lastly,
an anomaly-based NIDS works by primarily employing a
machine learning algorithm to detect anomalous behavior of
a system. This type of NIDS is far superior to previously
mentioned types because: One, it does not require rules to
be manually derived. Two, it can detect new and unknown
attacks - which is one of the most desired features of a modern
NIDS. Almost all new network intrusion detection systems
utilize some form of a machine learning based architecture.
The work proposed as part of this study will also fall under
this branch of intrusion detection systems.

There are several challenges associated with designing an
effective machine learning based NIDS. Network devices
produce large volumes of complex high-dimensional data
which gives meaning to the very definition of big-data. The
high dimensionality alone creates several new challenges. For
instance, the NIDS has to select the features that provide the
best performance without overfitting the model. With high-
dimensional data, selecting too many features can lead to
issues such as the curse of dimensionality [9]. Therefore,
accurate automatic feature selection becomes very important
with largescale high-dimensional network data since man-
ual feature selection can be a daunting task that can lead
to incorrect feature selection or incorrect rule specification.
Automatic feature selection for network data remains to be
an active research topic. Another important challenge with
designing an effective NIDS is the ability to detect new or
unknown attacks. Most new attacks are variations of exist-
ing attacks that evolved over time. The threat-landscape is
constantly changing with new sophisticated attacks emerging
more frequently [10]. For example, the recent WannaCry
attack affected more than 230,000 computers in 150 coun-
tries including computers belonging to high profile govern-
ment organizations [11]. Some new attacks can target critical
infrastructure that if not protected, can create a national dis-
aster. The Colonial Pipeline attack that took place in 2021 is
a prime example of this [12]. Therefore, the NIDS must be
designed in such a way to be resilient to these new and emerg-
ing attacks. Another challenge associated with a NIDS is the
difference in protocols between wired and wireless ethernet
networks. Unlike wired networks, wireless networks are open
in nature and can be accessed by anyone in the vicinity of the

VOLUME 11, 2023

network. This makes wireless networks susceptible to new
attacks that are not found in wired ethernet. From a NIDS per-
spective, this makes designing a unified solution that works
in both wired and wireless applications a difficult task.

Several studies have attempted to address the challenges
associated with machine learning based NIDSs. A recent
study done by Aminanto et al. [8] focused on feature selection
and feature engineering to improve attack detection. They
showed that in addition to feature selection, adding a feature
engineering step can further boost the model performance,
especially to detect impersonation type attacks. However,
they only applied their method to impersonation attacks
essentially turning it into a binary classification problem.
They did not expand their method to other attack types. The
ability to detect and classify multiple attack types (multiclass)
is an important aspect of a NIDS because the mitigation or
response can be different from one attack type to another.
Unfortunately, multiclass classification suffers from lower
accuracy compared to binary class classification. Further-
more, automatic feature selection, which has become an
essential step in modern NIDSs, can lead to a decrease in
model accuracy if not done properly. Unknown attack detec-
tion adds another layer of complexity to the mix. A recent
study done by [13] used One-vs-Rest ensemble framework
to address some of these challenges with multiclass attack
detection. They used a set of nested ensembles with and
without boosting to come up with a new ensemble framework
that works in both wired and wireless applications. Their best
performing model achieved a detection rate of 86% for the
wireless application. As such, there is considerable room for
improvement. This motivated us to build upon their work and
introduce a new ensemble framework to further improve the
attack detection rate.

In this study, we propose a Network Intrusion Detec-
tion System with a Two-phased Hybrid Ensemble learning
algorithm and Automatic Feature Selection (THE-AFS) to
detect various cyber-attacks targeted toward network con-
nected devices. To address the high dimensionality of net-
work data, we employ an automatic feature selection frame-
work by leveraging four different machine learning classifiers
based on their ability to detect the most significant features.
The selected features are supplied to the learning algorithm
consisting of multiple learners where each learner is com-
posed of a two-phased prediction algorithm. The first phase is
tasked with generating a list of attack candidates whereas the
second phase is tasked with narrowing that list to a specific
attack type. The first phase is constructed using an adaption
of the One-vs-One multiclass ensemble framework trained on
normal-to-attack binary classifiers. The second phase is con-
structed using a set of multiclass classifiers that are trained
using every combination of attack classes. The two-phased
mechanism within a learner makes this algorithm a hybrid
ensemble because the two phases are built using two distinct
models that work in stages (the terms phase and stage are used
synonymously throughout this study). The two phases go
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through a voting mechanism to produce a high detection rate
while keeping a low false alarm rate. While there are many
One-vs-Rest based intrusion detection algorithms found in
the literature [13], [14], [15], an One-vs-One based ensemble
learning algorithm for an intrusion detection framework has
not been explored enough by the research community. This
study aims to fill that gap by successfully adapting an One-
vs-One architecture in an ensemble framework for intrusion
detection.

Finally, we evaluated the proposed method for both wired
(enterprise networks) and wireless (802.11) networks with
datasets that contain real traces of attacks. NSL-KDD [16]
dataset was used to evaluate the wired application and
AWID [17] dataset was used to evaluate the wireless appli-
cation. Both datasets have separate training and test sets. The
test set contains new attacks that are not found in the training
set. Even though it can be challenging to detect such attacks
in the test set, it provides an opportunity to evaluate the
system’s capability to detect new attack signatures. The wired
application achieved a multiclass detection rate of 0.9431
and a false alarm rate of 0.0005. The wireless application
achieved a multiclass detection rate of 0.9314 and a false
alarm rate of 0.0144. The notable result was in the wireless
application where it surpassed the TPR/FPR ratio of other
leading studies that attempted to build a generalized model
for both wired and wireless ethernet applications. The main
contributions of this study are:

o An effective feature engineering method for high-
cardinality features followed by an automatic feature
selection method for large-scale high dimensional net-
work data.

« Anovel two-phased hybrid ensemble learning algorithm
based on an enhanced One-vs-One framework for mul-
ticlass attack classification.

o A generalized intrusion detection framework that can
be utilized in both wired and wireless applications to
detect variations of known and unknown attacks, with
high detection rate and low false alarm rate compared to
other similar work in the literature

The remainder of this paper is organized into the following
sections: Section II presents a literature review of other latest
architectures used for intrusion detection. Section III presents
background on ensemble methods and class binarization
methods. Section IV presents detailed implementation of pro-
posed methodologies, including system architecture, feature
engineering methods, automatic feature selection methods,
and two-phased hybrid ensemble learning method with vot-
ing algorithm used by the proposed framework. Section V
presents experimental results and comparisons with other
leading studies. Finally, Section VI presents the closing
remarks.

Il. LITERATURE REVIEW
Recent studies have proposed various ensemble methods
for anomaly-based intrusion detection systems [18], [19],

45156

[20], [21], [22]. Aburomman and Reaz [23] discussed the
advantages of using ensemble methods for intrusion detection
where they pointed out that intrusions can come in vari-
ous forms and having multiple learners trained on different
attack types can increase the overall likelihood of detection.
Over the years, ensemble methods have evolved into two
distinct categories; homogenous ensembles where the base
learners use the same learning technique, and heterogeneous
ensembles where the base learners use diverse learning tech-
niques [24]. Heterogeneous ensembles can be further cate-
gorized into two methods called stacking and voting based
on how the individual learner predictions are combined into a
single prediction. A stacking ensemble is comprised of one or
more base-models and a final meta-model, where the output
from the base-models serve as input to the meta-model [25],
[26], [27]. While the base-models learn to produce an inter-
mediate output from the training data, the meta-model learns
to predict the true class label from that intermediate output.
The most popular method to build a heterogeneous ensemble
is voting [28], [29], [30], where the learner predictions go
through a voting mechanism to arrive at the final prediction.

Recent studies have proposed various advanced ensem-
ble methods for intrusion detection. A multilevel ensem-
ble was proposed by Zhou et al. [14] where they extended
the AdaBoost-A [31] algorithm for multiclass classification
using the one-vs-rest strategy. Their ensemble architecture
was composed of multiple expert learners and each expert
learner was composed of multiple one-vs-rest sub-learners
trained as weak base learners. An expert learner makes a pre-
diction by combining the predictions from each sub-learner
and then the ensemble makes a prediction by combining
the predictions from each expert learner. They introduced
two variations of this algorithm based on SVM and Particle
Swarm Optimization (PSO) [32].

A sustainable ensemble learning model was proposed by
Li et al. [33] where they attempted to solve two problems
with current ensemble architectures. One, they introduced
a weighting mechanism so that each classifier output is
weighted differently for each attack type. The weights were
trained by considering the sensitivity of each attack type as
opposed to a single weight value for all the classifiers. Two,
they introduced a sustainable update mechanism where the
model can be retrained with new data while maintaining his-
torical knowledge of the older model. Their proposed method
was able to achieve a higher accuracy than classical ensemble
architectures.

Louk and Tama [34] proposed a dual ensemble model by
constructing the base learners using a second ensemble learn-
ing method as opposed to the base learners being a classical
machine learning method. They experimented with various
state-of-the-art Gradient Boosting Decision Tree (GBDT)
models as base learners. They also used a bagging ensemble
in series with the GBDT ensemble to improve the perfor-
mance accuracy. As a result, it was called a dual ensemble
architecture. They experimented with three different datasets
and in all three instances, their Bagging-GBM method was
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able to achieve better accuracy than other methods in the
literature.

When it comes to intrusion detection datasets, Aegean
Wi-Fi Intrusion Detection Dataset (AWID) released by Kolias
et al. [17] is a benchmark dataset for wireless NIDS appli-
cations. It opened the door for intrusion detection research
into wireless networks by providing packet captures of
well-known wireless attacks. The initial experiments per-
formed by the authors discovered that impersonation attacks
were the hardest attack type to detect. This motivated several
other studies to improve the detection rate of impersonation
attacks. In one such study, Aminanto and Kim [35] proposed
an unsupervised feature extraction method with a deep learn-
ing model using Stacked Auto Encoders (SAE). They also
introduced an unsupervised feature selection method by using
an Artificial Neural Network (ANN). Important features were
selected based on the significance of their weights in the
ANN model. The model was able to achieve a detection
rate of 85% with binary classification using normal and
impersonation traffic only. The same authors performed a
follow-on study where they used an SAE and K-means clus-
tering to build a fully unsupervised model [36]. This model
was able to improve the detection rate of impersonation
attacks to 92%.

A more recent study done by Aminanto et al. [8] used a
combination of the SAE feature extraction method and the
weighted feature selection method to further improve the
detection rate of impersonation attacks. Their final model was
able to achieve a detection rate of 99.92%. However, all the
aforementioned studies focused on improving the detection
rate of a single attack type (impersonation) as a binary clas-
sification problem. In general, detecting one attack type as
opposed to detecting all attack types tends to have higher
accuracy.

Several studies have attempted to improve the multiclass
detection rate in AWID wireless dataset. For example, Liu
and Chung [37] extended the SAE-based feature extraction
method to multiclass classification. Similar to the original
study [8], they combined the SAE extracted features with the
original feature set and ran them through a feature selection
step. However, they added two new steps, Principal Com-
ponent Analysis (PCA) and Clustering to further reduce the
feature set. Their best multiclass detection rate was 79%.

Mikhail et al. [13] proposed a semi-boosted ensemble
approach to improve the multiclass detection rate. They
studied a complex architecture involving both standard and
boosted learners. The standard learners were implemented
using decision trees and boosted learners were implemented
using Adaboost. A binary sub-ensemble was created using
five standard learners and five boosted learners. A collection
of these sub-ensembles was used to learn a single class using
One-vs-Rest class binarization. They also employed a weight
matrix to derive the final prediction value. The weights were
calculated using twofold cross-validation on the training set.
Their final best model was able to achieve an average detec-
tion rate of 86%.
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Lopez-Martin et al. [38] proposed a framework based on
Radial Basis Activation Function Neural Network (RBFNN)
architecture. They worked on streamlining the traditional
RBFNN architecture, which involves optimizing three types
of parameters as three separate tasks, into a single integrated
optimization task that can be extended to more complex archi-
tectures consisting of multiple hidden layers. They exper-
imented with both supervised learning and reinforcement
learning frameworks. However, they reported their results
in terms of accuracy as opposed to detection rate. The best
results were achieved using RBFNN reinforcement learning
framework with an accuracy of 95.5%.

Lei et al. [39] proposed a deep neural network architecture
based on Triangle Area Maps (TAM). TAM was used as a
mechanism to derive new features using multi-feature corre-
lation. The constructed TAMs were supplied to a Convolu-
tional Neural Network (CNN) and a Long Short-Term Mem-
ory (LSTM) to extract both spatial and temporal features.
Finally, the extracted features were supplied to an Attention
network and then a Deep Neural Network (DNN) to make a
prediction. The authors argued that previous studies extracted
features from CNN and LSTM models serially resulting in
information loss. They addressed this issue by extracting fea-
tures in parallel and running those features through a fusion
method. However, their method was tested using only a small
portion (20%) of AWID training and test data.

Several new studies used the hold-out method to evalu-
ate their methods by randomly splitting the AWID training
dataset into training and test datasets [40], and [41]. As a
result, it is unclear how those models would react to unknown
attacks that are only present in the test dataset. Furthermore,
the studies found in the literature suffer from a low detection
rate especially for the wireless AWID dataset.

Ill. BACKGROUND

A. ENSEMBLE METHODS

Ensemble methods are often used in literature as a way
of improving the classification accuracy by aggregating the
results of multiple base classifiers into a single predictor.
The base classifiers are independently trained and the final
prediction is determined by taking a vote among the base
classifiers. Several different methods can be used to con-
struct the base classifier. Some commonly used methods are
training set sampling, feature set sampling and class label
manipulation. The idea behind training set sampling is to
use a subset of the original data to train a base classifier.
Bagging (or Bootstrapping) and Boosting are two predomi-
nantly used ensemble methods that utilize this approach [42]
and [43]. The idea behind feature set sampling is to ran-
domly select a subset of features to train each base classifier.
Random Forrest is a popular ensemble method that utilizes
this approach [44]. In class label manipulation, a multiclass
problem is transformed into a set of binary class problems by
creating a set of binary classes from the original multiclass
labels using a class binarization algorithm. The transformed
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binary classes are then used to train the base learners. In this
study, we leverage both bootstrapping and One-vs-One class
binarization framework to improve the overall accuracy of
multiclass classification.

The reason ensemble methods perform better than a sin-
gle learner is the way it arrives at the final prediction, also
known as the voting mechanism. Assuming the base clas-
sifiers within the ensemble are independent, an ensemble
algorithm will only misclassify a record if at least half of the
base classifiers misclassify that same record. The error rate
of the ensemble can be calculated using (1),

N

>, (]7\') e (1—eN 7, (0

i=1+5

where N is the number of base classifiers in the ensemble
and € is the error rate of a single classifier. Let’s consider
an example where an ensemble is constructed using 25 base
classifiers and the error rate of a single base classifier is
€ = 0.35. If the base classifiers are not independent, then
the error rate of the ensemble will remain at 0.35 since every
record misclassified by the base classifiers will also be mis-
classified by the ensemble. However, if the base classifiers
are independent then the error rate of the ensemble will be
reduced to 0.06.

B. CLASS BINARIZATION

Class binarization is a method used to transform a multiclass
problem into a set of equivalent binary-class problems by
using a set of classifiers often referred to as base classifiers
or base learners. While there are many binarization tech-
niques found in the literature [45], [46], [47], the two most
prevailing methods are One-vs-Rest (OVR) and One-vs-One
(OVO) [48]. In OVR, a K-class classification problem is
transformed into a set of K binary-class problems where each
base learner attempts to learn one class from all the other
classes. Binary sets are created by treating the class of interest
as positive samples and the remaining classes as negative
samples. For example, consider a dataset with a sample vector
X and K number of class labels. Let class label vector be
Y where Y; € {1,...,K} is the class label for sample X;
where i is the sample index. Let Cy be the classifier trained to
detect class label k where ke {1, ..., K}. Then, for each k in
{1,...,K}, 1) a new class label vector Y is created where
Y; =Y if ¥; = k and Y; = 0 otherwise; meaning Y =
0 for any other class label except k. 2) Y is used to train
the corresponding Ci classifier. To make a prediction, the
class label belonging to the classifier that reported the highest
confidence score is chosen as the winner. Specifically, Y=
argmax{Cy(X;)].

On the other hand, in OVO, a K-class classification prob-
lem is transformed into a set of K(K-1)/2 binary-class prob-
lems where each base learner attempts to learn one class from
another class. Binary sets are created in pairwise fashion.
For example, considering the same dataset as above with a
sample vector X and K number of class labels, let L be the
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number of unique class pairs that can be formed where L is
equal to K(K-1)/2. Let C,, ,, be the classifier trained to detect
binary class pair n,m where n,me {1, ..., K}. Then, for each
binary pair n,m, 1) a new subset X is created by selecting the
samples where Y; =norY; =m.2) X is used to train classifier
C,..m- To make a prediction, the class that received the highest
number of predictions among L classifiers is chosen as the
final prediction. In this study, we propose an adaptation to
the traditional OVO method for enhanced attack detection.

IV. METHODOLOGY

The overall system architecture with training and testing steps
is shown in Fig. 1. The following sections present detailed
information on main components in the overall architecture.

A. FEATURE ENGINEERING

In this section, we present several feature engineering tech-
niques that can be used for any intrusion detection dataset
given the corresponding base features are present in the
dataset.

1) CATEGORICAL FEATURES WITH HIGH CARDINALITY

Most features in a network intrusion dataset can be directly
used by a machine learning algorithm with minimal pre-
processing such as normalization and binarization. However,
certain common features of network data such as categorical
features with high cardinality, if used in their raw form can
hurt the model accuracy when deployed to the field. Media
Access Control (MAC) address is one such feature that needs
special processing. Most prior studies simply converted these
hexadecimal numbers into their integer equivalents [8] and
[13]. However, MAC address is a globally unique value and
training on such a unique value (in both train and test sets)
would not be beneficial to a prediction algorithm. In fact,
it may overestimate the model performance, especially if
the same device (with the same MAC address) was used to
unleash the attacks between training and test sets. The model
may train to identify attacks coming from a particular MAC
address and if that same MAC address was used during test-
ing, it may give a false high detection rate. However, it may
fail to achieve such results if the attackers” MAC address was
changed, which is always the case once the model is deployed
to the field. Instead of using the raw MAC address values,
we used them to derive three new features and then removed
the original features from the dataset.

In the case of AWID dataset, the original MAC address
columns were: wlan.ra (receiver address), wlan.da (desti-
nation address), wlan.ta (transmitter address) and wlan.sa
(source address). A new binary feature called ReceiverlsDes-
tination was created by assigning a value of 1 if wlan.ra is
equal to wlan.da and O otherwise. This means the intermedi-
ate receiver and the final destination addresses are the same.
Similarly, another binary feature called TrasmitterlsSource
was created by assigning a value of 1 if wlan.ta is equal to
wlan.sa and O otherwise. Which means the intermediate trans-
mitter and the original source addresses are the same. A third
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FIGURE 1. Overall architecture of THE-AFS (P1: Phase-1, P2: Phase-2).

binary feature called Broadcast was created by assigning a
value of 1 if either wlan.ra or wlan.da is set to the broadcast
address FF:FF:FF:FF:FF:FF or 0 otherwise.

The Wi-Fi network name (SSID column) is another string
feature that needs special preprocessing. Similar to the MAC
address columns, these names can vary once deployed to the
field. Therefore, we chose to convert the column into binary
such that if a SSID name was found, it was assigned a value
of 1 and if a SSID name was not found, it was assigned a
value of 0. Several other columns such as Wire Equivalent
Privacy (WEP) related columns had a very high number of
unique values. For example, the Initialization Vector value (in
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column wlan.wep.iv) used in WEP encryption is randomly
generated for every connection and is expected to result in
a large number of unique values that may not be beneficial
to a prediction model. Therefore, these columns were also
converted to binary such that if a value was found it was
assigned a value of 1 and if a value was not found, it was
assigned a value of 0. The binary value translates to whether
a packet was using WEP encryption or not.

2) SEQUENTIAL INTERVAL FEATURES
Network packets produce time series data. As a result,
the resulting dataset may contain raw timestamp values
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TABLE 1. Problem with model accuracies in AWID dataset when times
tamp features are included in the model.

Predicted | Predicted Predicted | Predicted
Imp. Normal Imp. Normal
Actual 1,472 18,607 Actual 20,073 6
Imp. Imp.
Actual 46 530,739 Actual 15,980 | 514,805
Normal Normal

as features. AWID dataset contained several timestamp
columns (frame.time_epoch, frame.time_relative and radio-
tap.mactime) that needed special handling. In the case of
AWID training dataset, there were ~1.8 million unique times-
tamp values for the ~1.8 million packets in the dataset.
Therefore, unless new features were derived from the original
timestamp value such as, the day of the week, 24H time value,
delta time between packets, the raw timestamp values would
not be useful to a prediction model.

However, to our surprise, several automatic feature extrac-
tion methods [13] and [37] picked one or more timestamp
columns as important features that should be included in
a model. We performed an extensive study as to why that
would be the case and found that timestamp values can
illude the model performance due to how the AWID dataset
was captured. For example, Table 1 shows the classification
results from two models that were trained using the AWID
training set and tested using the AWID test set. Both models
were filtered to just normal and impersonation traffic for
simplicity. Similar to other studies, both models used only
10% of normal traffic during training. The only difference
between the two models was the random seed value that was
used when sampling the normal traffic. While Model-1 had
a very low detection rate of 0.07, Model-2 had a near perfect
detection rate of 1. Further analysis showed that the illusion
of perfect detection rate was introduced by the timestamp
columns. The AWID training dataset was created in a ~60
minute time period and the test dataset was created in a ~20
minute time period but they were created back-to-back with a
small time gap in between. Therefore, timestamp values such
as frame.time_epoch will gradually increment from the start
of the training set until the end of the test set. After inspecting
the Decision Tree for Model-2, we noticed that a decision
split was created to classify packets as impersonation when
the timestamp value is above a certain value. Since all the
timestamp values in the test dataset will always be greater
than the timestamp value chosen for the split during training,
Model-2 had a very high probability of classifying all the
traffic as impersonation. This coupled with other splits in
the tree gave Model-2 a very high detection rate but also a
relatively high false alarm rate.

Based on this finding, instead of using raw timestamp val-
ues, we investigated the possibility of deriving new features
that would benefit the prediction accuracy. However, because
the training and test datasets were created on the same day
within a small time span, transforming timestamp values into
more informative features (day of the week or 24H time) did
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not provide much value. However, the dataset already had a
precalculated delta time value as part of the original feature
set (frame.time_delta), thus we did not have to specifically
create it ourselves. To avoid the high variance introduced by
raw timestamp values, we simply removed them from the
dataset and kept just the delta time values that were derived
from the original timestamp features.

B. FEATURE SELECTION

Selecting the most optimal feature set is essential to a
machine learning based intrusion detection system because
having unnecessary features could lead to several issues as
discussed earlier. We implemented a feature selection engine
that automatically selects the most important features that
correspond to the most significant weights based on four
different machine learning algorithms — Decision Tree (DT),
Artificial Neural Network (ANN), Random Forrest (RF), and
Support Vector Machine (SVM) — as classifiers based on
their ability to detect the significance of each input feature
using a criterion specific to each classification technique.
Each classifier was trained using the entire training dataset,
resulting in four candidate feature selection models AFS-DT,
AFS-RF, AFS-ANN, and AFS-SVM, each producing a set of
features in the order of their weight significance.

In the case of AFS-DT and AFS-RF, we ranked all the
features selected by the classifier based on Gini importance
and then the most important features were selected based on a
predefined threshold. In the case of AFS-ANN, we calculated
the importance of each feature by taking the absolute sum of
all the weights between features and all the neurons in the
first layer of ANN. This is shown in (2).

h
Xi=2 leil. @

where j is the feature index and i is the neuron index in
the first layer of ANN. The features with a higher absolute
sum were chosen based on a predefined threshold. For AFS-
SVM, we selected the most important features using the
Recursive Feature Elimination (RFE) process adopted by [8]
and [37]. Finally, the two-phased learning algorithm was
evaluated using features selected by each candidate model
independently.

C. TWO-PHASED ENSEMBLE ARCHITECTURE

The proposed system employs a hybrid multiclass ensemble
method consisting of 7' base learners where each base learner
is trained using a random sample (with replacement) drawn
from the original dataset. The number of base learners is a
hyperparameter supplied to the model. The overall system
architecture with training and testing steps is shown in Fig. 1.
The model is trained using training data and then tested using
previously unseen test data. Both datasets go through the
same preprocessing, feature engineering and feature selection
steps before being applied to the model. Each base learner is
a hybrid of two classification methods that work in stages.
The purpose of the first stage is to produce a list of attack
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TABLE 2. Classifier combinations in phase-2 using 4 attack classes.

Number of Number
Attack Classes of Attack Class Combinations
Picked Classifiers

CFAtkl—Atkz X CFAtkl_AtkS k CFAtkl_Ak4’

Atk,—Atk: Atk, —Atk, Atk —Atk,

CF 2 3 CF 2 4 CF 3 4
’ ’

.-

4 CFAtki-Atlo—Atks ¢ Atk —Atky—Atk,
3 =4 —Atka— ’ —Atka—Atks
3 CFAtkz=Atks=Atks (pAtici=Atics=Atky
4 Atk,—Atk,—Atks;—Atk
4 4)= 1 CFAtky 2 3 4

candidates whereas the purpose of the second stage is to
narrow that list down to a specific attack class. The number of
classifiers in each stage is dependent on the number of classes
in the dataset.

The first stage is built using a variation of the OVO method.
A typical OVO method is built using K (K — 1) /2 binary
classifiers where K is the number of classes in the dataset. The
proposed method is built using the OVO method but with only
normal-attack binary classifiers. The attack-attack binary
classifiers are not used in this stage. The result is an OVO
method with (K — 1) classifiers. For example, a dataset con-
taining five classes, one class being normal and four classes
being attack where the attack classes are labeled as Attack;,

Attacky, Attacks and Attacky, the resulting four binary clas-
sifiers are: [ C FNarmal —Attack CFNormal —Attack CFNormal —Attack

CFN‘”’"“Z A”‘“k] The training process mvolves drawing a

random sample from the original dataset and creating binary
subsets containing only the normal class and one attack class.
These subsets are then used to train the binary classifiers.

The second stage is built using multiclass classification
where multiple sets of classifiers are built using class combi-
nations. The goal of this stage is to narrow down to a specific
attack type from a list of attack candidates passed down from
the first stage. Therefore, the normal class is not considered
in this stage. This concept can be better illustrated by using
the previous example with four attack classes. Table 2 lists all
attack combinations that can be used to build the classifiers.
For a dataset with K classes where one class is normal and
(K — 1) classes are attacks, the number of classifiers used in
the second stage can be expressed using (3).

K—1 K—-1 K—1
() (55)++ (=)
k-1 (K —1

- Zi:2 ( i ) ’ )
The training process involves drawing a random sample
from the original dataset and creating subsets of data con-
taining class combinations. These subsets are then used to
train the corresponding multiclass classifier. In the previous
example with four attack classes, eleven subsets are created to
train the list of classifiers shown in Table 2. The total number

of classifiers used in both stages can be expressed using (4).
For a system with T number of base learners, the total number
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TABLE 3. Distribution of attack and normal traffic in AWID training and

test datasets.

Attack Tvpe AWID-CLS-R- | AWID-CLS-R-
yp Trn Count Tst Count
flooding 48,484 8,097
impersonation 48,522 20,079
injection 65,379 16,682
normal 1,633,190 530,785
Total 1,795,575 575,643

of classifiers for the entire model can be calculated using
(5). A visual representation of the base learner architecture is
shown in Fig. 2. Unlike One-vs-Rest architectures explored
in other studies in the literature where the learning algorithm
attempts to learn one attack class from all the other attack
classes, our One-vs-One two-phased architecture attempts to
learn one attack class from another attack class resulting in
increased multiclass classification accuracy.

w-n+30 (5) @)
T[(K—1)+Zf:21 (K_l)] ©)

D. PREDICTION ALGORITHM
Before the algorithm can be explained in detail, it is important
to introduce the terminology used throughout this study. Con-
sidering a system architecture with 7' number of base learn-
ers, the OVO classifiers are denoted by CF; OVO ; where j is the
base learner index and c is the attack class The multiclass
classifiers are denoted by CF %LT, where j is the base learner
index and z is the set of attack classes that were used to train
this classifier. For example, let’s consider a system with five
base learners and four attack classes labeled as {Atk;, Atky,
Atks and Atks}. The OVO classifier in base learner index-2
that was trained using the binary classes normal and Atks,
is denoted by CF 20, ‘/g?,q. Similarly, the multiclass classifier in
base learner index-2 that was trained using Atk;, Atk, and
Atks is denoted by CFg{éi[Afkl,Alkz,Atkg]' If the system was
trained using N observations, an OVO classifier trained using
the i observation is denoted by CF OVO(xl)j e Similarly,
a multiclass classifier trained using the i observation is
denoted by CFMLT (x);j ;- classifier.
As described in Algorithm 1, the prediction algorithm
makes an intermediate prediction at each base learner level
and then a final prediction by taking a vote among all the
base learners. At the base learner level, the voting mechanism
goes through two phases. The first phase is designed to get
the prediction from OVO classifiers. If all the OVO classi-
fiers predict an observation as normal, then the intermediate
prediction for that base learner is classified as normal. The
second phase is not used in this scenario. If at most one OVO
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FIGURE 2. Architecture of Two-phased Hybrid Ensemble (THE) learning algorithm.

Algorithm 1 Two-Phased Hybrid Ensemble Learning Algo-
rithm
Let T be total number of BaseLearners in the Ensemble
Let M be min number of BaseLeane ts required to classify as Attack
Let K be number of classes
Let (K — 1) be the number of attack classes
Let CFOVO i Atk, be Normal to Attack OVO classifier for Attack=a
Let CFML j.Phasel be an Attack combination multiclass classifier
LetL; be the prediction for base leaner in j’h index
Base Learner Prediction
For BaseLearnerj=1to T:
# Get Phasel Prediction
For Attack a = 1 to(K — 1):
# Is the OVO classifier trained to detect Atk predicting as Atk,?
IFCFOND == Atkg:
Phasel [+ = Atk,
if count(Phasel) == 0 :
L; = Normal # None of the OVO classifiers predicted as Attack
else count (Phasel ) ==
Lj = Phasel[] # Only 1 OVO classifier predicted as Attack
# Get Phase2 Prediction
else:
# More than 1 OVO classifier predicted as Attack.
# Get final Attack type using the corresponding multiclass classifier.
Lj = CFMET () ppaget
Ensemble Prediction L{- Lt
# Aggregate predictions from base learners into a dictionary of attack counts
T

AtkCounts[Atkg] = Y I (Lj = Atkyg), for each attack a

# Get highest predict,edlattack label

Atky = argmax(AtkCounts)

# Predict as Atk, if the highest attack count exceeds a predefined threshold
v Atkg; if (AtkCounts [Atkq] > M

- Normal; else
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classifier predicts an observation as Attack, then that attack
type is assigned as the prediction value for that base learner.
Again, the second phase is not used in this scenario. Lastly,
if at least two OVO classifiers predict an observation as
Attack, then those prediction values are passed to the second
phase to determine the final prediction. Accumulating the
attack predictions from OVO classifiers into a list is shown
in (6).

Phasel(x))[] <% ¢ (CFOVO () ark, = Atku) )

wherea =1,2,3,...,(K — 1) and 0 returns the attack label
when the OVO binary prediction is attack.

As mentioned earlier, the second phase prediction
is performed using the multiclass classifier that was
trained on attack types passed down from the first phase.
For example, if Phasel = [Atk,Atk;, Atks], then
CFMLT (Xi)j z=[Atk, ,Atk2,Atkq] 18 Used to get the prediction value
for the second phase which is also the final prediction value
for that base learner. The base learner prediction algorithm is
stated in (7)

Normal, if CFOY0 (xi)j Ak, = Normal,
CFO (x); an, = AtkqAND
Allother CFOV0 (xi); = Normal

if <CFMLT (Xi)j, Phase1 = Afka>,

Lj (-xi) = Atka ’ lf‘

Atk,,

(N

for all a where a = 1,2, 3, ..., (K — 1). The first condition
in (7) represents the case where base learner prediction is
normal when all the normal-attack OVO classifiers predict an
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CFAtkW-AtKZ
CEAKT-Atk3 H Final Prediction
cFNurmaI-AIkZ
o ; CRAtkT-Atk2-Atkd
ase-

Phase-2

CFNUrmaI—AIH

[X1X2.Xp ... X5 ]

Input Vector

FIGURE 3. Voting example using three attack classes. Phase-1 predicts as
Attack1 and Attack3. Therefore, CFAtk1-Atk3 i selected in Phase-2 to get
the final prediction.

observation as normal. The second condition represents the
case where base learner prediction is Ark, if only one OVO
classifier predicts an observation as attack, but all the other
OVO classifiers predict the observation as normal. The third
condition represents the case where base learner prediction is
Atk if the first phase prediction list is passed to the second
phase and the multiclass classifier predicts the observation as
attack. An example prediction flow with three attack classes
is shown in Fig. 3. For input vector [X1, X2, X3 ... X,,], Phase-
1 OVO classifiers trained with Normal — Atk, predicts as
normal but both Normal — Atk and Normal — Atks predicts
as Atk; and Arks respectively. Therefore, Atk; and Atkj
is passed down to Phase-2, at which point the multiclass
classifier trained with Atk; — Atks is used to get the final
prediction.

Once each base learner has a prediction value, the next
step in the algorithm is to derive a final prediction value for
the observation. The algorithm creates a dictionary of attack
counts, where the attack type is the key and the number of
base learner predictions for that attack type is the value. This
is shown in (8).

T
AtkCounts [Atka) = " I(L; (x;) = Atky), ®)
j=1

where a = 1,2,3,...,(K — 1) and the identity function /
return 1 when base learner j prediction is equal to Atk,. Next,
the algorithm finds the attack label with the highest attack
count using (9).

Atkpgper = argmax (AtkCounts), 9)

In rare cases where the highest reported attack count is a
tie between two or more attack classes, a tiebreaking classifier
trained just on attack classes (excluding normal class) is used
to break the tie and produce a single attack class. Lastly, the
final prediction value is determined based on whether the
highest reported attack count exceeds a predefined threshold.
In other words, the prediction is classified as Ark, if at
least M base learners classify a sample as Atk,. Otherwise,
the prediction is classified as normal. The value of M is a
hyperparameter supplied to the model and it is determined
empirically in this study. The final prediction equation is
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shown in (10).

Y () Atkpaper;  if (AtkCounts [Atkpaper] > M
X;) =
' Normal; else,

(10)

The complete voting and prediction algorithm at both base
learner and final ensemble level is shown in Algorithm 1.

V. EVALUATION AND DISCUSSION

A. DATASET

The proposed methodology was tested on the Aegean Wi-Fi
Intrusion Detection Dataset (AWID) which is widely used
in the literature as a benchmark dataset for Wi-Fi intrusion
detection. It was created in a lab environment by emulating a
Wi-Fi setup consisting of both stationary and mobile clients
found in a typical wireless network. The stationary clients
included a desktop PC and a smart TV. The mobile clients
included two laptops, two smartphones and one tablet. One
mobile client (laptop) was used to generate intrusions by
leveraging commonly used penetration tools. The authors
emulated and captured 15 different attack types using this
setup. Then they grouped those 15 attacks into 3 attack classes
based on the similarities of the attack method, namely -
flooding, injection and impersonation. The 3 attack classes
plus the normal class make this a multiclass classification
problem with 4 imbalanced classes. Each row in the dataset
is a network packet on the wireless network, and 154 network
attributes (columns) were captured per row. They released
two separate datasets, one for training purposes and one
for testing purposes. The two datasets were not created by
splitting a single dataset, but rather using two separate cap-
turing sessions, which makes the data more realistic. Another
important fact is that the testing set contains attacks that
are not found in the training set. This is where traditional
learning algorithms perform poorly with this dataset because
the learning algorithms usually fail to identify previously
unseen attacks. However, it is an important aspect of an
intrusion detection problem because an effective NIDS has
to be capable of detecting new or unknown attacks that
evolve over time, often times as variations of known attacks.
For this study, we used the AWID-CLS-R-Trn dataset to
train the model and AWID-CLS-R-Tst dataset to test it. The
heavily imbalanced distribution of the attack and normal
classes between the training and testing datasets is shown in
Table 3.

To broaden the testing efforts of our proposed methodology
and to prove that it can be generalized to both wired and
wireless applications, we brought in a second dataset NSL-
KDD [16] which is commonly used in the literature as an
intrusion detection dataset for wired Ethernet. The attacks in
this dataset were emulated in a military environment where
they unleashed 39 different attack types while operating the
network as if it were a true military Local Area Network
(LAN). The attack types were grouped into 4 categories,
namely — dos, r2l, u2r and probing. The 4 attack classes
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TABLE 4. Distribution of attack and normal traffic in NSL-KDD dataset.

Attack Type Count

dos 45,927
probe 11,656
21 995
ur 52
normal 67,343
Total 125,973

TABLE 5. Experiment results based on feature selection method.

Feature Selection
Dataset Method DR FAR
THE-AFS-ANN 0.9295 0.0145
THE-AFS-DT 0.9251 0.0153
AWID
THE-AFS-RF * 0.9264 0.0140
THE-AFS-SVM 0.9314 0.0144
THE-AFS-ANN 0.9494 0.0006
THE-AFS-DT * 0.9431 0.0005
NSL-KDD
THE-AFS-RF 0.9489 0.0006
THE-AFS-SVM 0.9354 0.0006

* The final candidate selected for each dataset

plus the normal class makes this a multiclass classification
problem with 5 imbalanced classes. Each row of data in the
dataset is a network packet in the LAN network represented
by 41 attributes (columns). Following the same approach as
the previous study [13], we used the KDDTrain+ dataset
with a random 50/50 split for training and test data. The
imbalanced distribution of the attack and normal classes in
KDDTrain+ is shown in Table 4.

B. DATASET PRE-PROCESSING

The AWID dataset required several pre-processing steps to
transform the data into a format that can be used by a machine
learning algorithm. Several columns had missing values indi-
cated by a string value of “?”’. Prior studies replaced these
missing values with an integer value of O [8] or -1 [13].
In our study, we chose to replace them with a -1 so that
it does not collide with an actual O value in a binary col-
umn. Several columns had hexadecimal values which needed
to be converted to their integer equivalent. Furthermore,
to address the class imbalance problem, we experimented
with several techniques such as Random Under Sampling
(RUS), Random Over Sampling (ROS) and Synthetic Minor-
ity Over-sampling Technique (SMOTE) [49]. We adopted
RUS because it was able to achieve the best performance.
Following prior studies [8], the dataset was balanced by
randomly selecting 10% of the majority class (normal traffic)
instances.
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C. SYSTEM EVALUATION

The evaluation metrics must be carefully chosen because of
the highly imbalanced nature of the dataset where normal
packets vastly outnumber the attack packets. Metrics such as
accuracy can produce misleading results because the majority
class can easily overshadow the minority class giving a false
sense of model performance. In our study, we used two of the
most well referenced evaluation metrics for class imbalanced
data in intrusion detection systems: Detection Rate (DR) and
False Alarm Rate (FAR) [50]. DR which is also called the
True Positive Rate (TPR) is defined as the percentage of
packets that are correctly classified for a given class. DR is
calculated using (11). For an attack class, True Positive (TP)
is defined as the number of attack packets correctly classified
as attack and False Negative (FN) is defined as the number of
attack packets incorrectly classified as normal. FAR which
is also known as False Positive Rate (FPR) is defined as
the percentage of packets that are incorrectly classified for a
given class. FAR is calculated using (12). For an attack class,
FP is defined as the number of normal packets incorrectly
classified as attack and TN is defined as the number of normal
packets correctly classified as normal packets. The goal of a
NIDS should be to maximize DR and minimize FAR.

Detection Rate (DR) = TPR = (11

TP+ FN’

False Alarm Rate (FAR) = FPR = (12)

FP+ TN’
D. EXPERIMENTAL RESULTS

The proposed model was evaluated using all four feature
selection methods discussed earlier. Our preliminary studies
showed that around 30 and 38 features produced the best
detection rates for AWID and NSL-KDD datasets respec-
tively. This is consistent with findings by [13]. With each
feature selection method, the model hyperparameters were
iterated to find the most optimized model that performed best
with each dataset. The three model hyperparameters were:
sample size denoted by S, number of base learners denoted by
T, and the minimum percentage of base learners required to
classify a packet as attack which is denoted by M. The sample
size S was iterated from 10% to 90% in 10% increments. For
each sample size S, the model was tested using 5 different T
values (T = 10, 25, 50, 75, and 100 learners). For each S and
T value, M was iterated from 1 to T in 10% increments.

The best result for each feature selection method is shown
in Table 5. For the AWID dataset, SVM based feature selec-
tion achieved the highest Detection Rate (DR) while RF
based feature selection achieved the lowest False Alarm Rate
(FAR). We picked RF based feature selection as the final
candidate (THE-AFS-RF) because of achieving a low FAR
of 0.0140 while maintaining a high DR of 0.9264. The best
THE-AFS-RF result was achieved using the model parame-
ters: T=75, S=30%, M=1. An M value of 1 indicates that for
a packet to be normal, all base learners within the ensemble
must classify that packet as normal. On the other hand, a sin-
gle base learner classifying a packet as Attack, will result in
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TABLE 6. Evaluation of proposed method with other leading approaches
using AWID dataset.

. TPR/FPR
Study Norm. | Flo. Imp. | Inj. Ave. [Rank]
THE- 0.9912 | 0.7157 | 0.9989 | 0.9999 | 0.9264 | 66.17

AFS-RF * | 9 0474 | 0.0022 | 0.0065 | 0.0000 | 0.0140

0.9610 | 0.7014 | 0.7912 | 0.9999 | 0.8634 | 24.81

SemBst

[13] 0.0981 | 0.0044 | 0.0364 | 0.0003 | 0.0348
MitEns | 0-9999 | 0.6803 | 0.0732 [ 0.9997 | 0.6883 | 5.83
[51] 0.4726 | 0.0000 | 0.0000 | 0.0000 | 0.1181

148 0.9996 | 0.6846 | 0.0641 | 0.9999 | 0.6871 | 5.81
[17] 0.4726 | 0.0000 | 0.0001 | 0.0000 | 0.1183

PRelu | 0:9980 | 0.5748 | 0.9850 | 0.8272 | 0.8463
[52]

SAE 0.9986 | 0.3155 | 0.6518 | 0.9996 | 0.7414
[33]
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I
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FIGURE 4. AWID model performance when T = 75, S = 30% and M is
varied from 1 to 75. The best model performance was observed when
M=1.

the entire ensemble classifying the packet as Artack,. This
behavior can be further illustrated by plotting the TPR/FPR
measure for several T values as shown in Fig. 4. As mentioned
before, the highest TPR/FPR value when M=1 indicates that
the attacks found in AWID dataset are much harder to detect
and even a single learner detecting a packet as attack tends to
have a high probability of being an actual attack. The low FPR
value further solidifies this argument. Another observation
is that TPR/FPR value has a drop when M is around 25.
Further investigation revealed that this drop is caused by the
failure to detect impersonation attacks. As M increased, more
impersonation attacks were predicted as normal traffic and
as a result, the TPR of impersonation decreased and FPR
of normal increased with a net result of decreased overall
TPR/FPR. This finding is consistent with other studies in the
literature which state impersonation attacks were the hardest
to detect [8] and [17].

For the NSL-KDD dataset, ANN based feature selec-
tion achieved the highest Detection Rate (DR) while DT
based feature selection achieved the lowest False Alarm Rate
(FAR). We picked DT based feature selection as the final
candidate (THE-AFS- DT) because of achieving a low FAR

VOLUME 11, 2023

2000

1500

1000

TPR/FPR Measure

Hyper parameter M - Minimum number of learners
FIGURE 5. NSL-KDD model performance when T = 50, S = 70% and M is
varied from 1 to 50. The best model performance was observed when
M=15.

TABLE 7. Evaluation of proposed method with other leading approaches
using NSL-KDD dataset.

Study Norm. [DoS [Probe |R2L |U2R |Ave. TPR/FPR
[Rank]
THE- 0.9976 10.9996(0.9988 [0.9607 [0.7586 (0.9431 [1,886

AFS-DT *10.0012 {0.0002]0.0006 [0.0004 [0.0003 [0.0005

Semi-Bst 10-9987 10.9996[0.9959 10.9598 [0.6000 |0.9108 |1,822
[13] 0.0015 [0.0003]0.0003 [0.0001 |0.0005 [0.0005

MRK.  |0-9989 [0.9996]0.9742 [0.9494 [0.6287 |0.9102 |1,517
ELM [53] 10.0019 |0.0002]0.0003 |0.0005 {0.0001 |0.0006

OVA.  [0:9960 [0.9990[0.9920 [0.9870 [0.7390 |0.9426 673
SVM [54] {0.0040 [0.0010{0.0010 ]0.0010 [0.0000 |0.0014

EID3 0.9990 10.9990(0.9980 [0.9997 (0.9980 (0.9987 |587

[55] 0.0008 [0.0003]0.0039 [0.0022 [0.0012 [0.0017
D3 0.9990 [0.9990]0.9970 [0.9350 [0.4910 [0.8842 |246
[55] 0.0010 [0.0003]0.0055 [0.0098 |0.0015 [0.0036
NB/DT  |0-9984 [0.9976[0.9975 [0.9935 [0.9947 |0.9963 |74
[56] 0.0005 [0.0003]0.0028 [0.0622 [0.0010 [0.0134
ANN 0.9880 [0.9380]0.8980 [0.9190 [0.8660 [0.9218 |65
[57] 0.0655 [0.0004]0.0014 [0.0028 [0.0005 [0.0141
Hybrid  |0-9899 [0.9991/0.9989 0.9937 |0.9989 |0.9961 |58

[58] 0.0150 {0.0010]0.0150 [0.0340 [0.0210 [0.0172

* Proposed Study

of 0.0005 while maintaining a high DR of 0.9431. The best
THE-AFS-DT result was achieved using the model parame-
ters: T=50, S=70%, M=15. Unlike the AWID dataset, the
NSL-KDD dataset was producing a high FAR when M is
closer to 1, resulting in a lower TPR/FPR score. On the other
hand, it was producing a lower TPR when M is closer to 50,
again resulting in a lower TPR/FPR with higher M values.
Another way to look at this behavior is, when M=1, an incor-
rect prediction by a single classifier (within the ensemble)
will result in the entire ensemble making an incorrect predic-
tion, hence the high FPR. As M increases, more classifiers are
needed to detect an attack and as a result, it becomes harder
for the entire ensemble to detect an attack, hence, the low
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TABLE 8. Evaluation of proposed method with other studies using AWID
dataset and multiclass classification. results presented in terms of
accuracy and f1 scores.

Study gfs:;zl‘:y :/[c:curl;)acy F1 Macro | F1 Micro
THE-AFS-RF * 0.9879 0.9939 0.9190 0.9879
RL-NIDS [41] 0.9572 - 0.7027 0.9447
DRL+RBFNN [38] | 0.9540 - - 0.938
SBN [13] 0.9526 0.8209 -

* Proposed Study

TPR. As shown in Fig. 5, this behavior produced a downward
parabolic curve for the NSL-KDD dataset.

Next, we compared our experimental results to other lead-
ing approaches published in the literature. We used the same
Macro-Average TPR/FPR ranking criteria adopted by [13].
The AWID comparison results are shown in Table 6. Com-
pared to other approaches, our best performing model THE-
AFS-RF was not only able to achieve the highest TPR but
also the lowest FPR, resulting in the highest TPR/FPR rank
of 66.17. The NSL-KDD comparison results are shown in
Table 7. The best performing model THE-AFS-DT was able
to maintain the same low FPR value of 0.005 as the pre-
vious leading study but increased the TPR from 0.9108 to
0.9431 resulting in a slightly higher TPR/FPR rank of 1,886.
Several recent studies reported their results in terms of overall
accuracy and F1 scores for the AWID dataset. For complete-
ness, we compared our results with some of the newer studies
as well and the results are presented in Table 8.

VI. CONCLUSION

In this study, we proposed THE-AFS, a machine learn-
ing based Network Intrusion Detection System (NIDS)
with Two-Phased Ensemble learning and Automatic Feature
Selection for detecting various known and unknown attacks
in high dimensional network data. The proposed automatic
feature selection engine can be used by any high dimen-
sional network dataset to identify the most significant fea-
tures needed for multiclass attack classification. Furthermore,
we identified drawbacks of existing feature selection meth-
ods for network data and introduced new feature engineer-
ing techniques that improve attack detection. The proposed
framework is constructed using a hybrid of two learning algo-
rithms. While there were many One-vs-Rest based learning
algorithms found in the literature, it was evident that not
enough research was done on One-vs-One based ensemble
learning algorithms for intrusion detection. Our two-phased
architecture built with One-vs-One framework is capable of
learning one attack type from another attack type, resulting
in higher multiclass classification accuracy. The proposed
framework was tested on both wired and wireless networks
using two well referenced datasets and the results were com-
pared against other leading studies in the literature. THE-
AFS-DT model performed best for the wired application with
a detection rate of 0.9431 and a false alarm rate of 0.0005.
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THE-AFS-RF model performed best for the wireless applica-
tion with a detection rate of 0.9314 and a false alarm rate of
0.0144. The wireless application outperformed other leading
studies in the literature that attempted to build a generalized
model that works in both wired and wireless applications.
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