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ABSTRACT Monitoring nutritional values in food can help an individual in planning a healthy diet.
In addition, regular dietary assessment can improve and maintain the physical and mental health of
individuals. Recent advancement in computer vision using Deep Learning has enabled researchers to develop
various techniques for automatic food nutrition estimation frameworks. Researchers have also contributed
to prepare large food image datasets consisting of various food classes for this purpose. However, automatic
estimation of nutritional values from food images still remains a challenging task. This review paper critically
analyzes and summarizes existing methodologies and datasets used for automated estimation of nutritional
value from food images. We first define the taxonomies in order to categorize the existing research works.
Then, we study different methods to detect the food value estimation from food images in those categories.
We have critically analyzed existing methods and compared the performance of various approaches for
estimating food value using conventional performance metrics such as Accuracy, Error Rate, Intersection
over Union (IoU), Sensitivity, Specificity, Precision, etc. In particular, we emphasize the current trends
and techniques of Deep Learning-based approaches for food value estimation from images. Moreover,
we have identified the ongoing challenges associated with automated food estimation systems and outlined
the potential future directions. This review can immensely benefit researchers and practitioners, including
computer scientists, health practitioners, and nutritionists.

INDEX TERMS Deep learning, food classification, food image, nutrition value estimation.

I. INTRODUCTION
Identifying food values such as carbohydrate (CHO), protein,
calorie, etc. are essential for a healthy living. In particular,
it is crucial for a person (or a patient) to estimate the calorie
intake from the food as overindulgence can lead to various
life long diseases such as obesity, diabetes, heart-disease,
etc. Automation of estimating food values from food images
would be beneficial in maintaining physical and mental
health. Recent development of smart phone based applica-
tions [1], [2], [3] has made it possible to deploy an efficient
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real-time automated nutrition estimation framework [4]. The
general framework of the food value estimation from food
images comprises of identification of the food items in the
image, estimation of the volume of the identified food items,
and retrieval of the nutritional information of food items,
as shown in Figure 1. Moreover, for other smart health
applications, food item identification, calorie approximation,
etc. from meal images have attracted researchers’ attention.
The performance of our food value estimation framework
depends on the results of the intermediate major steps along
with several other factors such as quality and diversity of
the food image dataset, relevant information to enhance the
performance of the frameworks, etc. However, these tasks are
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challenging because of the varieties of food classes, variance
of the results due to the impact of color, light, and viewing
angles on food images, etc. Therefore, estimating food values
from the meal image needs significant research effort.

We observe considerable research activities [5], [6] in
this area. In early research works, most of the studies
like [4] and [5] have used traditional Machine Learning
(ML) methods to calculate the nutritional value from food
images. However, from 2014, we have found a shift in
utilizing Deep Learning (DL) based frameworks [7], [8].
Recently, the researchers are using optimization methods
such as Genetic Algorithm (GA) [9], Fuzzy Clustering for
data filtering [10], Particle Swarm Optimization (PSO) [9],
etc. to improve the Deep Learning based frameworks for
food classification. In case of food segmentation, which is
a pre-processing step of food item identification, we find
that researchers are mostly concerned with segmenting single
food item from the serving plate [4], [5]. However, with
the improved computational methods, researchers [11] are
now involved in segmenting food images from the images
of multiple food items. In the volume estimation step,
researchers [5], [12] have commonly used reference objects
in the images. In recent years, researchers like [13] have
computed volumewithout reference in the images. In this par-
ticular work, researchers have used Generative Adversarial
Networks (GAN) to map energy distribution in food images.
Finally, to estimate the food value, researchers lookup the
corresponding nutritional facts from some databases, e.g.,
US Department of Agriculture (USDA) [14], [15]. Recently,
in a few studies [16], the caloric values of food images are
crowd sourced. However, this method is highly error-prone.
A comprehensive literature review is greatly needed to assist
the researchers due to their significant research activities in
the area of food value estimation.

There are only a few review papers related to food value
estimation methods from image datasets. Min et al. [17]
have conducted a study on food computation in 2019.
In their review, they have included quite a few things
including food dataset acquisition, food perception, food
recognition, food data retrieval, food recommendation, and
prediction and monitoring of social issues. The food datasets
include food images, food relevant texts, and multi-modal
data of image and text. In their food recognition part,
they have discussed only the food classification methods
using mostly Machine Learning (ML) based techniques on
hand-crafted features of meal images. Subhi et al. [18]
have presented a literature review on existing food image
datasets, food image segmentation, food item classification,
and volume estimation. In the food classification part, they
describe feature selection, traditional ML techniques, and
Deep Learning techniques. Estimating food value using
Deep Learning techniques directly from food images has
not been covered in their work. In another review work by
Chopra and Purwar [19] in 2022, they have focused their
review on different techniques only for image segmentation
task. In another work, Dalakleidi et al. [20] have presented

different methodologies only for food item recognition.
On the other hand, our review looks at the whole workflow
of the calorie estimation framework from food images and it
includes the major steps needed for food calorie estimation.

The work by Amugongo et al. [21] in 2023 discusses
the potential of mobile computer vision-based applications
to monitor daily food consumption. Their review has
included 22 articles that primarily focuses on recognizing
food, estimating volume and calories, and providing dietary
recommendations. In another work in the year of 2022 by
Konig et al. [22], the authors have focused on smartphone-
based dietary assessment tools. However, their review
requires to include textual data in addition to food images
as inputs to track nutritional intake. Our review includes the
food images as the only input data. If using extra texts with
food images as input data can be avoided, then the huge
cost of data labeling can be saved. Therefore, research using
only food images as input data has significant impact in the
field of estimating nutrition. Table 1 presents the comparison
between the existing review articles and our research in the
food computing field for food value estimation from images.

Although existing works have covered some steps of food
value estimation, they are not comprehensive that can be
observed in Table 1. In addition, none of the previous review
articles covered food value estimation directly from image
datasets by Deep Learning techniques. To address these
gaps, we present our comprehensive literature review on
food nutritional value estimation from food image dataset.
We include the major steps in the workflow for the nutrition
estimation framework along with the description of publicly
available food image datasets in our review. The major
contributions of our paper are listed below.
1) We have conducted a comprehensive literature review

on food nutritional value estimation directly from the
food image dataset. This also includes the estimation of
food value directly from the image dataset using Deep
Learning techniques.

2) We have categorized the reviewed studies based on the
steps needed for developing an automated food value
estimation framework that includes food item classifi-
cation, volume estimation, and nutrition estimation.

3) We observe the trends and scientific development
in applying different Deep Learning techniques for
designing frameworks for estimating food nutrition.

4) We have analyzed the relationship between the fre-
quently used traditional Machine Learning based meth-
ods for classifying food items, and the extracted
handcrafted features from meal images.

5) We have presented some research challenges and
opportunities for future work in this domain.

We organize the rest of the paper as follows. We provide
an overview of the review: the methodology of conducting
the review and an overview of the food nutrition estimation
system in Section II. In Section III, we discuss different
types of food image inputs that are used for nutrition
estimation frameworks. We narrate the food classification
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FIGURE 1. A generalized framework for food nutrition estimation from food images.

TABLE 1. Differences between the existing review articles and this article.

frameworks along with different applied methodologies in
Section IV. We illustrate different approaches that are being
used for estimating volume or weight from food image data
in Section V. Section VI describes different processes that
are used for estimating nutritional values from the image
datasets. In Section VII, we summarize the findings of
this paper and present the current challenges and potential
future research works. Finally, in Section VIII, we draw the
conclusion of this review work.

II. OVERVIEW OF THE REVIEW
In recent years, the study on food nutrition estimation has
become popular. The primary goal of our review is to study
different methods and frameworks that have been used to
estimate the nutrition values from food images. In addition to
this, we analyze different food datasets used in these studies
to understand the mapping between the input data and the
frameworks. In this section, we describe the methodology
of our reviewing process. We briefly discuss the major
components of a standard food nutrition system as well.

A. SCOPE OF THE REVIEW
We present a food analysis system that uses computational
techniques to automatically compute nutrition values from
input food data in this section. For many people who keep
track of their diet, it is crucial to track the approximate

nutritional content of foods. With the rise in obesity and
malnutrition-related disorders, concerned researchers are
interested in automation of the estimation of food nutrition
estimation using food images as input. In this work,
we mainly focus on these studies. Estimating nutrition from
an image may necessitate a number of intermediate steps.
The first step of food nutrition estimation is to segment the
food items in the image and then to classify food items of
the target image. Researchers then determine the amount
(or volume) of the food items in the image to find the
nutritional values. Hence, we broadly categorize the reviewed
articles into three major groups: food image classification,
volume/weight estimation, and nutrition estimation, shown in
Figure 2. A brief description of these major groups is given
as follows.

1) FOOD IMAGE CLASSIFICATION
In food image classification, the researchers use images
of foods to classify the types of foods or food items.
This kind of food classification can be conducted on
multi-food item meal type [15], [23] or single food item
meal type [15]. For both food image types, food image
segmentation is used before classification. For a single food
item in an image, food image segmentation methods divide
the input images into food and non-food data points. Most
of our observed studies use object segmentation algorithms
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FIGURE 2. A taxonomy of the food image analysis application domain.

for segmenting multiple food items or separating single
food items from non-food items [24], [25]. After image
segmentation, classification of segmented food items is
performed. In this study, we explore different types of ML
techniques, including K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Support Vector Regression (SVR),
etc., and Deep Learning techniques for food classification.
For traditional ML approaches, researchers have extracted
different features from the food image data to train the
models. Various Deep Learning models use raw food
image data as input for food classification. Deep Learning
frameworks [26], [27], [28] are used for both food image
segmentation and image classification processes. We discuss
food image classification techniques in Section IV.

2) VOLUME OR WEIGHT ESTIMATION
Computation of an approximate volume or weight of the
food or food item is also one of the precursor steps in
food value estimation. In general, the volume estimation
step is performed after the food classification step. However,
for liquid foods, some studies [29], [30] conduct volume
estimation from food images without classifying the food
types.

Volume estimation approaches use different food image
data collection methods to compute the volume or weight of
the food. Few researchers have used special cameras known
as depth cameras to capture the 3D images of the foods.
In some methods, researchers have reconstructed 3D food
images from the top & side views of the same food image.
In some cases, reference objects such as, thumbs, credit
cards, forearms, etc. are placed in the food image so that
the researchers can calculate the volume or weight of the
food. However, in some studies, researchers have used Deep
Learning techniques to estimate volume from 2D food image
data points. More detailed discussion on volume or weight
estimation techniques is presented in Section V.

3) NUTRITION ESTIMATION
Estimating nutrition from food images is an interesting
research field that encompasses other research fields includ-
ing food item classification, volume or weight estimation,
calorie computation, etc. After classifying the food items
and estimating the volume of the food items, researchers
apply the predetermined nutritional values of the food classes.
These nutritional values are determined by the experts of
the field, e.g., USDA, or other resources. Different reviewed
papers evaluate nutrition in different ways. Some studies
show the range of caloric value of the detected food instead
of giving an approximate value. Some studies focus more on
calculating the value of carbohydrates present in the food
image. Majority of the studies focus on computing caloric
values from the food images. We discuss nutrition estimation
techniques from food images in Section VI.

4) PERFORMANCE METRICS
In our review for food classification approaches, we find
that the most of the studies have used the metric, accuracy
(acc). Accuracy is one of the evaluation metrics used as
performance measure in classification models. We know that,
accuracy metric in the model returns the numerical fraction
of correctly predicted objects. We see the mathematical form
of accuracy in Equation 1, where the number of correct
predictions includes both true positives and true negatives.

acc =
No._of _Correct_Predictions
Total_No._of _Predictions

(1)

We also notice the utilization of different other metrics
to measure the performance of the proposed methods for
food segmentation, food volume estimation, and calorie
estimation. Some of these performance metrics are:

Error Rate: This performance metric refers to a measure
of the degree of the prediction error of a model made
with respect to the true model. Equation 2 presents the
mathematical formula of this performance metric. Here,
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TABLE 2. List of full forms and their abbreviations (only the ones that are not mentioned in the text).

FP and FN mean False Positive and False Negative,
respectively. P means all the positive samples in the
model, and N means all the negative samples in the
model. The summation of P and N notes the true model,
and the summation of FP and FN means the prediction
error of the model.

ErrorRate =
FP+ FN
P+ N

(2)

Intersection over Union (IoU): This performance metric
evaluates the object segmentationmethods by estimating
the percentage of intersection between the predicted
image mask and the actual image [31]. Equation 3
presents the mathematical formula for the IoU metric
where TP, FN and FP are True Positive, False Negative
and False Positive, respectively. The summation of
TP,FN and FP means the Area of Union and only TP
means the Area of Overlap.

IoU =
TP

TP+ FP+ FN
(3)

Sensitivity: This metric is known as true positive rate
and measures the proportion of the positive instances a
model is able to identify correctly. Equation 4 shows the
mathematical formula of sensitivity. Here, TP and FN
are True positive and False Negative, respectively.

Sens =
TP

TP+ FN
(4)

Specificity: This performance metric gives the numer-
ical fraction of the True Negatives that are correctly
predicted by the model. Equation 5 presents the
mathematical formula where TN and FP mean True
Negative and False positive, respectively.

Spec =
TN

TN + FP
(5)

Precision: This metric calculates the ratio of correctly
identified positive samples to the total number of
identified positive samples. Equation 6 shows the
formula for the precision in machine learning models.

Here, TP signifies True Positive and FP is noted for
False Positive. The summation of TP and FP is the total
number of identified positive samples.

Prec =
TP

TP+ FP
(6)

B. REVIEW METHODOLOGY
An extensive search has been conducted across multiple
databases including Google Scholar, ResearchGate, and
PubMed to collect published research papers in the field of
food image processing and analysis, and calorie estimation
from food images. We have explored the papers published
from the year of 2011 to 2023 for our comprehensive study.
All of the selected papers are written in English and peer-
reviewed in high impact journals and conferences. Our review
works encompass all types of modeling techniques with
various handcrafted extracted features used for nutrition
estimation frameworks. In this paper, we provide a com-
parative analysis of the changing trend in the field of food
image processing and calorie measurement within the last
eleven (11) years. Our analysis entails the feature extraction
methods, classification approaches, calorie estimation frame-
works, and performance metrics used for evaluations. The
keywords that we have used for our exploration are - 1) food
image segmentation, 2) food image classification, 3) volume
estimation from food images, and 4) calorie estimation from
food images.

We have found a total of 465 peer-reviewed papers
after our initial search on web-based Google Scholar (221),
ResearchGate (182), and PubMed (62). After removing the
duplicate articles, we are left with 387 articles. We have then
screened the titles and abstracts of these papers and excluded
the articles based on the following criteria: 1) studies on
food calorie analysis application domain using multi-modal
food datasets, for example, some studies have utilized text
information from recipes along with the food images as
inputs [32], and 2) out-of-the scope of this study, for example,
some studies are about food classification and segmentation
to detect diseased areas of the food [33], leaving only
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FIGURE 3. Pipeline for our literature review.

179 articles. After following our rigorous full text assessment,
we have included 79 (seventy-nine) papers in our review
study. Our review methodology is given in Figure 3. We have
provided the categorization of our reviewed articles on food
nutrition frameworks in Figure 2 in Section II-A.

III. INPUT DATA FOR FOOD IMAGE ANALYSIS
Researchers have used meal images, text description of meals
or both (Multimodal) as input data to estimate nutrition of
food. In some studies [34], for better performance results
researchers have used text data along with the food images.
However, our review is limited to input data with food images
only. Most of the works that we have studied, do construct
a unique food image dataset for their own experimentation.
However, there are also some benchmark food image
datasets covering different geographic regions with different
food classes. Training any food nutrition estimation system
requires an extensive dataset containing food images of
multiple classes. A standard publicly available dataset can
significantly help researchers building different classifiers
and compare their results. Several large benchmark food
image datasets are publicly available and are summarized in
Table 3.

Early datasets [37] have smaller numbers of food images
than the recent ones [34], [46]. The datasets representing
specific cuisines, e.g., Turkish food image dataset [3] also
have a small number of food images. The food image
datasets such as [34], [35], and [46] that are mostly created

from mixed cuisines e.g., English, Italian, Japanese, Korean,
Indian, etc. have a large number of food images and food
classes. Datasets with a large number of food images such
as ChineseFoodNet [8], Instagram800k [46], Food-500 [45]
are acquired from scraping the social media or websites
e.g., search engines. Some researchers use mobile apps to
create datasets. For example, Bossard et al. [35] use the
‘‘Foodspotting’’ mobile app to create the ETHZ Food-101
benchmark dataset with 101000 images and 101 classes,
Xu et al. [42] used the ‘‘Dianping’’ app to create the
Dishes dataset with 117504 food images and 3832 classes.
Some researchers have used previously available datasets
to create a new benchmark dataset for training such as
Food524DB [49], Food-24 [3], and MaFood-121 [54]. It is
apparent that most of the food datasets are curated for a
specific task. For example, Food-24 Dataset [3] is made of
Turkish cuisine; ChineseFoodNet [8], BTBUFood-60 [55],
Dishes [42] are made of Chinese cuisine; UNIMIB-2016 [44]
is made of Italian Cuisine; ETHZ Food–101 [35] and UNICT-
FD889 [37] are made of a mixture of Eastern (Korean,
Japanese) and Western (Italian) food items. Fruits-360 [52]
and FruitVeg [51] are built of food items from fruits and
vegetables. Some datasets are created for specific purposes
such as, Food201-Segmentation [39] dataset is created for
food image segmentation purpose and has 12625 food images
and 201 classes.

Some researchers [5], [60] have used non-food and easily
accessible reference objects in the food image so that they
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TABLE 3. Existing benchmark datasets used in the reviewed articles.

can later use that object to estimate the dimension, volume,
or weight of the food. Therefore, based on the presence of
the reference objects, we can divide the input food images
into two sub-groups. These sub-groups are: 1) only food
images 2) food imageswith non-food reference objects. Some
researchers use the thumb or index finger on the edge of the
plate alongside the foods in the food images [15]. Use of
thumb or index finger for the food images comes with its
own limitations as well. For example, finger size varies from
person to person. Some researchers use credit cards [60] and
3cm X 3cm card boxes [23].

A. ACQUISITION OF FOOD IMAGE DATA
Some studies have built their food image datasets from
scratch. Some other studies use pre-existing benchmark
datasets for their experiments. The reviewed articles have
used different methods to collect or create datasets such as
using pre-existing standard food image datasets, using in-
house built apps to collect data from users or using web
scraping to build dataset [16]. The five sources that are used
by the reviewed articles for collecting the datasets are given
in Table 4.

From Table 4, we can see that use of apps in smartphone
devices is a common and widely used method for collecting
food images from users. Researchers can capture food images
and upload them to the storage system built in the IoT

devices. In these methods, researchers can also control the
environment in which the food images are collected. Another
widely used method for collecting data is web scraping.
This method is used for creating a large dataset cheaply for
the cuisine of any nationality. With search engines such as
Google, and Baidu [55], the researchers can accumulate a
large amount of food images for their datasets. Websites are
scraped using keywords like the name of the foods.

People tend to share their meal images with food names
as tags on social networks. Some researchers have used
social media such as Yelp [11], Instagram [46], etc. to collect
food image data from users. Some [34] collected data from
cooking websites. The additional information such as the
food ingredients and the volume or calorie amount from
the cooking websites may help researchers to improve the
performance of the food nutrition system. Some benchmark
datasets like [39] are created by the researchers by capturing
the food images in a controlled lab environment. These
datasets are generally smaller in size but they have more
accurate information about the input images.

B. INPUT FEATURES USED BY FOOD ANALYSIS
MODELING TECHNIQUES
The set of features to be extracted from meal images
depend on the ML technique. Two main categories of
machine learning techniques are Traditional ML techniques
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TABLE 4. Acquisition methods of food images.

and Deep Learning techniques. In traditional ML methods,
researchers handcraft their features from the input data. The
performances of the frameworks built on traditional ML tech-
niques largely depend on these carefully selected features.
Features extracted from the image data can provide valuable
information for fine-tuning an ML model. Researchers select
the features based on the goal of their experiments. Few
popular features that are usually extracted from food images
are discussed below.

Color: Color feature is used in [4], [5], [28], [38], [41],
[61], [62], [63], [64], and [65]. It is a very important and
intuitive feature in food images. The color of the foods
seen from the images can be used to classify the food
images.
Scale-Invariant Feature Transform (SIFT): Another
popular and derived feature from the food images is
SIFT [66]. SIFT, a computer vision algorithm, is used
to detect and match local SIFT features in images.
SIFT works by extracting key points from the reference
food image sets and storing these extracted points in a
database. A food class is identified from a new food
image in two steps. First, we compare each feature in the
new image to the previously constructed image database.
Then, we identify the candidate matching features based
on the Euclidean distance of their feature vectors. SIFT
is used by several researchers [23], [36], [38], [48],
[60], [61], [67], [68]. A variation of SIFT is Colored
SIFT (CSIFT) which is extracted from an RGB color
space. CSIFT is presented as a robust feature against
illumination changes. CSIFT is used by [38] and [69].
In the study of Matsuda et al. [38], the authors have used
all the features: color, SIFT, and CSIFT that preserve the
color of the target food.
Texture: In food image classification and segmentation,
Texture feature used in [5], [38], and [41] plays a crucial
function in visual perception and can be considered as
one of the fundamental features of natural images of
different food classes. Since the 1950s, texture has been
one of the most active research topics in machine intel-
ligence and pattern analysis. Texture is used to discrim-
inate between different patterns of images. It extracts
the dependency of intensity between the pixels and
their neighboring pixels [70] or obtains the intensity

FIGURE 4. Food images with reference cards.

variance across pixels [71]. We have observed that
researchers prefer applying Gabor Texture Filter instead
of extracting texture from the food image [5], [38], [41],
[61]. A Gabor texture feature depicts texture patterns
of local regions at various scales and orientations.
Histogram is a feature that extracts the texture pattern
from the food images [25]. Histogram of Oriented
Gradients (HOG) [72] is a feature descriptor used in
image processing and computer vision to recognize
objects. HOG keeps rough location data by constructing
histograms for each dense grid and concatenating them
into a single long feature vector [38], [64]. RootHOG
is inspired by ‘‘RootSIFT’’ and is an element-wise
square root of the L1 normalized HOG [73]. It is
shown in the studies that RootHOG leads to better
performance than original HOG [4]. Local Binary
Pattern (LBP) is one of the methods to extract texture
features of the foods [28]. Pairwise Rotation Invariant
Co-occurrence LBP descriptor (PRICoLBP) is primarily
concerned with encoding spatial co-occurrences and
pairwise orientations of well-known LBP features [74].
It maintains the relative orientations of LBP feature pairs
to provide rotational invariance [48].
Size & Shape: Extracting the sizes and shapes of food
from the image is vital for estimating the calorie of
the observed foods from images. Some studies have
placed standard accessories to correctly measure the
approximate size of the foods from the food images
[5], [41]. One example is shown in Figure 4.

We find other additional features such as super-pixels
[75], [76], Visual Words [77], Bag of Features [23], [63],
etc. extracted from food image data in different studies.
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These features can preserve multiple visual descriptors in one
feature value, such as Super-Pixels [75] extracted from the
food images. A super-pixel [76] is a small region formed
by splitting an image based on edge and local features,
and there are no boundaries among different image objects.
These local features can be consistent with both color and
texture extracted from the food images. It is possible that
different patterns of food classes are present inside the
same super-pixel. Another high-level feature that can contain
multiple visual descriptors is Visual Words, and researchers
use Visual Words for retrieving image information [60].
Visual words [77] represent small sections of a food image
that include information about the characteristics (such as
color, shape, or texture) or changes in the pixels (such as
filtering, low-level feature descriptors). The bag of features
method used in [23] and [63] represents imageswith orderless
collections of local features. Each image is abstracted by
numerous local patches after feature extraction. Methods for
representing patches as numerical vectors are dealt with in
feature representation approaches. These numerical vectors
are called feature descriptors. To some extent, a decent
descriptor should be able to handle intensity, rotation, scale,
and affine variations. SIFT is one of the most well-known
descriptors. Each patch is converted to a 128-dimensional
vector by SIFT. Following this phase, each image is a
collection of vectors of the same dimension (128 for
SIFT), with no regard for the order of the vectors. The
Fisher Kernel is a function that compares the similarity
of two items using a statistical model and the basis sets
of measurements for each object [4]. In a classification
framework, the class of a new object (whose true class is
unknown) can be estimated by minimizing the average of the
Fisher Kernel distance between the new object and the object
classes.

IV. FOOD CLASSIFICATION
One of the fundamental steps in food nutrition estimation is
to classify the food images. In the food classification step,
researchers train their ML models with labeled food images
and predict the food classes of the food items of a test image
using the trained models. In the initial food classification
approaches, most of the studies work on identifying one
single food item from the containers by using food image
data points. However, in natural settings, it is very common
to have multiple food items in one container. It is also
difficult to train a machine with image data points consisting
of multiple food classes. Therefore, researchers have used
image segmentation as a significant first step for classifying
food types from images with multiple food items. Image
segmentation can also be conducted for segmenting food
from non-food such as visual separation between the actual
food and the container of the food. After the segmentation of
food items, they are classified as the final step. The accuracy
for the segmentation and food classification depends on the
training of the models with a large dataset with standard food
images.

A. FOOD IMAGE SEGMENTATION
Food image segmentation means separating the food items
in the same container by using visual features. The methods
applied for the food segmentation can be grouped into two
categories depending on how the input food image data have
been handled. These are: 1) Application of Non-Machine
Learning (Non-ML) methods with handcrafted extracted
features from food images, and 2) Application of Machine
Learning (ML) methods. In the first category, some studies
use region detection and separation techniques such as
GraphCut [15], GrabCut [27], etc. as their food image
segmentation method. These food image segmentation tech-
niques handcraft the extracted image features according to
their appliedmethods. Hence, these Non-ML techniques have
difficulties in generalizing the food segmentation process.
In recent years, more studies are using ML techniques
for image segmentation. So far, most of the Machine
Learning based methods are presenting better performance
in food image segmentation than Non-ML based approaches.
Different food image segmentation techniques that are used
in the reviewed articles are given in Table 5.
Some of the studies [38], [39], [78] have conducted

image segmentation on food images solely for image
segmentation purpose. Most of the studies [4], [5], [48]
use food segmentation as an intermediate step of the
food classification process. The performance of the food
image segmentation can contribute to the cascading errors
in food value estimation. Similarly, the performance of
the food classification models can be improved with a
better performing image segmentation step, as shown in
the experiments conducted by the studies in [49] and [62].
However, food image segmentation is a challenging task as
many foods have irregular features such as irregular shapes
and edges, non-uniform contours, etc. [61]. Food image
segmentation can be more difficult when multiple food items
are mixed together or placed on top of another resulting
in occlusion [79]. From Table 5, we see that the GrabCut
algorithm [80] is the most used method in the food image
segmentation process as used in the studies conducted in [4],
[5], [78], and [81]. In general, most of the image segmentation
processes work using graph segmentation processes. In this
approach, the whole image is represented as a graph. Then,
a set of pixels are used to create a super-pixel and this is
considered a node or vertex of the graph. These nodes are
connected to their neighboring nodes with an edge creating
an adjacency relationship in the graph. Then the problem is
to find an optimal cut in the edge set that separates the graph
into dissimilar sets of nodes and group the similar nodes into
one class. In another way, the image segmentation process
works by clustering the pixels. For the clustering task, one
or more features, such as SIFT, pixel colors, etc., of the food
images are used.

According to our review, the earliest research work on
image segmentation is conducted by Chae et al. [82], who
have used image segmentation in their study to estimate the
food volume from food images. Their proposed mathematical
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model extracts feature points to determine the dimension of
the food shape templates and reconstructs the 3D properties
of the food shape from a single image. Utilizing this
template-based approach, this system segments the image
and estimates food volume. Kawano and Yanai [62] have
presented a system where the users need to draw a bounding
box manually on the food image to select the food area. The
food area is then extracted using the GrabCut algorithm. The
accuracy here is determined by the ability of users to draw
accurate boundary boxes. Fang et al. [78] have presented a
semi-automatic framework for segmentation where the users
draw a bounding box around the food and tag the food
properly from the available food list. After these steps, the
framework would segment the food from the image using
GrabCut technique. The manual drawing of the bounding
box is addressed in [81]. Shimoda et al. [81] have proposed
a framework where they generate a bounding box using
CNN and Distinct Class-specific Saliency Maps (DCSM).
The bounded area is then segmented by GrabCut. In another
study conducted by Pouladzadeh et al. [5], they have used
Graph cut segmentation in their experiment and have the
highest overall food classification accuracy of 95%. In [5],
the image segmentation using GrabCut is automated by
separating the graph representation of food images into two
different dissimilar groups by considering the weights on the
edge of the adjacent vertices.

Matsuda et al. [38] use a circle detection, Felzenszwalb’s
Deformable Part Model (DPM), and JSEG region segmenta-
tion [93] for food image segmentation. Although this study
has a low food classification accuracy of 21%, it shows that
with only the DPM model, the overall food classification
accuracy can be increased. In [49], the authors have also
used JSEG region segmentation along with color, saturation,
and noise removal. They, however, manually segmented the
tray images by drawing polygonal boundaries in the image.
The segmentation provides better precision compared to
other methods. The work conducted by He et al. [24] has
used local variation segmentation algorithms and created
a feedback loop for segmentation refinement. They have
achieved a better classification accuracy than the normalized
cut approach. Kong and Tan [85] has used a perspective
distance algorithm for the three image views of the same
food and then clustered the features of each one. Then they
segment the food image based on the clustered features.
For one food-item images, this method has achieved the
highest food classification accuracy of 100% and for five food
item images, this method has achieved an accuracy of 76%.
Sadeq et al. [87] have used K(=3)-means clustering for their
food image segmentation. They have demonstrated that food
segmentation using clustering decreases the standard error
rate for some foods.

Yarlagadda et al. [75] have introduced the concept of
superpixel. Their proposed unsupervised method finds the
salient missing objects between a pair of food images taken
before and after eating. Their goal is to design a class agnostic
food segmentation method. They have utilized the after eaten

image as the background to calculate the contrast of each
pixel with the before eaten image. The contrast and saliency
maps were then combined to produce the final segmentation
mask of the salient missing objects in the previously eaten
image. We can segment the food by recognizing salient
objects in the previously consumed image since before eaten
food images have salient objects. In recent years, we have
seen the use of Deep Learning methods in food image
segmentation [81], [88]. In [88], Freitas et al. have used Deep
Learning techniques including Fully Convolutional Network
(FCN), SegNet, Efficient Neural Net (ENet), DeepLabV3+
and Mask RCNN. They have shown that most of these
segmentation methods perform well when the image contains
only one food class. For multiple food items in the same
image, FCNs outperform other methods.

In the recent year 2022, Generative Adversarial Network
(GAN) is used for food image segmentation [91] and has
obtained an accuracy of 95.21% in calorie estimation on the
‘‘UNIMIB 2016’’ food dataset. Similar high performance
can be seen from the Mask R-CNN based food image
segmentation frameworks [92]. Aditama and Munir [92]
have usedMask R-CNN based food segmentation framework
for 6 food classes in their experiments. They have also
included the ResNetXt-101-FPN to aid their framework
for better performance. In 2022, Aguilar et al. [90] have
proposed to add Bayesian network with the DeepLabV3+
and have achieved a mean IoU of 0.81 for three publicly
available datasets: UNIMIB2016, UECFOODPIXComplete,
and Food-201. The study conducted by Honbu and Yanai [89]
has an accuracy of 90% by using Few-shot and Zero-shot
segmentation for the unseen food classes.

One of the limitations of the food segmentation frame-
works is the scarcity of annotated food datasets for segmen-
tation. In some previous research studies [38], [82], scientists
have utilized food shape templates for segmentation. This
technique is not applicable to amorphous-shaped food [23],
[87]. Researchers in [13] and [87] have used algorithms such
as Canny edge detection to identify the edges of the food
shapes for amorphous-shaped food segmentation. In recent
times, researchers are utilizing DL frameworks such as Mask
R-CNN, SegNet, CNN, DeepLabV3+, and so on for food
segmentation but the issue of insufficient food annotation is
still prevalent [27].

B. FOOD IMAGE CLASSIFICATION MODELING
TECHNIQUES
After food items segmentation, the next step in the food value
estimation framework is food classification. Detecting food
classes from the target food image is a challenging task.
Same food can visually look different along with rotation,
occlusion, low resolution, etc. Moreover, differences in food
preparation can result in different color, shape, and texture.
Training the models with large datasets of multiple food
classes is essential to obtain high food classification accuracy.
The food classification frameworks used by the researchers
can be categorized into two different groups based on the
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TABLE 5. Image segmentation methods in the reviewed literature. Majority articles do not report segmentation performances, they rather report the
overall food classification accuracy. Dataset column: total number of images followed by number of food classes in the parentheses. Weight Estimation
Error (WER).

modeling techniques used: 1) Traditional ML methods, and
2) Deep Learning methods. In traditional ML techniques,
the selection of features from the food images plays a very
significant role in the performance of the systems. In DL
models, architecture plays an important part. For both types
of classification techniques, the importance of the quality and
the quantity of food image data available for training the
models is significant.

1) TRADITIONAL ML METHODS
In our observed studies, the traditional ML techniques used
in food classification are given in Table 6. Kong et al. [60]
have extracted SIFT features and K-mean clustering of
Visual words from their in-house food image datasets. These

features are then applied to the KNN algorithm for training.
They have achieved a high food classification accuracy
of 92%. Their in-house dataset consists of 5 food classes
collected using smartphone cameras and web scraping. There
is only one food item in each of these training images.
In [38], the researchers have used SIFT and one of its variants
CSIFT, HOG, Gabor texture, and color in their extracted
feature set. A framework of Multiple Kernel Learning-SVM
(MKL-SVM) is used for classifying food types. They have
created an in-house food image dataset for their study.
The accuracy of their model is only 21%. As mentioned
before, their main contribution is the successful use of the
DPM model for segmentation. In [94], they have applied
multiple features as visual descriptors both individually and
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together in the food classification framework. Their model
has achieved an accuracy of 53% and 46% for SIFT and
LBP features, respectively. However, they got an accuracy
of 68.3% when they used these two features together along
with the color features and Gabor texture. Thus, this study
shows that combining visual descriptors in the traditional
framework can increase the performance of the classification
framework. Similarly, in [14], the researchers have used a
combination of SIFT, LBP, color, HoG, and MR8 Filter
as the features. They have achieved a food classification
accuracy of 77.4%. Their results show that different extracted
features of the same visual descriptors can increase the overall
classification accuracy. In the food classification experiment
by Beijbom et al. [14], they have developed a SVM food
classifier. For their in-house dataset Menu Match, they have
achieved an accuracy of 51.2% and for the dataset in [94],
they have achieved an accuracy of 77.4%.

Table 7 lists the features that are used with the various
ML techniques in the reviewed papers. We observe that the
SIFT, Color, Gabor filter, Histogram, and LBP are the most
popular features. All the features except fisher vector are
used with SVM. All otherML techniques have their preferred
feature set such asDCSM [26], super pixel [75], VisualWords
(K-mean clustering) [60], RootHOG [4], PRICoLBP [48],
recursive Bayesian estimation [96], etc.

We observe from Table 6 and Table 7 that SVM models
or variants of SVM model, such as SVR are the most
widely used models. Among the reviewed papers that have
used traditional ML methods, half of them have used SVM
models for food image classification. Among the rest of the
papers, about half of them have used derivatives of SVM
models such as, Radius-margin-based SVM with LogDet
regularization (L-SVM) [36], MKL-SVM [38], etc. Among
the research works using SVMmodels, Pouladzadeh et al. [5]
have achieved the highest accuracy of 95%. They have used
GraphCut for food image segmentation and have used visual
descriptors like color, size, shape, and texture to identify
the food classes. They have further experimented with food
classification and developed a cloud-based SVMmodel [41].
They have extracted Gabor texture and color from the food
images and then trained their cloud-based SVM to identify
the food classes. They have achieved an accuracy of 94.5%,
which matches the performance in their previous study. The
study by Anthimopoulos et al. [36] has created a Bag of
Features using color and SIFT features. This Bag of Features
is then used for training the L-SVM classification model to
identify the food among 11 food classes and achieved an
accuracy of 78%. Chen et al. [94] have proposed a multi-
class SVM with AdaBoost to classify the food from 50 food
classes. They have extracted SIFT, LBP, color, histograms,
and Gabor Texture from the food images to train the model
and achieved an accuracy of 68.3%.However, when they have
deployed the SVM model without the AdaBoost, they have
received a lower accuracy of 62.7%. Another research work
byKong et al. [67] has usedmulti-class SVMmodels on SIFT
and Gaussian Region Detection as the image features from

the PFID dataset. They have achieved an accuracy of 84% in
the extended dataset of PFID. Sudo et al. [25] have proposed
an SVR model and applied histogram, SIFT and GMIM as
the features for training the model. In the study presented by
Zhu et al. [84], for the same dataset with the same extracted
features, KNN algorithm outperforms the SVM model by
13%. In this study, their KNN model and SVM model have
achieved accuracies of 70% and 57%, respectively.

We have noticed that most researchers have used
SVM [35], [41] or a variation of SVM [36] as the ML
techniques and Color, Texture, SIFT, and Histogram as
the input features for food classification. The selection
of extracted features has a considerable impact on the
performance of the food classification models. These features
have to be selected manually and they can also be dataset-
specific. Thus, a large amount of time needs to be dedicated
for identifying the correct features for training the models.
Also, for poorly selected features, the traditional ML models
may not perform adequately for large food classes. These are
limitations of the traditional ML models. On the other hand,
Deep Learning techniques can extract generalized contextual
information from the image data without extracting features
manually. Deep Learning technique eliminates the need for
manual feature selection and user intervention for food
classification. Therefore, Deep Learning methods may be
more suitable for a fully automated food nutrition system
from food images than traditional ML techniques.

2) DEEP LEARNING METHODS
Deep Learning (DL) is a sub-field of ML methods. These
models are based on Artificial Neural Networks (ANN) and
representation learning. In Deep Learning approaches, the
researchers do not need to construct hand-made customized
feature sets to identify the food classes as these approaches
are built to extract features from the food images directly.
Deep Learning can utilize structured, unstructured or in-
between data for training. Since our review is limited to
food nutrition framework using food image data, we only
considered the Deep Learning methods that take images
as input. In our investigation between 2011 and 2023 time
periods, we observe a rise in using Deep Learning methods
from 2014 for food identification and segmentation due
to their exceptional classification capability compared to
traditional ML methods. Convolutional Neural Network
(CNN) is a widely preferred method in computer vision
applications, including image classification, because of its
ability to extract contextual information and classify large
amounts of visual data. The reviewed articles given in
Table 8 also used different variations of established CNN
architectures to classify food images. We have observed that
Alexnet, a variation of CNN architecture, is the most used DL
technique for food image classification.

It is observed that Deep Learning methods such as
CNN outperform traditional ML methods in the benchmark
datasets like Food-101, UEC256, etc by large margin.

VOLUME 11, 2023 45921



J. Sultana et al.: Study on Food Value Estimation From Images: Taxonomies, Datasets, and Techniques

TABLE 6. Food classification based on traditional ML techniques. Dataset column: total number of food images followed by number of food classes in
the parentheses.

TABLE 7. Modeling techniques and features mapping.

Kagaya et al. [97] used an in-house dataset and applied
CNN model to their food classification framework. They
have obtained an accuracy of 73.70%. Studies such as [7],
[35], [39], [64], [98], and [99] have used a benchmark
food image dataset Food-101 in their food classification
experiments. Among these studies, we find that Tan and
Le [7] have achieved the highest accuracy of 93%. They
have achieved this accuracy by implementing EfficientNet for
food classification. Bossard et al. [35] have implemented a

CNN food classification framework based on the ImageNet
architecture and they have achieved an accuracy of 56.4%
after 450000 iterations on the ETHZ Food-101 dataset.
In [100], researchers used the Inception V3 architecture on
the ETHZ Food-101 dataset and achieved an accuracy of
88.3%. Inception V3 is a CNN architecture by Google and
part of the Inception architecture family. They also have
applied the Inception V3 model on the UEC-FOOD100
and UEC-FOOD256 datasets, and achieved an accuracy of
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81.45% and 76.17%, respectively. This study also proves that
a model can achieve high accuracy by fine-tuning a model
based on the dataset. Liu et al. [101] have proposed a Deep
Convolutional Neural Network (DCNN) named DeepFood
which is a variation of Inception CNN architecture. Their
model has achieved accuracies of 77.4%, 76.3%, and 54.7%
for ETHZ Food–101, UEC-FOOD–100, and UEC-FOOD–
256 datasets, respectively.

We observe that some studies have used both traditional
ML and Deep Learning techniques in the same experiments.
The researchers first use the DL techniques to extract
the contextual information from the image data instead of
handcrafting the feature set. Then they utilize the extracted
features for training the traditional ML techniques. In [102],
the researchers have used CNN for image feature extraction
and then fed the extracted features to train the SVM
classification model. In [4], they have proposed a framework
that uses DCNN to extract features from food images and
classifies the food images by using Fisher Vector. They
have achieved an accuracy of 72.3% on the UECFood-
101 dataset. Akhi et al. [108] also have implemented the
same framework. However, they have used pre-trained CNN
architecture for feature extraction from food images. They
have achieved accuracy of 99.13% and 95.79% for Bar-
Food101 and PFID datasets, respectively. Thus, we can see
that researchers can achieve good performance by deploying
a framework built on both traditional ML and Deep Learning
techniques.

In recent years, researchers are using transfer learning,
which is basically off-the-shelf DCNN models such as,
AlexNet [64], GoogleNet [39], [47], [98], and Inception
V3 [3], more instead of building or training a DL model
from scratch. It takes a lot of food image data to train a
Deep Learning framework. Transfer learning can use prior
knowledge of the domain. Therefore, researchers can obtain
better performance without training the model with a large
image dataset. Yanai et al. [64] have used a pre-trained
DCNN with 1000 ImageNet food categories. They have fine-
tuned their model by training it on 3 different food datasets:
Food–101, UEC-FOOD–100 and UEC-FOOD–256. They
have achieved accuracies of 78.77%, 67.57%, and 70.4% for
the UEC-FOOD100, UEC-FOOD256, and ETHZ Food–101
datasets, respectively. They have proved that fine-tuning the
pre-trained DL models can improve classification accuracy.
In [39], researchers have used a pre-trained DCNN model,
GoogleNet, and fine-tuned the model on the ETHZ Food-
101 dataset and achieved an accuracy of 79%. We also
observe that for the same food dataset, transfer learning with
GoogleNet performs better (79%) [39] than transfer learning
with Alexnet (70.41%) [64]. However, we observe that the
Food-101 dataset gives better results when AlexNet is used
for transfer learning [64] instead of training the AlexNet from
scratch [35]. Since Alexnet is a Deep Learning model with
many parameters, it requires a large amount of data to train
from scratch. Therefore, better performance in Alexnet with
transfer learning is perceivable.

Apart from utilizing transfer learning with pre-trained
DCNN models, researchers have also exploited the effective-
ness of ensembling various DCNNs. Pandey et al. [106] have
ensembled three DCNN architectures: AlexNet, GoogleNet,
and ResNet. They have achieved an accuracy of 72.12%
for ETHZ Food-101 dataset and an accuracy of 73.5% for
their in-house dataset. In recent years, especially in 2022,
we have observed some studies conducted by [9] and [115]
where the researchers attempted to increase the efficiency of
their frameworks by utilizing optimization techniques such as
Particle Swarm Optimization, Genetic Algorithm, Bayesian
Fuzzy Clustering, etc. In both 2022 and 2023, we still observe
the utilization of deep CNN-based frameworks such as
DCNN [118], transfer learning CNN [116], ResNet50 [117],
MobileNet V2 [119], deep CNN-based Progressive Region
Enhancement Network [59], etc. for recognizing different
food classes. These CNN-based food classification frame-
works produce high performance (> 90%) in identifying
food classes. This means researchers can investigate the
relation and similarity among the good performing deep CNN
based frameworks. The findings can then guide us toward
enhancing the performance of estimating the volume and
calories from food images. However, for the food nutrition
estimation system, we also need to estimate the volume or
weight of food from food images, which is discussed in the
next section.

V. VOLUME OR WEIGHT ESTIMATION
Once the food has been segmented and classified, the
researchers need to compute the volume or weight from
food images to estimate the nutritional values. However,
automated estimation of the food volume or weights from
image data is a difficult task. Most of the food images are
constructed in two dimensions. Two dimensional images
do not have real life information such as volume, size,
or portion of the foods that are used to estimate food value.
Hence, as observed from Table 9, researchers use different
approaches such as 3-D food images, shape templates,
multiple-view food images, etc. to estimate volume or weight
of the food items from the image data.

A. 3-D FOOD IMAGES
Since it is difficult to extract relevant information related to
volume or weight of the food from 2D food images, many
researchers have opted for using 3D food images to calculate
the food volume from the image. Few researchers [39],
[94] have used a special depth camera to capture the 3D
composition of the food images. Depth camera acts as a 3D
camera and is able to judge the width, height, area, volume,
etc. when the object is placed within the frame. The 3D
images from these cameras enable the researchers to estimate
the volume of the food images. Similar results can also
be achieved by attaching a laser device to the smartphone
camera to estimate the volume of the food [121]. Although
these methods have achieved promising results, in real life
scenarios, the additional device can limit the user experience.
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TABLE 8. Food classification based on Deep Learning techniques. In-house means collected by the research team. Dataset column: total number of
images followed by the number of food classes in the parentheses. mean Average Precision (mAP).
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TABLE 8. (Continued.) Food classification based on Deep Learning techniques. In-house means collected by the research team. Dataset column: total
number of images followed by the number of food classes in the parentheses. mean Average Precision (mAP).

B. FOOD SPECIFIC SHAPE TEMPLATES
He et al. [24] have estimated the food volume from the 2D
food image by reconstructing the 3D food image by using
a food-specific shape template. This technique works com-
paratively better for beverage food items. Because beverage
containers are usually of cylindrical shape, and by using
a cylinder shape template 3D images can be constructed.
Similarly, Chae et al. [82] have also reconstructed 3D food
images from the input 2D images by using shape specific
templates. They have used a shape template for bread and a
different shape template for drinks. Their study shows that
by using food specific shape templates, the overall relative
error for volume estimation is 11% for 17 drinks and 8%
for bread slices. Another study [125] that also used a shape-
based approach has collected a total number of 100 food
samples of Western and Asian cuisine using a wearable
camera. Using the automated method, they found that 85 food

items out of 100 have less than 30% error. In [123], the
researchers have used the shapes from silhouettes for food
portion size estimation reconstructing multi-view 3D food
images. They have achieved a mean error of 10% on a dataset
with 4 food classes for multi-view volume estimation and a
mean error of 17.9% on a dataset with 19 food classes for
weight estimation. Although this method can easily estimate
the relatively accurate volume of the foods from the 2D food
images, this technique will not work for foods with irregular
shapes or foods whose shape depends on the food preparation
process [94].

C. MULTIPLE-VIEW FOOD IMAGES
Few studies [5], [12], [126] use side and top views of
food images to estimate the food volume and weight.
Dehais et al. [126] have proposed to reconstruct a 3D food
image from 2D input data to estimate food volume from
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TABLE 9. Volume or weight estimation performance comparison. In-house means collected by the research team. Dataset column: total number of
images followed by number of food classes in the parentheses. Volume Estimation Error (VEE), Weight Estimation Error (WEE), Energy Estimation Error
(EEE), Standard Deviation of Error (SDE).

four different datasets: Meals-45, Angles-13, Plates-18, and
Meals-14. In two distinct datasets, they attained a Mean
Absolute Percentage Error (MAPE) ranging from 8.2% to
9.8% for 45 dishes in the 1st dataset and 14 dishes in the 2nd
dataset.

D. REFERENCE OBJECTS
To estimate the food volume from the image data, it is
vital to know additional information, such as the scale and
rotation of the food in the image. The volume of the foods
can be closely estimated if these additional parameters can
be perceived. To extract this relevant information from the
food images, researchers have placed reference objects with
known size and scale in the images [124], [127]. These
reference objects can be any object with known size and
scale. In [127], the researchers have used a standard plate and
container as the reference objects with a mean error of 3.41%
for the 2 dimensions: length and width. In some studies,
researchers use the user’s index finger [12] or thumb [5] in
the top view or both top view and side view to construct
a 3D image from which the food volume of the target can

be calculated. Some researchers have used reference cards
to build a 3D Food Image for shape and size estimation
of the food [60]. Villalobos et al. [12] have used the index
finger as the reference object and captured top and side
views of food images with the reference placed in the image.
In the study conducted by Pouladzadeh et al. [5], they have
similarly used the thumb as the reference object and captured
top and side views of food images. Their study shows that
the volume estimation errors range between 10% in the
worst case and 1% in the best case for a non-mixed food
dataset with five classes. Some studies have used reference
cards with known size and scale [23], [60] to reconstruct
3D food images from 2D images. Sadeq et al. [87] use the
user’s forearm as reference length for food volume estimation
of the images. This technique has achieved low standard
error for some of the food classes. For food classes with
high irregularity, such as apple, mango, etc., this method
gives low performance. In some recent frameworks for
volume estimation systems in 2022, such as the one proposed
by Kadam et al. [115], the method of utilizing reference
objects like coins is still prevalent. Kadam et al. [115] have
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employed a fixed-dimension coin for volume estimation in
their framework. This coin provides a Pixel per Metric (PPM)
ratio that is utilized to determine the height and diameter
of the container. However, their assumption that the volume
of amorphous food items is equivalent to the volume of
the container is often not the case. In many instances, there
may be discrepancies in height and width between the actual
volume of the amorphous food and the container.

E. MOTION SENSOR, CROWDSOURCING
Alternatively, Yang et al. [29] have proposed a fiducial-
marker free technique that uses smartphone motion sensor
data to detect camera orientation for volume estimate from
2D food images. Their volume estimation framework has
achieved an absolute error of 16.65% for 10 food classes.
In [14] and [128], the researchers have opted for crowd
sourcing their food volume and the nutritional information
where individual users evaluate the foods. These kinds of
approaches are not automated and produce very error prone
results. Therefore, these methods are not suitable for any food
nutrition estimation system.

F. STEREO FOOD IMAGES
Subhi et al. [65] have proposed front edge detection of food
items for height and depth estimation in stereo image analysis
on ETHZ Food-101 dataset. They have extended the dataset
by adding extra 5800 food images from 11 food classes. They
have achieved a Mean Error (ME) of 8.5% with four food
classes. Similarly, Rahman et al. [122] have also used stereo
food images to reconstruct 3D food images to estimate the
volume of the foods from six fruit classes, where they have
achieved a mean error of 7.7%.

G. HISTOGRAM, PRE-TRAINED 3D MODEL,
GAN, DEEP CNN
Sudo et al. [25] have used histograms to detect food volume
from 2D food images from a dataset of 2500 images. Their
method of utilizing regression analysis with label histogram
yielded better results than using predictor image features
directly. This method has obtained mean errors from 31.8%
to 40.6% in nutrition prediction. Hence, their method may
not be applicable for reliable nutritional estimation in real
life. Xu et al. [30] have used a pre-trained 3D model
of various food shapes with food orientation information
for 3D reconstruction of the food images. This method of
food volume estimation has attained a mean error of 10%
for the ETHZ Food-101 dataset with 5 food classes. In a
study conducted by Fang et al. [78], the researchers have
used Generative Adversarial Networks (GAN) to map the
energy distribution in food images and attained an error
rate of less than 10.89% for energy estimation. They have
conducted the experiment on PFID dataset extended by
their in-house dataset of 60000 new food images. Therefore,
the researchers may investigate the characteristics of these
CNN based techniques for better performance in volume
estimation in future. In 2022, Kadam et al. [115] have at

first utilized a fixed-dimension coin as a reference object
for volume estimation and subsequently applied a RCNN-
based food segmentation model as a volume estimator. The
Deep Learning (DL) model was developed by fine tuning a
pretrained ResNet model and trained using a dataset of Indian
breakfast food images that included eight different classes of
food in various shapes.

We have observed that despite the recent development
of volume or weight estimation frameworks, it is still a
challenging task to estimate volume from a single image
without reference objects. Historically, shape templates [82],
[125], silhouettes shapes [123] approaches are utilized by
the researchers to estimate food volume. This technique
is not applicable to food with irregular shapes. In real
life, food images do not contain reference objects in the
frames. Thus, the food volume estimation frameworks with
reference objects [87], [124] will not have good performance
in everyday life. Few works [5], [23] have used top and side
views of meals for volume estimation. Yet, this technique
still shows weakness for irregularly shaped food items. Most
of these volume estimations from food images methods are
conducted in controlled environments. In real life, most of
these methods may not be applicable for reliable nutrition
estimations. This is because although volume estimation is
an important part of the food nutrition estimation system,
the nutritional value of the food also depends on the food
preparation methods. The volume estimation may not be able
to differentiate the volume of the same foods that are prepared
with different methods.

VI. NUTRITION ESTIMATION
Nutrition estimation from food includes calorie estimation,
carbohydrate estimation, protein estimation, etc. In this
paper, all kinds of food value estimations are considered
nutrition estimations of food. The overarching aim of our
review is to get a general understanding of food nutrition
estimation systems using food images. The performance
of the automated food nutrition estimation systems from
food images depends on all of its sub-tasks, including the
quality and quantity of food images in the datasets, accurate
segmentation of the food images, proper food classification,
estimation of the volume of identified food items, and
finally retrieval of corresponding nutritional values of the
food. Since the nutrition estimation of the food depends
on the performance of the previous steps, the nutrition or
calorie estimation may remain error prone in the long run.
With error prone results, the nutritional value of the food
may overestimate or underestimate. Some of the reviewed
articles’ primary focus is to estimate calorie intake from
food images as input data without user intervention. Some
other articles have used a semi-automatic approach for
nutritional value estimation where they need feedback from
users. Therefore, for counting approximate calories from
food images, researchers have taken the following two
distinct approaches: 1) automated retrieval of the nutritional
information from food nutrition databases [27], [34], and
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2) manual user input such as crowd sourcing using web
platforms, smartphone apps, etc. [16], [103]. In the automated
nutrition estimation system using food images, researchers
have a food nutrition database where the nutritional values
of all the foods’ classes are given in standard measurement.
To estimate the nutritional values of foods, the researchers
use those nutritional values for the identified food classes
and the estimated volumes of the food items. The ground
truth nutritional values of the food classes can be collected
from different sources. Some of the techniques used by the
researchers to collect these data are given below.

US Department of Agriculture (USDA): USDA has a
list of food items and descriptions with their caloric
information. This calorie information is considered the
standard value of the food. In some studies like the one
conducted by Williamson et al. [129], the researchers
have used the caloric values collected from USDA for
their food value estimation frameworks.
Menu fromRestaurants: Some health conscious restau-
rants provide the calorie, food preparation process,
ingredients, etc. with the food menus. In the Menu
Match dataset [14], the nutritional values along with the
weight of the food items are obtained from the menu of
the restaurants.
Input fromExperts:Researchers can also collect calorie
value of foods from nutrition experts in their controlled
lab environment as presented in the study conducted by
Meyers et al. [39]. This way, they can get the closest
calorie values for each food item in the image.
Crowd-sourced: In this method, researchers use a web
application that takes the eye estimated nutrition values
of the food images from users around the world. This
method may work for developing a large dataset such as
UEC-FOOD256 dataset [16]. However, this technique
is mostly error-prone. In the semi-automated nutrition
estimation from food images, users manually provide
nutritional value or other value from at least one of
the sub-tasks including food class identification, food
volume estimation, drawing bounding boxes for food
segmentation, etc., to obtain the nutritional information
of the target food image. Noronha et al. [128] proposed
a framework where the nutritional information of
the food image is crowd-sourced. Individual users
have eye-estimated the nutritional values of the food
images.

Table 10 displays the reviewed articles on calorie estima-
tion from food images. Researchers, for example, [5], [60]
have used a nutrition table and a density table. The nutrition
table contains the weight and energy (calories) of the food,
and the density table contains information on the density of
the food. After food item segmentation, classification, and
volume estimation, the estimated calorie is computed by the
equation 7.

Cp =
Ct × Ve × ρt

Mt
(7)

where, Cp is the estimated calorie of the target food item, Ct
is the calorie of the identified food class, Ve is the estimated
food volume, ρt is the standard density of the food item, and
Mt is the standard mass of the food item.

Pouladzadeh et al. [5] have obtained an average accuracy
of 86% in calorie estimation. Later, they improved the
performance of their calorie estimation in [104] by proposing
two different approaches to calculate the dimensions of the
food items in the image: 1) utilizing finger as reference object,
and 2) using distance and angle between the mobile and
the food, and user’s height. Both processes show a small
range of standard error. In [63], the authors have grouped the
food images by the range of calories for each of these food
classes. For instance, Grilled pork with rice was in the range
of 450-600 calories. Thus, if their framework could estimate
the calorie within this range, the framework considered it as
correct estimation. They first identified the food class and
then predicted the caloric value of the identified food by
using the predefined data about the amount of calories of
each food-class. The accuracy and the false positive value
for calorie estimation for each of the classes is in the range
of 34%-54%. Chen et al. [94] have presented a calorie
estimation framework that uses an identification function and
an estimation function. The identification function finds five
(5) top candidate food classes that most closely match the
food items in the image. Interactively in the app, the user
needs to select the correct food item and then the estimation
function in the framework measures the quantity or amount
of the food items. In [39], the authors have proposed a
mobile framework that classifies the food items of the image
in real time and uses the predicted class to look up the
nutritional information of the food items. They have received
−25.35 ± 26.37 and 152.95 ± 15.61 for mean error and
mean absolute error, respectively, on theMenuMatch dataset.
In [114], the authors have developed a web application
where a user uploads a target food image. The application
identifies the food class and then calculates the caloric value
in real time. In this study, the authors have computed the
confidence level of the food classification model and the
caloric value of each food item. Anthimopoulos et al. [23]
have developed a Carbohydrate (CHO) estimation framework
that does the food item segmentation, food class classifi-
cation, volume estimation, and uses the USDA nutritional
database to calculate the approximate CHO value of the
food image. Most of the calorie estimation frameworks [23],
[39] retrieve the nutritional value from the USDA nutrition
database.

In the recent years of 2022 and 2023, the researchers are
utilizing CNN based Deep Learning techniques to improve
the performance of their nutrition estimation frameworks.
Among the Deep Learning techniques, researchers are
currently widely using the Mask R-CNN model for nutrition
estimation [91]. Jaswanthi et al. [91] have achieved a good
performance of mean Average Precision (mAP) of 85.43%
for estimating caloric values using only Mask R-CNN. Other
deep CNN based food calorie estimation techniques [91],
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TABLE 10. Calorie estimation performance comparison. In-house means collected by the research team. Dataset column: total number of images
followed by number of food classes in the parentheses, False Positive Rate (FPR), Macro Average Accuracy (MAA), Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Accuracy (Acc).

[118], [130], [132], [133] also achieve high performance for
calorie estimation, between the accuracies of 94% [132] and
98.5% [130] and an error variation of ±10 calories [118].
We also observe that additional techniques are used to
improve the performance of the food nutrition estimation
systems, such as mean shift segmentation, visual saliency
in [130], OpenCV in [118], normalizing arithmetic mean and
harmonic mean in [132]. Lately, in a study by Hu et al. [131],
Near Infrared Spectroscopy (NIRS) technology has been
used to estimate the calories of food images. Their method
performs 15.32% better than baseline calorie estimation by
CNN frameworks.

In recent years, the performance of nutrition estimation
frameworks are improving drastically. From our observation,
one of the main factors of this improvement is the utilization
of DL-based algorithms [92], [132], [133] for calorie
estimation. Traditionally, a nutritional look up table and
calorie equation have been used for calorie estimation [5],
[23]. These kinds of approaches heavily rely on the good
performances of the previous steps such as food segmen-
tation, classification, and volume estimation [23], [39].

Calorie estimation directly from the food images reduces
this performance dependency [92], [132]. However, the
insufficient food datasets with calorie values have made
the training for DL-based nutrition estimation frameworks
challenging. Moreover, a less diverse dataset domain hinders
the growth of DL-based nutrition estimation frameworks by
creating a domain-dependent system.

VII. DISCUSSION
This study provides a systematic review of the existing
frameworks for the complete workflow of nutrition esti-
mation systems from food images. Our findings categorize
the nutrition estimation system into three different groups:
Food Classification, Volume or Weight Estimation, and
Nutrition Estimation. Additionally, our work encompasses
other aspects of the nutrition estimation frameworks, such
as methods of food image acquisition, description of food
datasets used in the nutrition estimation frameworks, and
the widely used input features for food classification and
segmentation methods. Our review explores and compares
the performance of the existing dietary related frameworks
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to comprehend the ongoing advancement in the field of
image-based food nutrition estimation systems. Our research
finds that in recent years, researchers are preferring utilizing
Deep Learning techniques on all the steps of dietary
assessment frameworks. Food segmentation methods have
evolved from thresholding [23] and shape-based [82] Graph
Cut [15] algorithms using food image features to Deep
Learning techniques such as GAN [91], Mask R-CNN [92],
DeepLanV3+ [90], Zero-shot segmentation [89], etc. Similar
trends can also be seen in volume estimation frame-
works [78], [115] and nutrition estimation frameworks [91],
[92], [132], [133]. The most noticeable trend in using
Deep Learning methods such as RCNN [115], OpenCN
CNN [118], MobileNetV2 [119], and so on can be seen in
food classification systems from 2014 to 2023. Researchers
are enthusiastic about utilizing DL techniques because of
their capability to learn directly from food images. However,
the DL techniques are black-boxed and the network’s internal
logic is difficult to explain. This black-box method in training
creates difficulties for researchers to comprehend why their
framework is behaving in a certain way.

A. CHALLENGES
Though numerous research works have been observed in our
study, there remain some challenges and limitations in the
field of nutrition estimation from food images.

1) FOOD IMAGE SEGMENTATION AND CLASSIFICATION
It is difficult to classify food items in meal images consisting
of multiple food classes. Hence, image segmentation is
done before food classification. Food image segmentation
is challenging as many foods have irregular features such
as irregular shapes and edges, non-uniform contours, etc.
It can be more difficult when multiple food items are
mixed together or placed on top of one another resulting
in occlusion. Many studies use GraphCut, GrabCut, etc.,
in food image segmentation methods. But, these methods
have difficulties in generalizing the food segmentation
process.

2) FOOD VOLUME/WEIGHT ESTIMATION
The proposed models have difficulties in doing volume
estimation without any reference objects in the two-
dimensional food images. It is also challenging to estimate
volume and calorie, and to segment images of foods with
irregular shapes, edges, non-uniform contours, rotation, low
resolution, occlusion, mixed food items, etc. Differences in
food preparation can result in different colors, shapes, and
textures for the same food. This also adds challenges in
this research area. Volume estimation from a single two
dimensional image is also a challenging task.

A large image dataset with many food classes, and many
images representing each class, is needed to achieve better
estimation performance for both traditional ML and DL
classification techniques. No large food image datasets with
good image quality and many food classes are publicly

available. Most of the large food image datasets appear to
use web scraping to collect the data. Hence, the quality
of the images is not good. Food image datasets with large
food classes are needed to implement more advanced Deep
Learning algorithms.

B. RECOMMENDATION FOR FUTURE WORKS
We suggest the following future research directions based on
the research gaps we have found in our review.

Large Standard Food Dataset Construction: It is
inevitable to develop a standard large-scale food image
dataset such as ‘‘Imagenet’’ [134] in the future for
advanced food nutrition evaluation. Researchers can
scrap social media and relevant websites to amass a
large amount of food images. Later, the experts can
provide manual annotation and food information, such
as calories, nutrition, food items, etc., to the dataset. This
way, a large-scale standard dataset of food images can be
constructed. Moreover, researchers should also consider
different cuisines around the world and the difference in
food making due to geological differences. Therefore,
it is necessary to have joint efforts from scientists from
all over the world to construct these large standard food
datasets.
Personal Dieting and In-Patient Care: Food computing
for personal dieting and In-Patient care will be a
promising field for researchers. It is growing rapidly as a
promising field in the health domain. Many researchers
such as [23] and [114] have estimated calories and
nutritional value from the food images to aid diabetic
patients in need. As more and more people become
health conscious, the demand for computational help
for maintaining a healthy lifestyle will increase. Hence,
one of the important future directions of food nutrition
estimation systems will be building personalized food
computational modeling for health care.
Robust and Generalized Food Recognition System: The
first priority for dietary assessment and nutritional
management systems is to develop robust and gener-
alized food recognition systems. In recent years, Deep
Learning approaches to recognize food items from
images such as [7] and [115] have provided researchers
with great opportunities. One of the limitations we have
observed is that most of the Deep Learning approaches
are not tested for drastically different cuisines from
all over the world. With the construction of a large
standard food image dataset of different cuisines, the
researchers also have to build frameworks that can
recognize food items from many different cuisines.
Therefore, this can be a very prominent research
direction that can be explored by scientists all around the
world.
Broad Subtask Learning for Food Computing: We
notice the existence of different subtasks of food
image segmentation, food classification, food volume
estimation while the studies calculate the nutritional
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values. These subtasks help the food value calculating
framework to achieve better performance. However,
from the review, we are yet to notice any large
improvement in the cases of food image segmentation
or food volume estimation. There is also a lack of
datasets that have been annotated by experts for food
image segmentation. Hence, the researchers can focus
on constructing a large standard food image dataset
to train the Deep Learning approaches to segment
food items. It is also a challenging task to estimate
the volume of the food from two-dimensional images.
In recent years, studies like [13], and [42] have used
GAN and pre-trained 3D modeling to create 3D views
of the food portions from 2D images for volume
estimation. However, utilizing GANs and pre-trained
3D models are still in the development phases for
food volume estimation methods. Thus, we conclude
that the research towards food volume estimation using
appropriate food image datasets is a very viable future
direction.
Food Computing for Health Logs: Food logs are most
critical for health care. Food computing can be used
for recommending nutritional foods based on previously
logged food information. In [88] and [114], researchers
have presented frameworks for food nutrition estima-
tion. But these frameworks do not preserve the food
records for the users. In the future, researchers can
develop frameworks that can store these logs of daily
nutrition intake. Thus, the users can reflect upon their
food habits and can maintain their health.

Apart from the mentioned future directions, there can be
other emerging areas in the field of food and nutrition, like
construction of cooking robots, recommendation systems of
food, prediction of the probabilities of disease from the daily
food intake, creation of new recipes based on the users’
preferences, etc.

VIII. CONCLUSION
Instantaneous estimation of food nutrition value from the
food images is critical formultiple classes of people including
pre-diabetic and pre-obese people, specially who are at
lifelong risk of diabetes and obesity, and elderly people who
are at risk of malnutrition. For all of them, quality of life is at
stake. Availability of a lot of data and popularity of machine
learning methods, especially Deep Learning techniques, have
attracted many researchers to this field. Yet, we do not find
much effort in extensive reviews on food value estimation
from food images. In this paper, we have conducted an
extensive literature review of food nutrition value estimation
only from the image dataset as input.We have provided a food
value application domain taxonomy and based our review
on that. We have discussed the high impact research articles
on food segmentation, food item classification, volume or
weight estimation, and finally nutrition estimation. We have
presented the current benchmark datasets along with their
acquisition methods. We have provided and analyzed the

mapping between the traditional ML techniques and the
handcrafted image features. We have noticed an increasing
trend of using Deep Learning algorithms for food item clas-
sification from images. This upward trend matches with the
rapid advancement of computer vision-based Deep Learning
algorithms. We have identified the current challenges related
to the food image segmentation, food classification, and
food volume estimation steps. We have recommended the
opportunities for future work. These lines of future directions
need further research and joint collaboration of scientists
from all over the world.
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