
Received 31 March 2023, accepted 1 May 2023, date of publication 8 May 2023, date of current version 11 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3274202

A Fast and Generalized Broad-Phase Collision
Detection Method Based on KD-Tree Spatial
Subdivision and Sweep-and-Prune
JIAQI CAO AND MONAN WANG
School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 230103, China

Corresponding author: Monan Wang (mnwang@hrbust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61972117, and in part by the
Natural Science Foundation of Heilongjiang Province of China under Grant ZD2019E007.

ABSTRACT Various graphics applications use multibody collision detection, a critical technology in
computer graphics, system simulations, and virtual reality. In these simulation environments, broad-phase
collision detection, as part of collision detection, plays a critical role in ensuring that rejecting disjoint objects
and collision detection is accelerated. Few existing methods implement collision detection of millions of
objects in a general-purpose environment on the CPU. This paper proposes a broad-phase collision detection
algorithm based on KD-Tree spatial subdivision and sweep-and-prune, which optimizes and accelerates
broad-phase collision detection using a pre-sorting and temporal inference solution. Our method enables
broad-phase collision detection for coherent and non-coherent settings for uniformly and non-uniformly
sized objects respectively. Based on our proposed solution is tested in the context of complex scenarios
and compared with other solutions available in the literature and in the industry. The experimental results
show that our approach has a 1X to 2X performance improvement in virtual environments with up to
1024 × 103 objects, reaching the fastest collision detection speed of 119.45 milliseconds per frame in the
test environment.

INDEX TERMS Collision detection, KD-tree, spatial subdivision, sweep and prune.

I. INTRODUCTION
Many computer graphics, animation, and visualization appli-
cations include different forms of multibody or n-body sim-
ulation. The core of the collision detection (CD) module is
an essential part of the solid illusion of digital objects. On the
other hand, it is one of the most time-consuming phases of the
pipeline. The CD is usually the main performance bottleneck
of physics-based computer simulations. Simulators need to
check not only for potential primitive overlap between object
pairs but also for many self-collisions within each model.
This challenge is also encountered in other areas, such as
haptics, robotics, and manufacturing. The performance of
physics simulations is essential for computer animation’s
real-time and interactive nature. Therefore, many physics
libraries use various techniques to accelerate the CD and

The associate editor coordinating the review of this manuscript and

approving it for publication was Charalambos Poullis .

response steps, such as bounding volume hierarchies (BVH),
spatial subdivision, sweep and prune (SAP), and GPU accel-
eration [1]. A particularly challenging and critical feature in
large-scale scenarios is the ability to detect collisions in real
time.

One of the most common ways to implement a collision
system is to divide the process into two or even three stages
[2]. The first one, Broad Phase, aims to analyze all objects
in the scene, select pairs likely to collide and discard other
objects. This phase uses simplification techniques to improve
the overall performance of the application process, which
is essential to speed up the whole process, especially when
there are many objects in the scene. The second phase, called
the Narrow phase, aims to test the object pairs found in
the previous phase by applying a more robust and accurate
method. The third phase (optional) is the Exact Phase, where
the computation is performed at the vertex level to obtain
higher accuracy.

44696
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-7843-95587
https://orcid.org/0000-0003-0927-6487
https://orcid.org/0000-0001-5666-5026

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

There are many algorithms dedicated to each stage. Many
of these algorithms are only recommended for specific sce-
narios, hindering a fair performance comparison between
them. Therefore, it is crucial to choose efficient and specific
algorithms to perform for the scenarios. This problem is more
prominent in multimedia application processes such as digital
games and interactive simulations, where multiple execution
scenarios may exist in addition to managing CPU threads and
memory resources. In this paper, we focus only on broad-
phase CD.

The broad-phase CD outputs a list of objects close enough
to possible collisions by fast-speed approach detection; false
global intersection detection is generally handled by shape
simplification, spatial reasoning, and temporal reasoning.
Shape simplification completely constrains each object with
simple geometric elements, providing fast intersection check-
ing. If the bounding volume of an object does not inter-
sect, we can reject this object safely. Axis-aligned bounding
boxes(AABB) [3], spheres [4], [5], oriented bounding boxes
[6], and K-discrete oriented polygons [7], [8] are commonly
used. Although simplified shapes act locally on each object,
spatial reasoning works on the whole, reasoning about the
distribution of objects and identifying relationships between
them, such as clusters, separating axes, and order. Typically,
this is achieved by using spatially partitioned data struc-
tures, spatial ordering, or hashing. Finally, temporal infer-
ence involves leveraging prior knowledge in the simulation
and predicting its future behavior, such as identifying static
objects, reusing computations and structures from previous
frameworks, or even inferring trajectories to predict colli-
sions. The more coherent the simulation, the more opportu-
nities for temporal inference exist.

Modern broad-phase algorithms use all three techniques to
achieve competitive performance. However, despite the fast
broad-phase algorithms, most solutions tend to perform well
in a few specific scenarios and fail to deliver the promised
performance in several others. For example, game-oriented
solutions typically assume that most objects are static and
are therefore optimized for consistency. However, incon-
sistent behavior can come from player behavior and will
result in severely degraded performance. Adaptive or generic
solutions will provide consistent performance across multi-
ple application domains and better handle these behavioral
changes. Typically, the efficiency of CD algorithms is related
to the number of objects involved in a 3D scene, and the algo-
rithm’s efficiency decreases significantly as the number of
objects increases. Therefore, detecting possible intersection
pairs between multiple objects in real-time frequency is often
tricky.

On the other hand, most existing CD algorithms mainly
deal with the case where the number of objects remains
constant, while the actual number of objects involved in
CD is often uncertain. In order to adapt to the more gen-
eral situation, a robust algorithm needs to respond imme-
diately to the above-mentioned special events. Therefore,
making the algorithm meet the requirements and perform

CD efficiently in unconventional situations becomes another
challenge.

This paper proposes a scalable broad-phase CD method to
simulate the generic building block for simulating millions of
objects. The main contributions of our work are as follows:
We adopt a spatial subdivision scheme based on KD-Tree
that can handle CDs between objects of non-uniform sizes,
coherent and non-coherent distribution; We combine it with
an improved SAP algorithm to achieve good rejection; In
addition, we use a storage scheme of a shared, linked list to
pre-sort all objects before constructing the KD-Tree, which
enables faster creation of the KD-Tree and also avoids the
complex sorting steps of the SAP algorithm; Meanwhile,
we also introduce temporal inference to divide dynamic
objects and static objects to avoid meaningless CD between
static objects. We test the complete solution with more than
one million simulated objects in different scenarios. The
results show that our solution is significantly competitive in
the environment with a large number of simulated objects,
and its average performance is 1 to 2 times higher than other
excellent solutions.

II. RELATED WORK
Over the years, continuously improved CD techniques have
gained several enhancements in algorithms and spatial data
structures. According to the characteristics of the data they
process, they can be divided into broad and narrow phases.
The broad-phase stage is to avoid too many object queries
entering narrow-phase CD, which leads to a long time and
computational overload of CD. The methods that can be
applied to the broad phase are BVH [9], spatial subdivision
[10], [11], and SAP [12], [13]. Games, computer animation,
and 3D interactive simulations require broad-phase, practical,
and faster CD algorithms. The narrow phase determines the
exact collision information after the broad-phase stage to
identify potential collision objects, which can later calculate
the penetration depth and collision deformation. The meth-
ods that can be applied to the delicate detection phase are
distance field [14], [15], [16] and CD based on inter-triangle
patches [17], [18]. Applications such as fabric simulation and
virtual surgery often require stable and accurate narrow-phase
CD algorithms.

These CD techniques are highly applicable and have good
performance results in the areas where they are applied, and
some researchers have reviewed them in reviews [1], [19].
For generic CD methods, such as Bullet Physics [20], PhysX
[21], or the Computational Geometry Algorithms Library
[22], which are open-source physics engine libraries, their
performance is not very good. Their methods are based on
stability and overall performance considerations, and their
CD methods will not be very accurate, with problems such
as false positives and misses. Their methods can achieve the
performance requirements only when performing CD on a
small number of objects; when the number of objects in the
environment rises, their CD performance tends to decline
exponentially.

VOLUME 11, 2023 44697

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

Some researchers use a combination of spatial subdivi-
sion and SAP solutions for broad-phase CD. The spatial
subdivision divides the space into different regions and tests
whether objects intersect in the same region. This methodwill
significantly reduce the time for combined testing, and spatial
subdivision captures the concept of geometric coherence,
where objects occupying the same space will form possible
collision pairs. Other competing algorithms that can be used
to determine the similar spatial ordering of objects typically
rely on spatial subdivision using data structures such as BSP
trees [23], [24], KD-Tree [25], octrees [26], and BVH [9].
Segmentation methods based on uniform grids [27], [28],
hierarchical grids [29], and spatial hashing [11], [30] have
also proven useful. These techniques are designed to locate
collision searches for performance. Uniform segmentation is
the simplest but severely reduces its effectiveness when using
objects with significant variations in size [31].

Weller et al. [11] used spatial hashing for spatial sub-
division, which does not require complex data structures
(such as octrees or BSP trees), does not rely on the uniform
size of primitives and uniform distribution of primitives,
and applies to deformable or even topologically changing
objects. Wei et al. [10] used a hybrid representation based on
boundary volumes and spatial subdivision, aiming to gen-
erate tighter mutually exclusive boundary volumes in the
preprocessing phase and to quickly reject irrelevant nearby
objects in the broad phase to ensure narrow phase CD does
not overload the tactile detection method.

We use KD-Tree in this paper, one of the hierarchical data
structures commonly used in ray-tracing algorithms. It is a
particular case of the BSP trees that recursively divides the
space using a plane perpendicular to the axes of the coordinate
system, and each internal node of the tree has a defined sepa-
ration plane that creates two separate half-spaces. The left and
right children of the original node of the tree contain these
two half-spaces and redistribute object primitives (such as
triangles). Those objects spanning the separation plane must
be assigned to the two child objects. For a detailed description
of the KD-Tree, refer to [32]. Serpa et al. [25], [33] used
KD-Tree to accelerate broad-phase CD, which can effec-
tively handle CD between non-uniformly sized primitives,
and its performance is equally suitable for CD of uniform-
sized primitives. Their solution optimizes a wide range of
object distributions, motion coherence, and different object
sizes of collision detection; however, it uses an array to store
primitives, which will seriously affect its performance when
adding or removing a large number of primitives.

The SAP algorithm, first proposed by [34], performs sort-
ing using an insertion sort in O (n) time under the assump-
tion that the array is almost sorted. However, when tempo-
ral coherence is lost, sorting becomes a major bottleneck.
In addition, in large-scale simulation, the number of false
positives along the sweep axis will increase in a super-linear
manner, resulting in unacceptable performance failures [35].
Tracy et al. [36] introduce a new segmented interval list
structure that allows for inserting and removing primitives

without the need for an entire axis. The algorithm suits large
environments where many objects cannot move simultane-
ously. Liu et al. [37] alleviate the huge density along the
sweep axes by using principal component analysis to select
the optimal sweep direction, coupled with spatial segmen-
tation to reduce false positive overlaps further. The parallel
SAP algorithm used by Capannini et al. [12] for fast CD,
propose a two-axis sweep-based method with a parallel SAP
algorithm and a concise cache-friendly tree structure. It has
good performance with multi-core performance and also tests
the device’s computational power.

Several researchers have used GPUs for CD acceleration,
but most methods are based on uniform meshes [27], [28],
[36], [37] and octrees [26], which only apply to modern
desktop computers and not to portable mobile devices. Also,
they rely on the relatively uniform distribution of collision
primitives in space; their CD of non-uniformly sized primi-
tives is also more challenging. Wang et al. [38] subdivided
the large triangle into multiple sub-triangles to deal with the
collision detection of non-uniformly sized primitives. Later,
Wong et al. [26] adopted the octree mesh approach to handle
CDwith uneven distribution of primitives in the environment.
Due to the processing requirements of computer hardware,
it is not suitable to use GPUs to accelerate algorithms with
hierarchical structures such as binary trees, and because of
its parallelism requirements, the use of binary trees cannot
achieve load balancing well [1].

III. KD-TREE-BASED SPATIAL SUBDIVISION METHOD
In virtual environments with a large number of objects,
the SAP collision detection method is more efficient, but
it is impractical to sweep all objects simultaneously, and
its workload is tremendous; it requires high storage space
and high computational power. In such large-scale virtual
environments, we often use spatial subdivision schemes; KD-
tree is a structure that allows positioning the segmentation
in any direction. Since objects within different cells in the
workspace subdivision cannot collide, these objects do not
require any further cross-detection. It dramatically reduces
the redundant CD computation. We use the KD-Tree-based
spatial subdivision method and combine it with the SAP algo-
rithm for implementing CD with a large number of objects
environment, significantly reducing the SAP method’s com-
putational overhead.

A. CONSTRUCTION OF THE KD-TREE
A good construction of KD-Tree can significantly improve
the performance of subsequent SAP. Hybrid methods use
a ‘‘superstructure’’ based on a spatial subdivision method,
usually a simple grid in which each cell is an instance
of sweeping and pruning operating on a portion of the
space. The ‘‘superstructure’’ using the KD-Tree-based spatial
subdivision method is a binary tree structure similar to a
BSP tree, whose division in 3D space consists of a plane,
an axis-aligned bounding box (AABB), and a list of objects.
In general, we use the basic structure of AABB for collision

44698 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

detection. Although the sphere bounding box has a lower
computational cost, the result is worse than AABB regarding
rejection efficiency. The separation plane of KD-Tree is the
axis-aligned plane that subdivides the space into two uneven
halves, its AABB is the region separated by all the planes of
the node’s ancestors, and finally, the object list is a list of all
objects within the node. Although a leaf node has no planes,
the root node has an arbitrarily large AABB because it has no
ancestors used to separate it. By subdividing the set of objects
into groups, the tree provides enough information to assert
that there are no conflicts between objects in different tree
branches.

KD-Tree are usually constructed recursively in a top-down
manner. There are two critical operations in constructing
KD-Tree: one is to select the dividing dimensions, and the
other is to select the exact location of the separation plane.
In choosing the splitting dimension, the dimension with the
most considerable variance or themost extensive dispersion is
generally recommended because such a choice can divide the
search space more evenly [39]. For selecting the separation
plane location, the median value in the data structure is
generally chosen as the location of the separation plane to
achieve an equal amount of data in the left and right subtrees
and construct a relatively balanced KD-Tree. The process of
KD-Tree construction on the data requires frequent sorting
algorithms to find the median point in the data; this increases
the time to read the data during the construction process.

We use the pre-sorting algorithm in this paper [39] and
[40], which uses a top-down width-first search algorithm
to create the balanced KD-Tree. Before creation, the entire
partition is quickly ordered in three-dimensional directions
(e.g., in the direction of the x, y, and z axes in the Cartesian
coordinate system) with a time complexity of O (n log n).
At the same time, we create a shared multiple linked list that
is shared throughout the creation of KD-Tree, and there are
three pointer fields in the multiple linked lists. These three
pointer fields store the ordered bounding box structure in the
direction of the three Cartesian coordinate axes.

We choose the dimension with the most considerable dis-
persion in the three-dimensional directions in the whole par-
tition, assuming that the largest dimension is the x-axis in the
Cartesian coordinate system, and split in this dimension first.
Then split in the direction of the second largest dispersion
(assuming that this dimensional direction is the y-axis in
the Cartesian coordinate system) and the direction of the
most negligible dispersion (assuming that this dimensional
direction is the z-axis in the Cartesian coordinate system) in
turn. Assuming that the ordered linked list is arranged from
the smallest to the largest, primitives smaller than the median
belong to the left subtree, while primitives larger than the
median belong to the right subtree (this paper uses this rule).
The time complexity of selecting the median point is O (1).
In the splitting of the second largest dimension (the dimen-
sional direction of the y-axis), the data elements belonging to
the left and right subtrees are selected from the shared second
largest dimension, respectively, with a time complexity of

O (1). The splitting of the partitions is carried out sequentially
until reaching the specified number of subdivision spaces,
assuming controlling the number of primitives in each sub-
division space as T ; for a collision detection environment
with n primitives, subdivide a spatially complete binary tree
whose number of spatial subtrees is 2

(
n
/
2T + 1

)
. A perfect

KD-Tree structure makes the number of primitives in each
subdivision space more uniform to achieve a more balanced
load of the SAP algorithm in different spaces and to achieve
the most optimal computational effect when implemented in
parallel.

Taking the construction of a KD-Tree in two-dimensional
space as an example, Fig. 1 shows the schematic diagram
of its creation result. In the process of creating the KD-
Tree, there will be cases where the center of the bounding
box happens to be on the separation plane, and then always
choose to place this bounding box in the left node; For the
case where the bounding box intersects the separation plane,
choose the region where the centroid of the bounding box
belongs to as its note space. The above two cases may lead
to false negatives, such as where a bounding box intersects
the separation plane and is divided into either subinterval but
crosses contact with a bounding box in the other subinterval.
For such a case, the following subsection will detail the
solutions to avoid false negatives.

B. UPDATE TO THE KD-TREE
The goal of the tree update algorithm is to update the shared
ordered linked list and optimize the objects configuration
of KD-Tree when the positions of the objects are updated.
Changes in the KD-Tree due to object movement must be
performed very efficiently and maintain a certain topology.
Moreover, they can only be performed within a certain time-
critical update and must not lead to a degradation of the
structure to an irrecoverable state. The best way to update is
to reconstruct, but it is computationally expensive and often
not necessary.

Since we use a shared ordered linked list, when objects
move, the shared linked list is first updated, and then the
tree structure is adjusted and optimized. When updating, the
sorted ordered linked list can easily delete and insert nodes
while maintaining its ordered state. The update of KD-Tree
is divided into two parts, updating the shared linked list and
updating the tree structure; the update of the two parts only
traverses once, the former updates the ordered linked list from
the bottom to the top, updating the disorderly state generated
by the movement of primitives to the ordered state, in which
we will introduce the temporal inference method; the latter
optimizes the tree structure from top to bottom, improving
the position distribution of the bounding boxes in the nodes,
and solves the situation of false negatives.

1) UPDATE SHARED LINKED LIST
When objects move, the spatial positions of objects change,
and their positions in the ordered linked list move. In more
detail, when the spatial positions of primitives change, the

VOLUME 11, 2023 44699

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 1. Collision detection solution for temporal inference. Only collision detections between dynamic primitives and
collision detections between dynamic primitives and static primitives are performed each time update.

original ordered linked list becomes unordered. In this pro-
cess, the regular operation of ordering the linked list is to
swap the linked list nodes. We choose to swap the value in
the node, and the position pointed by the pointer of the linked
list does not change. When we update in this way, we directly
perform quick sorting on the shared linked list. This operation
avoids the node update of the linked list during the creation
process, that is, it does not need to judge the partition of the
child node again. In this way, we do not need to update the
separation planes of the KD-Tree, and the separation plane
is an abstract flat position space, whose specific position is
determined by the position of the bounding box at themedian.

Moving an object or a group of objects from one node to
another node does not change the space size of the ordered
linked list, and its time complexity is O(n log n). In this
process, we use a bottom-up traversal method to sort the
shared linked list; We also introduce the method of temporal
inference for determining whether the primitives are moved
or not.

For our temporal inference solution, objects are classified
as static primitives or dynamic primitives by expanding the
AABB of the primitives with a small constant. The expanded
AABB is used as a numerical margin only. For each prim-
itive, at update time, the expanded AABB bounding box

44700 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

tests the received non-expanded AABB bounding box for
the next time node against the current time node of the
object. If the received AABB lies entirely within the current
expanded AABB, it can be considered static and maintain the
non-expanded AABB bounding box for the next time node,
marking the primitive as static. If not, the object is considered
dynamic and is marked. The basic idea of our temporal
inference solution is illustrated in Fig. 2, where the collision
set is marked at each time update, as shown in Fig. 2(b), the
dynamic primitives and static primitives are marked.

When performing the next SAP algorithm, only the
CDs between dynamic primitives and the CDs between
static primitives and dynamic primitives are performed. This
approach is conservative, and the study in [18] uses a similar
idea to label dynamic and static primitives, minus unneces-
sary CDs between static primitives.

2) UPDATE THE TREE STRUCTURE
The update of the tree structure adopts a top-down update
strategy and is adjusted in two main parts, the internal nodes
update and the leaf nodes update of the tree structure. The
update of both behaviors in this process is traversed only
once, and its time complexity is O(n log n).
For internal nodes: 1). When the bounding box intersects

the separation plane, the bounding box can only be at the left
or right node at the time of KD-Tree creation; if the bound-
ing box of the primitive intersecting the separation plane is
marked as a dynamic primitive, it is copied to another node
space; the bounding boxes of static primitives intersecting
the split plane are not copied; 2). Delete the bounding box
of the dynamic primitive that was copied when the previ-
ous time node was updated and no longer intersects with
the separation plane; and delete the bounding box that was
copied at the previous time node and is marked as a static
primitive at the current time node; 3). For the case that the
bounding box of the dynamic primitive in the continuous time
node always intersects with the segmentation plane, retain the
copied bounding box in the node.

For leaf nodes: The above update of internal nodes will
copy out a large number of bounding boxes of dynamic primi-
tives into the leaf nodes.When the number of bounding boxes
in the leaf nodes is greater than the set threshold, the nodes
are further subdivided until the number of bounding boxes in
the leaf nodes satisfies the threshold. The space subdivision in
this process takes the same operation of updating the internal
nodes as described above.

When updating internal nodes, the operation of copying
the bounding boxes of dynamic primitives on the separation
plane will increase the number of bounding boxes in child
nodes, especially when there are a large number of bounding
boxes intersecting with the separation plane, there will be a
large number of copied bounding boxes in the child nodes,
increasing the number of bounding boxes in the child nodes
and thus increasing the computation time of SAP. Although
some of the copied bounding boxes will be deleted during the

update, the reduction is limited. This is the optimal solution
to avoid the occurrence of false positives.

However, in our parent node, it does not increase the
number of enclosing boxes in the whole environment, i.e.,
the copying operation does not increase the number of prim-
itives in the environment. In our shared ordered linked list,
it also does not replicate nodes. The replication operation
only affects the internal nodes and leaf nodes. This method is
conservative and does not miss any collisions. But in our root
node, it does not increase the number of bounding boxes in the
whole environment, i.e., a large number of copy operations
will not increase the number of primitives in the environment.
In our shared ordered linked list, the nodes of the linked list
are not copied either. The copy operation only affects the
internal nodes and leaf nodes. This method is conservative
and does not miss any collisions.

IV. IMPROVED SWEEP AND PRUNE ALGORITHM
The solution of spatial subdivision based on KD-Tree can
significantly eliminate objects that are not in the same space,
providing a good prerequisite for the subsequent SAP algo-
rithm. After the KD-Tree is created, each leaf node forms
a small independent space, and only the bounding boxes of
primitives in each leaf node are swept and pruned, which
greatly reduces the amount of data to be processed by the
SAP algorithm. In this section, we will detail the methods
to optimize performance by improving the SAP algorithm.

A. SWEEP AND PRUNE
To determine whether two bounding boxes overlap, the algo-
rithm reduces the three-dimensional problems to three sim-
pler one-dimensional problems. The objects corresponding
to these boundary boxes overlap if and only if the intervals
of the two bounding boxes overlap in all three dimensions.
To determine which intervals of the objects along an axis
overlap, the list of the intervals is sorted.

The SAP algorithm on the one-dimensional axis [41]
is described as: project on an optimal one-dimensional
axis, which can be obtained by principal component anal-
ysis and covariance axes, to achieve the best rejection
effect on a one-dimensional axis. The specific method is
described as: Given n objects Oi in 3D, the goal of SAP
is to find all overlapping pairs of objects. Thus ={(
Oi,Oj

)
|Oi ∩ Oj ̸= ∅, 1 ≤ i ̸= j ≤ n

}
. Often, an object Oi

is a simple bounding box such as an AABB or sphere that
bounds more complicated geometry. We will assume that the
objects are simple enough to allow us to determine whether
Oi ∩ Oj ̸= ∅ in constant time. The original SAP algorithm
can be described as Algorithm 1.

If themotion of the objects is highly coherent, then step 2 in
this algorithm can be implemented efficiently as an insertion
sort, and step 3 can be replaced by swapping operations
between neighboring Oi. Note that step 4 becomes redundant
for spheres since the exact overlap test between spheres can
be implemented along the axial direction by comparing the
distance between the centers of two spheres with the sum of

VOLUME 11, 2023 44701

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 2. Spatial subdivision and KD-Tree construction on the two-dimensional plane.

Algorithm 1 Basic SaP Algorithm
Input: a set of bounding volume O = {O1,O2, ,On};

three coordinate axes {x, y, z};
Procedure:
Step1: Project Oi onto the x-axis, obtain 1D intervals set Ii = [mi,Mi];
Step2: Sort mi and Mi for all i, and obtain a sorted list L;
Step3: Sweep L and maintain an active list A as:

a) if mi can be retrieved in L, add Oi to A;
b) for each Oj ∈ A, add pair

(
Oi,Oj

)
to x ;

c) ifMi can be retrieved in L, remove Oi from A;
Step4: Repeat Stepl-Step3 for y-, z-axis, obtain y and z;
Step5: Report the final set of colliding pairs = x ∩ y ∩ z;
Output: pairs of interacting simple volume

their radii. Moreover, the intervals Ii are the diameters of the
spheres positioned on their projected centers.

This technique can be used as-is for small to medium
scenes, or as an operator when dealing with large to large-
scale scenes, but with less efficiency. To obtain the best

performance, the choice of sweeping axes must be care-
fully considered. Some well-known strategies include the
use of a maximum variance axis [25], approximate princi-
pal component analysis [37], and context-aware heuristics
[12]. Regarding sorting algorithms, the usual choices are

44702 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 3. The SAP algorithm on a two-dimensional plane.

Quicksort andRadixsort, the latter being often used in parallel
settings [12].

B. ALGORITHM OPTIMIZATION
We employ an optimized SAP algorithm that optimizes it
during sweeping in all three axes. In the original SAP algo-
rithm described above, the sweep is performed on the three
Cartesian axes one by one, and the amount of data processed
is relatively huge in a collision detection environment with a
large number of primitives, which greatly wastes the time of
SAP. Our improved SAP algorithm obtains potential collision
pairs after sweeping and pruning on the first axis, and when
sweeping and pruning on the other axis, only the candidate
pairs on the first axis are swept and pruned to exclude the false
positive collision pairs. Our improved SAP algorithm will
get a significant reduction in the amount of data processed.
The improved SAP algorithm on a two-dimensional plane is
shown in Fig. 3. The solution we use obtains collision can-
didate pairs in the x-axis after obtaining (O1,O4), (O1,O3),
(O3,O5) and (O2,O5), and then sweeping and pruning in the
y-axis to obtain collision pairs (O3,O5) from the candidate
pairs. It eliminates the complex computation of projecting on
the y-axis to obtain more candidate pairs (O1,O2), (O2,O3),
(O3,O4), (O3,O5), (O4,O5).
The KD-Tree-based spatial subdivision method we

described above has sorted the bounding boxes before the
creation of the KD-Tree and during the update of the KD-
Tree.We combine it with the improved SAP algorithm, which
can save further computation time for the SAP algorithm
by eliminating the sorting operation of objects during the
sweeping and pruning process.

Our improved scan pruning algorithm can be described as:

1) Obtain the objects Oi in one of the leaf nodes of the
KD-Tree;

2) Project the intervals of each object Oi onto a certain
coordinate axis, such as the x-axis in the Cartesian
coordinate system, to obtain the one-dimensional inter-
val extreme value of each object xi = [mxi,Mxi];

3) Obtain the sorted list x in the leaf note;

4) Scan the sorted list x and compare whether the mxi of
several adjacent objects satisfymxi ∈ xj; if so, it means
that the projections ofOi andOj on the x-axis coincide,
and obtain the collision pair list x of the objects on the
x-axis;

5) Project each object Oi in the obtained collision pair list
x as the objects Oi to be detected on the y-axis, repeat

the above operation, and obtain the collision pair list y
that removes some false positive collision pairs;

6) In the same way, project each object Oi in the collision
pair list y as the objects to be detected on the z-axis,
eliminate all false positive collision pairs, and obtain
the final collision pair list .

V. ALGORITHM CONTROL PIPELINE
Based on the spatial segmentation and SAP framework,
we realized an efficient and robust algorithm for multibody
CD in large-scale scenes by optimizing its control pipeline
and event management and reorganizing its core data struc-
ture. The high-level description of our algorithm in the above
two chapters facilitates the understanding of underlying con-
cepts and theoretical analysis. The actual calculation also
needs to be executed according to the pipeline of the specific
CD algorithm. During the execution of the complete solu-
tion, many operations can execute in parallel. In this section,
we describe the complete implementation of our solution.

We use a CD method based on the KD-Tree spatial subdi-
vision and the SAP algorithm. During the implementation of
the algorithm, construct the KD-Tree structure to divide the
primitives in the space into different partitions; Store each
small partition in the leaf node, and then sweep and prune
the primitives in the leaf node. Due to the massive number
of objects in space, it is difficult for the SAP algorithm to
efficiently perform CD even if they are divided into small
partitioned intervals. Therefore, in updating the KD-Tree
structure, we introduce a temporal inference scheme to divide
the objects in the space into dynamic primitives and static
primitives. We only need to perform CD between dynamic
primitives and between dynamic primitives and static prim-
itives. For our proposed CD method, Fig. 4 shows the main
control pipeline.

As we described in the pipeline, all primitives are pre-
sorted, and then the KD-Tree construction, update, and paral-
lel sweep-and-prune operations are performed, with all events
executed in chronological order. According to the event pri-
ority, the KD-Tree update and sweep-and-prune events are
executed at each time iteration update. There are steps in
the algorithmic control pipeline that are repetitive tasks that
can be implemented using parallel multithreading, such as
parallel sorting of k-dimensional (i.e., three-dimensional)
data, constructing KD-Tree, and sweeping and pruning. In the
pipeline of updating the KD-Tree, the process of temporal
inference and optimization of the tree structure, whichmainly
updates the primitives within the leaf nodes of the tree struc-
ture, can be achieved by assigning a thread to each leaf node
for parallel processing. The sweeping and pruning operation

VOLUME 11, 2023 44703

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 4. Control pipeline of our solution.

is performed only on the primitives within each leaf node,
which can similarly be implemented by assigning one thread
to each leaf node for parallel processing. We describe our CD
method in detail in Algorithm 2.

In the step of obtaining the expanded interval extrema
in our Algorithm 2, after temporal inference, the expanded
extrema

[
m′kj,M

′
kj

]
is calculated as:

M ′kj =
Mkj (1+ ε)+ mkj (1− ε)

2
(1)

m′kj =
Mkj (1− ε)+ mkj (1+ ε)

2
(2)

where k denotes the projected axis, and the specific projection
axis of k is determined by the direction of the maximum
dispersion of the grandparent node of the leaf node, k ∈
{x, y, z}; ε denotes the expansion factor, which depends only
on the object’s size. If µ is the average object size, then we
can use ε = µ/100 as the default value;

[
mkj,Mkj

]
denotes

the extreme value of the projection of objects on the k-axis
before expansion.

VI. EXPERIMENTS AND RESULTS
We tested our approach on a Windows 10 device with an
Intel i7-8700 CPU, 16G RAM, and an NVIDIA GeForce
GTX 1660 GPU to evaluate our solution. In the tests, all time
measurements were measured as accurately as possible and
corresponded only to the time spent by the algorithm, with
no other tasks in the measurements.

A. IMPLEMENTATION AND BENCHMARKING RESULTS
We adopt the benchmark scheme set by Serpa et al. [25]
as the collision detection environment, design three distinct
scenarios, namely Free Fall, Brownian, and Gravity. In a
uniformly distributed environment, the Brownian scenario
illustrates a typical case that can test the algorithm’s overall
performance. We used the Free Fall scenario to examine the
algorithm’s performance when some objects are stationary;
Finally, we chose the Gravity scenario to test the algorithm
intensively. Furthermore, we test the CD time for uniformly
sized objects and non-uniformly sized objects, respectively;
The CD for uniformly sized objects uses equal size cubes
to simulate the objects to be detected, and the CD for

non-uniformly sized objects uses randomly generated sized
rectangles to simulate the objects to be detected.

Fig. 5 illustrates our test scenario, which shows the CD of
32 × 103 objects.

To verify the superiority of our solution, considering that
some newer CD methods are challenging to implement or
even we cannot repeat, we chose the following advanced CD
methods to compare and evaluate with the method proposed
in this paper:

CGAL: The CD algorithm [42] provided within the Com-
putational Geometry Algorithms Library [22], which was
initially developed by Zomorodian and Edelsbrunner [43],
uses a hybrid method of interval/segmented trees and SAP
technology. We label it as CGAL in this paper;

iSAP: A hybrid solution using mesh and SAP algo-
rithm [36], designed to handle primarily static scenarios. This
method uses a custom segmented list structure to simplify
the migration of objects between grid cells when updating
objects. We label it as iSAP in this paper;

GPUSAP: GPU-basedmesh subdivision and scan pruning
method [37], which we label GPU SAP in this paper;

KD-Tree: A SIMD-optimized hybrid algorithm of
KD-Tree and SAP [25] with a shared array data storage
approach. We label it KD-Tree in this paper.

B. PERFORMANCE
To test the performance of our approach, we tested CDs
from 1000 to 1024 × 103 uniformly sized objects, and also
from 1000 to 256 × 103 non-uniformly sized objects, sepa-
rately. We limited our analysis to the 1000 milliseconds per
frame mark to focus on the most competitive solution. Any
algorithm performing that exceeds this point can safely be
disregarded as competitive.

Fig. 6 shows the average collision ratio of Free Fall,
Brownian, and Gravity scenarios. It represents the average
ratio of collision pairs in each frame to all objects during
detection. Based on the characteristics of the benchmark we
use, there are relatively few collision pairs in the environ-
ment of Brownian; different from the environment of Free
Fall and Gravity, many objects will remain in a collision
state after falling. In calculating the average collision ratio,

44704 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

Algorithm 2 Collision Culling of Our Algorithm
Input: O = {O1,O2, ,On} // A set of AABBs

{x, y, z}
Output: //A set of collision pairs
1. Lx ← null;Ly← null; Lz← null //Establish a pre-sorting linked list
2. for each Oi ∈ O do
3. Lx ← quick sort in the x-axis //Complete the sorting of the linked list
4. . . . //The same with the other two axis
5. establish KD-Tree
6. 1, 2, 3,← leaf notes
7. end for
8. parallel execute //Execute each 1, 2, 3, in parallel
9. for each Oj in do
10. get the projection axis k //The most extensive dispersion k ∈ {x, y, z}
11. kj =

[
mkj,Mkj

]
// Obtain 1D interval extrema

12. while time iteration do //update at every time iteration
13. update Lx ,Ly,Lz
14. get ′kj =

[
m′kj,M

′
kj

]
// Get expanded interval extrema

15. update kj =
[
mkj,Mkj

]
16. if mkj <= m′kj && Mkj <= M ′kj then
17. mark as stationary Os
18. else mark as moving Om
19. optimize the leaf note // Optimize leaf nodes and

//replicate moving objects on separate planes
20. for each Om in do //Sweep and prune
21. if

(
Om,Oj

)
is overlapping in the k-axis then //m is not equal to j

22. obtain collision pairs k ←
(
Om,Oj

)
23. for each Om in k do
24. if (Om,Ok) is overlapping in k-axis then // m is not equal to j

//k-axis is any axis except the k-axis in {x, y, z}
25. obtain collision pairs k ← (Om,Ok)
26. for each Om in k do
27. if

(
Om,Ok

)
is overlapping in k-axis then

//k-axis is the last axis except for the k-axis and k-axis in {x, y, z}
28. obtain collision pairs k ←

(
Om,Ok

)
// m is not equal to k

29. end for
30. end for
31. end for
32. end while
33. end for
34. end parallel execute
35. ← colliding pairs k from all threads
36. Return:

we also count collision pairs that have been stationary but
maintain a contact state in the environment. The lower the
average collision ratio, the better the rejection efficiency of
the algorithm. In this comparison, Fig. 6 shows that the
solution we adopted has a specific improvement in rejection
efficiency and will significantly improve the efficiency of the
subsequent narrow-phase CD.

Fig. 7 shows the relationship between the number of
detected objects and the detection time of each method.
Fig.7(a), (c), and (e) show the CD performance for uni-

formly sized objects; Fig.7(b), (d), and (f) show the CD
performance for non-uniformly sized objects, respectively.
Our solution performs well in all test scenarios for differ-
ent collision detection environments; when the number of
objects in the environment is large, the advantages of our
method are more manifested. Moreover, our method has at
least 40% performance improvement compared to the best
performance of the other four, with almost 1X to 2X perfor-
mance improvement for detecting environments with more
objects.

VOLUME 11, 2023 44705

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 5. Collision detection with 32 × 103 objects in all scenes.

44706 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 6. Average collision ratio in three scenarios.

TABLE 1. Performance of uniformly sized objects in the three test environments.

Table 1 shows the time performance for uniformly sized
objects, from 1000 to 1024 × 103 objects; Table 2 shows
the time performance for non-uniformly sized objects, from
1000 to 256× 103 objects.We can see from the two tables that
our solution does not reflect the advantages of our algorithm
when the number of objects is small; when the number of
objects is high, there is a significant acceleration of detection
speed. As can be seen from the two tables, our solution does
not show the advantage of our algorithm when the number
of objects is small; when the number of objects is large, our
solution has a significant speedup.

For the environment of Brownian with a relatively uni-
form objects distribution, we can see from Fig. 6 that all
methods can show good rejection efficiency; due to a large
number of objects in the environment being in motion,

Fig. 7(a) and Fig. 7(b) shows that the performance of
iSAP and CGAL are not so good. Table 1 and Table 2
show that our method has nearly 1X performance improve-
ment in the environment of both uniform and non-uniform
objects.

Based on the uneven distribution of objects for the Free
Fall detection environment with a large number of stationary
objects, we can see from Fig. 6 that the spatial subdivi-
sion based on KD-Tree shows a good rejection efficiency.
Fig. 7(c) and Fig. 7(d) also show that the performance of
KD-Tree and ours is significantly higher than other methods.
In the environment of uniformly sized objects, our method
has a performance improvement of about 40% compared
with the best-performing method in the comparison; In the
environment with non-uniformly sized objects, our method

VOLUME 11, 2023 44707

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

FIGURE 7. Performance comparison of the broad-phase CD algorithm for the environment of uniformly sized objects (left) and
non-uniformly sized objects (right).

has nearly 1.2X speedup compared to the best-performing
method.

For themore challengingGravity environment, all methods
have a high collision ratio due to the characteristics of its

environment. From Fig. 7(e) and Fig. 7(f), we can find that
the solution of iSAP and CGAL perform worst, and the
detection time of all methods increases exponentially with the
number of objects. Nevertheless, our solution can still have

44708 VOLUME 11, 2023

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

TABLE 2. Performance of non-uniformly sized objects in the three test environments.

better performance. In the collision detection environment of
uniformly sized objects, our method has nearly 2X perfor-
mance improvement compared with other best-performing
methods; in the environment of non-uniform objects, our
method achieves nearly 80% performance improvement.

We compare the GPU-based CDmethod with our solution,
and as seen in Fig. 7, the GPU SAP method performs well
when the number of objects is small; Its performance decays
exponentially when the number of objects in the environment
increases. The performance of the GPU-based solution also
relies on the expensive data exchange between the GPU and
the CPU, and it still suffers from the high memory latency in
the GPU. In particular, reading the configuration of objects
from global memory and writing the collision results back to
global memory is still expensive due to the CUDA architec-
ture [37].

The sameCDmethods using grid-based spatial subdivision
and SAP, the GPU SAPmethod has a significant performance
improvement compared to the iSAP method. Compared
with uniformly sized objects, CDs with non-uniformly sized
objects test the algorithm’s performance and require the
support of excellent computer hardware. However, under our
hardware conditions, the performance of our solution is also
superior.

VII. CONCLUSION AND FUTURE WORK
This paper proposes a general, scalable broad-phase CD algo-
rithm with the basic technical framework of spatial subdi-
vision and SAP. It adopts the spatial subdivision solution

of KD-Tree and pre-sorts the objects before constructing
KD-Tree to facilitate the subsequent construction of KD-Tree
and faster execution of the SAP algorithm while improv-
ing the SAP algorithm; We also introduce a solution for
temporal inference to avoid sweeping and pruning between
static objects. Our solution can be applied to various col-
lision detection environments, including complex environ-
ments with unevenly distributed objects and non-uniformly
sized objects, and can achieve collision detection of more
than one million objects. Experimental results show that our
solution has similar performance to the compared methods
in environments with a small number of objects; when the
number of objects is enormous, it has up to 100.7% per-
formance improvement with the best-performing method of
the compared methods under the test conditions of typical
cases, and up to 204.0% performance improvement with the
best-performing method of the compared methods in harsher
and more complex environments improvement.

In future research, we will extend our work in several
directions. First, we are working to combine the solution of
this thesis with narrow-phase CD to maximize the CD rate
and propose a general and complete CD method. Second,
we will introduce GPUs to accelerate our solution further to
improve the CD efficiency and apply it to collision detection
of a more significant number of objects.

REFERENCES
[1] M. Wang and J. Cao, ‘‘A review of collision detection for deformable

objects,’’ Comput. Animation Virtual Worlds, vol. 32, no. 5, pp. 1–10,
Sep. 2021.

VOLUME 11, 2023 44709

J. Cao, M. Wang: Fast and Generalized Broad-Phase CD Method Based on KD-Tree Spatial Subdivision and SAP

[2] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe, ‘‘Collision detec-
tion: A survey,’’ inProc. IEEE Int. Conf. Syst., ManCybern.,Montreal, QC,
Canada, Oct. 2007, pp. 4046–4051, doi: 10.1109/ICSMC.2007.4414258.

[3] G. V. D. Bergen, ‘‘Efficient collision detection of complex deformable
models using AABB trees,’’ J. Graph. Tools, vol. 2, no. 4, pp. 1–13,
Jan. 1997.

[4] P. M. Hubbard, ‘‘Collision detection for interactive graphics applications,’’
IEEE Trans. Vis. Comput. Graphics, vol. 1, no. 3, pp. 218–230, Sep. 1995.

[5] R. de Sousa Rocha and M. A. F. Rodrigues, ‘‘An evaluation of a collision
handling system using sphere-trees for plausible rigid body animation,’’ in
Proc. ACM Symp. Appl. Comput., Mar. 2008, pp. 1241–1245.

[6] S. Gottschalk, M. C. Lin, and D. Manocha, ‘‘OBBTree: A hierarchical
structure for rapid interference detection,’’ in Proc. 23rd Annu. Conf.
Comput. Graph. Interact. Techn., 1996, pp. 171–180.

[7] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan,
‘‘Efficient collision detection using bounding volume hierarchies of
k-DOPs,’’ IEEE Trans. Vis. Comput. Graph., vol. 4, no. 1, pp. 21–36, 1998.

[8] G. Zachmann, ‘‘Rapid collision detection by dynamically aligned DOP-
trees,’’ in Proc. IEEE Virtual Reality Annu. Int. Symp., Atlanta, GA, USA,
Apr. 1998, pp. 90–97, doi: 10.1109/VRAIS.1998.658428.

[9] X. Wang, M. Tang, D. Manocha, and R. Tong, ‘‘Efficient BVH-based col-
lision detection scheme with ordering and restructuring,’’ Comput. Graph.
Forum, vol. 37, no. 2, pp. 227–237, May 2018.

[10] L. Wei, H. Zhou, and S. Nahavandi, ‘‘Haptic collision detection on disjoint
objects with overlapping and inclusive bounding volumes,’’ IEEE Trans.
Haptics, vol. 11, no. 1, pp. 73–84, Jan. 2018.

[11] R. Weller, N. Debowski, and G. Zachmann, ‘‘KDet: Parallel constant time
collision detection for polygonal objects,’’Comput. Graph. Forum, vol. 36,
no. 2, pp. 131–141, May 2017.

[12] G. Capannini and T. Larsson, ‘‘Adaptive collision culling for massive simu-
lations by a parallel and context-aware sweep and prune algorithm,’’ IEEE
Trans. Vis. Comput. Graphics, vol. 24, no. 7, pp. 2064–2077, Jul. 2018.

[13] B. Qi and M. Pang, ‘‘An enhanced sweep and prune algorithm for multi-
body continuous collision detection,’’ Vis. Comput., vol. 35, no. 11,
pp. 1503–1515, Nov. 2019.

[14] F. Liu and Y. J. Kim, ‘‘Exact and adaptive signed distance fields computa-
tion for rigid and deformable models on GPUs,’’ IEEE Trans. Vis. Comput.
Graph., vol. 20, no. 5, pp. 714–725, May 2014.

[15] D. Koschier, C. Deul, M. Brand, and J. Bender, ‘‘An hp-adaptive dis-
cretization algorithm for signed distance field generation,’’ IEEE Trans.
Vis. Comput. Graph., vol. 23, no. 10, pp. 2208–2221, Oct. 2017.

[16] H. Xu and J. Barbic, ‘‘6-DoF haptic rendering using continuous collision
detection between points and signed distance fields,’’ IEEE Trans. Haptics,
vol. 10, no. 2, pp. 151–161, Apr. 2017.

[17] H. Wang, ‘‘Defending continuous collision detection against errors,’’ ACM
Trans. Graph., vol. 33, no. 4, pp. 1–10, Jul. 2014.

[18] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha, ‘‘I-cloth: Incremen-
tal collision handling for GPU-based interactive cloth simulation,’’ ACM
Trans. Graph., vol. 37, no. 6, pp. 1–10, Dec. 2018.

[19] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, and M.-P. Cani, ‘‘Collision detection for deformable
objects,’’ Comput. Graph. Forum, vol. 24, no. 1, pp. 61–81, 2005.

[20] E. Coumans and Y. Bai. (2022). Pybullet: A Python Module for Physics
Simulation for Games, Robotics and Machine Learning. [Online]. Avail-
able: http://pybullet.org

[21] NVIDIA.NVIDIA PHYSX SDK 3.3.4 Documentation. [Online]. Available:
https://gameworksdocs.nvidia.com/PhysX/3.3/PhysXGuide/Index.html

[22] (2022). CGAL User and Reference Manual. CGAL Editorial Board.
[Online]. Available: https://doc.cgal.org/5.4.3/Manual/packages.html

[23] R. G. Luque, J. L. D. Comba, and C. M. D. S. Freitas, ‘‘Broad-phase col-
lision detection using semi-adjusting BSP-trees,’’ in Proc. Symp. Interact.
3D Graph. Games, Apr. 2005, pp. 179–186.

[24] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[25] Y. R. Serpa and M. A. F. Rodrigues, ‘‘Flexible use of temporal and spatial
reasoning for fast and scalable CPU broad-phase collision detection using
KD-trees,’’Comput. Graph. Forum, vol. 38, no. 1, pp. 260–273, Feb. 2019.

[26] T. H.Wong, G. Leach, and F. Zambetta, ‘‘An adaptive octree grid for GPU-
based collision detection of deformable objects,’’ Vis. Comput., vol. 30,
nos. 6–8, pp. 729–738, Jun. 2014.

[27] Q. Avril, V. Gouranton, and B. Arnaldi, ‘‘Fast collision culling in
large-scale environments using GPU mapping function,’’ in Proc.
Eurograph. Symp. Parallel Graph. Vis., May 2012, pp. 71–80, doi:
10.2312/EGPGV/EGPGV12/071-080.

[28] D. Barbieri, V. Cardellini, and S. Filippone, ‘‘Fast uniform grid construc-
tion on GPGPUs using atomic operations,’’ in Proc. Adv. Parallel Comput.,
Sep. 2014, pp. 295–304.

[29] W. Fan, B. Wang, J.-C. Paul, and J. Sun, ‘‘A hierarchical grid based
framework for fast collision detection,’’ Comput. Graph. Forum, vol. 30,
no. 5, pp. 1451–1459, Aug. 2011.

[30] M. T. B. H. M. Müller, D. Pomeranets, and M. Gross, ‘‘Optimized spatial
hashing for collision detection of deformable objects,’’ in Proc. VMV,
Nov. 2003, pp. 1–14.

[31] H. Mazhar, T. Heyn, and D. Negrut, ‘‘A scalable parallel method for
large collision detection problems,’’ Multibody Syst. Dyn., vol. 26, no. 1,
pp. 37–55, Jun. 2011.

[32] M. Hapala and V. Havran, ‘‘Review: Kd-tree traversal algorithms for ray
tracing,’’ Comput. Graph. Forum, vol. 30, no. 1, pp. 199–213, 2015.

[33] Y. R. Serpa and M. A. F. Rodrigues, ‘‘Broadmark: A testing framework
for broad-phase collision detection algorithms,’’ Comput. Graph. Forum,
vol. 39, no. 1, pp. 436–449, Feb. 2020.

[34] J. D. Cohen,M. C. Lin, D.Manocha, andM. Ponamgi, ‘‘I-collide: An inter-
active and exact collision detection system for large-scale environments,’’
in Proc. Symp. Interact. 3D Graph., Monterey, CA, USA, 1995, p. 189.

[35] Q. Avril, V. Gouranton, and B. Arnaldi, ‘‘Collision detection: Broad phase
adaptation from multi-core to multi-GPU architecture,’’ J. Virtual Reality
Broadcast., vol. 10, pp. 1–13, Jan. 2014.

[36] D. J. Tracy, S. R. Buss, and B. M.Woods, ‘‘Efficient large-scale sweep and
prune methods with AABB insertion and removal,’’ in Proc. IEEE Virtual
Reality Conf., Mar. 2009, p. 191.

[37] F. Liu, T. Harada, Y. Lee, and Y. J. Kim, ‘‘Real-time collision culling of a
million bodies on graphics processing units,’’ ACM Trans. Graph., vol. 29,
no. 6, pp. 1–8, Dec. 2010.

[38] T. H. Wong, G. Leach, and F. Zambetta, ‘‘Virtual subdivision for GPU
based collision detection of deformable objects using a uniform grid,’’ Vis.
Comput., vol. 28, nos. 6–8, pp. 829–838, Jun. 2012.

[39] Y. Cao, H. Wang, W. Zhao, B. Duan, and X. Zhang, ‘‘A new method to
construct the KD tree based on presorted results,’’ Complexity, vol. 2020,
pp. 1–7, Dec. 2020.

[40] R. A. Brown, ‘‘Building a balanced k-d tree in O(kn log n) time,’’ J. Com-
put. Graph. Techn., vol. 4, no. 1, pp. 50–68, 2015.

[41] D. Baraff, ‘‘Dynamic simulation of nonpenetrating rigid bodies,’’ Cor-
nell Univ., Ithaca, NY, USA, Tech. Rep., 1992. [Online]. Available:
https://hdl.handle.net/1813/7115

[42] L. Kettner, A. Meyer, and A. Zomorodian. (2022). CGAL-5.3.2
User Reference Manual. [Online]. Available: https://doc.cgal.org/5.3.2/
Box_intersection_d/index.html

[43] A. Zomorodian and H. Edelsbrunner, ‘‘Fast software for box inter-
sections,’’ in Proc. 16th Annu. Symp. Comput. Geometry, May 2000,
pp. 129–138.

JIAQI CAO was born in Harbin, China, in 1995.
He is currently pursuing the Ph.D. degree with
the Mechatronic Engineering Department, Harbin
University of Science and Technology. His
research interests include animation simulation,
image processing, and computer vision.

MONAN WANG received the B.S. and M.S.
degrees in mechatronic engineering from the
Harbin University of Science and Technology, in
1995 and 2000, respectively, and the Ph.D. degree
in automation from Harbin Engineering Univer-
sity, in 2004. From 2004 to 2007, she was an Asso-
ciate Professor. Since 2007, she has been a Pro-
fessor with the Mechatronic Engineering Depart-
ment, Harbin University of Science and Technol-
ogy. Her research interests include the simulation

of the dynamic process of bone fracture healing and computer-aided medical
treatment.

44710 VOLUME 11, 2023

http://dx.doi.org/10.1109/ICSMC.2007.4414258
http://dx.doi.org/10.1109/VRAIS.1998.658428
http://dx.doi.org/10.2312/EGPGV/EGPGV12/071-080

