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ABSTRACT The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired meta-
heuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity,
good convergence rate towards local optima, and avoiding the local optima stagnation problem to some
extent. In earlier studies, the performance of Binary BOA (BBOA) is shown to be superior to various state-
of-the-art methods in different optimization issues, such as search space reduction and solving classical
engineering problems. Here, BBOA expands the original search space with all possibilities (Exploration)
and seeks to determine the best one from all the produced solutions (Exploitation). Generally, the global
performance of BBOA depends on the tradeoff between the Exploration and Exploitation phase and hence,
produces quality solutions when a suitable tradeoff is maintained. This study introduces an improved and
computationally effective variant of conventional BBOAby improving the local search ability of the Butterfly
Optimization Algorithm. Initially, twelve binary variants were produced using three different transfer
functions (S, U, V-shaped), and solution quality is evaluated in terms of respective fitness function scores.
Next, we explored the local search ability of BOA by another recently developed optimization technique,
namely, Adaptive β−Hill Climbing, to compute quality solutions. This optimization process employed two
stochastic operators: N -operator (Neighborhood operator) and β -operator (Mutation operator) to generate
improved offspring compared to parent solutions. This phase is iteratively implemented until the desired level
of binary pattern with suitable classification accuracy is obtained. We validated the proposed approach on
twenty datasets with eleven state-of-the-art feature selection algorithms. The overall results suggest that the
proposed improvements increase the classification accuracywith fewer features onmost datasets. In addition,
the proposed approach’s time complexity was significantly reduced on eighteenth out of twenty datasets.
Moreover, the proposed method effectively balances space exploration and solution exploitation in feature
selection problems.

INDEX TERMS Butterfly optimization algorithm, classification accuracy, convergence rate, feature selec-
tion, local optima, transfer function.

I. INTRODUCTION
With the rapid growth of science and technology, a huge
amount of data is produced in different data mining appli-
cations, such as telecommunication, the banking sector, and
biological data analysis. Most often, this data is inbuilt with
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abundant noisy, irrelevant, and redundant features or dimen-
sions that reduce the performance of applied data analysis
techniques in terms of inaccurate results and high com-
putational complexity.Moreover, the conventional machine
learning approaches fail to deal with high dimensionality
because when the dimensionality increases, the space volume
increases so fast that the available data becomes sparse [1].
Therefore, it is required to determine the limited but
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informative set of features that can improve the overall per-
formance of themachine learningmodel with relatively lower
complexity and higher classification accuracy.

In many research areas, feature selection methods are
vital in improving classification accuracy with minimum
training time by selecting only a significant set of features
from the original set. Based on the information processing
standards, feature selection approaches can be broadly cat-
egorized into three classes: (1) Filter, (2) Wrapper, and (3)
Hybrid methods [2]. Filter methods employ various statistics
and information-theoretic concepts such as mutual informa-
tion, variance, information gain, and correlation to determine
the relevance of features. These methods are computationally
fast but limited by poor classification accuracy. In addition,
filter methods ignore the relevance of the dimensions as a
set while selecting a new feature. On the other hand, wrap-
per methods use a classification approach to evaluate the
significance of the selected feature subset. The performance
of these methods depends on the discrimination criteria
and working of the applied classifier, making them slow
and computationally expensive but more effective than filter
approaches.

Ultimately, hybrid methods enjoy the merits of both filter
and wrapper classes in two ways: (1) they involve the inter-
action between selected features and classifier, and (2) they
are capable of determining dependencies with a lower com-
putational cost than the wrapper methods since they do
not require to evaluate the optimal feature set iteratively.
However, finding two ormoremutually compatible and effec-
tive optimization schemes for hybridization is still a major
challenge.

Recently, multiple researchers use different approximation
algorithms to seek only optimal solutions without evaluating
the remaining alternatives. Metaheuristic techniques such as
Genetic Algorithm (GA) [3], Particle Swarm Optimization
(PSO) [4], Ant Colony Optimization (ACO) [5], Monarch
Butterfly Optimization (MBO) [6], and Grey Wolf Opti-
mizer (GWO) [7] have been already introduced in wrapper
methods to maximize classification accuracy with the mini-
mum number of features. In addition, these algorithms pro-
vide classification accuracy bounds by computing minimum
and maximum performances of all the feasible solutions.
However, these algorithms suffer from three key problems:
(1) Computationally expensive because of the involvement
of classifier and multiple optimization operators, (2) Poor
solution quality because of an inappropriate tradeoff between
the exploration and exploitation phase, and (3) Weak conver-
gence rate. These limitations affect the applied classification
approach’s overall performance and minimize the respective
algorithm’s scope in similar domains.

In recent studies, various new and improved versions of
metaheuristics have been demonstrated to solve feature selec-
tion problemswith a high feature reduction rate. For example,
Zhang et al. [8] designed a two-archive-guided multiobjec-
tive Artificial Bee Colony (ABC) to improve the original

ABC algorithm’s convergence rate and exploration abilities.
Here, two new operators: (1) Convergence-guided search for
employed bees and (2) Diversity-guided search operators,
were used to finding a set of non-dominating feature subsets.
In addition, two archives, i.e., the leader and the external
archive, are employed to enhance the search ability of differ-
ent kinds of bees. The improvements obtained better classi-
fication accuracy with a higher convergence rate and fewer
attributes. Al-Betar et al. [9] amalgamated a local search-
based β-Hill climbing optimizer with an S-shaped transfer
function to compute pleasing solutions in the feature selec-
tion problem. The performance of the proposed optimization
algorithm was compared with three local search methods
and ten metaheuristic algorithms. The obtained results indi-
cate that the developed binary optimizer outperforms other
comparative local search methods in terms of classification
accuracy on 16 out of 22 datasets.

Dhiman et al. [10] developed Binary variants of Emperor
Penguin Optimizer (BEPO) using S-and V-shaped transfer
functions to feature selection problems. They compared their
results with Binary Spotted Hyena Optimizer (BSHO) [11],
Binary Whale Optimizer (BWO) [12], Binary Dragonfly
Optimizer (BDO) [13], Binary Bat Algorithm (BBA) [14],
Binary Grey Wolf Optimizer (BGWO) [15], Binary Par-
ticle Swarm Optimizer (BPSO) [16], and Binary Gravita-
tional Search Algorithm (BGSA) [17] on twelve benchmark
datasets. The overall results concluded the superiority of the
proposed BEPO over other competitive algorithms.

Recently, a new metaheuristic algorithm, the Butterfly
Optimization Algorithm (BOA), mimics butterflies’ food
search and mating behavior to solve global optimization
problems [18].This optimizer is mainly based on the foraging
strategy of butterflies, which utilize their sense of smell to
determine the location of their mating partner. The perfor-
mance of the BOA is shown to be superior compared to
Artificial Bee Colony (ABC) [19], Cuckoo Search (CS) [20],
Differential Evolution (DE) [21], Firefly Algorithm (FA)
[22], Genetic Algorithm (GA) [3], Particle Swarm Optimiza-
tion (PSO) [4] and Monarch Butterfly Optimization (MBO)
[6] for various engineering problems. Despite various advan-
tages, BOA also suffers from drawbacks such as diminished
population diversity and the tendency to get trapped in a local
optimum. However, similar to other metaheuristics, conven-
tional BOA was limited only to continuous search space-
based problems. Earlier, various Binary variants of BOA
(BBOA) have been developed to solve discrete real-time
problems such as feature selection [50] and multidimensional
knapsack [51]. In such problems, two transfer functions: (1)
Sigmoid and (2) V-shaped were used to convert continuous
search space into a binary one. Moreover, the selection pro-
cess of the transfer functions was random, and therefore no
correlation could be developed between the performance of
both methods. These works mainly focused on instance state
transformation from continuous to binary search space and
thus lacked providing high-quality solutions during problem
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optimization. These limitations inspired us to develop a novel
hybrid variant of BOA that maximizes the metaheuristic’s
overall performance in terms of higher solution quality, better
convergence rate, local optima avoidance, and reduced com-
putational and temporal complexity.

The proposed work amalgamates the local and global
search strategy of the BOA with a recently introduced, Adap-
tive β−Hill Climbing (A − βHC) [23]. The A − βHC
optimizer is an improved version of the old βHC that itera-
tively produces an improved solution based on two operators:
(1) N -operator (Neighborhood operator) and β -operator
(mutation operator). Further, three transfer functions (S-, V-,
and U-shape) [24] are used to create twelve binary vari-
ants of BOA, and the proposed improvement was merged to
obtain optimal solutions. We validated our proposed feature
selection method on twenty publicly open datasets and three
classifiers: (1) Support Vector Machine (SVM), (2) Naïve
Bayes (NB) algorithm, and (3) Decision Tree (DT). Also,
a five-fold cross-validation approach [25] is used to quantify
classification results statistically to split the global population
into training and evaluation sets.

The main objectives of the proposed research study can be
recapitulated as follows:

I. Understanding the effect of BOA’s local/global search
ability on the exploration-exploitation tradeoff in fea-
ture selection.

II. We introduced three binary variants of conventional
BOA using transfer functions (S-, V-, and U-shape) and
evaluated the relationship between a set of three and the
A− βHC optimizer.

III. Proposing a novel approach to improve the perfor-
mance of conventional b-BOAwhile boosting offspring
quality in optimal feature subset selection.

IV. Estimating the compatibility of the proposed technique
and three different classification schemes.

V. Comparing the performance of our feature selection
and classification model with newly published state-of-
the-art algorithms.

The remaining structure of the paper is as follows:
Section II describes the working of conventional BOA, trans-
fer functions, and A − βHC technique. In Section III, the
proposed improvement strategy is explained. The experimen-
tal results and discussion are provided in Section IV. Finally,
conclusions and the future scope of the work are presented in
Section V.

II. PRELIMINARIES
This section describes three important concepts used in our
study, namely, Butterfly Optimization Algorithm (BOA),
transfer functions, and A − βHC optimizer scheme. In the
first subsection, the motivation and update strategy of BOA is
discussed. Similarly, three mathematical functions for trans-
forming a continuous problem into a binary one are covered
in the second subsection. The third subsection describes the
mathematical representation and working of the Adaptive
β−Hill Climbing scheme.

A. BUTTERFLY OPTIMIZATION ALGORITHM
Conventional Butterfly Optimization Algorithm (BOA) is
a recently proposed nature-inspired metaheuristic scheme
that mimics butterflies’ food foraging and mating behavior.
In BOA, the functioning of butterflies can be described as
follows:

1) Each butterfly emits some fragrance to attract other
butterflies towards each other.

2) Butterflies forage randomly or move towards the but-
terfly with the most fragrance value.

3) The entire concept of sensing and food search pro-
cessing depends on the produced fragrance (f ) and
three essential factors, namely, sensory modality (c),
stimulus intensity (I ), and power exponent (a). The
relationship among these factors is given in Equation 1.

f = c ∗ Ia (1)

The values of constants c and a lie between 0 and 1.
For a=1, the maximum fitness value or stimulus intensity is
obtained, while a=0 shows the minimum fragrance value that
any butterfly cannot sense. Therefore, parameter a controls
the nature of the butterfly optimization algorithm. Another
parameter is c which determines the convergence speed of
the algorithm.
In BOA, two phases, global and local search schemes, are

used to determine the food location. During the global search,
the movement toward the best butterfly position (g∗) is based
on the fitness value of the objective function score computed
by the butterfly according to Equation (2)

x t+1
i = x ti +

(
r2 × g∗

− x ti
)

× fi (2)

where x ti denotes the position vector of ith butterfly at the
time t , r is a random number distributed in the range [1,0]
and fi is the fragrance emitted by ith butterfly. In the second
scheme, local search is defined as:

x t+1
i = x ti +

(
r2 × x tj − x tk

)
× fi (3)

where x tj and x
t
k are instances of jth and kth butterflies from

the same solution space created by g∗. In this study, x tj and
x tk instances are the second and third nearest best solutions
to g∗. The selection strategy of global or local search policy
depends on the quality of the obtained best solution. This
process continues until the algorithm achieves maximum per-
formance or matches the stopping criteria. The pseudocode of
conventional BOA is given in Algorithm 1.

B. TRANSFER FUNCTION
In general, conventional metaheuristics are developed only
for continuous optimization problems. In order to explore the
scope of metaheuristics in a discrete domain, a set of mathe-
matical formulas is used. In machine learning, these formulas
are termed transfer functions and provide the probability that
the problem instance can take any discrete value from a
given range. Since feature selection is a binary optimization
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Algorithm 1 General Pseudocode of BOA
• Initialize n butterflies population positions xi (i =

1, 2, . . . , n)
• Set the initial value of parameters (switching probabil-

ity ρ, sensory modality c, power exponent a, and the
number of iterations N )

1. while not reach N do
2. for each butterfly bf in the population do
3. Compute the fragrance value f for each bf

using Eq. 1
4. end for
5. Find the best butterfly bf
6. Assign the best butterfly to g∗
7. for each butterfly bf in the population do
8. Generate a random value r over the interval [1,0]
9. if (r<ρ)

10. Update bf position by using Eq. 2
(Exploration phase)

11. else
12. Update bf position by using Eq. 3

(Exploitation phase)
13. end if Evaluate the new butterfly If the new but-

terfly is better, update it in the population
14. end for
15. Update the value of the power exponent, and variable c
16. Update the best global solution if find the better

solution
17. end while
18. Return the best solution found by the BOA

problem, transfer functions can be used to identify the most
dominating feature subset from the original ones. In the BOA,
transfer functions compute the probability of changing the
position vector from 0 to 1 and vice versa at a given instance.
In our work, three functions convert continuous search space
into a binary, namely Sigmoid, V-shape, and U-shape transfer
functions. The detailed working of all three transfer functions
is discussed in the following subsections:

1) SIGMOID VERSION OF BUTTERFLY OPTIMIZATION
ALGORITHM
As discussed above, the butterflies’ new position after a
global or local search provides continuous search space.
Therefore, this space must be transformed into correspond-
ing binary ones. This transformation is performed using a
spiral-shaped mechanism provided by the sigmoid or S-shape
function defined in Equation 4.

S
(
Fki (t)

)
=

1

1 + e−F
k
i (t)

(4)

where Fki (t) is the continuous value of the fragrance of
the ith butterfly in the k th direction at instance t . The out-
put of the sigmoid function is still a continuous value;
therefore, a threshold is fixed to compute the binary value

corresponding to S
(
Fki (t)

)
. The S-shape transfer function

transforms an infinite input space into finite output. It should
be known that the probability of changing the position vectors
increases as the slope of the sigmoid function curve rises. The
key point about the S-shaped transfer function is its ability to
restrict butterfly movement within the range of [1,0], which
makes it simple to implement and easy to transform the
infinite continuous positions into respective binary ones. The
common stochastic threshold used to obtain a binary solution
using the S-shape transfer function is given in Equation 5. The
graphical representation of the S-shaped transfer function
with four different slopes and output variation is given in
Fig. 1. (A).

Fki (t + 1) =

{
0 if rand < S

(
Fki (t)

)
1 otherwise

(5)

2) V-SHAPED VARIANT OF BUTTERFLY OPTIMIZATION
ALGORITHM
V-shape transfer functions are alternatives to Sigmoid func-
tions and require different rules for updating the positions.
For these transfer functions, the following rules

are used to update the positions of butterflies in the contin-
uous search space:

V
(
Fki (t + 1)

)
=

{
(f ki (t))

−1
if rand < V

(
Fki (t)

)
f ki (t) otherwise

(6)

where (f ki (t))
−1

indicates the complement of f ki (t) and the
remaining symbols are as same as defined in the previous
subsection. The benefit of the V-shaped transfer function
over the S-shaped is that these functions avoid locating the
butterfly position within the range of [1,0]. In other words,
they encourage butterflies to roam freely according to the
update rule (Equation 6) without restricting their movements.
Based on their shape, these rules are named V-shaped transfer
functions, and the group is termed the ‘‘V-shaped’’ family
of transfer functions. The graphical representation of the
V-shaped transfer function with four different slopes and
output variation is given in Fig. 1. (B).

3) QUADRATIC TRANSFER FUNCTION
Compared to S- and V-shaped transfer functions, the
Quadratic transfer function (Q-shaped) is relatively new and
has been successfully implemented to increase the explo-
ration ability of Particle Swarm Optimization (PSO) and
Equilibrium Optimizer [26]. Because of its shape, it is also
termed a U-shaped function. Similar to the S-shaped, the
U-shaped transfer function ensures that computed output will
remain in the specific range during the execution of the bina-
rization process. The mathematical formula of the U-shaped
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FIGURE 1. The pictorial representation of (A) The S-shaped, (B) V-shaped, and (C) U-shaped transfer function with four different slopes
and respective Variations in output.
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transfer function is given in Equation 7.

U (x) = α.|x|β (7)

T (Ux (t + 1)) =

{
1 if U (x) ≥ rand
0 otherwise

(8)

where α and θ are two control parameters that define the slope
and width of the U-shaped transfer function. The range of this
function always lies in [1,0]. If the produced transfer function
output is greater than or equal to generated random number,
then the binary state will be 1 (accepted); otherwise, it will
be 0 (rejected). Here, the accepted and rejected terms repre-
sent the inclusion and exclusion of features in a given iteration
while reducing irrelevant and redundant dimensions. It should
be noted that the performance of the U-shape transfer func-
tion is not used to monitor the performance of the binary
butterfly algorithm to date. The graphical representation of
the U-shaped transfer function with four different slopes and
output variation is given in Fig. 1. (C).

C. ADAPTIVE β−Hill CLIMBING SCHEME
In metaheuristics applications, it is crucial to improve solu-
tion quality without altering the exploration and exploitation
tradeoff. Adaptive β−Hill Climbing (AβHC) is a recently
proposed optimization scheme, an adaptive version of the
conventional βHC and HC algorithms. Hill Climbing is a
simple local search method that seeks a better solution than
the previous one. But it often gets stuck in local optima.
To resolve this limitation, βHC iteratively produces improved
solutions using two operators: (1) N− operator (Neighbor-
hood operator) and (2) β-operator. TheN– operator randomly
selects a neighborhood solution using Eq. 9.

r ′
i = ri ± U (0, 1) ∗ N∃ i ∈ [1,D] (9)

where i is randomly selected in the range [1,D], where D
refers to the dimensions of the problem and N denotes the
highest possible distance between the current solution and
its neighbor solution. β-operator is motivated by the uniform
mutation operator of the Genetic Algorithm. Here, the new
solution is assigned values either from the current solution
or randomly from the corresponding range with a probability
value β ∈ [0, 1].

r
′′

i =

{
rr ifrnd ≤ β

r ′
ielse

}
(10)

where rnd is a random number generated in the range [1,0]
and rr is another random number within the range of that
particular dimension of the problem in consideration. It is
clear that the final output of this optimization process mainly
depends on mentioned parameters β and N . The optimal
value of both parameters requires exhaustive experiments,
which are computationally expensive and time-consuming.
To resolve this overhead, AβHC expresses β and N as a
function of iteration number and given by

N (t) = 1 −
t
1
k

(total number of iteration
1
)k

(11)

where k is a constant and N (t) denotes the value of N at
iteration t . Similarly, parameter β is computed in terms of
a specific range [βmin, βmax] using Eq. 12.

β (t) = βmin + (βmax − βmin) ∗
t

total number of iterations

(12)

where β (t) denotes the value of β at iteration t . Now,
if the new solution r

′′

i (Equation 10) shows better solution
quality in terms of minimum fitness score (Equation 13),
it replaces the older one r ′

i ((Equation 9) otherwise, no change
occurs. The pseudocode of the AβHC optimization is given
in Algorithm 2.

Algorithm 2 General Pseudocode of Adaptive β−Hill
Climbing algorithm

1: Initialize βmin, βmax, and K
2: xi = LBi + (UBi − LBi) × U (0, 1), ∀i = 1, 2, . . . ,N
3: Calculate (f (x))
4: t = 0
5: while (t ≤ Max_t) do
6: x ′

= x

7: Ct =
t
1
K

Max _t
1
K

8: Nt = 1 − Ct { Adaptive N }

9: RndIndex ∈ (1,N )
10: x ′

RndIndex = x ′
RndIndex ±Nt

11: x′′
= x′

12: βt = βmin + t ×
βmax−βmin
Max _t {Adaptive β }

13: for i = 1, · · · ,N do
14: if (ra ≤ βt) then
15: x ′′

i = xk
16: end if {ra ∈ [0, 1]}
17: end for
18: if

(
f
(
x ′′

)
≤ f (x) then

19: x = x′′

20: f (x) = f
(
x′′

)
21: end if
22: t = t + 1
23: end while

III. PROPOSED METHODOLOGY
A. ENHANCED BINARY BUTTERFLY OPTIMIZATION
ALGORITHM
In this section, the proposed feature selection model is imple-
mented in two steps: In the first phase, we merged the
AβHC algorithm with three different binary variants of BOA
to maintain the required balance between exploration and
exploitation states. This step helped to obtain better solutions
in the form of a reduced feature set. While in the second
phase, a set of classifiers was applied to evaluate the effective-
ness of selected features in data classification. The detailed
work of the proposed improvement strategy is illustrated in
Fig. 2.
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FIGURE 2. Working on the proposed feature selection model.

In our study, a linear weighted fitness function with two
objectives: (1) classification error rate and (2) the relative
number of selected relevant features is used to evaluate the
quality of the computed solution. Here, the relative number
of selected features is derived by dividing the number of
selected features by the total number of available features.
The formula of the fitness function is given in Equation 13.
A lower fitness value reflects a better quality solution than a
solution with a higher fitness value.

Fitnessfunction = w1 ∗ O1 + w2 ∗ O2 (13)

where O1 and O2 indicate the classification error rate and the
relative number of selected features, respectively. In addition,
the sum of w1 and w2 is always equal to 1. Our improvement
algorithm is described below:

1) Initially, BOA-specific parameters (fragrance (f ), sen-
sor quality (c), power exponent (a)) are fixed using
a set of experiments. Initially, we used a grid
search pattern to compute the best parameter pair
(a, c) for three high-dimensional datasets (Penglungew,
TOX-17, Yale: Table 1) based on maximum classifi-
cation accuracy achieved within 100 iterations. The
details of computed parameters are listed in Table 2.
Here, the best position of a butterfly is considered by
transforming it into a binary feature vector using the

sigmoid transfer function and minimizing the respec-
tive classification accuracy error. A butterfly with min-
imum features and maximum classification accuracy is
considered the best among its neighbors.

2) The proposed algorithm executes the global and local
search ((Equation 2 and 3, respectively) using a ran-
domization procedure and switching probability (0.5).
The switching probability provides equal chances to
compute global and local solutions for the given num-
ber of iterations.

3) Three transfer functions (S, V, andQ-shape) are applied
in each iteration to realize the best binary equiva-
lent feature vector and respective average classifica-
tion accuracy is recorded. If the performance is better
than state-of-the-art algorithms, then the BOA switches
to the next iteration; otherwise, the AβHC optimiza-
tion is applied to find an improved solution. Here,
the quality of an improved and previous solution is
expressed in terms of the fitness value computed in
Equation 13.

4) The improved solution is converted into an equivalent
binary feature vector, and the classification accuracy is
computed using various classification techniques. The
pseudocode of the proposed methodology is given in
Algorithm 3.
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TABLE 1. Statistical description of twenty UCI datasets.

B. CLASSIFICATION PERFORMANCE
To evaluate the performance of the proposed improve-
ment strategy, three classifiers: (1) Support Vector Machine,
(2) Naïve Bayes, and (3) Majority voting-based ensemble
techniques are used, and their results are recorded. A short
introduction to applied classification techniques is given
below.

1) SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) [27] is a popular supervised
machine learning algorithm for classification, regression, and
outlier detection. It aims to find a maximum marginal hyper-
plane in N -dimensional feature space that distinctly discrimi-
nates the input data points. Here, the termmaximummarginal
indicates the maximum distance between data points of
both classes. Maximizing the distance provides an extent of
enforcement so that new data can be effectively placed in
the appropriate class. During distance maximization, SVM
follows the ‘‘Structural Risk Minimization’’ principle [28],
where a unique hyperplane is selected based on its resistive
behavior against the overfitting issue. Therefore, it mini-
mizes the probability of placing new or unseen data points
into the wrong class. Unlike other popular classification
methods, such as Artificial Neural Networks (ANNs), SVM
does not require large training data for learning purposes.

Also, an SVMmodel effectively deals with high-dimensional
datasets without increasing spatial complexity.

2) NaïVE BAYES
Naïve Bayes (NB) classifiers belong to a family of prob-
abilistic classifiers that work on the Bayes Theorem [29].
In simple terms, aNaïve Bayes classifier assumes strong inde-
pendence between different features available in the dataset.
When these assumptions truly hold, the Naïve Bayes classi-
fier achieves better classification accuracy with few training
data than other models such as SVM and ANNs. Naïve Bayes
classifiers are fast, memory efficient, and immune to overfit-
ting, making them a robust classification approach for noisy
data samples.

3) MAJORITY VOTING-BASED ENSEMBLE METHODS
Ensemble methods are classification techniques combining
base models to design one optimal predictive model [30].
In the voting mechanism, each classification approach pre-
dicts the class of new data observation in the form of either
vote or probability. In the case of votes, the true class
label is declared with the most votes given by all available
base models. Contrary to the voting system, the ensem-
ble estimator involves summing the predicted probabilities
(or probability-like scores) for each class label and predict-
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TABLE 2. Statistical details about parameters used in all the
state-of-the-art algorithms and proposed method.

ing the class label with the largest probability. Ensemble
methods have two main advantages over conventional clas-
sification models. They are (1) Performance: An ensemble
can make better predictions and achieve better performance
than any single contributingmodel. Robustness: An ensemble
reduces the spread or dispersion of the predictions and model
performance.

C. COMPUTATIONAL COMPLEXITY
The performance of the proposed model depends on three
major steps: (1) Raw solution computation, (2) Quality
improvement (hybridization with AβHC optimization), and
(3) classification. In the first step, three substeps: (1) BOA
execution, (2) position alteration using transfer function, and
(3) fitness function comparison are involved. In the second

Algorithm 3General Pseudocode of Proposed Feature Selec-
tion Algorithm

• Initialize n butterflies population positions xi (i =

1, 2, . . . , n)
• Set the initial value of parameters (switching probabil-

ity ρ, sensory modalityc, power exponent a, and the
number of iterations N )

1. while not reach N do
2. for each butterfly bf in the population do
3. Compute the fragrance value f for each bf using Eq. 1
4. end for
5. Find the best butterfly bf
6. Assign the best butterfly to g∗
7. for each butterfly bf in the population do
8. Generate a random value r over the interval

[1,0]
9. if (r<ρ)
10. Update bf position by using Eq. 2– (Exploration)
11. Else
12. Update bf position by using Eq. 3– (Exploitation)
13. end if
14. Transform the updated position into respective binary

vectors using S-, V-, and Q-shaped transfer functions.
15. Compute the quality of binary feature vectors using

Eq. (13) and select the best one as Updatedbest .
16. if (g∗ <Updatedbest )
17. g∗ = Updatedbest
18. Else
19. Apply AβHC optimization using N and β-

operator to improve the solution quality
20. GOTO Line 14
21. if (N = Current iteration)
22. Compute the mean classification accuracy using men-

tioned classifiers
23. Compare the results with benchmark solutions.

and third phases, AβHC techniques and classification tech-
niques are applied to determine the true class label. In BOA,
a dataset representing N butterflies and K dimensions updates
its positions in O(N ∗K ) time because each butterfly updates
its location in terms of all dimensions. Similar revisions
are performed in the position alteration phase, where three
transfer functions were applied. The complexity of this phase
will be the same as BOA execution and equal to O(N ∗ K ).
ForN butterflies or solutions, the fitness function comparison
and best solution estimation will take O(N ) time.
In the second phase, the quality of N solutions is improved

using the AβHC method. The analysis of this shows that
the worst-case complexity of the hybridization process is
O(Number of iterations ∗ (N ∗ tfitness + K )) where tfitness
is the time required for calculating the fitness value using
a given classifier. So, the overall complexity of the pro-
posed model can be represented as the sum of all the
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mentioned steps, which can be given as O[((N ∗ K ) +(N )
+ (Number of iterations ∗ (N ∗ tfitness + K ))].

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate the performance of the proposed
model on twenty standard datasets taken from the University
of California Irvin (UCI) repository [31] and compare it with
eleven state-of-the-art feature selection algorithms. It should
be known that results corresponding to all baseline meth-
ods are directly taken from a recently published article [1].
This section is structured as follows: experimental setup and
dataset description are given in subsections IV. A and IV.B,
respectively. Subsection IV-C consists of measuring criteria
to evaluate the performance of the proposed model. Finally,
the result analysis and their comparison with the baseline fea-
ture selection approaches are described in subsection IV-D.

A. DATASETS DESCRIPTION
Twenty high-dimensional datasets from different research
domains are used to validate the proposed enhanced bBOA
algorithm. The details of selected datasets are given in
Table 1 as the number of classes, categories, samples,
and features. Each dataset contains various characteristics
in the context of attributes and sample size. For exam-
ple, Penglungew, TOX-171, and Yale are high-dimensional
(>300) datasets with fewer samples. Therefore, a proper
cross-validation scheme is used to avoid the overfitting issue
caused by the three datasets mentioned above. Similarly,
CTG, Libras, OBS-Network, TOX-171, Vowel, Waveform,
and Yale are multiclass (>2) datasets. All datasets are nor-
malized before applying the IFS-DBOIMmethod. The exper-
imental results are computed on Matlab 2019b on a laptop
with an Intel®Core™i3 Processor, 4.2 GHz CPU frequency,
8 GB memory, and 1 TB secondary storage with a Windows
10 operating system.

B. EXPERIMENTAL SETUP
In our work, a five-fold cross-validation scheme is applied
to each dataset to test the effectiveness of the proposed
methodology and avoid overfitting issues. In other words, the
datasets are divided into training and testing data samples in
the following manner. In the first iteration, 80% of feature
vectors are used for training, and the remaining 20% are
employed for testing purposes. In the next, another 20% of
feature vectors are used for testing, and the rest of the 80%
are employed for the training set. This process is repeated
until all the feature vectors are used for testing the pro-
posed algorithm. All the data instances are normalized in
intervals of 0 and 1. To quantify results statistically, each
fold is repeated 30 times, and every experiment is performed
100 times, giving a total of 15,000 runs for each dataset. Next,
the predictive classification model is developed on the train-
ing data and validated on the testing data, and the results are
computed. Finally, the results are averaged over all the folds
and compared with state-of-the-art methods. All parameter
settings for each of the baseline and proposed algorithms are

given in Table 2. The computed results are comparedwith two
groups of baseline feature selection algorithms.

The computed results are compared with two groups of
baseline feature selection algorithms. In the first group,
five naï ve evolutionary algorithms, namely, (1) Ant Lion
Optimization (ALO) [32], (2) Genetic Algorithm (GA)
[3], (3) Grasshopper Optimization Algorithm (GOA) [33],
(4) Particle Swarm Optimization (PSO) [4], and (4) Sine-
Cosine Algorithm (SCA) [34] are used to compare the
results. In the second group, conventional BOA with six
different variants: (1) Butterfly Optimization Algorithm
[18], (2) Chaotic Butterfly Optimization Algorithm (CBOA)
[35], (3) Dynamic Butterfly Optimization Algorithm
(DBOA) [36], (4) Iterative Feature Selection using Dynamic
Butterfly Optimization-based Interaction Maximization
(IFS-DBOIM) [1], (4) Optimization and Extension of
binary Butterfly Optimization Algorithm (OEbBOA) [37],
(6) S-shaped binary Butterfly Optimization Algorithm
(S-bBOA) [38] are employed in results comparison. In addi-
tion, the number of fitness evaluations is used to determine the
total number of iterations and fair comparison between state-
of-the-art and proposed algorithms. The primary objective of
using fitness functions as a performance measure is inspired
by its ability to explore new information about solution
quality computed in each iteration. Thus, limiting the number
of fitness evaluations shows the total amount of information
that our algorithm can obtain from a given dataset.

C. PERFORMANCE MEASURES USED IN THE STUDY
Performance evaluation is one of the crucial steps to showing
the effectiveness of any proposed algorithm. It is advised
to explore multiple performance measures rather than only
one because a single performance metric may become biased
toward a random dataset. To avoid this issue, a set of five
performance measures: (1) Classification Accuracy, (2) Fea-
ture Reduction Rate, (3) Fitness Function, (4) Sensitivity,
and (4) Specificity are used in the performance comparison.
In addition, a nonparametric Wilcoxon signed-rank test [38]
is also used to compare the significance of the computed
results with baseline models. In this test, the results of two
algorithms (Baseline methods and proposed approach) are
computed, and their relevance is computed in the form of
pvalue. If the computed pvalue is less than 0.05, then the
results are statistically significant, and implementation of the
proposed scheme is advisable otherwise may be ignored.
The details of all the mentioned performance metrics are
given below.

1) CLASSIFICATION ACCURACY
It is one of the important measures to reflect the discrimina-
tion ability of a classifier, as the number of correct predictions
is divided by the total number of predictions. In an itera-
tive procedure, Average Classification Accuracy (ACA) is
computed over the total number of performed trials. The
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mathematical representation of ACA can be defined as:

ACA =
1
M

∑M

i=1

1
N

∑N

j=1
match(Cj,Lj) (14)

where M is the total number of iterations the algorithm has
executed, N represents the total number of observations in
the test dataset, Cj and Lj indicate predicted and true class
labels, respectively, and match is a comparison function that
provides output 1 when both labels are the same and 0 when
different.

2) FEATURE REDUCTION RATE
Feature Reduction Rate (FRR) shows how effectively irrele-
vant and redundant features are eliminated from the original
feature set without compromising the global classification
accuracy. It aims to minimize any feature selection method’s
computational and temporal complexity by effectively select-
ing only a significant set of features. In feature selection
problems, a high FRR score is always desirable because of its
positive influence on classification accuracy maximization.
This performance measure can be computed as:

FRR = 1 −
number of selected features

total number of original featrues
(15)

3) CONVERGENCE RATE
The convergence rate is an important measure that shows
how rapidly an algorithm achieves a steady solution. A high
convergence rate is always suitable for determining a design
solution in fewer iterations. Otherwise, the algorithm is slow
and requires more time to produce a steady solution.

4) SENSITIVITY
Refers to the ratio between actual positive or true cases that
are predicted as positive (or true positive). This implies that
another proportion of actual positive cases will get predicted
wrongly or negatively (false negative). The formula of sensi-
tivity is defined in Eq. 16.

Sensitivity =
True Positive

True Positive+ False Negative
=

TP
TP+ FN

(16)

5) SPECIFICITY
It is defined as the ratio of actual negative instances, which
got computed as the true negatives. It indicates that there will
be few other actual instances, which got computed as positive
and could be called false positive instances. Specificity can be
calculated as:

Specificity =
TN

TN + FP
(17)

where TP is True_Positive, TN is True_ negative, and FN is
False_negative samples detected during classification.

D. RESULTS COMPARISON AND DISCUSSION
In this subsection, we perform two experiments to evaluate
the robust performance of the proposed enhancement tech-
nique. In the first experiment, we compare our results with

six algorithms of group 1, while in the second, the remaining
five competitive feature selection algorithms are used. The
comparative results with all six algorithms are discussed in
the subsequent subsections.

1) PERFORMANCE COMPARISON IN THE FIRST GROUP OF
EXPERIMENTS
Table 3 summarizes the results of all six algorithms and
compares them with our proposed methodology. Here, two
measures: (1) Average Classification Accuracy (ACA) and
(2) Feature Reduction Rate (P), is used to demonstrate the
performance of all six algorithms over 30 iterations. In addi-
tion, the mean, standard deviation (S.D), and rank corre-
sponding to classification accuracy are also provided. Here,
the approach with a lower rank is considered more effective
than the higher one. It is clear that the mean classification
accuracy (91.67%) achieved by improved BOA is the maxi-
mum among all baseline feature selectionmethods. It realized
the best classification accuracies on twelve datasets when
used with SVM and ensemble classifiers. Also, the proposed
approach obtained maximum classification accuracy with the
Naïve Bayes approach only on one dataset. It can be con-
cluded that our approach is more compatible with SVM and
ensemble methods rather than the NB classifier.

It is interesting to discuss that our method consistently
achieves the best results for high-dimensional multiclass
datasets (Libras, Vowel, and Yale). They consist of more
classes (≥ 10) than the remaining datasets. Henceforth, our
method can be used to solve various real-time problems,
such as language translation in social media platforms, neural
state identification in cognitive science, and geographical
data classification. It must be mentioned here that the num-
ber of labels in such problems is in the thousands, but the
mapping function for the feature to true class label is only
one; therefore, it is required to select an effective procedure
to determine the corresponding class accurately. In addition
to high ACA, our method employs fewer features (143. 774)
than other baseline methods. Compared to the average num-
ber of features (383.70) in Table 1, it discards approximately
62.66% of insignificant features and gains the best feature
reduction rate.

In individual analysis, it effectively reduces the size of
the feature set on eight datasets by eliminating redundant
and irrelevant attributes. Although it selects more features in
five datasets (Australian, Credit, Exactly, M-of-N, and Spect)
compared to IFS-DBOIM (second-best method) but obtained
maximum classification accuracy. It proves that our method
can properly balance relevancy and redundancy while design-
ing an optimal feature subset. However, the mean FRR score
of our method is the best among all the methods. IFS-DBOIM
is the second-best method that has shown competitive results
with the current approach. One of the possible reasons may
be the dynamic behavior of BOA and its hybridization with
a feature interaction maximization scheme that simultane-
ously increases the solution quality and relevance of the
selected features. In conventional evolutionary algorithms,
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TABLE 3. Performance comparison between state-of-the-art evolutionary algorithms in group 1 and the proposed Enhanced BBOA algorithm in terms of
average classification accuracy rate (in %) and the number of selected features (P) on twenty UCI dataset.

only particle swarm optimization has shown some good
results compared to both IFS-DBOIM and our approach. For
large biological and vision datasets (Penglungew, TOX-171,
and Yale), our method effectively eliminated approximately
75%, 61%, and 65% of insignificant attributes and achieved
good classification accuracy. Compared to the IFS-DBOIM
method, it reduces more features (10%) and filters only rele-
vant and discriminable features for classification.

In addition to classification accuracy and feature reduc-
tion rate, Table 3 ranks each feature selection algorithm
by considering the mean classification accuracies achieved
on all twenty datasets. Since the current approach achieves
the best mean classification accuracy of 91.67% with the
SVM classifier, which is the maximum among all the meth-
ods, it ranks first, followed by IFS-DBOIM (90.43%), PSO
(86.15%), GA (84.43%), SCA (82.41%), GOA (81.04%), and
ALO (80.21%). This improvement is because of producing
high-quality intermediate solutions corresponding to the suit-
able operator and transfer functions. Although confirming the
goodness of produced numbers is time-consuming, it ensures
high average classification accuracy when summarized over
the total number of iterations. Also, the mutation and
neighborhood operation between the previous best and cur-
rent solution helps select the best outcome from the large pool
of solutions.

In the solution improvement step, our scheme is restricted
to producing two superior offspring than the previous best

solution, ensuring a good convergence mechanism to achieve
maximum classification accuracy compared to other meth-
ods. It helps avoid the local optima, thereby replacing the
worst solution with a better one. Indirectly, it boosts the
exploitation ability of the BOA algorithm to find upgraded
solutions based on the current ones populating the search
space. Compared to our method, the remaining six algorithms
had shown limited exploration ability because they were
forced to deal with only generic solutions when no optimiza-
tion scheme was implemented. Also, these methods evaluate
intermediate solutions at a given instance without comparing
their quality with existing outputs. It limits the generation of
similar but high-quality solutions that can strongly minimize
the probability of getting trapped in local optima. The key
advantage of all the upgraded solutions over the existing
ones is their dense distribution around the mean classification
accuracy (in the case of SVM and ensemble) because our
method has the least Standard Deviation (S.D.) among all the
baseline methods.

Fig. 3 shows the relationship between classification accu-
racies and the number of selected features on all 20 exper-
imental datasets. Here, two high-dimensional datasets
(TOX-171 and Yale) are selected as standards to explain the
variations in the classification accuracy concerning changes
in the size of the optimal feature subset. These two datasets
are good examples of high-dimensional space because they
have many features/ attributes compared to the number of
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FIGURE 3. Iteration-wise relationship between classification accuracy and selection features for twenty datasets.
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FIGURE 3. (Continued.) Iteration-wise relationship between classification accuracy and selection features for twenty datasets.
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FIGURE 3. (Continued.) Iteration-wise relationship between classification accuracy and selection features for twenty datasets.

rows/observations. On the TOX-171 dataset, the proposed
improvement mechanism realizes maximum classification
accuracy (95.38%) using 2208 features within the maximum
number of iterations.

In the early phase, the classification accuracy varies with
the number of selected features and converges when 30% of
the original attributes are used in the classification. It con-
tinuously evaluated the relevance and role of newly selected
features in the accurate truth label prediction and achieved the
best accuracy when approximately 62% of raw features were
eliminated. On the contrary, the second-best method (IFS-
DBOIM) consistently improves its classification accuracy
with iterations but uses more features. Interestingly, both
methods obtain almost equal classification accuracy when
almost 75% of the features are diminished. However, in the
second case, our method outperforms IFS-DBOIM from the
early phase of iterations and gains the best classification accu-
racy and feature reduction rate with both SVM and ensemble
classification approaches.

The simulation results of both datasets confirm that the
classification accuracy rate need not compromise by many

features. Therefore, if an appropriate search scheme is
applied in the early execution phase, higher classification
accuracy can be realized in both datasets. However, it should
be noticed that the proposed method achieves a set of stable
solutions (high classification accuracy, high feature reduc-
tion rate) after completing 50 iterations on both TOX-171
and Yale datasets. Conversely, all remaining datasets except
QSAR achieve a set of good responses in the very early phase
of execution (≤ 40 iterations). It may be because of some
dataset-specific properties such as data distribution, associa-
tions between variables and observations, and their support to
applied metaheuristic algorithms. However, the shape of the
curve for each dataset mainly depends on the performance of
the substrate layer of all three transfer functions because they
decide the intermediate feature set while improving the global
classification accuracy.

2) PERFORMANCE COMPARISON IN THE SECOND GROUP
OF EXPERIMENTS
In Table 4, the performance of the proposed model is com-
pared in terms of ACA and FRR with five different variants
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TABLE 4. Performance of the Enhanced BBOA in terms of classification accuracy rates (%) and the number of selected features for UCI datasets in the
second group of experiments. Here, CA represents average classification accuracy (%), and P indicates the average number of selected features.

TABLE 5. The average fitness values of all competing algorithms over 30 runs.

of BOA. These variants are application-specific and employ
different optimization techniques while curtailing insignifi-
cant features from the given datasets. For example, conven-
tional BOA uses only food foraging of butterflies to obtain
better solutions, while chaotic BOA explores different chaotic

mapping functions to improve the performance of BOA in
terms of both local optima avoidance and convergence speed.
DBOA is another popular variant that uses the Local Search
Algorithm Based on Mutation (LSAM) operator to improve
the solution quality by avoiding local optima problems and
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FIGURE 4. Graphical representation of fitness function variations corresponding to the number of iteration.
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FIGURE 4. (Continued.) Graphical representation of fitness function variations corresponding to the number of iteration.
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FIGURE 4. (Continued.) Graphical representation of fitness function variations corresponding to the number of iteration.

improving BOA solutions diversity. In the OebBOA, a new
initialization strategy using the evolution population dynam-
ics (EPD) mechanism is employed to increase the adaptive
behavior of BOA and maintain the tradeoff between explo-
rations and exploitations. Finally, S-shaped BOA refers to a
binary variant of BOA that ensures the movement of all the
butterflies within an interval of [1,0]. It can be observed that
the introduced approach significantly outperforms thirteen
out of twenty datasets in terms of classification accuracy
and feature reduction rate. In two datasets with the largest
dimensions, our method significantly reduces approximately
25% more features than DBOA and increases classification
accuracy by 5% and 15%, respectively. It shows that our
improved binary variant has better feature space optimization
scope than mutation-based local search methods. In addition,
it obtains more than 90% classification accuracies on all the
datasets except the Australian, Hill Vally, and Sonar datasets.
DBOA was another improved algorithm that shows competi-
tive results along with our method. The main reason for these
superior results may be the scalable nature of both N and
β-operators and their ability to maintain the desired balance

between exploration and exploitation.Moreover, determining
the suitable set of parameters in the early phase of execution
may be another reason for performance enhancement.

The FRR of our method is also better than the other
competitive methods. It uses fewer features than other BOA
versions on eleven of twenty datasets. Overall, it has the best
global feature reduction rate because it uses an average of
144 features on each UCI dataset, which is the least among all
the methods. The order of the algorithms in terms of feature
reduction rate is Enhanced BBOA > DBOA > OEbBOA >

S-bBOA > CBOA.

3) FITNESS FUNCTION COMPARISON
Table 5 reports the fitness function score computed by all
the above-mentioned eleven algorithms on twenty datasets.
We obtained minimum fitness scores on twelve out of twenty
datasets using the proposed optimization scheme, including
the TOX-171 and YALE. Since a lower fitness value reflects
the higher quality of the solutions, PSO and DBOA perform
equally on four datasets (Australian, Spambase, CTG, and
M-of-N). Moreover, each of the four algorithms (ALO, GA,
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FIGURE 5. Specificity score for all thirteen binary datasets.
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FIGURE 5. (Continued.) Specificity score for all thirteen binary datasets.
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GOA, and SCA) computes the minimum score for individual
datasets. Our method achieves the least (≈ 0) fitness score
on five datasets (Ionosphere, Pengulgew, QSAR, Spect, and
Vowel) while estimating the relevance of a selected attribute
in the optimal feature subset. Here, three out of five (Pengul-
gew, QSAR, Spect) are biological datasets with a moderate
number of dimensions. In contrast, the remaining two datasets
(Ionosphere and Vowel) are related to the environment and
computer vision domains.

The reported results confirm that our method strongly
computes the relationship between classification accuracy
and the number of features in similar datasets. In addition,
our method realizes an almost equal fitness score on the
top two high-dimensional datasets (TOX-171 and Yale) with
an almost equal number of observations. Due to this, the
proposed approach realizes maximum classification accuracy
while using the minimum number of features. In all the
baseline algorithms, ALO performed worst on eight datasets
(Australian, Credit, Exactly, Diabetic, OBS-network, QSAR,
SPAMBASE, Yale) because it achieved a maximum fitness
score of more than 50% of the iterations. It may be because
of ALO’s unsuitable solution initialization strategy, improper
parameter tuning, and poor tendency to shift towards bet-
ter solutions. Fig.4 shows the relationship between the
fitness score and the number of iterations for all the
datasets.

4) SENSITIVITY AND SPECIFICITY PERFORMANCE
Specificity and sensitivity are other important performance
parameters concerned with the performed experiment’s accu-
racy relative to a given standard result. Sensitivity is the
ratio of correctly classified positive instances to the total
number of positive samples, and specificity is the ratio of
correctly classified negative instances to the total number
of negative samples. It should be noted that sensitivity and
specificity are applicable only to binary classification prob-
lems. Therefore, we have shown sensitivity and specificity
metrics only for thirteen datasets in Fig. 5 and 6, respectively.
It can be noticed that enhanced bBOA obtained a better
specificity score on eleven binary datasets, excluding M-of-
N and Penglungew. In both cases, DBOA and IFS-DBOIM
achieved maximum specificity scores compared to others.
DBOA is another dynamic variant of BOA that obtains the
second-best rank in specificity computation of all the binary
datasets.

Similar to specificity, our proposed method also outper-
forms other sensitivity measurement methods. In Fig. 6, the
proposedmethod achieved the best sensitivity scores on ten of
thirteen datasets. On one dataset (Penglungew), the developed
improvement scheme performs equally to the IFS-DBOIM
approach with equal sensitivity values. Experiments confirm
that the IFS-DBOIM-based feature selection method obtains
second-best sensitivity scores for eight UCI datasets. This
improved performancemay be correlated with an inbuilt local
search-based mutation scheme in the IFS-DBOIM.

5) TIME COMPLEXITY ANALYSIS
The time complexity of an algorithm refers to the total
execution time that an algorithm takes to determine the desir-
able solution. Table 6 presents the total running time of all
eleven baseline algorithms with the Enhanced BBOA over
30 independent iterations. Since the proposed method is an
iterative procedure that generates quality solutions using the
AβHC optimization when required. It is a time-consuming
step because it explores two different mathematical operators,
and sometimes it may take a lot of time.

On the contrary, the existing feature selection methods rely
on local solutions to determine the true class label corre-
sponding to a given observation. However, the state-of-the-
art models compromise with average classification accuracy
because the generated solutions may result in poor discrimi-
nation ability of the applied classification scheme. It can be
cross-verified from Table 6, where the proposed algorithm
realizes the least execution time only on five out of twenty
datasets, whereas the PSO outperformed on eleven datasets.
DBOA was the third-best algorithm that achieved the least
execution time on three datasets, while GOA performed the
best runnable time only on one dataset.. Based on the mean
computation time (on 20 datasets), PSOwon the speedup race
with rank one, while the proposed method was the slowest
among all the methods. Overall, the order of execution rate is
PSO > ALO > DBOA > GOA > CBOA > IFS-DBOIM >

S-bBOA > SCA > OEbBOA > GA > BOA> Enhanced
BBOA.

6) SOLUTION SIGNIFICANCE ANALYSIS
Significance analysis is an important measure to determine
the obtained solutions’ relevance. In order to determine the
significance of classification results over 30 runs, a non-
parametric Wilcoxon signed-rank test is performed on all
twenty datasets with twelve algorithms. This test compares
the results of two matched samples and returns a p-score. The
results are considered significant if the computed p-value is
less than 0.05, whereas a greater p-value indicates otherwise.
Table 7 reports all the p-values considering the Enhanced
BBOA as a benchmark solution. The relevant results are
marked with dark color in Table 7. Our results are highly sig-
nificant on at least ten datasets compared with IFS-DBOIM,
DBOA, CBOA, GOA, and ALO because the correspond-
ing p-values are less than the 0.05 threshold. Therefore, the
computed results can be used as an improvement over the
outcomes of all the mentioned five baseline algorithms. Our
algorithm can be recommended for the remaining datasets in
the place of BOA, GA, PSO, SCA, and OEbBOA approaches.
The global order of result significance can be listed as
Enhanced BBOA > IFS-DBOIM > CBOA > DBOA >

ALO > GOA > OEbBOA > PSO ≈ BOA > SCA≈ GA.

7) LIMITATIONS OF THE STUDY
In this study, we conduct multiple experiments to maxi-
mize the global performance of Enhanced BBOA in feature
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FIGURE 6. Sensitivity score for all thirteen binary datasets.
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FIGURE 6. (Continued.) Sensitivity score for all thirteen binary datasets.

selection problems. Moreover, all the results are computed on
twenty open-source UCI datasets and compared with eleven
recently published state-of-the-art methods. The comparative
analysis concludes the supremacy of our method over other

feature selection algorithms because of its ability to produce
better solutions in each iteration. However, it is important to
discuss the limitations of the performed work in the context
of research findings, interpret the validity of the scientific
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TABLE 6. Execution time comparison between state-of-the-art algorithms and the proposed Enhanced BBOA method.

TABLE 7. P-value comparison between state-of-the-art algorithms and the proposed Enhanced BBOA method.

work, and ascribe a credibility level to the conclusions of
published research. Therefore, despite providing very robust
results, we list two limitations related to our study.

1) Our method is computationally expensive because it
always depends on the execution of two mathematical
operators (N and β) that can maximize global clas-
sification accuracy with fewer features. It involves a

complex procedure to validate the significance of pro-
duced feature subset and corresponding classification
accuracy.

2) The introduced optimization scheme lacks to determine
inter-relevance between the newly selected and priorly
filtered features while designing an optimal feature
subset. In other words, the proposed Enhanced BBOA
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may fail to maintain a tradeoff between relevancy and
redundancy.

V. CONCLUSION AND FUTURE SCOPE
In this study, we proposed a hybrid variant of the BBOA
by amalgamating an AβHC-based search scheme with the
exploration-exploitation mechanism of conventional BOA.
It is known that the performance of conventional BBOA relies
on random numbers and may result in good solution quality
enhancement if a suitable butterfly position is generated.
Therefore, we concentrated on improving the search strategy
of BOA by iteratively producing improved solutions using:
(1)N− operator (Neighborhood operator) and (2) β-operator.
The significance of the generated solutions is computed in
terms of producing offspring that are better than their parents
(previous best solution, new solution). Here, a bi-objective
fitness function is used to determine the quality of each
solution after applying the AβHC technique.
The mentioned improvement strategy is amalgamated with

three popular binary variants (S-, V-, and Q-shape) of the But-
terfly Optimization Algorithm (BOA), and the best possible
solution is computed. The performance of our methodology
is validated on twenty high-dimensional UCI datasets and
compared with eleven state-of-the-art algorithms.

A comparative study shows that our methodology can be
effectively used in search space optimization without com-
promising the major quality measures such as classification
accuracy, feature reduction rate, specificity, and sensitivity.

In the future, our proposed method can be used to
improve the performance of various interdisciplinary appli-
cations such as design pattern detection [40], channel
selection [41], and cognitive imaging [42]. In addition,
Rough Set Theory (RST) [43] can be used to investigate
positive boundary regions, which may help select more
relevant features from high-dimensional datasets. Recently
introduced clustering-based metaheuristic algorithms such as
Jellyfish Search Optimizer (JSO) [44], Red Deer Algorithm
(RDA) [45], and Human Mental Search (HMS) [46] can
be used with new crossover and mutation techniques like
Order crossover operator (OX1), Order-based crossover
operator (OX2) [47] and Position-based crossover operator
(POS) [48] can also be used to obtain more robust clas-
sification results than the proposed optimization technique.
A new transfer function, an X-shaped variant [49] with
a parameter-independent metaheuristic algorithm such as
JAYA optimization [52], can also be used to improve the
performance of the proposed model.
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