
Received 29 April 2023, accepted 4 May 2023, date of publication 8 May 2023, date of current version 15 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3274201

Computationally Efficient Neural Rendering for
Generator Adversarial Networks Using a
Multi-GPU Cluster in a Cloud Environment
ASWATHY RAVIKUMAR AND HARINI SRIRAMAN , (Member, IEEE)
School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

Corresponding author: Harini Sriraman (harini.s@vit.ac.in)

ABSTRACT Due to its fantastic performance in the quality of the images created, Generator Adversarial
Networks have recently become a viable option for image reconstruction. The main problemwith employing
GAN is how expensive the computations are. Researchers have developed techniques for distributing GANs
across multiple nodes. However, these techniques typically do not scale because they frequently separate
the components (Discriminator and Generator), leading to high communication overhead or encountering
distribution-related problems unique to GAN training. In this study, the training procedure for the GAN is
parallelized and carried out over many Graphical Processing Units (GPUs). TensorFlow’s built-in logic and
a custom loop were tweaked for more control over the resources allotted to each GPU worker. In this study,
GPU image processing improvements and multi-GPU learning are used. The GAN model is accelerated
using Distributed TensorFlow with synchronous data-parallel training on a single system and several
GPUs. Acceleration was accomplished using the Genesis Cloud Platform and the NVIDIA®GeForceTM
GTX 108 GPU accelerator. The speed-up of 1.322 for two GPUs, 1.688 for three GPUs, and 1.7792 for four
GPUs using multi-GPU acceleration. The parameter server model’s data initialization and image production
bottlenecks are removed, but the results’ speed-up is not linear. Increasing the number of GPUs and removing
the connectivity constraint will accelerate things even more. The bottlenecks are detected using new network
lines and resources, and solutions are suggested. Recomputation and quantization are the two techniques to
reduce the amount of GPU acceleration in memory. Deployment and versioning are essential for successfully
operating multi-node GANmodels in MLflow. Properly deploying and versioning these models can improve
scalability, reproducibility, and collaboration across teams working on the same model. MLflow provides
built-in tools for versioning and tracking model performance, making it easier to manage multiple versions
of the model and reproduce it in different environments.

INDEX TERMS All reduce, bottleneck, data parallel, fault tolerance, generative adversarial network, GPU,
parallel learning, cloud computing.

I. INTRODUCTION
GAN permits the learning of the distribution curve of a given
dataset and the generation of new samples on request from
that dataset. A GAN network mainly has a Generator network
and the Discriminator network. They play a game in which
the Generator strives to produce authentic data (i.e., generated
from the accurate data distribution) to feed the discriminator.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

Training is discontinued when the latter can no longer distin-
guish between actual and generated data. After recording the
data distribution, the Generator has progressed to the point
where new samples may be generated [1]. GAN training is
a resource and time-consuming procedure. Given the number
of potential applicants, increasing this training time is crucial.
Scalability is achieved by distributing the computing bur-
den among several machines. The most recent development
in large-scale GAN training uses massive models and dis-
tributed training approaches performed on centralized deep

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

45559

https://orcid.org/0000-0003-0897-6991
https://orcid.org/0000-0002-2192-8153
https://orcid.org/0000-0001-5067-858X

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

learning frameworks. Each worker in a centralized network
design must interact with all worker nodes throughout each
iteration. In cases where network capacity or latency is con-
strained, performance suffers significantly. Despite recent
advancements in decentralized algorithms for neural network
training, it is still being determined if decentralized training
of GANs is feasible. GANs are built on the same concept of
creating, testing, gaining, and exploiting data and knowledge
via artificial systems, computational experiments, and simul-
taneous execution of real and virtual situations, as the parallel
transportation theory defines. GANs [1] are very effective at
representing high-dimensional data, such as pictures, but are
notoriously difficult to train.

Recent research on large-scale GAN training by [2] sug-
gests that distributed large-scale training procedures may
be helpful in enormous models. Their method relies on a
central network design [3], whereby each worker calculates
a local stochastic gradient using input and then communi-
cates the result to a central node. Throughout each iteration,
every worker in the centralized design should either explicitly
or implicitly interact with the single point. However, per-
formance would be severely hampered by limited network
capacity or excessive network latency. Furthermore, network
capacity or delay may result in a communication traffic jam.
When centralized communication is too expensive, decen-
tralized algorithms are often suggested. With decentralized
algorithms, each worker communicates only with its imme-
diate neighbors, eliminating the need for a central node.
Recent research [4] has established a decentralized method
for training deep neural networks.

Moreover, decentralized algorithms encourage workers to
engage onlywith their trusted neighbours, which is a typically
successful method for ensuring privacy [5]. Although decen-
tralized algorithms are beneficial, they have optimization
limitations. AlphaGo [6], a seminal achievement in artificial
intelligence, achieves considerable success by playing against
itself and learning from its errors. The adversarial notion has
inspired numerous theoretical research and applications in
various disciplines.

Due to their strong modelling capability, generative adver-
sarial networks (GANs) can learn the intrinsic distribution
of the original data without sacrificing its variety [7], [8].
Thus, despite its first proposal in 2014, GAN has developed
into a research area for generating necessary data in various
domains [9], [10], [11]. To address the challenge of detecting
malicious software, a transferred GAN with an autoencoder
structure was developed to provide a steady process and
create the necessary malware data [12]. Data augmentation
GANs were developed to produce needed picture data to
enhance neural network performance in low-data environ-
ments. The Generator consisted of a UNet and ResNet, and a
DenseNet was the discriminator [13]. Unprecedented growth
has occurred in deep learning research. The design of aNeural
network is based on the problem, and the structure of the neu-
ral network affects its accuracy and performance [14], [15].
The associated models get increasingly sophisticated and

intricate, and the number of layers resulting from hierarchical
structure rises consistently. The training speed has increas-
ingly become the main obstacle to the growth of deep learn-
ing, and the need for lowering the training time of the model
is rising. Google began offering distributed and parallel APIs
for TensorFlow, beginning with version 0.8.0.

The parameter server [16] design was a watershed moment
for distributed machine learning [3], [17] since it enabled
much faster computations than a single centralized server.
The parameter server assigns data to workers and organizes
the learning process in this model. Local workers do calcu-
lations and transmit gradients to the server, which combines
them into a global model. Workers then get the most recent
model from the server and repeat it until the globalmodel con-
verges. A singlemodel is reproduced across several devices or
computers in data parallelism. Each of them analyses distinct
batches of data and then combines their findings. There are
other variations on this system, which vary in how the various
model replicas integrate results, whether they remain in sync
between batches or are more loosely connected, and so forth.

Using the Tensorflow [3], [18], [19] data parallel tech-
nique, this study investigates several cloud service types for
GAN training in a similar context. While maintaining most
of the performance based on physics outcomes, the training
is linearly accelerated. To compare the efficiency and cost-
effectiveness of the proposed techniques, we also test them
at scale over many GPU nodes. Data science, cloud-based
deployment options, and related economics enable a diverse
range of applications to emerge, enabling the maximum capa-
bilities of cloud-based solutions.

The main contributions of this study include the following:
•Data Augmentation using GAN Network is computa-

tionally intensive and time-consuming, so accelerating GAN
using Multi GPU in Cloud

•Data Parallel Synchronous All Reduce Model for paral-
lelization and to overcome the centralized parameter server
model

•Evaluation using different All Reduce Logic: Hierarchi-
cal Copy, NCCL, Copy to One Device Logic

•Checkpointing mechanism to ensure model fault toler-
ance

•Speed up for different GPU configurations (Multi GPU
Model)

•Identifying the communication bottleneck issues and
proposing a solution for the same.

•Deployment of the proposed model in a model serving
platform from which it can be easily moved to the production
environment for real-time and industry applications using
GAN.

II. SCOPE
The information loading capacity in deep learning applica-
tions must be as big as possible. Nevertheless, the capacity
for actual model learning is similarly restricted because of the
restricted on-device storage of GPUs and other accelerators.
From a data flow standpoint, it is not true that bigger input

45560 VOLUME 11, 2023

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

data sizes result in lengthier training times for single-node
training, contrary to popular belief. From a system view-
point, the fundamental problem is the imbalance between
data loading capacity andmodel train bandwidth. Information
loading capacity and model construction bandwidth can be
matched during single-node development. In that case, it is
unnecessary to undertake an in-parallel training model since
distributed data processing always introduces control over-
head costs. Because of the mismatch between the data load
capacity and the network training capacity, training a model
on a node requires significant time. By adding data parallel,
model-building capacity may be increased according to the
number of accelerators engaged in the same learning oper-
ation. There are several uses for GANs, data augmentation,
and applications for translating pictures from one category
to another. The training of this type of system is challenging
due to its computational complexity and a high degree of
supervision, which is time-consuming. So, multi-node GPU
parallelization makes it faster and more efficacious [19]. This
work aims to reduce the training time using multi-node GPU.
The parallel models are built on the practical All Reduce
logic to overcome the bottleneck faced in the Parameter server
model. This, in turn, increases the stability of the model. The
bottleneck issues in Speed up and Performance vs. Scaling
were identified in the multi-GAN All Reduce logic case, and
solutions are proposed in this work.

III. RELATED WORKS
The original GANmodel was introduced byGoodfellow et al.
in 2014 [1], which consists of a generator network and a
discriminator network that play a two-player minimax game.

Since then, there have been many improvements to the
GAN architecture, such as Conditional GANs (CGANs), Pro-
gressive GANs (PGANs), and CycleGANs, among others.
Multi-GPU training refers to using multiple GPUs to train
a deep neural network, which can significantly speed up the
training process. One popular approach to multi-GPU train-
ing is data parallelism, where each GPU processes a subset
of the training data and updates the model parameters based
on its local gradients. Another approach is model parallelism,
where different GPUs process different parts of themodel and
communicate their results to update the model parameters.

StyleGAN and BigGAN are the most recent GAN variants.
StyleGAN is a GAN architecture introduced by [21], which
generates high-quality synthetic images with high resolution
and varied styles. The StyleGANmodel was trained on large-
scale datasets such as FFHQ and LSUN, which required sig-
nificant computing resources. To train the StyleGAN model,
Karras et al. used a distributed training approach to train
the model on multiple GPUs in parallel. Specifically, they
used a data-parallel approach, where each GPU processed a
different batch of images and backpropagated the gradients
to update the model parameters. BigGAN is another GAN
architecture introduced by [2], which generates high-quality
synthetic imageswith high resolution and diverse classes. The
BigGAN model was trained on the ImageNet dataset, which

contains over a million images and requires more significant
computing resources than StyleGAN.

To train the BigGAN model, Brock et al. used a cloud-
based approach that involved training the model on Google
Cloud TPUs, specialized hardware accelerators for deep
learning. In addition, they used a model-parallel approach,
where different parts of the model were processed by dif-
ferent TPUs and communicated their results to update the
model parameters. StyleGAN and BigGAN required signif-
icant computing resources to train and were trained using
distributed approaches on multiple GPUs or in the cloud.
These approaches allowed the models to be trained faster and
more efficiently than possible with a single GPU or machine.

Wang et al. proposed a federated learning approach for
training GANs using multiple nodes, where different nodes
process subsets of the training data and update the model
parameters in a decentralized manner. They demonstrated
that this approach could lead to better privacy and commu-
nication efficiency than centralized training methods [22].

Karras et al. used a distributed training approach to train
StyleGAN on multiple GPUs. Each GPU processed a dif-
ferent batch of images and backpropagated the gradients to
update the model parameters. This enabled the generation of
high-resolution images with varied styles [21].

Micikevicius et al. proposed a mixed-precision training
approach for GANs that uses half-precision floating point
arithmetic to reduce the memory needed to store the model
parameters. They demonstrated that this approach can sig-
nificantly speed up the training process without sacrificing
accuracy [23].

Overall, multi-node and multi-GPU training have been
explored for GANs and can significantly improve training
efficiency and enable the processing of larger datasets or
models. These approaches are particularly relevant for large-
scale applications of GANs, such as generating high-quality
images or videos, in [24], accelerating a document clus-
tering algorithm that utilizes flocking using GPU clusters.
Our experiments demonstrate that GPU clusters resulted in
a significant performance improvement compared to CPU
clusters, achieving a speed-up of 30X to 50X. As a result, the
execution time for clustering large amounts of documents was
reduced from approximately half a day to merely ten minutes.

In [25], a distributed deep learning framework for a het-
erogeneous multi-GPU cluster combines the advantages of
All-reduce and parameter-server methods. In addition, the
proposed design performs significant mini-batch training
asynchronously to increase the overall utilization of available
computing power in the cluster.

IV. MOTIVATION AND CONTRIBUTIONS
The primary motivation behind the study is to ensure:

Scalability: Cloud environments offer scalable computing
resources, making them an ideal platform for multi-GPU
GAN models. By leveraging the cloud’s ability to provide
additional resources as needed. In addition, multi-GPU GAN

VOLUME 11, 2023 45561

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

models can also be deployed to run on multiple servers,
allowing for even greater scalability.

Cost savings: multi-GPU GAN models can be expensive
to train due to the high computing resources they require.
Deploying them in the cloud takes advantage of pay-as-you-
go pricing models, only paying for the resources utilized,
resulting in cost savings.

Flexibility: Cloud environments provide flexibility in
deploying multi-GPU GAN models. The required option can
be selected from various hardware configurations, operating
systems, and software stacks to meet specific needs. This
flexibility allows for experimentation with different config-
urations to optimize performance.

Deployment and versioning: Proper deployment and ver-
sioning are critical for multi-GPU GAN models to function
correctly in the cloud. A well-deployed and versioned model
should consider the target hardware, software dependencies,
and data input/output specifications to ensure optimal per-
formance. In addition, versioning allows the reproduction of
specific model versions at any time and tracking their perfor-
mance over time. The need for multi-GPU GAN in the cloud
arises from their ability to handle large datasets, generate
more accurate and diverse data, and provide researchers with
flexibility and speed to experiment with different models and
architectures. Therefore, proper deployment and versioning
in the cloud environment are essential to ensure optimal
performance and reproducibility of the model.

In the proposed work to accelerate GAN using multi-
GPU in the cloud, a data-parallel synchronous all-reduce
model can be used to overcome the limitations of the cen-
tralized parameter server model. Different all-reduce logic,
such as hierarchical copy, NCCL, and copy-to-one device
logic, can be evaluated to optimize the process. In addition,
a checkpointing mechanism can be implemented to ensure
model fault tolerance. As a result, the proposed model can
be speeded up for various GPU configurations, and commu-
nication bottleneck issues can be identified and addressed.
The model is deployed in a model-serving platform; it can
be easily moved to the production environment for real-time
and industry applications using GAN.

V. METHODOLOGY
The MNIST dataset [26] was used to implement the GAN
Discriminator and Generator, generating new data. The data
generation and augmentation process is accelerated using the
GPU in the Genesis Cloud Platform [27]. The single GPU
setup the 1 NVIDIA® GeForce™ GTX 1080 Ti with four
vCPUs Intel Xeon Scalable Skylake,12GB memory DDR4-
2666,80GIB SSD and multi-GPU setup three nodes in which
the first node with 2 NVIDIA® GeForce™ GTX 108 with
eight vCPUs Intel Xeon Scalable Skylake,24GB memory
DDR4-2666,80GIB SSD, a second node with 3 NVIDIA®
GeForce™ GTX 108 with 12 vCPUs Intel Xeon Scal-
able Skylake,36 GB memory DDR4-2666,80GIB SSD and
the third node with 4 NVIDIA® GeForce™ GTX
108 with 16 vCPUs Intel Xeon Scalable Skylake,48 GB

memory DDR4-2666, 80GIB SSD. The cloud specifica-
tions used Public IPv4 address 147.189.195.218, Private
IPv4 address 192.168.8.46 connected using SSH keys to the
Ubuntu 3 Operating system. The cloud location Iceland-
HAF1, hostname gc-prickly-goldstine, with TensorFlow
2.2 image with inbound rules for TCP Protocol ports 80, 443,
and SSH port 22.

In themodel, x denotes actual data, z denotes the latent vec-
tor, G(z) denotes the fake image generated, D(x) denotes the
Discriminator function to identify the actual image, D(G(z))
denotes the Discriminator function to find the fake image,
error (a,b) denotes the error generated between a,b. GAN
works on the principle that Generator and discriminator are
opposite and are competing with each other. The discrimina-
tor network the generated images and the actual images. The
Generator network generates images using a noise z, which
is used to fool the discriminator network. The discriminator
D and generator G compete with each other and are playing a
min-max game using (1). Where G represents Generator and
D Discriminator, respectively, Pdata(x) represents the actual
data set and P(z) generator distribution, and x is the data
sample for the discriminator, z noise vector.

minG maxDV (D,G) = Ex ∼ pdata(x)[logD(x)]

+ Ez ∼ p(z)[log(1 − D(G(z))] (1)

The Discriminator network uses the loss function in (2).

LD = E(D(x), 1) + E(D(G(z)), 0) (2)

Generator - The loss function is given in (3), which is used
to minimize the error generated between 1, the discriminator
identification of fake and accurate data.

LGE (D (G (z)) , 1) (3)

Algorithm 1
Begin
For N epochs

For k steps
Sample m noise vector z from noise prior pg(z)
Sample data x from generating data distribution data(x)
Discriminator Module:

Update the D function using ascending SGD
∇⊖d 1/m

∑
i=1 to m log(x)] + log(1-D(G(z))

Sample m noise vector z from noise prior pg(z)
Generator Module:
Update G using the descending SGD function
∇⊖d 1/m

∑
i=1 to mlog(1-D(G(z))

Repeat till N
End

In the GAN, only one network is trained at a time, so it
works like a min-max game, as shown in Fig. 1. The Steps
are given in algorithm 1.
GAN Training consists mainly of the discriminator and

the generator part. In the discriminator part, the main two

45562 VOLUME 11, 2023

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

FIGURE 1. GAN model.

FIGURE 2. All reduce.

steps are training the actual data and the fake generated data.
In the real data training, the label’1’ is used for real, and
’0’ is used for the fake generated images. In the generator
training in GAN, only the randomly generated image is used
for training and later passed to the discriminator. The models
combined form the GAN, generate fake images, and keep
updating the weights of the generator network based on the
new images. This paper improves the training time for the
proposed GAN structure using the distributed TensorFlow for
multi-GPU and the Fault Tolerancemechanism. Furthermore,
the model introduces checkpoints to ensure the worker nodes
are active and the fault tolerance is implemented.

The proposed GAN – the Generator and Discriminator
structure is shown in Fig 2. In the Generator Network and
Discriminator Network, the neural network model sigmoid
activation with the binary cross-entropy loss with Adam opti-
mizer. The CUDA version 10.1 and Diver version 430.50 in
Nvidia SMI 430.50 is used for the GPU configurations. The
Model parameters are given in Table 1 and Table 2.
The parallelism technique speeds up and improves the

data-generating process. There are several methods for paral-
lelizing training using several GPUs currently available. The
model is copied to each GPU in the data-parallel scenario,
and the batch size is equally divided among the number
of devices and distributed to the GPUs allotted. Each GPU
processes each batch of data; during the backpropagation of
such information, each GPU’s data is reduced so that only

TABLE 1. Model parameters.

TABLE 2. GAN parameters.

one model is replicated across all GPUs. Data parallelism is
the best approach because the neural network model is small.
Loss functions [28] work well when a single GPU is used
to train the model since there is no data distribution. The
discriminator must be able to identify which images do not
correspond to the ground truth and label the images made by
the Generator as false.

In contrast, the ground truth images aremarked as accurate.
Both networks are trained using the output of the discrimina-
tor network. Binary cross-entropy is the loss function used.
The function returns the error calculated among the discrimi-
nator net-work output value and its desired value. As a result,
the binary cross-entropy function in TensorFlow calculates
the dimensions of the input and batch tensors and averages
the likelihood of the discriminator network’s output.

A. INPUT PIPELINE IN GPU
The GPU’s massive number of cores enables image analysis
in parallel across the different cores, resulting in a rapid
processing speed. It takes far less time to process photos
on the GPU than to retain the images and transfer the find-
ings between the CPU processor and the GPU. Therefore,

VOLUME 11, 2023 45563

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

improving the loading of pictures and the data exchange
between the CPU processor and the GPU is essential. In the
original implementation, the CPU collects all training pic-
tures and completes their changes (standardization, scaling)
before loading them onto the GPU. Every epoch, these pro-
cesses are repeated, depleting Processor resources. Therefore,
the cache is implemented such that after the photos have
been analyzed, they are kept and accessible throughout the
subsequent epoch. Furthermore, once the computer is ready
to run a batch, the CPUmust analyze the pictures and transfer
them to a GPU, so during this period, the GPU is idle and
squandering its capabilities. Therefore, the preloading of the
pictures to the GPU has indeed been implemented into the
program, so the GPU does not need to wait for the CPU to
provide the photos before processing can begin.

B. DATA PARALLEL MODEL
The dataset is divided into ‘‘N’’ portions in the parallel data
model, where ‘‘N’’ is the count of GPUs. Finally, these com-
ponents are allocated to parallel computing systems. Gradi-
ents are calculated for each model copy, and the gradients
are exchanged amongst all the models. The aggregate of
these gradients’ values is calculated in the end. The for-
ward propagation uses the same variables for each GPU
or node. Every node receives a tiny batch of data, which
is then used to compute its gradient and send it back to
the central node. Distributed training uses synchronous and
asynchronous [29], [30].
When training synchronously, the model provides various

data components to each accelerator. Each model contains an
identical replica of the model and has only been trained using
a portion of the data. Every component begins the forward
pass simultaneously and calculates a unique output and gradi-
ents. An all-reduce technique is used in synchronous learning
to gather all the learnable parameters from different workers
and processors. Synchronous learning has many benefits but
is challenging to scale and occasionally leads to idle workers.
Asynchronous eliminates the need for workers to wait on one
another during repair outages, capacity constraints, or com-
peting objectives. Asynchronous training might be a superior
option, mainly if machines are smaller, less dependable, and
more constrained. Synchronous training is better suited when
the gadgets are more powerful and have a stable connection.
The Synchronous Data Parallel Model algorithm is given in
Algorithm 2.

C. DISTRIBUTED TENSOR FLOW
The deep learning capabilities of the TensorFlow framework
have been extensively used in several disciplines. Its native
distributed solution has trouble extending for big models due
to difficulties with poor GPU usage and sluggish distribution
compared to operating on a single system. TensorFlow is an
open-source project with exceptional deep-learning capabil-
ities. TensorFlow currently allows distributed iterative train-
ing, which has the issue of lengthy training time has been

Algorithm 2
Begin
For N epochs

For N batches
Replicate the model and scatter the dataset in the GPU
Execute the data model copies of the training script in
each

GPU device:
Read the data set
Execute the forward pass of the model
Calculate the loss and execute the backward pass to
calculate the model parameters’ gradients.

Average gradients among those multiple GPU devices
using
inter-GPU communication and Gradient All Reduce
logic.
Update the model parameters

Repeat till N
End

resolved, which might lessen the training duration; there is
still room for improvement. TensorFlow is frequently utilized
in many fields because of its versatility. TensorFlow is still
in its infancy, and the distributed implementation needs help
to extend for big models, given such concerns as poor GPU
usage and slowness distribution as opposed to single-machine
operation.

GPU contains many cores, allowing image processing
across multiple cores in parallel, resulting in a rapid process-
ing speed. The time required to process images on the GPU is
less than required to store photos and communicate findings
between the CPU and GPU. The distributed tensor flow [19]
implements the distributed framework on GPU. TheMirrored
strategy is used in GPU, where the synchronous training
with NVIDIA NCCL uses the all-reduce logic. Here the
scope is used for model initialization. TensorFlow is a graph-
based machine learning system in which a user constructs a
graph of tensors representing multi-dimensional data arrays
and operations that consume and generate tensors. A user
may request the value of a tensor, which requires executing
all ancestor actions. tf.distribute.Strategy is a TensorFlow
application programming interface for distributing training
over several GPUs, computers, or TPUs. MirroredStrategy
facilitates synchronous distributed training over many GPUs
on a single machine. It generates a single copy per GPU
device. Each model variable is replicated across all copies.
Together, these variables compose the MirroredVariable con-
cept variable. These variables are maintained in sync by
performing identical modifications. Utilizing efficient all-
reduce techniques, variable updates are sent across devices.
All-reduce aggregates tensors across all devices by adding
them together, making them accessible on any device. It is
a fusion approach that is very efficient and can considerably
minimize synchronization overhead. Several all-reduce algo-
rithms and implementations are available depending on the
communication between devices.

45564 VOLUME 11, 2023

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

D. ALL REDUCE
The Mirrored strategy is used in GPU, where the syn-
chronous training with NVIDIA NCCL [31] uses the all-
reduce logic. The all-reduce function of parallelization is
often used to efficiently transmit gradient information and
summation amongst computing. Each device gets the total
of all devices’ gradients and updates local variables with
the outcome of gradient summation, as shown in Fig 2. All
reduction algorithms need workers to share the storage and
maintenance of global parameters. In this approach, each
worker distributes their gradients and performs a reduction
operation. All reduction lowers the target array in eachworker
to a single set and returns that array to each worker. In this
method, all workers communicate their gradients to a single
worker, the driving worker responsible for gradient reduction
and providing updated gradients to every employee. How-
ever, the issue with this strategy is that the driver has become a
bottleneck as the number of tasks rises, as its communications
and implementation of the reducing operation increase. A less
naïve option is the ring-all reduce method, wherein the work-
ers are arranged in a ring. Each worker is responsible for a
subset of parameters that are only shared with the subsequent
work in the ring. This approach is a powerful instrument that
significantly decreases synchronization overhead. The total
number of processes is P with an array (Ap) of size N, and the
element is denoted Ap, i. A binary operator Op, the aggregate
operation, is applied to obtain the result B, as shown in (4).

Bi = A1, i Op A2, i Op A3, i Op A4, i Op Ap, i (4)

This work uses the three reduce algorithms, the Reduction
to One Device, Nccl All Reduce, and the Hierarchical Copy
All Reduce Algorithm. In tf.distribute.ReductionToOne-
Device() approach always transfers values to a single
device for reduction, then broadcasts the reduced val-
ues to their destinations. It does not support batching
efficiently. In tf.distribute.NcclAllReduce() approach uses
Nvidia NCCL is used. Tensors will be repacked or aggregated
for more efficient cross-device transfer via the batch API.
In tf.distribute.HierarchicalCopyAllReduce() function works
along the boundaries of some hierarchy, and it reduces to
a single GPU and broadcasts back to each GPU along the
same route. Tensors will be repacked or aggregated for more
efficient cross-device transfer via the batch API.

E. FAULT TOLERANCE
The Failure recovery mechanism in this model works on
Checkpoints. In failure detection, the variable node has a save
node and periodically writes variable contents to persistent
storage. Each variable also has a Restore node associated
with it. In the first iteration, after a restart, restore nodes are
enabled. TheCheckpoint Files have a Binary file that includes
a mapping between variable names to tensor values. Check-
points record the precise value of all parameters (objects of
type tf. variable) used by amodel. Checkpoints do not include
any description of the calculation required by themodel. They
are often only relevant when the source code that will utilize

FIGURE 3. Checkpoints in the proposed model.

FIGURE 4. Proposed model.

the stored parameter values is available. The checkpoints in
the model are shown in Fig 3.

The single GPU and the distributed tensor flow Mirrored
Strategy for the parallel implementation on the multi-GPU
node are done in the GPU implementation. In the multi-
GPU, the data-parallel model was tried using the distributed
TensorFlow with mirrored strategy using a single host with
multiple devices using the synchronous logic shown in Fig.4.
The function tf.distribute.MirroredStrategy is used for in-
graph replication and concurrently training multiple GPUs.
This API maintains a training distribution abstraction across
several processing units. This API replicates model param-
eters on each GPU. Then, it combines the gradients from
all GPUs, obtains a combined value, and applies it to every
model copy. Themodel described inside the scope of the strat-
egy is replicated across all threads, and each change affects
all copies. The loss function and optimizer are specified in the
strategy’s scope, and the fit function is required for training.

F. DEPLOYMENT AND VERSIONING
Multi-node GAN in Mlflow requires careful deployment and
versioning to ensure the successful operation of the model.
Here are some considerations for deployment and versioning
multi-node GAN in MLflow:

VOLUME 11, 2023 45565

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

Deployment: Multi-node GAN models require special-
ized hardware and software environments to run effectively.
A well-deployed model should consider the target hardware,
software dependencies, and data input/output specifications
to ensure optimal performance. MLflow provides a platform-
agnostic approach to model deployment, allowing deploy-
ment across different environments.

Scalability: Multi-node GANmodels are designed to scale,
and versioning helps manage the various versions of the mod-
els deployed in the system. It also allows deploying multiple
model versions and tracking their performance over time.
MLflow provides built-in tools for versioning and tracking
model performance, making it easier to manage multiple
versions of the model.

Reproducibility: Versioning allows the reproduction of
specific model versions at any time. Keeping track of the
changes made to the model over time can identify the spe-
cific version that produced a particular result, which can
help debug and troubleshoot. In addition, MLflow allows for
tracking of the input data, code, and environment variables
used to train the model, making it easier to reproduce the
model in different environments.

Collaboration:Multiple teamsmay beworking on different
versions of the same model. Versioning ensures that everyone
is working on the model’s latest version, making it easier to
merge different versions of the model. MLflow provides a
collaborative environment where teams can work together on
the same model and track changes made to the model over
time.

VI. BOTTLENECK ISSUES
The main bottleneck issue in parallel data processing in GPU
is the communication cost and limited device memory.

A. COMMUNICATION COST
Communication costs within the All-Reduce system. All
nodes are employees within the All-Reduce design. There-
fore, all the employees experience gradient synchronization.
For model synchronization to be completed, All-Reduce
architecture needs the following different communications
steps:

1. The reduced operation is performed from the root node
and later aggregates the received gradients from the other
nodes.

2. Sent the aggregated updated gradient to all nodes.
The time consumed during the All Reduce design has two

parts: t1(the time to perform aggregation of the gradient) and
t2 (the time to update the model). So, the total time for All
reduces model synchronization is t was given using (5), (6),
and (7). N represents the number of GPU devices, g is the
gradient, and Bandwidth_GPU is the network bandwidth per
GPU.

t1 = (N ∗ g)/(Bandwith_GPU) (5)

t2 = ((N − 1) ∗ g)/(Bandwith_GPU) (6)

t = t1 + t2 (7)

Within the All-Reduce approach, model synchronization
typically occurs after each training phase. Model synchro-
nization also involves a substantial communication overhead.
More than fifty percent of the final neural network training
time is accounted for model synchronization, according to
the most recent research. This occurs due to the inefficient
current communication schemes. Due to network congestion,
this cost might be exacerbated if numerous GPUs/nodes use
the same physical connection (for instance, multiple GPUs
use the very same PCI-e connection for model synchroniza-
tion inside a computer). One possible solution is to maximize
the use of all communication lines inside a data parallel
training model. Next, expand it to use idle connections on the
CPU Processor side of the client. Only homogeneous connec-
tions have been explored so far for model synchronization.
Homogeneous connections in this context refer to connec-
tions with the same network capacity. There are several con-
nection types with varying network connection speeds. This
is what is known as a heterogeneous network. NVIDIADGX-
1 machine is an example of this. There are two distinct types
of connections among GPUs: PCIe bus (Common connection
with 10 GB/s of capacity) and NVLink (GPU-exclusive).
Using a heterogeneous network solves the communication
bottleneck to a great extent. However, the communication
bottleneck leads to stragglers and stale gradient problems in
the models [32].

B. ON-DEVICE MEMORY
Another major bottleneck is the on-device memory issues.
CPU capacity is frequently measured in tens or even thou-
sands of gigabytes. GPU memory sizes are often relatively
modest relative to this enormous amount ofmemory. Even the
popular GPU options like NVIDIA 1080 have only 8GB of
memory, NVIDIA K80 - 12 GB, NVIDIA V100- 16 GB, and
NVIDIA A100- 40 GB have limited memory. Furthermore,
during DNN learning, the intermediary outputs created (such
as extracted features) are often several orders of magnitude
larger than the initial data input. Therefore, it exacerbates the
GPU storage restriction. There are primarily two approaches
to decreasing accelerator memory usage: Recomputation and
quantization.

Recomputation is deleting unused tensors and recalculat-
ing the result when they are required again. Quantization
implies that decreased physical bits are used to express a
specific value. For instance, if a specific integer number
requires 4 bytes, quantization allows the expression of the
same value using just two bytes. For example, consider a
neural network with four layers. We calculate the activation
function in the forward pass of each layer and store it in
intermediate results to calculate the loss during the backward
pass. The backward propagation begins using the training
data supplied from the last layer (layer 4). The gradient for
layer four is calculated using the activation function in that
layer calculated during the forward pass and the loss value.
Once the gradient is calculated for layer 4, the activation of

45566 VOLUME 11, 2023

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

FIGURE 5. Proposed memory usage using both activation and gradient.

FIGURE 6. Memory usage after recomputation.

layer four can be deleted, and memory can be freed. For the
gradient calculation of layer 3, the inputs required are the
gradient in layer four and activations in layer 3.

Similarly, after calculating the gradients in layer 3, the
activation of layer three can be deleted. From the steps, it is
evident activation in layer one is only required once the
calculation of gradient 1. So, in the recomputation method,
the activations can be recomputed when required and deleted.
Memory can be free after calculating in the forward pass,
as shown in Fig 5 and 6.
After Recomputation, the memory (storing activation 1)

can be freed for layer 1 for time t1, layer 2 for time t2,
and layer 3 for time t3. For large-size deep neural networks,
the memory can be freed for a significant amount of time.
The method reduces memory usage but leads to computation
overhead since activation is recalculated twice for each layer.

Quantization is a lossy optimization, which could lose
important data to express the gradients with fewer bits. When
necessary, Recomputation is undertaken to duplicate the ear-
lier findings. Thus, the calculation process is lossless. How-
ever, as discussed above, most quantization approaches could
be better. Therefore, Recomputation and quantization may
both minimize the memory footprint of a device. In contrast,
the computational cost of quantization is often substantially
lower than Recomputation. This is mostly because quantiza-
tion is optional for computationally intensive network layers.

VII. RESULT ANALYSIS
The single GPU and the distributed tensor flow Mirrored
Strategy for the parallel implementation on 2,3,4 GPU nodes
are done in the GPU implementation. The single GPU

FIGURE 7. Single node execution.

FIGURE 8. Multi-node execution.

training code uses the distributed Tensor Flow in multi-GPU
using tf. distribute and strategy API. The generated code will
be cloud platform-independent, allowing execution in any
environment without modification.

In TensorFlow, this execution is explained in terms of its
computational graph. Thematrixmultiplication operation can
be taken as an example to explain how it accepts the X and
W tensors, which are the training batch input and weights
similar to the single neuron structure. The resultant tensor is
then supplied to the add operation using the bias terms tensor
b (8). This operation yields Ypred, representing the model’s
predictions as shown in Fig 7.

Ypred =

∑
XW + b (8)

X represents the input data, W represents t, the weight
matrix, and b represents the bias.

In the multi-node execution, half of the input dataset X is
given to GPU 0, while the other half is transmitted to GPU
1. In this instance, each GPU performs identical operations
on different data slices, as shown in Fig 8. However, here the
data-parallel processing is done with each GPU calculating
the gradient separately and is aggregated synchronously.

MirroredStrategy is an approach for data parallelism. Mir-
roredStrategy will thus create a clone of the model on both
GPUs when the model.fit is called. The CPU (host) pre-
pares the tf.data file, dataset batching, and GPU data trans-
mission. The following gradient modifications will co-occur.

VOLUME 11, 2023 45567

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

This implies that each worker device computes the forward
and backward runs through the model on a unique slice of
the input data. In a procedure called AllReduce, the gra-
dients calculated for each of these slices are then aggre-
gated across all of the devices and reduced. The optimizer
then conducts parameter updates with these decreased gra-
dients, maintaining synchronization across devices. Since
each worker can only move to the next training step once
all other workers have completed the current step, gradient
computation becomes the most time-consuming aspect of
distributed training for synchronous techniques. When using
the tf.distribute.Strategy API and tf.data for distributed train-
ing, the batch size now corresponds to the global batch size.
On providing a batch size of 10 and two GPUs, each machine
will process five instances in every step. In this instance, the
global batch size is ten, and the per-replica batch size is 5.
Scale the batch size by the number of copies to get the most
out of the GPUs. In the single-node GPU, the global batch
size is 64; for two GPU nodes, the global batch size is 128; for
three GPU nodes batch size is 192; for four GPU nodes, the
batch size is 256. The global batch size is calculated using (9).

Global_batchsize = batch size of single GPU

∗number of GPU (9)

The code runs sequentially and becomes a bottleneck as
the number of mirrored images increases. On the other hand,
the generator initialization time grows proportionally with the
GPU count because it is run consecutively. The custom train-
ing loop, which uses tf.function to modify the forward step in
training mode directly, was designed to alleviate this bottle-
neck. The tf.function also includes all previously completed
stages. The data pre-processing and distribution procedures
represent the remaining bottleneck at this point. The speed-
up will be smaller than ideal due to the communication delay
between the CPU and GPU. The performance metrics of the
single and multi-node GPU are given in Table 3.

For the Multi-node GPU, the global batch size is batch
size X no of devices. Each GPU uses a batch-wise of 64,
so the multi-node has a global batch size of 64× 2= 128. So,
the 2 GPU node process doubles the data processed by the
single node GPU. For example, the GAN model was trained
for 20 epochs with a step size of 20. Single node GPU took
94.56 seconds to process 64 batch size while the 2 GPU
node took 143.01 seconds. So, in a single GPU, the single
node takes 94.56 × 2 = 189.12 seconds to process the same
data. Similarly, the time for processing the same data in
3 and 4 GPU is 283.68 and 378.24 seconds, respectively.

Speed Up = Ts/Tp (10)

The speed-up is calculated using (10), where Ts represents
the time taken for sequential execution, and Tp is the time
taken for parallel execution. In two-node GPU, a speed-up
of 1.322. For the three-node GPU, the speed-up obtained is
1.688, and for four GPUs, the speed-up is 1.7792.

Figures 9 and 10 show the loss curve of single-node
and multi-node GPU. From the figure, the loss curve of

TABLE 3. Performance Metrics.

FIGURE 9. Loss curve of single-mode GPU GAN.

FIGURE 10. Loss curve of multi-node GPU (2-node GPU).

single-node and multi-node GPU in GAN training can pro-
vide valuable insights into the training process and the

45568 VOLUME 11, 2023

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

FIGURE 11. Generator loss curve.

model’s performance. Here are some key differences between
the loss curves of a single node and multi-node GPU GAN
training:

Training speed: Multi-node GAN models typically train
faster than single-node models due to the increased computa-
tional resources available. As a result, the loss curve formulti-
node GAN models may show a steeper decline than that of
single-node GAN models.

Stability: Multi-node GANmodels can be more stable than
single-node GANmodels due to the improved computational
efficiency. This can result in a smoother loss curve and fewer
fluctuations in the loss over time.

Scalability: Multi-node GANmodels are designed to scale,
allowing for larger datasets and more complex models. As a
result, the loss curve for multi-node GAN models may show
a more gradual decline than that of single-node GAN models
due to the increased complexity of the model and the larger
dataset.

Convergence: Multi-node GAN models may converge
faster and more reliably than single-node GANmodels due to
the improved computational resources available. As a result,
the loss curve for multi-node GAN models may show a more
consistent decline over time, indicating that the model is
converging toward an optimal solution. The generator loss
increases as the number of nodes (GPU) increases.

The comparison of the loss curve for multi-node GPU in
the generator model is shown in Fig 11. The increased inter-
process communication overhead in a multi-node setup can
lead to increased latency and overhead, which can negatively
impact the performance of the GAN generator. This can
result in a higher generator loss. On the other hand, the dis-
criminator’s performance can be improved with a multi-node
GPU setup due to the increased computational power avail-
able. The discriminator plays a critical role in distinguishing
between real and fake data. A more powerful discriminator
can provide better feedback to the Generator, resulting in a
lower discriminator loss.

A. REAL-TIME APPLICATION
While considering the GAN model for medical data aug-
mentation, the main emphasis is using high-performance

TABLE 4. Comparison with state-of-the-art models.

systems with accelerators - GPUs. Federated learning pro-
vides a unique approach by attempting to train models on
the network edge, which often have far less computational
capacity than GPUs. For conventional distributed training,
every user can access the entire training sample. With feder-
ated learning, each user cannot access the entire training data.
Mainly, federated learning provides dispersed and interactive
learning without data exchange. The primary characteristic
of federated learning is maintaining each user’s personal
information secret and never sharing it with other users. With
federated learning, everyworker retains its data locally, called
Local data 1 and Local data 2, and all these workers seldom
exchange their data input.

Consequently, each machine could only train its local
models with localized information. However, more than this,
training on local data is required to create a robust GAN
model because local data is highly biased. Moreover, local
data must be more significant to build a GAN model. There-
fore, the proposed model is adequate for federated learning
in medical data.

The proposed work is compared with existing state-of-the-
art models in GAN in multi-GPU in Table 4.

B. COMMUNICATION AND COMPUTATION COST
ANALYSIS
In a multi-GPU system, communication and computation
costs play crucial roles in determining the performance of the
system. Communication cost refers to the time and resources
required to transfer data between different GPUs, while com-
putation cost refers to the time and resources required to
perform calculations on the data. The step time, the average
communication time and computation time are measured for
message transfer among the GPU nodes in ms. The frac-
tion of the compute can be calculated from step time and
computation time measured for the nodes. Figure 11 depicts
the performance of both single-node and multi-node GPU
setups, and it is evident that using multi-node setups results in
a considerable penalty due to inter-process communication.
Specifically, the ratio of time spent on computation to the total

VOLUME 11, 2023 45569

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

FIGURE 12. Computational and communication efficiency.

time for each step is notably lower for multi-node setups. This
is particularly noticeable when multiple GPUs are present
on each node, as they have a lower ratio between compute
throughput and network bandwidth, leading to a lower ratio
between time spent on computation and the total simula-
tion time. In summary, the data in Figure 12 highlights that
using single-node versus multi-node GPU setups depends on
several factors, including the type of computation, available
hardware, and performance requirements.

C. KEY TAKEAWAYS
Parallel distributed GAN in multi-GPU for speed up Auto-
mated deployment of the models in production and enabling
proper versioning to ensure the continuous deployment and
continuous monitor pipeline. In addition, multi-node GPU
GAN provides several advantages over single-node GPU
GAN, including faster training, scalability, improved accu-
racy, resource efficiency, and robustness.

The loss curve for single-node and multi-node GPU GAN
training can provide valuable insights into the training pro-
cess and the model’s performance. Due to the increased
computational resources, multi-node GAN models typically
train faster and more reliably than single-node models. As a
result, the loss curve for multi-node GAN models may show
a steeper decline, be smoother, more gradual, and more
consistent than that of single-node GAN models.

The single-node and multi-node acceleration on CNN and
LSTM was deeply analyzed for different use cases but was
not expanded to GAN [36], [37]. The impact of the multi-
node on spark and GPU was examined for medical use cases
[35], [38]. The impact of multi-node TPU on GAN for dou-
ble precision was developed but lacked deployment and did
not address the current bottleneck issues in TPU [34]. The
proposed model is superior to the existing works since it uses
multi-GPU GAN implementation addressing the bottleneck
issues, ensures the deployment and continuous retraining of
the model, and makes it usable for real-time applications.

VIII. CONCLUSION
In the proposed method, the advancement is made in GAN
in computation, loss, and training time using TensorFlow

distributed training methodologies. We explored the practi-
cal constraints and overhead of the training methodologies
from the empirical findings. If the dataset is small enough
to fit in a single system and the model has few trainable
parameters, then the mirrored strategy technique would be
enough to scale training and yield optimum results. The bot-
tleneck issues are identified, and solutions are proposed. The
in-memory issues can be solved using Recomputation and
quantization. Deployment and versioning are essential for
successfully operating multi-node GAN models in MLflow.
Properly deploying and versioning these models can improve
scalability, reproducibility, and collaboration across teams
working on the same model. MLflow provides built-in tools
for versioning and tracking model performance, making it
easier to manage multiple versions of the model and repro-
duce it in different environments. Multi-node GPU GANs
have immense potential for generating high-quality synthetic
data.

In the future, the work needs to be extended to multi-
worker training in the distributed synchronous pattern. In the
multi-worker cluster pattern, multiple GPUs with the same
model and different datasets for synchronous data-parallel
training.WhileMirroredStrategy is a synchronous data paral-
lelism approach, asynchronous data parallelism solutions are
also possible. In an asynchronous data parallelism technique,
each worker computes gradients from a slice of the incoming
data and performs parameter adjustments asynchronously.
Asynchronous training provides the advantage of fault tol-
erance since workers are not reliant on one another, but it
might result in stale gradients. When performing distributed
learning, the speed with which data is loaded is often crucial,
and the data prefetching and caching must be done in the
future to obtain better speed-up.

REFERENCES
[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’
2014, arXiv:1406.2661.

[2] A. Brock, J. Donahue, and K. Simonyan, ‘‘Large scale GAN training for
high fidelity natural image synthesis,’’ 2018, arXiv:1809.11096.

[3] J. Dean, ‘‘Large scale distributed deep networks,’’ Tech. Rep., 2012, p. 11.
[4] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,

‘‘Can decentralized algorithms outperform centralized algorithms?
A case study for decentralized parallel stochastic gradient descent,’’
in Proc. Adv. Neural Inf. Process. Syst., I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, 2017, pp. 5336–5346.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
f75526659f31040afeb61cb7133e4e6d-Paper.pdf

[5] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, ‘‘A saddle point
algorithm for networked online convex optimization,’’ IEEE Trans.
Signal Process., vol. 63, no. 19, pp. 5149–5164, Oct. 2015, doi:
10.1109/TSP.2015.2449255.

[6] Mastering the Game of Go With Deep Neural Networks and Tree
Search | Nature. Accessed: Jun. 16, 2022. [Online]. Available:
https://www.nature.com/articles/nature16961

[7] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, ‘‘Least
squares generative adversarial networks,’’ 2016, arXiv:1611.04076.

[8] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ 2015,
arXiv:1511.06434.

45570 VOLUME 11, 2023

http://dx.doi.org/10.1109/TSP.2015.2449255

A. Ravikumar, H. Sriraman: Computationally Efficient Neural Rendering for Generator Adversarial Networks

[9] M. Zhang, N. Wang, Y. Li, and X. Gao, ‘‘Bionic face sketch generator,’’
IEEE Trans. Cybern., vol. 50, no. 6, pp. 2701–2714, Jun. 2020, doi:
10.1109/TCYB.2019.2924589.

[10] J. Zhang, Y. Peng, and M. Yuan, ‘‘SCH-GAN: Semi-supervised cross-
modal hashing by generative adversarial network,’’ IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 489–502, Feb. 2020, doi: 10.1109/TCYB.2018.2868826.

[11] M. Robin, J. John, and A. Ravikumar, ‘‘Breast tumor segmenta-
tion using U-NET,’’ in Proc. 5th Int. Conf. Comput. Methodolo-
gies Commun. (ICCMC), Apr. 2021, pp. 1164–1167, doi: 10.1109/
ICCMC51019.2021.9418447.

[12] J.-Y. Kim and S.-B. Cho, ‘‘Obfuscated malware detection using deep
generativemodel based on global/local features,’’Comput. Secur., vol. 112,
Jan. 2022, Art. no. 102501, doi: 10.1016/j.cose.2021.102501.

[13] A. Antoniou, A. Storkey, and H. Edwards, ‘‘Data augmentation generative
adversarial networks,’’ 2017, arXiv:1711.04340.

[14] S. Harini and A. Ravikumar, ‘‘Effect of parallel workload on dynamic
voltage frequency scaling for dark silicon ameliorating,’’ in Proc. Int.
Conf. Smart Electron. Commun. (ICOSEC), Sep. 2020, pp. 1012–1017,
doi: 10.1109/ICOSEC49089.2020.9215262.

[15] A. Ravikumar and H. Sriraman. (2023). Acceleration of Image
Processing and Computer Vision Algorithms. Handbook of Research
on Computer Vision and Image Processing in the Deep Learning
Era. Accessed: Nov. 21, 2022. [Online]. Available: https://www.igi-
global.com/chapter/acceleration-of-image-processing-and-computer-
vision-algorithms/www.igi-global.com/chapter/acceleration-of-image-
processing-and-computer-vision-algorithms/313986

[16] M. Li, ‘‘Scaling distributed machine learning with the parameter server,’’
in Proc. Int. Conf. Big Data Sci. Comput., Aug. 2014, pp. 583–598, doi:
10.1145/2640087.2644155.

[17] J. Dean, ‘‘Large scale distributed deep networks,’’ in Proc. Adv. Neu-
ral Inf. Process. Syst., F. Pereira, C. J. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates,
2012, pp. 1–9. [Online]. Available: https://proceedings.neurips.cc/paper/
2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[18] M. Abadi, ‘‘TensorFlow: A system for large-scale machine learning,’’ in
Proc. Osdi, vol. 16, 2016, pp. 265–283.

[19] M. Abadi, ‘‘TensorFlow: Large-scale machine learning on heterogeneous
distributed systems,’’ 2016, arXiv:1603.04467.

[20] T. Jia, H. Chen, and J. Tang, ‘‘A research on generative adversarial
network algorithm based on GPU parallel acceleration,’’ in Proc. Int.
Conf. Image Video Process., Artif. Intell., Nov. 2019, pp. 397–404, doi:
10.1117/12.2539238.

[21] T. Karras, S. Laine, and T. Aila, ‘‘A style-based generator architecture for
generative adversarial networks,’’ 2018, arXiv:1812.04948.

[22] W. Wang, ‘‘Detection of SARS-CoV-2 in different types of clinical speci-
mens,’’ J. Amer. Med. Assoc., vol. 323, no. 18, pp. 1843–1844, 2020, doi:
10.1001/jama.2020.3786.

[23] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, ‘‘Mixed
precision training,’’ 2017, arXiv:1710.03740.

[24] Y. Zhang, F. Mueller, X. Cui, and T. Potok, ‘‘Large-scale multi-
dimensional document clustering on GPU clusters,’’ in Proc. IEEE Int.
Symp. Parallel Distrib. Process. (IPDPS), Apr. 2010, pp. 1–10, doi:
10.1109/IPDPS.2010.5470429.

[25] Y. Kim, H. Choi, J. Lee, J.-S. Kim, H. Jei, and H. Roh, ‘‘Efficient large-
scale deep learning framework for heterogeneous multi-GPU cluster,’’
in Proc. IEEE 4th Int. Workshops Found. Appl. Self* Syst. (FAS*W),
Jun. 2019, pp. 176–181, doi: 10.1109/FAS-W.2019.00050.

[26] MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes
and Chris Burges. Accessed: Jun. 16, 2022. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[27] The Acceleration Cloud | Genesis Cloud. Acceleration Cloud |
Genesis Cloud. Accessed: Jun. 16, 2022. [Online]. Available:
https://www.genesiscloud.com/

[28] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan,
D. Kalamkar, B. Kaul, and P. Dubey, ‘‘Distributed deep learning using
synchronous stochastic gradient descent,’’ 2016, arXiv:1602.06709.

[29] Performance Analysis of Data Parallelism Technique in Machine
Learning for Human Activity Recognition Using LSTM.
Kyung Hee University. Accessed: Jun. 24, 2022. [Online].
Available: https://khu.elsevierpure.com/en/publications/performance-
analysis-of-data-parallelism-technique-in-machine-lea-2/fingerprints/

[30] H. K. Omar and A. K. Jumaa, ‘‘Distributed big data analysis using spark
parallel data processing,’’ Bull. Electr. Eng. Informat., vol. 11, no. 3,
pp. 1505–1515, Jun. 2022, doi: 10.11591/eei.v11i3.3187.

[31] NVIDIA Collective Communications Library (NCCL) | NVIDIA Devel-
oper. Accessed: Jun. 16, 2022. [Online]. Available: https://developer.
nvidia.com/nccl

[32] A. Ravikumar, ‘‘Non-relational multi-level caching for mitigation of
staleness & stragglers in distributed deep learning,’’ in Proc. 22nd
Int. Middleware Conf., Doctoral Symp., Dec. 2021, pp. 15–16, doi:
10.1145/3491087.3493678.

[33] M. Lupión, J. F. Sanjuan, and P. M. Ortigosa, ‘‘Using a multi-GPU node
to accelerate the training of Pix2Pix neural networks,’’ J. Supercomput.,
vol. 78, no. 10, pp. 12224–12241, Jul. 2022, doi: 10.1007/s11227-022-
04354-1.

[34] A. Ravikumar and H. Sriraman, ‘‘A novel mixed precision distributed TPU
GAN for accelerated learning curve,’’ Comput. Syst. Sci. Eng., vol. 46,
no. 1, pp. 563–578, 2023, doi: 10.32604/csse.2023.034710.

[35] A. Ravikumar and H. Sriraman, ‘‘Real-time pneumonia prediction using
pipelined spark and high-performance computing,’’ PeerJ Comput. Sci.,
vol. 9, Mar. 2023, Art. no. e1258, doi: 10.7717/peerj-cs.1258.

[36] A. Ravikumar, H. Sriraman, P. M. S. Saketh, S. Lokesh, and A. Karanam,
‘‘Effect of neural network structure in accelerating performance and accu-
racy of a convolutional neural network with GPU/TPU for image analyt-
ics,’’ PeerJ Comput. Sci., vol. 8, p. e909, Mar. 2022, doi: 10.7717/peerj-
cs.909.

[37] A. Ravikumar, H. Sriraman, S. Lokesh, and P. M. S. Saketh, ‘‘Identifying
pitfalls and solutions in parallelizing long short-term memory network
on graphical processing unit by comparing with tensor processing unit
parallelism,’’ in Inventive Computation and Information Technologies,
S. Smys, K. A. Kamel, R. Palanisamy, Eds. Singapore: Springer, 2023,
pp. 111–125.

[38] A. Ravikumar and H. Sriraman, ‘‘Attenuate class imbalance problem for
pneumonia diagnosis using ensemble parallel stacked pre-trained mod-
els,’’ Comput., Mater. Continua, vol. 75, no. 1, pp. 891–909, 2023, doi:
10.32604/cmc.2023.035848.

ASWATHY RAVIKUMAR received the B.Tech.
and M.Tech. (Hons.) degrees from the University
of Kerala, in 2013. She is currently pursuing the
Ph.D. degree with the Vellore Institute of Technol-
ogy, Chennai, India. From 2013 to 2020, she was
an Assistant Professor with the Mar Baselios Col-
lege of Engineering and Technology, Kerala. Since
2020, she has been a Research Associate with
the Vellore Institute of Technology. Her research
interests include machine learning, deep learning,

cloud computing, and high-performance computing. She is a member of
ISTE, CSI, ACM, and SCRS.

HARINI SRIRAMAN (Member, IEEE) was born
in Chennai, India. She received the B.E. degree in
computer science from the University of Madras,
in 2003, the M.E. degree in computer science from
the College of Engineering, Guindy, in 2009, and
the Ph.D. degree in computer science engineering
from the Vellore Institute of Technology, Chennai,
in 2018. She is currently an Associate Professor
with the Vellore Institute of Technology. She has
12 years of teaching experience and one year of

industrial experience. She has published more than 20 articles in reputed
international journals, conferences, and book series. Her research interests
include hardware architectures for accelerated computing, distributed deep
learning, and parallel and distributed systems.

VOLUME 11, 2023 45571

http://dx.doi.org/10.1109/TCYB.2019.2924589
http://dx.doi.org/10.1109/TCYB.2018.2868826
http://dx.doi.org/10.1109/ICCMC51019.2021.9418447
http://dx.doi.org/10.1109/ICCMC51019.2021.9418447
http://dx.doi.org/10.1016/j.cose.2021.102501
http://dx.doi.org/10.1109/ICOSEC49089.2020.9215262
http://dx.doi.org/10.1145/2640087.2644155
http://dx.doi.org/10.1117/12.2539238
http://dx.doi.org/10.1001/jama.2020.3786
http://dx.doi.org/10.1109/IPDPS.2010.5470429
http://dx.doi.org/10.1109/FAS-W.2019.00050
http://dx.doi.org/10.11591/eei.v11i3.3187
http://dx.doi.org/10.1145/3491087.3493678
http://dx.doi.org/10.1007/s11227-022-04354-1
http://dx.doi.org/10.1007/s11227-022-04354-1
http://dx.doi.org/10.32604/csse.2023.034710
http://dx.doi.org/10.7717/peerj-cs.1258
http://dx.doi.org/10.7717/peerj-cs.909
http://dx.doi.org/10.7717/peerj-cs.909
http://dx.doi.org/10.32604/cmc.2023.035848

