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ABSTRACT The p,q-quasirung orthopair fuzzy set (p, q-ROFS) is a potent tool for representing fuzziness
and uncertainty compared to the q-rung orthopair fuzzy set (q-ROFS). This research aims to introduce the
aggregation technique of p, q-ROFSs with the help of Aczel–Alsina (AA) operations. We first propound
several novel AA operations of p, q-ROFSs such as AA sum, AA product, AA scalar multiplication, and AA
exponentiation. Following these operations, we develop a range of p, q-quasirung orthopair fuzzy averaging
and geometric aggregation operators to efficiently aggregate p, q-quasirung fuzzy data. Additionally,
we construct different features of these operators, discuss certain special cases, and study their fundamental
results. Afterward, we use these operators to design a method for dealing with multi-criteria decision-
making with p, q-quasirung orthopair fuzzy information. Finally, we provide a case study to demonstrate
the suggested method’s practicality followed by parameter analysis and comparison study.

INDEX TERMS Aczel–Alsina t-norms, p, q-quasirung orthopair fuzzy set, aggregation operators, MCDM.

Symbols Meanings
P p,q-ROFS.
⨿ Element of universal set.
X Universal set.
µP Membership grade.
νP Non-membership grade.
T3
A Aczel-Alsina t-norm.
S3
A Aczel-Alsina t-conorm.

3 Parameter.
ı Positive integer.

I. INTRODUCTION
The multi-criteria decision-making (MCDM) process is a
deft technique for dealing with difficult and intricate data
in real-world scenarios. MCDM is a technique that gener-
ates rankings for the available alternatives that correspond
to the distinct options’ characteristic objects and is a critical
component of decision-making sciences [1], [2], [3], [4],
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[5], [6]. In real-world decision-making scenarios, it is critical
to bear the characteristic object largely well and accurately.
Owing to the convolution and incapacity of decision-making
circumstances, carrying the distinctive objects of alternatives
requires more than exact objects. Zadeh [7] suggested a the-
ory of fuzzy sets (FS) to do this, in which only the truth grade
is constrained to the unit interval. The FS theory has gar-
nered widespread attention from eminent professionals and
has been employed in various circumstances in a variety of
domains [8], [9], [10], [11], [12]. However, the FS theory has
failed to work precisely on numerous occasions. For instance,
it is challenging to apply FS to information expressed in terms
of truthfulness (µ) and falsehood (ν) grades. To address these
issues, Atanassov [13] dispatched the theory of intuitionistic
FS (IFS), a revamped version of the FS that enables the effec-
tive management of awkward and unreliable information. IFS
covers the grades µ and ν with the rule 0 ≤ µ + ν ≤ 1.
As a result, the IFS theory has garnered considerable research
attention and has been incorporated into numerous works.
Li [14] investigated various linear programming models to
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derive optimal weights for criteria and the corresponding
decision-making techniques. Based on the Jensen-Shannon
divergence, Xiao [15] devised a distance measure between
IFSs and discussed its applicability to model classification
challenges. Burillo and Bustince [16] propound a measure of
entropy for IFs to assess the intuitionism of an IFS. Recently,
Alcantud et al. [17] came up with a method for aggregating
infinite sequences of IFS. However, this FS has drawbacks
in the context of decision-making information description
since these drawbacks put constraints on the depiction of
truthfulness and falsehood grades, resulting in the total of the
two parameters being less than or equal to 1.

Due to the aforesaid shortcomings of IFSs, investigators
created a more complete fuzzy set known as Pythagorean
fuzzy sets (PFS). Notably, the notion of PFSs is derived from
IFSs, but with further generality, [18]. PFSs are defined by
the sum of the squares of truthfulness and falsehood grades,
which are real values less than or equal to one [19]. As illus-
trated in this example, the constrain of PFSs is superior to
that of IFSs: 0.52 + 0.72 = 0.25 + 0.49 = 0.74. PFSs have
garnered substantial interest from scientists because of their
ability to resolve increasing grades of ambiguity [20], [21],
[22], [23]. In practice, DMs are constrained by PFS limita-
tions since they cannot properly assign values to truthfulness
and falsehood grades based on their own selections [19].
Owed to the inherent limits of PFSs, a precise and successive
FS is required to discourse the constraints faced by DMs.

Yager [24] introduced an innovative fuzzy idea anointed
the q-rung orthopair fuzzy set (q-ROFS) to address the short-
comings of classic fuzzy sets’ data representation (i.e., IFSs
and PFSs). The limitation imposed by other fuzzy sets is abol-
ished with q-ROFSs, and the total of the q powers of truth-
fulness and falsehood grades are real values between [0, 1].
Thus, DMs are free to choose any grades [25]. For instance,
when DM is questioned about a certain case, he or she pro-
vides a value of 0.9 to truthfulness grade and 0.8 to falsehood
grade. In this situation, the IFS and PFS requirements cannot
be met due to their restrictions. However, the truthfulness
and falsehood grades shown above may be expressed using a
q-ROFS and increasing the q value parameter to a value equal
to or higher than 4.When q equals 1, the q-ROFS is converted
to an IFS. When q equals 2, the q-ROFS transforms into a
PFS.

According to the structural illustration, the q-ROFS
restriction is deemed superior to the others since it gives
more room and flexibility under unknown situations and
allows DMs to freely pick truthfulness and falsehood
grades [26]. Since its inception, several scholars have
thoroughly investigated and applied it to the resolution
of unwieldy and perplexing fuzzy issues from a vari-
ety of angles. Several aggregation operators in the context
of q-ROFSs have been tried to present [27]. These include
q-quasirung orthopair fuzzy Einstein ordered weighted geo-
metric, q-quasirung orthopair fuzzy Einstein weighted geo-
metric, q-quasirung orthopair fuzzy Einstein weighted

averaging, and q-quasirung orthopair fuzzy Einstein ordered
weighted averaging. The authors in [28] coupled the Bonfer-
roni mean (BM) operator with q-quasirung orthopair fuzzy
numbers (q-ROFNs) to offer up the q-quasirung orthopair
fuzzy BM (q-ROFBM) operator, the q-quasirung orthopair
fuzzy weighted BM (q-ROFWBM) operator, the q-quasirung
orthopair fuzzy geometric BM operator, and the q-ROFWG
BMoperator; and then formed theMCDMmechanisms using
all these operators. Wei et al. [29] presented the q-quasirung
orthopair fuzzy generalized Heronian mean (q-ROFGHM)
operator, the q-quasirung orthopair fuzzy geometric Hero-
nian mean (q-ROFGHM) operator, the q-quasirung orthopair
fuzzy generalized weighted Heronian mean (q-ROFWG
Heronian mean) operator, and the q-ROFWGHeronian mean
operator. Another research [30] examined the scheme for
MCDM problems based on q-quasirung orthopair fuzzy
Hamy mean (HM) operators. Apart from these aggregation-
based methods, some other kinds of MCDM approaches are
also explored by the authors [20], [31], [32], [33] under
the q-quasirung orthopair fuzzy setting. Deveci et al. [34]
presented a q-quasirung orthopair Fuzzy Einstein based
weighted aggregated sum product assessment (WASPAS)
approach. In [20], the entropy measure and order of pref-
erence by similarity to ideal solution (TOPSIS) based on
the correlation coefficient was investigated. Accordingly,
the performance of green suppliers with experts’ subjective
evaluations was measured with an effective and applicable
MCDM method and q-ROFSs-based TOPSIS method [32].
Liang and Cao [35] put forward the projection-based distance
for computing the positive ideal solution and loss functions,
respectively. A study by [33] critically analyzed the available
ranking techniques for q-quasirung orthopair fuzzy values
and proposed a new graphical ranking method based on
hesitancy index and entropy. Very recently, Seikh and Man-
dal [36] introduced p, q-quasirung orthopair fuzzy set (p, q-
ROFS), which is an expansion of the q-ROFS. In p, q-ROFS,
where p and q are natural integers, the sum of the pth power
of membership grade and the qth power of nonmembership
grade is less than or equal to 1. Due to the inclusion of the
parameter p, the p, q-ROFS is able to describe incomplete
information in a more flexible and comprehensive manner.

Menger introduced the concept of triangle norms (t-norms)
in his hypothesis of probabilistic metric spaces [37]. It has
been discovered that t-norms and their related t-conorms are
critical operations in FSs and systems, such as the Einstein
t-norm and t-conorm [38], the product t-norm and proba-
bilistic sum t-conorm [39], the Lukasiewicz t-norm and t-
conorm [40], and the Hamacher t-norm and t-conorm [41].
Klement et al. [42] conducted a thorough examination of
the characteristics and related elements of t-norms in recent
years. In 1982, Aczel and Alsina [43] introduced new pro-
cedures named AA t-norm and AA t-conorm, which places
a high premium on parameter changeability. Based on the
AA triangular norm (AA t-norm), Wang et al. [44] devised a
score level fusion technique that simultaneously increases the
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distance between imposters and decreases the distance
between real. Senapati et al. [45] recently introduced the intu-
itionistic fuzzy AA aggregation operators and demonstrated
their usage in the MCDM approach.

In the aforesaid analysis of literature, we found that a
number of researches presented various sorts of operators,
such as averaging, geometric, and AA aggregation operators
for FSs, IFSs, PFSs, and q-ROFSs. The notion of p, q- ROFSs
can be deemed very reliable because it is the reformed version
of all existent ideas. It is quite challenging for scholars to
define the theory of AA operational laws and their aggre-
gation operators in the presence of the p, q- ROFS. As a
result, it has not previously been investigated where the pro-
posed aggregation operators are more significantly modified
than the existent operators. Although the area has benefited
from the establishment of ideas based on IFS, such as the
AA aggregation operators and the WASPAS technique, the
task of effectively applying or combining theories (including
q-ROFS, aggregation operators, AA t-norm and t-conorm)
in order to develop a theory of the MCDM method and AA
aggregation operators based on p, q-ROFS theory remains.
The theory of averaging, geometric operators, AA aggre-
gation operators, and the aggregation approach based on
FSs, IFSs, PFSs, and q-ROFSs are specific cases of the
AA aggregation operators and the aggregation method for
p,q-ROFS. Motivated by the AA operators’ work under
IFSs [45], and by considering the importance of p,
q-ROFS, this study concentrates on the following pioneering
contributions:

i). To investigate novel p, q-quasirung orthopair fuzzy oper-
ational laws based on the AA t-norm and t-conorm and
their accompanying results.

ii). To explore the p, q-quasirung orthopair fuzzy Aszel-
Alsina weighted averaging (p, q-ROFAAWA) operator,
p, q-quasirung orthopair fuzzy AA ordered weighted
averaging (p,q-ROFAAOWA) operator, p, q-quasirung
orthopair fuzzy AA hybrid averaging (p, q-ROFAAHA)
operator, p, q-quasirung orthopair fuzzy AA weighted
geometric (p,
q-ROFAAWG) operator, p, q-quasirung orthopair fuzzy
AA ordered weighted geometric (p, q-ROFAAOWG)
operator, and p, q-quasirung orthopair fuzzy AA hybrid
geometric (p, q-ROFAAHG) operator, using the inves-
tigated operational laws and investigate some of their
fundamental results.

iii). To construct an MCDM approach utilizing the explored
operators to find the optimal alternative using p,
q-ROFSs.

iv). To demonstrate a practical example for analyzing the
validity and capability of the proposed operators.

v). To conduct comparisons between the presented operators
and certain preexisting operators.

The flowchart of the developed work is depicted in Fig. 1.
This paper’s structure is as follows: Section II will go

through the fundamental ideas of p, q-ROFSs and AA

triangular norms. Section III describes the AA opera-
tional laws for p,q-ROFNs. Section IV defines q-quasirung
orthopair fuzzy AA averaging and geometric operators
and proves some of their desirable properties and spe-
cial cases. Section V uses the suggested operators to build
a decision-making framework for dealing with MCDM
problems using q-ROFNs as characteristic values. Sec-
tion VI provides a case study concerning corruption inten-
sity to demonstrate how the suggested method might be
implemented. This section also investigates how a parameter
influences decision-making results. Section VII provides a
comparative examination of various acceptable approaches
to demonstrate the adequacy of the provided technique. Sec-
tion VIII includes concluding comments and forthcoming
study topics.

II. SOME BASIC CONCEPTS
In this part, we will present t-norm, t-conorm, AA t-norm,
AA t-conorms, and some core concepts of p,q-ROFSs to help
readers comprehend the work.
Definition 1 ([37]): A t-norm is a function T : [0, 1]2 −→

[0, 1] that meets
T1. T (⨿1, ⨿2) = T (⨿2, ⨿1) ∀ ⨿1, ⨿2 ∈ [0, 1] ;
T2. T (⨿1, ⨿2) ≤ T (⨿3, ⨿4) if ⨿1 ≤ ⨿3, ⨿2 ≤

⨿4 ∀ ⨿1, ⨿2, ⨿3, ⨿4 ∈ [0, 1] ;
T3. T (⨿, 1) = ⨿ ∀ ⨿ ∈ [0, 1] ;
T4. T (⨿1,T (⨿2, ⨿3)) = T (T (⨿1, ⨿2) , ⨿3) .

Some examples of t-norms
1). TP (⨿1, ⨿2) = ⨿1⨿2 (product t-norm),
2). TM (⨿1, ⨿2) = min (⨿1, ⨿2) (minimum t-norm),
3). TL (⨿1, ⨿2) = max (⨿1 + ⨿2 − 1, 0) (Lukasiewicz t-

norm),

4). TD (⨿1, ⨿2) =


⨿1, if ⨿2 = 1
⨿2, if ⨿1 = 1

(drastic t-norm)
0, otherwise.

∀ ⨿1, ⨿2 ∈ [0, 1] .
Definition 2 ([42]): A t-conorm is a function S :

[0, 1]2 −→ [0, 1] that meets
S1. S (⨿1, ⨿2) = S (⨿2, ⨿1) ∀ ⨿1, ⨿2 ∈ [0, 1] ;
S2. S (⨿1, ⨿2) ≤ S (⨿3, ⨿4) if ⨿1 ≤ ⨿3, ⨿2 ≤

⨿4 ∀ ⨿1, ⨿2, ⨿3, ⨿4 ∈ [0, 1] ;
S3. S (⨿, 0) = ⨿ ∀ ⨿ ∈ [0, 1] ;
S4. S (⨿1, S (⨿2, ⨿3)) = S (S (⨿1, ⨿2) , ⨿3) .

Some examples of t-conorms
1). SP (⨿1, ⨿2) = ⨿1 + ⨿2 − ⨿1⨿2 (probabilistic sum),
2). SM (⨿1, ⨿2) = max (⨿1, ⨿2) (maximum t-conorm),
3). SL (⨿1, ⨿2) = min (⨿1 + ⨿2, 1) (Lukasiewicz t-

conorm),

4). SD (⨿1, ⨿2) =


⨿1, if ⨿2 = 0
⨿2, if ⨿1 = 0

(drastic t-conorm)
1, otherwise.

∀ ⨿1, ⨿2 ∈ [0, 1] .
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FIGURE 1. Geometrical illustration of the proposed work.

Additionally, it established the fact [42] that when T is a
t-norm and S is a t-conorm, then T (⨿1, ⨿2) ≤ min {⨿1, ⨿2}

and S (⨿1, ⨿2) ≥ max {⨿1, ⨿2} ∀ ⨿1, ⨿2 ∈ [0, 1].
Definition 3 ([43]): The AA t-norm

(
T3
A

)
3∈[0,∞] is pos-

tulated as

T3
A (⨿1, ⨿2) =


TD (⨿1, ⨿2) , if 3 = 0
min {⨿1, ⨿2} , if 3 = ∞

e
−

 (− ln⨿1)
3

+

(− ln⨿2)
3

1/3

, otherwise.
(1)

Some special cases: T∞
A = min, T 0

A = TD, T 1
A = TP.

Definition 4 ([46]): The AA t-conorm
(
S3
A

)
3∈[0,∞] is

postulated as

S3
A (⨿1, ⨿2)

=


SD (⨿1, ⨿2) , if 3 = 0
max {⨿1, ⨿2} , if 3 = ∞

1 − e
−

 (− ln (1 − ⨿1))
3

+

(− ln (1 − ⨿2))
3

1/3

, otherwise
(2)

Some special cases: S∞
A = max, S0A = SD, S1A = SP.

The t-norm T3
A and t-conorm S3

A are dual with respect to
each other ∀ 3 ∈ [0, ∞]. Further, T3

A and S3
A are strictly

increasing and strictly decreasing, respectively.
It is worthy to note that the AA category of t-norms are

the only ones that meet the equivalence T3
A

(
⨿

λ
1 , ⨿λ

2

)
=

T3
A (⨿1, ⨿2)

λ
∀ λ > 0 and ⨿1, ⨿2 ∈ [0, 1].

In this section, we present a concise overview of q-ROFSs.
Definition 5 ([36]): Let X be a fixed set. A p,q-ROFS P

on X is described as

P = {(⨿, µP (⨿), νP (⨿)) |⨿ ∈ X} , p, q ≥ 1, (3)

where µP (⨿) νP (⨿) ∈ [0, 1] denote the membership and
non-membership grades of ⨿ ∈ X , respectively, accorded
that 0 ≤ (µP (⨿))p + (νP (⨿))q ≤ 1. The degree of inde-
terminacy is (πP (⨿))ℓ = 1− (µP (⨿))p + (νP (⨿))q , where
ℓ is the least commonmultiple (lcm) of p and q. For convince,
Seikh and Mandal [36] termed P = (µP , νP ) a p,q-ROFN.
Remark 1: Consider the scenario in which we must deter-

mine the minimal value of p, q ≥ 1 for a given orthopair
(µP , νP ) such that µ

p
P + ν

q
P ≤ 1 is satisfied. Even though

there is no closed-form solution, it is always feasible to
develop a unique solution to these problems using iterative
computing methods. The minimal values of p and q fulfilling
µ
p
P+ν

q
P ≤ 1will be referred to as the p, q-niche of (µP , νP ).

If p′, q′ is the p, q-niche of (µP , νP ), then (µP , νP ) is valid
for all p ≥ p′ and q ≥ q′.
Let X = {⨿1, ⨿2, . . . ,⨿ð} be some supplied data and F

be a fuzzy notion. Assume an expert offers his choice for each
⨿ι ∈ X as an orthopair (µP (⨿ι), νP (⨿ι)). Now, the problem
is to estimate the proper values of p and q to accurately reflect
the data. We may now continue as follows:

• For each p, q-orthopair (µP (⨿ι), νP (⨿ι)) find its
p, q-niche, say pι, qι.

• Set out the p∗, q∗-niche such that p∗
= max

ι
pι and

q∗
= max

ι
qι.

• Then we can represent F as p∗, q∗-ROFS.

Remark 2: • The Definition 5 reduced to IFS if we set
p = q = 1.

• The Definition 5 reduced to PyFS if we set p = q = 2.
• The Definition 5 reduced to FFS if we set p = q = 3.
• The Definition 5 reduced to q-ROFS if we set p = q.
• The Definition 5 reduced to 3,4-quasirung fuzzy set if
we set p = 3, q = 4.

Definition 6 ([36]): Let P , P1 and P2 be any three
p,q-ROFNs and η > 0, then the basic rules of operation on
them are listed as
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1) P1 ⊕ P2 =

((
µ
p∗

P1
+ µ

p∗

P2
− µ

p∗

P1
µ
p∗

P2

)1/p∗

,

νP1νP2

)
;

2) P1 ⊗ P2 =

(
µP1µP2 ,(

ν
q∗

P1
+ ν

q∗

P2
− ν

q∗

P1
ν
q∗

P2

)1/p∗

)
;

3) Pη
=

(
µ

η

P ,
(
1 −

(
1 − ν

q
P
)η)1/q)

;

4) ηP =

((
1 −

(
1 − µ

p
P
)η)1/p

, ν
η

P

)
;

5) Pc
= (νP , µP ).

Definition 7 ([36]): Let P be a p,q-ROFN, then the score
function is characterized by:

S (P) =
1 + µ

p
P − ν

q
P

2
, (4)

where p, q ∈ [1, ∞), S (P) ∈ [0, 1]. The larger the value of
S (P), the larger the p,q-ROFN P .
Definition 8 ([36]): LetP be a p,q-ROFN, then the degree

of accuracy is defined in the following manner:

A (P) = (µP )p + (νP )q ; A (P) ∈ [0, 1] . (5)

When the computed score values are similar, the larger the
degree of accuracy A (P), the larger the p,q-ROFN.

III. p,q-QUASIRUNG ORTHOPAIR FUZZY AA
OPERATIONAL LAWS
In view of the Definitions 3 and 4, in what follows, we put
forward some generalized operational rules of p,q-ROFNs
and their relevant characteristics.
Definition 9: Let P , P1 and P2 be any three p,q-ROFNs,

3 ≥ 1 and λ > 0, then the AA t-norm and t-conorm
operations on them are given by
1)

P1 ⊕ P2

=

 p∗

√
1 − e

−

((
− ln

(
1−µ

p∗
P1

))3
+

(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

((
− ln ν

q∗
P1

)3
+

(
− ln ν

q∗
P2

)3
)1/3

 ;

2)

P1 ⊗ P2

=

 p∗
√
e
−

((
− lnµ

p∗
P1

)3
+

(
− lnµ

p∗
P2

)3
)1/3

,

q∗

√
1 − e

−

((
− ln

(
1−ν

q∗
P1

))3
+

(
− ln

(
1−ν

q∗
P2

))3
)1/3

 ;

3)

Pλ
=

 q

√
e
−

(
λ(− lnµ

q
P)

3
)1/3

,

q

√
1 − e

−

(
λ(− ln(1−ν

q
P))

3
)1/3 ;

4)

λP =

 q

√
1 − e

−

(
λ(− ln(1−µ

q
P))

3
)1/3

,

q

√
e
−

(
λ(− ln ν

q
P)

3
)1/3 .

Theorem 1: Let P , P1 and P2 be any three p,q-ROFNs,
then we have

1) P1 ⊕ P2 = P2 ⊕ P1;
2) P1 ⊗ P2 = P2 ⊗ P1;
3) λ (P1 ⊕ P2) = λP1 ⊕ λP2, λ > 0;
4) (λ1 + λ2)P = λ1P ⊕ λ2P, λ1, λ2 > 0;
5) (P1 ⊗ P2)

λ
= Pλ

1 ⊗ Pλ
2 , λ > 0;

6) Pλ1 ⊗ Pλ2 = P(λ1+λ2), λ1, λ2 > 0.

Proof:

1)

P1 ⊕ P2

=

 p∗

√
1 − e

−

((
− ln

(
1−µ

p∗
P1

))3
+

(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

((
− ln ν

q∗
P1

)3
+

(
− ln ν

q∗
P2

)3
)1/3



=

 p∗

√
1 − e

−

((
− ln

(
1−µ

p∗
P2

))3
+

(
− ln

(
1−µ

p∗
P1

))3
)1/3

,

q∗
√
e
−

((
− ln ν

q∗
P2

)3
+

(
− ln ν

q∗
P1

)3
)1/3

 = P2 ⊕ P1.

2)

P1 ⊗ P2

=

 p∗
√
e
−

((
− lnµ

p∗
P1

)3
+

(
− lnµ

p∗
P2

)3
)1/3

,

q∗

√
1 − e

−

((
− ln

(
1−ν

q∗
P1

))3
+

(
− ln

(
1−ν

q∗
P2

))3
)1/3


=

 p∗
√
e
−

((
− lnµ

p∗
P2

)3
+

(
− lnµ

p∗
P1

)3
)1/3

,
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q∗

√
1 − e

−

((
− ln

(
1−ν

q∗
P2

))3
+

(
− ln

(
1−ν

q∗
P1

))3
)1/3


= P2 ⊗ P1.

3)

λ (P1 ⊕ P2)

=

 p∗

√
1 − e

−

(
λ
(
− ln

(
1−µ

p∗
P1

))3
+

(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

(
λ
(
− ln ν

q∗
P1

)3
+

(
− ln ν

q∗
P2

)3
)1/3



=

 p∗

√
1 − e

−

(
λ
(
− ln

(
1−µ

p∗
P1

))3
)1/3

,

q∗
√
e
−

(
λ
(
− ln ν

q∗
P1

)3
)1/3



⊕

 p∗

√
1 − e

−

(
λ
(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

(
λ
(
− ln ν

q∗
P2

)3
)1/3


= λP1 ⊕ λP2.

4)

λ1P ⊕ λ2P

=

 p

√
1 − e

−

(
λ1(− ln(1−µ

p
P))

3
)1/3

,

q

√
e
−

(
λ1(− ln ν

q
P)

3
)1/3

⊕

 p

√
1 − e

−

(
λ2(− ln(1−µ

p
P))

3
)1/3

,

q

√
e
−

(
λ2(− ln ν

q
P)

3
)1/3

=

 p

√
1 − e

−

(
(λ1+λ2)(− ln(1−µ

p
P))

3
)1/3

,

q

√
e
−

(
(λ1+λ2)(− ln ν

q
P)

3
)1/3

= (λ1 + λ2)P.

5)

(P1 ⊗ P2)
λ

=

 p∗
√
e
−

((
− lnµ

p∗
P1

)3
+

(
− lnµ

q∗
P2

)3
)1/3

,

q∗

√
1 − e

−

((
− ln

(
1−ν

q∗
P1

))3
+

(
− ln

(
1−ν

q∗
P2

))3
)1/3


λ

=

 p∗
√
e
−

(
λ

((
− lnµ

p∗
P1

)3
+

(
− lnµ

p∗
P2

)3
))1/3

,

q∗

√
1 − e

−

(
λ

((
− ln

(
1−ν

q∗
P1

))3
+

(
− ln

(
1−ν

q∗
P2

))3
))1/3


=

 p∗
√
e
−

(
λ

((
− lnµ

p∗
P1

)3
))1/3

,

q∗

√
1 − e

−

(
λ

((
− ln

(
1−ν

q∗
P1

))3
))1/3


⊗

 p∗
√
e
−

(
λ

((
− lnµ

p∗
P2

)3
))1/3

,

q∗

√
1 − e

−

(
λ

((
− ln

(
1−ν

q∗
P2

))3
))1/3


= Pλ

1 ⊗ Pλ
2 .

6)

Pλ1 ⊗ Pλ2

=

 p∗
√
e
−

(
λ1

(
− lnµ

p∗
P

)3
)1/3

,

q∗

√
1 − e

−

(
λ1

(
− ln

(
1−ν

q∗
P

))3
)1/3


⊗

 p∗
√
e
−

(
λ2

(
− lnµ

p∗
P

)3
)1/3

,
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q∗

√
1 − e

−

(
λ2

(
− ln

(
1−ν

q∗
P

))3
)1/3


=

 p∗
√
e
−

(
(λ1+λ2)

(
− lnµ

p∗
P

)3
)1/3

,

q∗

√
1 − e

−

(
(λ1+λ2)

(
− ln

(
1−ν

q∗
P

))3
)1/3


= P(λ1+λ2).

IV. p,q-QUASIRUNG ORTHOPAIR FUZZY AA
AGGREGATION OPERATORS
This segment presents various p,q-quasirung orthopair fuzzy
AA aggregation operators based on the arithmetic average
operator and the geometric average operator.

A. p,q-QUASIRUNG ORTHOPAIR FUZZY AA AVERAGING
AGGREGATION OPERATORS
Based on the proposed operations, in this section, we intro-
duce some novel averaging aggregation operators, including
p,q-quasirung orthopair fuzzy AA average (p,q-ROFAAA)
operator, p,q-quasirung orthopair fuzzy AAweighted averag-
ing (p,q-ROFAAWA) operator, p,q-quasirung orthopair fuzzy
AA ordered weighted averaging (p,q-ROFAAOWA) oper-
ator, p,q-quasirung orthopair fuzzy AA ordered weighted
averaging (p,q-ROFAAOWA) operator, and p,q-quasirung
orthopair fuzzy AA hybrid averaging (p,q-ROFAAHA) oper-
ator. In addition, we investigate some special cases and prop-
erties of these operators.
Definition 10: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAWA operator is:

p, q− ROFAAWA (P1,P2, . . . ,Pð) = ⊕
ð
ι=1 (wιPι) , (6)

where w = (w1,w2, . . . ,wð)T is the weight vector of

Pι (ι = 1, 2, . . . , ð) such that wι > 0 and
ð∑

ι=1
wι = 1.

Especially, if w =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then the p,q-ROFAAWA

operator reduces to p,q-ROFAAA operator of dimension ð,
which is described as follows:

p, q− ROFAAA (P1,P2, . . . ,Pð) =
1
ð

⊕
ð
ι=1 (Pι) . (7)

Theorem 2: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAWA operator is still a p,q-ROFN, and

p, q− ROFAAWA (P1,P2, . . . ,Pð)

=


p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln ν

q∗
Pι

)3
)1/3

 . (8)

Proof: We can prove Theorem 2 with the help of the
mathematical induction method in the following way:

For ð = 2, we have

p, q− ROFAAWA (P1,P2)

= w1P1 ⊕ w2P2

=

 p∗

√
1 − e

−

(
w1

(
− ln

(
1−µ

p∗
P1

))3
)1/3

,

q∗
√
e
−

(
w1

(
− ln ν

q∗
P1

)3
)1/3



⊕

 p∗

√
1 − e

−

(
w2

(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

(
w2

(
− ln ν

q∗
P2

)3
)1/3



=

 p∗

√
1 − e

−

(
w1

(
− ln

(
1−µ

p∗
P1

))3
+w2

(
− ln

(
1−µ

p∗
P2

))3
)1/3

,

q∗
√
e
−

(
w1

(
− ln ν

q∗
P1

)3
+w2

(
− ln ν

q∗
P2

)3
)1/3



=


p∗

√
1 − e

−

(
2∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
2∑

ι=1
wι

(
− ln ν

q∗
Pι

)3
)1/3

 .

Hence, the result is true for ð = 2.
Suppose that Eq. (8) is true for ð = k , then we have

p, q− ROFAAWA (P1,P2, . . . ,Pk)
= ⊕

k
ι=1 (wιPι)

VOLUME 11, 2023 49087



J. Ali, M. Naeem: Analysis and Application of p, q-Quasirung Orthopair Fuzzy AA Aggregation Operators

=


p∗

√
1 − e

−

(
k∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
k∑

ι=1
wι

(
− ln ν

q∗
Pι

)3
)1/3


Now for ð = k + 1, we have

p, q− ROFAAWA (P1,P2, . . . ,Pk ,Pk+1)

= ⊕
k
ι=1 (wιPι) ⊕ (wk+1Pk+1)

=


p∗

√
1 − e

−

(
k∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
k∑

ι=1
wι

(
− ln ν

q∗
Pι

)3
)1/3



⊕

 p∗

√
1 − e

−

(
wk+1

(
− ln

(
1−µ

p∗
Pk+1

))3
)1/3

,

q∗
√
e
−

(
wk+1

(
− ln ν

q∗
Pk+1

)3
)1/3



=


p∗

√
1 − e

−

(
k+1∑
ι=1

wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
k+1∑
ι=1

wι

(
− ln ν

q∗
Pι

)3
)1/3

 .

Thus, Eq. (8) is legitimate for ð = k + 1, and hence,
by the principle of mathematical induction, the result given in
Eq. (8) is true for all positive integer ð.
Theorem 3 (Idempotency): Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, if Pι = P ∀ ι,

then

p, q− ROFAAWA (P1,P2, . . . ,Pð) = P. (9)

Proof: SincePι = P ∀ ι, and
ð∑

ι=1
wι = 1 so by Theorem

2, we have

p, q− ROFAAWA (P1,P2, . . . ,Pð)

=


p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ

p∗
P

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln ν

q∗
P

)3
)1/3



=


p∗
√
1 − e

−

((
− ln

(
1−µ

p∗
P

))3
)1/3

,

q∗
√
e
−

((
− ln ν

q∗
P

)3
)1/3


= (µP , νP ) = P.

Theorem 4 (Monotonicity): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) and Ṗι =

(
µ̇Pι

, ν̇Pι

)
(ι = 1, 2, . . . , ð) be

two families of p,q-ROFNs, such that µPι
≥ µ̇Pι

and νPι
≤

ν̇Pι
∀ ι, then

p, q− ROFAAWA (P1,P2, . . . ,Pð)

≥ p, q− ROFAAWA
(
Ṗ1, Ṗ2, . . . , Ṗð

)
. (10)

Proof: Since µPι
≥ µ̇Pι

and νPι
≤ ν̇Pι

∀ ι. Based on
these, we have the subsequent inequalities,

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

≥

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ̇

p∗
Pι

))3
)1/3

and

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
ν
q∗
Pι

))3
)1/3

≤

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
ν̇
q∗
Pι

))3
)1/3

which implies that
p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln ν

q∗
Pι

)3
)1/3



≥


p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ̇

p∗
Pι

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln ν̇

q∗
Pι

)3
)1/3


Hence p, q − ROFAAWA (P1,P2, . . . ,Pð) ≥ p, q −

ROFAAWA
(
Ṗ1, Ṗ2, . . . , Ṗð

)
.

Theorem 5 (Boundedness): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, and let P−

=

min {P1,P2, . . . ,Pð} and P+
= max {P1,P2, . . . ,Pð},

then

P−
≤ p, q− ROFAAWA (P1,P2, . . . ,Pð) ≤ P+. (11)
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Proof: As given that P−
= min {P1,P2, . . . ,Pð} =(

µ−

P , ν−

P
)
and P+

= max {P1,P2, . . . ,Pð} =
(
µ+

P , ν+

P
)
,

where µ−

P = min
{
µP 1, µP 2, . . . , µPð

}
, ν−

P =

max {νP 1, νP 2, . . . , νPð}, µ+

P = max{µP 1, µP 2, . . . ,

µPð}, and ν+

P = min {νP 1, νP 2, . . . , νPð}. As a result, there
are ongoing inequities:

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ−p∗

P

))3
)1/3

≤

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ

p∗
Pι

))3
)1/3

≤

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−µ+p∗

P

))3
)1/3

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
ν+q∗
P

))3
)1/3

≤

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
ν
q∗
Pι

))3
)1/3

≤

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
ν−q∗
P

))3
)1/3

.

Thereby,P−
≤ p, q−ROFAAWA (P1,P2, . . . ,Pð) ≤ P+.

Theorem 6 (Symmetry): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs. Then, if P̆ι =(
µ̆Pι

, ν̆Pι

)
(ι = 1, 2, . . . , ð) be any permutation of Pι, then

we have

p, q− ROFAAWA (P1,P2, . . . ,Pð)

= p, q− ROFAAWA
(
P̆1, P̆2, . . . , P̆ð

)
. (12)

Proof: The proof is obvious and thus omitted.
Next, we introduce p,q-quasirung orthopair fuzzy AA

ordered weighted averaging (p,q-ROFAAOWA) operator.
Definition 11: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAOWA operator is:

p, q− ROFAAOWA (P1,P2, . . . ,Pð) = ⊕
ð
ι=1

(
ϖιPδ(ι)

)
,

(13)

where ϖ = (ϖ1, ϖ2, . . . ,ϖð)T is the position weights of

Pι (ι = 1, 2, . . . , ð) such that ϖι > 0 and
ð∑

ι=1
ϖι = 1.

(δ(1), δ(2), . . . , δ(ð)) is a permutation of (1, 2, . . . , ð) such
that Pδ(ι−1) ≥ Pδ(ι) for ι = 1, 2, . . . , ð.

Theorem 7: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAOWA operator is still a p,q-ROFN, and

p, q− ROFAAOWA (P1,P2, . . . ,Pð)

=


p∗

√
1 − e

−

(
ð∑

ι=1
ϖι

(
− ln

(
1−µ

q∗
Pδ(ι)

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
ϖι

(
− ln ν

q∗
Pδ(ι)

)3
)1/3

 . (14)

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 2.

The following features may be efficiently shown by using
the p,q-ROFAAOWA operator.
Theorem 8 (Idempotency): Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, if Pι = P ∀ ι,

then

p, q− ROFAAOWA (P1,P2, . . . ,Pð) = P. (15)

Theorem 9 (Monotonicity): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) and Ṗι =

(
µ̇Pι

, ν̇Pι

)
(ι = 1, 2, . . . , ð) be two families of p,q-ROFNs, such that
µPι

≥ µ̇Pι
and νPι

≤ ν̇Pι
∀ ι, then

p, q− ROFAAOWA (P1,P2, . . . ,Pð)

≥ p, q− ROFAAOWA
(
Ṗ1, Ṗ2, . . . , Ṗð

)
. (16)

Theorem 10 (Boundedness): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, and let P−

=

min {P1,P2, . . . ,Pð} and P+
= max {P1,P2, . . . ,Pð},

then

P−
≤ p, q− ROFAAOWA (P1,P2, . . . ,Pð) ≤ P+. (17)

Theorem 11 (Symmetry): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs. Then, if P̆ι =(
µ̆Pι

, ν̆Pι

)
(ι = 1, 2, . . . , ð) be any permutation of Pι, then

we have

p, q− ROFAAWA (P1,P2, . . . ,Pð)

= p, q− ROFAAWA
(
P̆1, P̆2, . . . , P̆ð

)
. (18)

The p,q-ROFAAWA operator weights just the p,q-ROFNs,
as defined byDefinition 10, while the p,q-ROFAAOWAoper-
ator weights only the ordered locations of the p,q-ROFNs,
as defined by Definition 11. As a result, weights represent
various aspects of the p,q-ROFAAWA and p,q-ROFAAOWA
operators. Nonetheless, one of the operators, as well as the
other operators, consider just one of them. To address this
shortcoming, we study the p,q-quasirung orthopair fuzzy AA
hybrid averaging (p,q-ROFAAHA) operator, which weights
all of the provided p,q-ROFN and their appropriate ordered
position.
Definition 12: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAHA operator is:

p, q− ROFAAHA (P1,P2, . . . ,Pð) = ⊕
ð
ι=1

(
ϖιP̂δ(ι)

)
,

(19)

where ϖ = (ϖ1, ϖ2, . . . ,ϖð)T is the weight vector asso-
ciated with p,q-ROFAAHA Pι (ι = 1, 2, . . . , ð) such that

ϖι > 0 and
ð∑

ι=1
ϖι = 1, w = (w1,w2, . . . ,wð)T is

the weight vector of Pι (ι = 1, 2, . . . , ð) such that wι >

0 and
ð∑

ι=1
wι = 1. P̂δ(ι) is the ιth largest of the weighted

p,q-ROFNs P̂ι

(
P̂ι = (ðwι)Pι

)
, (ι = 1, 2, . . . , ð) and ð is

the balancing coefficient.
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Theorem 12: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAHA operator is still a p,q-ROFN, and

p, q− ROFAAHA (P1,P2, . . . ,Pð)

=


p∗

√
1 − e

−

(
ð∑

ι=1
ϖι

(
− ln

(
1−µ̂

p∗
Pδ(ι)

))3
)1/3

,

q∗

√
e
−

(
ð∑

ι=1
ϖι

(
− ln ν̂

q∗
Pδ(ι)

)3
)1/3

 . (20)

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 2.
As analogous to those of p,q-ROFAAWA operator and

p,q-ROFAAOWA, the p,q-ROFAAHA operator also fol-
lows the idempotency, monotonicity, boundedness and sym-
metry properties. Besides the aforesaid characteristics, the
p,q-ROFAAHA operator has the following special cases.
Corollary 1: p,q-ROFAAWA operator is a special case of

the p,q-ROFAAHA operator.

Proof: Let ϖ =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then

p, q− ROFAAHA (P1,P2, . . . ,Pð)

= ϖ1P̂δ(1) ⊕ ϖ2P̂δ(2) ⊕ . . . ⊕ ϖðP̂δ(ð)

=
1
ð

(
P̂δ(1) ⊕ P̂δ(2) ⊕ . . . ⊕ P̂δ(ð)

)
= w1P1 ⊕ w2P2 ⊕ . . . ⊕ wðPð

= p, q− ROFAAWA (P1,P2, . . . ,Pð) .

Corollary 2: p,q-ROFAAOWA operator is a special case
of the p,q-ROFAAHA operator.

Proof: Let w =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then

p, q− ROFAAHA (P1,P2, . . . ,Pð)

= ϖ1P̂δ(1) ⊕ ϖ2P̂δ(2) ⊕ . . . ⊕ ϖðP̂δ(ð)

= ϖ1Pδ(1) ⊕ ϖ2Pδ(2) ⊕ . . . ⊕ ϖðPδ(ð)

= p, q− ROFAAOWA (P1,P2, . . . ,Pð) .

B. p,q-QUASIRUNG ORTHOPAIR FUZZY AA GEOMETRIC
AGGREGATION OPERATORS
Based on the designed operations, in this section, we put for-
ward some novel geometric aggregation operators including
p,q-quasirung orthopair fuzzy AA geometric (p,q-ROFAAG)
operator, p,q-quasirung orthopair fuzzy AA weighted geo-
metric (p,q-ROFAAWG) operator, p,q-quasirung orthopair
fuzzy AA ordered weighted averaging (p,q-ROFAAOWA)
operator, p,q-quasirung orthopair fuzzy AA ordered weighted
geometric (p,q-ROFAAOWG) operator, and p,q-quasirung
orthopair fuzzy AA hybrid geometric (p,q-ROFAAHG) oper-
ator. In addition, we investigate some special cases and prop-
erties of these operators.

Definition 13: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAWG operator is:

p, q− ROFAAWG (P1,P2, . . . ,Pð) = ⊗
ð
ι=1 (Pι)

wι , (21)

where w = (w1,w2, . . . ,wð)T is the weight vector of

Pι (ι = 1, 2, . . . , ð) such that wι > 0 and
ð∑

ι=1
wι = 1. Espe-

cially, if w =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then the p,q-ROFAAWG

operator reduces to p,q-ROFAAG operator of dimension ð,
which is described as follows:

p, q− ROFAAG (P1,P2, . . . ,Pð) = ⊗
ð
ι=1 (Pι)

1
ð . (22)

Theorem 13: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAWG operator is still a p,q-ROFN, and

p, q− ROFAAWG (P1,P2, . . . ,Pð)

=


p∗

√
e
−

(
ð∑

ι=1
wι

(
− lnµ

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3

 . (23)

Proof: We can prove Theorem 13 with the help of the
mathematical induction method in the following way:

For ð = 2, we have

p, q− ROFAAWG (P1,P2) = Pw1
1 ⊗ Pw2

2

=


p∗
√
e
−

(
w1

(
− lnµ

p∗
P1

)3
)1/3

,

q∗
√
1 − e

−

(
w1

(
− ln

(
1−ν

q∗
P1

))3
)1/3



⊗


p∗
√
e
−

(
w2

(
− lnµ

p∗
P2

)3
)1/3

,

q∗
√
1 − e

−

(
w2

(
− ln

(
1−ν

q∗
P2

))3
)1/3



=



p∗
√
e
−

(
w1

(
− lnµ

p∗
P1

)3
+w2

(
− lnµ

p∗
P2

)3
)1/3

,

q∗

√√√√√√
1 − e

−

w1

(
− ln

(
1 − ν

q∗

P1

))3

+

w2

(
− ln

(
1 − ν

q∗

P2

))3


1/3



=


p∗

√
e
−

(
2∑

ι=1
wι

(
− lnµ

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
2∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3

 .

Hence, the result is true for ð = 2.
Suppose that Eq. (23) is true for ð = k , then we have

p, q− ROFAAWG (P1,P2, . . . ,Pk) = ⊗
k
ι=1 (Pι)

wι
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=


p∗

√
e
−

(
k∑

ι=1
wι

(
− lnµ

p∗
Pι

)3
)1/3

,

p∗

√
1 − e

−

(
k∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3


Now for ð = k + 1, we have

p, q− ROFAAWG (P1,P2, . . . ,Pk ,Pk+1)

= ⊗
k
ι=1 (Pι)

wι ⊗ (Pk+1)
wk+1

=


p∗

√
e
−

(
k∑

ι=1
wι

(
− lnµ

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
k∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3



⊗


p∗
√
e
−

(
wk+1

(
− lnµ

p∗
Pk+1

)3
)1/3

,

q∗
√
1 − e

−

(
wk+1

(
− ln

(
1−ν

q∗
Pk+1

))3
)1/3



=


p∗

√
e
−

(
k+1∑
ι=1

wι

(
− lnµ

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
k+1∑
ι=1

wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3

 .

Thus, Eq. (23) is legitimate for ð = k+1 and hence, by the
principle of mathematical induction, result given in Eq. (23)
is true for all positive integer ð.

Theorem 14 (Idempotency): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, if Pι = P ∀ ι,

then

p, q− ROFAAWG (P1,P2, . . . ,Pð) = P. (24)

Proof: SincePι = P ∀ ι, and
ð∑

ι=1
wι = 1 so by Theorem

13, we have

p, q− ROFAAWG (P1,P2, . . . ,Pð)

=


p∗

√
e
−

(
ð∑

ι=1
wι

(
− lnµ

p∗
P

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν

q∗
P

))3
)1/3



=


p∗
√
e
−

((
− lnµ

p∗
P

)3
)1/3

,

q∗
√
1 − e

−

((
− ln

(
1−ν

q∗
P

))3
)1/3


= (µP , νP ) = P.

Theorem 15 (Monotonicity): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) and Ṗι =

(
µ̇Pι

, ν̇Pι

)

(ι = 1, 2, . . . , ð) be two families of p,q-ROFNs, such that
µPι

≥ µ̇Pι
and νPι

≤ ν̇Pι
∀ ι, then

p, q− ROFAAWG (P1,P2, . . . ,Pð)

≥ p, q− ROFAAWG
(
Ṗ1, Ṗ2, . . . , Ṗð

)
. (25)

Proof: Since µPι
≥ µ̇Pι

and νPι
≤ ν̇Pι

∀ ι. Based on
these, we have the subsequent inequalities,

p∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
µ
p∗
Pι

))3
)1/3

≥

q∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
µ̇
q∗
Pι

))3
)1/3

and

p∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν

p∗
Pι

))3
)1/3

≤

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν̇

q∗
Pι

))3
)1/3

which implies that
p∗

√
e
−

(
ð∑

ι=1
wι

(
− lnµ

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3



≥


p∗

√
e
−

(
ð∑

ι=1
wι

(
− ln µ̇

p∗
Pι

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν̇

q∗
Pι

))3
)1/3


Hence p, q − ROFAAWG (P1,P2, . . . ,Pð) ≥ p, q −

ROFAAWG
(
Ṗ1, Ṗ2, . . . , Ṗð

)
.

Theorem 16 (Boundedness): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, and let P−

=

min {P1,P2, . . . ,Pð} and P+
= max {P1,P2, . . . ,Pð},

then

P−
≤ p, q− ROFAAWG (P1,P2, . . . ,Pð) ≤ P+. (26)

Proof: As given that P−
= min {P1,P2, . . . ,Pð} =(

µ−

P , ν−

P
)
and P+

= max {P1,P2, . . . ,Pð} =
(
µ+

P , ν+

P
)
,

where µ−

P = min
{
µP 1, µP 2, . . . , µPð

}
, ν−

P =

max {νP 1, νP 2, . . . , νPð}, µ+

P = max{µP 1, µP 2, . . . ,

µPð}, and ν+

P = min {νP 1, νP 2, . . . , νPð}. As a result, there
are ongoing inequities:

p∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
µ−p∗
P

))3
)1/3

≤

p∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
µ
p∗
Pι

))3
)1/3
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≤

p∗

√
e
−

(
ð∑

ι=1
wι

(
− ln

(
µ+p∗
P

))3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν+q∗

P

))3
)1/3

≤

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν

q∗
Pι

))3
)1/3

≤

q∗

√
1 − e

−

(
ð∑

ι=1
wι

(
− ln

(
1−ν−q∗

P

))3
)1/3

.

Thereby,
P−

≤ p, q− ROFAAWG (P1,P2, . . . ,Pð) ≤ P+.
Theorem 17 (Symmetry): Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs. Then, if P̆ι =(
µ̆Pι

, ν̆Pι

)
(ι = 1, 2, . . . , ð) be any permutation of Pι, then

we have

p, q− ROFAAWG (P1,P2, . . . ,Pð)

= p, q− ROFAAWG
(
P̆1, P̆2, . . . , P̆ð

)
. (27)

Proof: The proof is obvious and thus omitted.
Next, we introduce p,q-quasirung orthopair fuzzy AA

ordered weighted geometric (p,q-ROFAAOWG) operator.
Definition 14: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAOWG operator is:

p, q− ROFAAOWG (P1,P2, . . . ,Pð) = ⊗
ð
ι=1

(
Pδ(ι)

)ϖι ,

(28)

where ϖ = (ϖ1, ϖ2, . . . ,ϖð)T is the position weights of

Pι (ι = 1, 2, . . . , ð) such that ϖι > 0 and
ð∑

ι=1
ϖι = 1.

(δ(1), δ(2), . . . , δ(ð)) is a permutation of (1, 2, . . . , ð) such
that Pδ(ι−1) ≥ Pδ(ι) for ι = 1, 2, . . . , ð.

Theorem 18: Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAOWG operator is still a p,q-ROFN, and

p, q− ROFAAOWG (P1,P2, . . . ,Pð)

=


p∗

√
e
−

(
ð∑

ι=1
ϖι

(
− lnµ

p∗
Pδ(ι)

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
ϖι

(
− ln

(
1−ν

q∗
Pδ(ι)

))3
)1/3

 . (29)

Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 13.
The following features may be efficiently shown by using

the p,q-ROFAAOWG operator.
Theorem 19 (Idempotency): Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, if Pι = P ∀ ι,

then

p, q− ROFAAOWG (P1,P2, . . . ,Pð) = P. (30)

Theorem 20 (Monotonicity): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) and Ṗι =

(
µ̇Pι

, ν̇Pι

)

(ι = 1, 2, . . . , ð) be two families of p,q-ROFNs, such that
µPι

≥ µ̇Pι
and νPι

≤ ν̇Pι
∀ ι, then

p, q− ROFAAOWG (P1,P2, . . . ,Pð)

≥ p, q− ROFAAOWG
(
Ṗ1, Ṗ2, . . . , Ṗð

)
. (31)

Theorem 21 (Boundedness): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs, and let P−

=

min {P1,P2, . . . ,Pð} and P+
= max {P1,P2, . . . ,Pð},

then

P−
≤ p, q− ROFAAOWG (P1,P2, . . . ,Pð) ≤ P+. (32)

Theorem 22 (Symmetry): Let Pι =
(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a family of p,q-ROFNs. Then, if P̆ι =(
µ̆Pι

, ν̆Pι

)
(ι = 1, 2, . . . , ð) be any permutation of Pι, then

we have

p, q− ROFAAWG (P1,P2, . . . ,Pð)

= p, q− ROFAAWG
(
P̆1, P̆2, . . . , P̆ð

)
. (33)

The p,q-ROFAAWG operator weights just the p,q-ROFNs,
as defined by Definition 13, while the p,q-ROFAAOWG
operator weights only the ordered locations of the
p,q-ROFNs, as defined by Definition 14. As a result, weights
represent various aspects of the p,q-ROFAAWG and p,q-
ROFAAOWG operators. Nonetheless, one of the operators
and the other operators consider just one of them. To address
this shortcoming, we study the p,q-quasirung orthopair fuzzy
AA hybrid geometric (p,q-ROFAAHG) operator, which
weights all of the provided p,q-ROFN and their appropriate
ordered position.
Definition 15: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the p,q-ROFAAHG operator is:

p, q− ROFAAHG (P1,P2, . . . ,Pð) = ⊗
ð
ι=1

(
P̂δ(ι)

)ϖι

,

(34)

where ϖ = (ϖ1, ϖ2, . . . ,ϖð)T is the weight vector asso-
ciated with p,q-ROFAAHG Pι (ι = 1, 2, . . . , ð) such that

ϖι > 0 and
ð∑

ι=1
ϖι = 1, w = (w1,w2, . . . ,wð)T is the

weight vector of Pι (ι = 1, 2, . . . , ð) such that wι > 0 and
ð∑

ι=1
wι = 1. P̂δ(ι) is the ιth largest of the weighted p,q-ROFNs

P̂ι

(
P̂ι = P(ðwι)

ι

)
, (ι = 1, 2, . . . , ð) and ð is the balancing

coefficient.
Theorem 23: Let Pι =

(
µP ι, νP ι

)
(ι = 1, 2, . . . , ð) be a

family of p,q-ROFNs, then the result obtained by utilizing
p,q-ROFAAHG operator is still a p,q-ROFN, and

p, q− ROFAAHG (P1,P2, . . . ,Pð)

=


p∗

√
e
−

(
ð∑

ι=1
ϖι

(
− ln µ̂

p∗
Pδ(ι)

)3
)1/3

,

q∗

√
1 − e

−

(
ð∑

ι=1
ϖι

(
− ln

(
1−ν̂

q∗
Pδ(ι)

))3
)1/3

 . (35)
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Proof: We skip the proof of this theorem since it is
analogous to that of Theorem 13.
As analogous to those of p,q-ROFAAWG operator and

p,q-ROFAAOWG, the p,q-ROFAAHG operator also fol-
lows the idempotency, monotonicity, boundedness and sym-
metry properties. Besides the aforesaid characteristics, the
p,q-ROFAAHG operator has the following special cases.
Corollary 3: p,q-ROFAAWG operator is a special case of

the p,q-ROFAAHG operator.

Proof: Let ϖ =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then

p, q− ROFAAHG (P1,P2, . . . ,Pð)

= P̂ϖ1
δ(1) ⊗ P̂ϖ2

δ(2) ⊗ . . . ⊗ P̂ϖð
δ(ð)

=

(
P̂δ(1) ⊗ P̂δ(2) ⊗ . . . ⊗ P̂δ(ð)

) 1
ð

= Pw1
1 ⊗ Pw2

2 ⊗ . . . ⊗ Pwð
ð

= p, q− ROFAAWG (P1,P2, . . . ,Pð) .

Corollary 4: p,q-ROFAAOWG operator is a special case
of the p,q-ROFAAHG operator.

Proof: Let w =

(
1
ð , 1

ð , . . . , 1
ð

)T
, then

p, q− ROFAAHG (P1,P2, . . . ,Pð)

= P̂ϖ1
δ(1) ⊗ P̂ϖ2

δ(2) ⊗ . . . ⊗ P̂ϖð
δ(ð)

= Pϖ1
δ(1) ⊗ Pϖ2

δ(2) ⊗ . . . ⊗ Pϖð
δ(ð)

= p, q− ROFAAOWG (P1,P2, . . . ,Pð) .

V. MCDM APPROACH
In this part, we use our proposed p,q-ROFAAHA and
p,q-ROFAAHG operators to provide an MCDM method for
dealing with MCDM problems in p,q-quasirung orthopair
fuzzy situations.

Let o = {o1, o2, . . . , om} be a discrete set of alternatives
and κ = {κ1, κ2, . . . , κð} be the corresponding set of criteria
with weight vector w = {w1,w2, . . . ,wð} where wι ∈ [0, 1]

such that
ð∑

ι=1
wι = 1. A team of experts is assembled to

evaluate each alternative oi (i = 1, 2, . . .m) in relation to the
relevant criteria κι (ι = 1, 2, . . . , ð). The experts provide the
evaluation information in the form of p,q-ROFNs marked by
Piι =

(
µPiι , νPiι

)
where according to experts µPiι denotes

membership, and νPiι denotes non-membership grades to
which alternative oi meets that the criteria κι having the
constraint that 0 ≤ µ

p
Piι + ν

q
Piι ≤ 1 for p, q ≥ 1.

Algorithm
In the subsequent steps, we outline the suggested model’s

decision process.
Step 1 From the preceding analysis gather the expert’s eval-

uation information provided for each alternative to their
corresponding criteria and then build a decision matrix
as shown in the equation at the bottom of the page.

Step 2 Build the normalized decision matrix N =
(
P̃iι
)
m×ð

by use of the following transformation

P̃iι =

{
Piι, κι is benefit criteria,
Pc
iι, κι is cost criteria.

(36)

where Pc
iι =

(
νPiι , µPiι

)
is the complement of Piι.

Step 3 Use the newly designed p,q-ROFAAHA or p,q-
ROFAAHG operator to obtain the overall aggregated
result from matrix N row-wise for each alternative oi.

Step 4 Employ Eq. (4) to determine the score value of each
aggregated result derived in Step 2.

Step 5 Rank the alternatives oi (i = 1, 2, . . . ,m) in descend-
ing order according to their score values and get the
optimal one.

VI. AN ILLUSTRATIVE EXAMPLE
This section contends for the evaluation of the intensity
of corruption to show the implication of the proposed
framework.

A. BACKGROUND DESCRIPTION
Corruption is now the most prevalent of all societal ills. Every
society in today’s world suffers from the ills of corruption
in some way. The degree of corruption may differ from one
country to the next or from one social system to the other, but
its presence cannot be ignored. The causes of corruption vary
and are influenced by variables ranging from historical to
economic. In a recent study, we attempted to mathematically
attach/link the causes of corruption using fuzzy mathemat-
ics techniques. Our research intends to create an applica-
tion for assessing the severity of this social hazard based
on its causes. Corruption erodes a society’s good standards,
and the social structure soon degenerates. It is consequently
critical not just to detect corruption and its causes but also

Mm×ð =

κ1 · · · κι · · · κð


o1

(
µP11 , νP11

)
· · ·

(
µP1ι , νP1ι

)
· · ·

(
µP1ð , νP1ð

)
...

...
. . .

...
. . .

...

oi
(
µPi1 , νPi1

)
· · ·

(
µPiι , νPiι

)
· · ·

(
µPið , νPið

)
...

...
. . .

...
. . .

...

om
(
µPm1 , νPm1

)
· · ·

(
µPmι

, νPmι

)
· · ·

(
µPmð , νPmð

)
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TABLE 1. Expert’s evaluation matrix M.

to take action to combat it. Weak economic circumstances,
a weak accountability system, and a weak moral foundation
are the primary causes of corruption. Consider the follow-
ing example: consider o1, o2, o3, o4 to be a collection of
countries, and consider κ1, κ2, κ3, κ4 to be a set of four
criteria, where κ1 refers ‘‘Weak System of Accountability’’,
κ2 refers ‘‘Weak Economic Conditions’’, κ3 refers ‘‘Weak
Moral Basis’’, and κ4 refers ‘‘Unemployment.’’ The weight
vector of these criteria is w = (0.2, 0.3, 0.2, 0.3), while the
weight vector associated with aggregation operator is taken
ϖ = (0.3, 0.2, 0.25, 0.25). To provide sufficient flexibility
in evaluating the values of the four criteria, experts were
permitted to use p,q-ROFNs. The assessment information of
experts is recorded in Table 1.

B. DECISION PROCESS BASED ON p,q-ROFAAHA AND
p,q-ROFAAHG OPERATOR
Step 1: The assessment information matrix is established in
Table 1.

Step 2: Because each criteria is benefit type, then normal-
ization isn’t implemented. Thus, normalized decision matrix
N = M = (Piι)4×4, provided as Table 1.

Step 3: Using the p,q-quasirung orthoair fuzzy information
detailed in Table 1, the values of P̂iι = (ðwι)Piι are
computed as shown follows:

P̂11 = (0.5195, 0.4805) , P̂12 = (0.5403, 0.5417) ,

P̂13 = (0.8415, 0.3817) , P̂14 = (0.7643, 0.4354) ,

P̂21 = (0.5479, 0.7518) , P̂22 = (0.8405, 0.5418) ,

P̂23 = (0.4256, 0.5744) , P̂24 = (0.4583, 0.5417) ,

P̂31 = (0.6183, 0.3817) , P̂32 = (0.6671, 0.4354) ,

P̂33 = (0.3608, 0.8365) , P̂34 = (0.4583, 0.4353) ,

P̂41 = (0.4534, 0.6646) , P̂42 = (0.4345, 0.6518) ,

P̂43 = (0.7473, 0.5744) , P̂44 = (0.6671, 0.2357) .

Based on the score function Eq. (4), we have

P̂δ(11) = P̂13 = (0.8415, 0.3817) ,

P̂δ(12) = P̂14 = (0.7643, 0.4354) ,

P̂δ(13) = P̂11 = (0.5195, 0.4805) ,

P̂δ(14) = P̂12 = (0.5403, 0.5417) ,

P̂δ(21) = P̂22 = (0.8405, 0.5418) ,

P̂δ(22) = P̂24 = (0.4583, 0.5417) ,

P̂δ(23) = P̂23 = (0.4256, 0.5744) ,

P̂δ(24) = P̂21 = (0.5479, 0.7518) ,

P̂δ(31) = P̂32 = (0.6671, 0.4354) ,

P̂δ(32) = P̂31 = (0.6183, 0.3817) ,

P̂δ(33) = P̂34 = (0.4583, 0.4353) ,

P̂δ(34) = P̂33 = (0.3608, 0.8365) ,

P̂δ(41) = P̂44 = (0.6671, 0.2357) ,

P̂δ(42) = P̂43 = (0.7473, 0.5744) ,

P̂δ(43) = P̂41 = (0.4534, 0.6646) ,

P̂δ(44) = P̂42 = (0.4345, 0.6518) .

Before implementing p,q-ROFAAHA operator, the values
of p∗ and q∗ for each row are determined. In accordance with
the method outlined in Section V, p∗

= q∗
= 2 for each row

of the Table 1.
Now utilizing p,q-ROFAAHA operator i.e., Eq. (19) (tak-

ing p∗
= q∗

= 2 and3 = 1), having associatedweight vector
ϖ = (0.3, 0.2, 0.25, 0.25) to work out the overall value of
each alternative oi, shown as follows:

P1 = (0.7129, 0.4530) ,P2 = (0.6522, 0.5966) ,

P3 = (0.5542, 0.4993) ,P4 = (0.6019, 0.4707) .

Step 4: In the light of Eq. (4), figure out the score value of
each alternative oi, derived as follows:

S (o1) = 0.7538, S (o2) = 0.5347,

S (o3) = 0.6524, S (o4) = 0.6902.

Step 5: The ranking of alternatives is o1 ≻ o4 ≻ o3 ≻ o2.
Hence, the top rank corrupt country is o1.

Now, we are leveraging the p,q-ROFAAHG operator to
emulate the decision-making process.

According to the p,q-ROFAAHG operator, the main steps
are as follows:

Step 1-2: These are identical to above Steps 1-2.
Step 3: Using the p,q-quasirung orthoair fuzzy information

detailed in Table 1, the values of P̂iι = (ðwι)Piι are
computed as shown follows:

P̂11 = (0.6646, 0.3354) , P̂12 = (0.4354, 0.6671) ,

P̂13 = (0.9191, 0.2696) , P̂14 = (0.6518, 0.5403) ,

P̂21 = (0.6645, 0.6453) , P̂22 = (0.7650, 0.6440) ,

P̂23 = (0.5744, 0.4256) , P̂24 = (0.3329, 0.6671) ,

P̂31 = (0.7517, 0.2483) , P̂32 = (0.5417, 0.5403) ,

P̂33 = (0.4804, 0.7239) , P̂34 = (0.3329, 0.5647) ,

P̂41 = (0.5744, 0.5195) , P̂42 = (0.3329, 0.7643) ,

P̂43 = (0.8365, 0.4534) , P̂44 = (0.5417, 0.3482) .

Based on the score function Eq. (4), we have

P̂δ(11) = P̂13 = (0.9191, 0.2696) ,

P̂δ(12) = P̂14 = (0.6518, 0.5403) ,

P̂δ(13) = P̂11 = (0.6646, 0.3354) ,

P̂δ(14) = P̂12 = (0.4354, 0.6671) ,

P̂δ(21) = P̂22 = (0.7650, 0.6440) ,
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P̂δ(22) = P̂23 = (0.5744, 0.4256) ,

P̂δ(23) = P̂21 = (0.6645, 0.6453) ,

P̂δ(24) = P̂24 = (0.3329, 0.6671) ,

P̂δ(31) = P̂31 = (0.7517, 0.2483) ,

P̂δ(32) = P̂32 = (0.5417, 0.5403) ,

P̂δ(33) = P̂34 = (0.3329, 0.5647) ,

P̂δ(34) = P̂33 = (0.4804, 0.7239) ,

P̂δ(41) = P̂43 = (0.8365, 0.4534) ,

P̂δ(42) = P̂44 = (0.5417, 0.3482) ,

P̂δ(43) = P̂41 = (0.5744, 0.5195) ,

P̂δ(44) = P̂42 = (0.3329, 0.7643) .

Now utilizing p,q-ROFAAHG operator i.e., Eq. (34) (tak-
ing p∗

= q∗
= 2 and3 = 1), having associatedweight vector

ϖ = (0.3, 0.2, 0.25, 0.25) to work out the overall value of
each alternative oi, shown as follows:

P1 = (0.6564, 0.4854) ,P2 = (0.5664, 0.6187) ,

P3 = (0.5135, 0.5560) ,P4 = (0.5543, 0.5701) .

Step 4: According to Eq. (4), compute the score value of
each alternative oi, derived as follows:

S (o1) = 0.7104, S (o2) = 0.3511,

S (o3) = 0.3538, S (o4) = 0.3686.

Step 5: The ranking of alternatives is o1 ≻ o4 ≻ o3 ≻ o2.
Hence, the top rank corrupt country is o1. It is the same as
p,q-ROFAAHA operator.

C. IMPACT OF VARIOUS PARAMETERS ON THE MCDDM
TECHNIQUE
This section is devoted to perform a sensitivity discussion
to examine the impact of various parameters on the ranking
results.

1) IMPACT OF PARAMETER p∗ AND q∗ ON
DECISION-MAKING RESULTS
To determine the dependability and consistency of the preced-
ing example, we use the p,q-ROFAAHA and p,q-ROFAAHG
operators with various values of p∗ and q∗ under the discussed
algorithm.

To do this, we fix the value of q∗
= 2 and take different

values of p∗= 2, 3, 5, 7, 9 in p,q-ROFAAHA operator. Here,
we started the value of p∗ from 2 because 2 is the least
possible value of p∗ and q∗, for which all of the data of
the DMs become p, q-ROFN. The values of the score and
ranking order of the alternatives for various values of p∗

attained by the suggested methodology have been depicted
in Table 2. Figure 2 presents a clearer illustration of the
ranking outcomes for various p∗ values. Table 2 and Fig. 2
demonstrate that the greater values of the parameter p∗ pro-
duce greater score values, but the ranking order remains the
same. Likewise, if we fix p∗=2 and take different values of

q∗= 2, 3, 5, 7, 9 in p,q-ROFAAHA operator. We can notice
from Table 2 that it does not effect the score values and the
alternatives are ranked in the same vein. Hence, the suggested
method is stable under p,q-ROFAAHA operator concerning
different values of p∗ and q∗.
Next, we analyze the impact of the parameter p∗ and q∗ on

the decision making results under the p,q-ROFAAHG in the
discussed algorithm. To do this, we solve the same numerical
example presented in Section VI-A first by fixing value of
q∗=2 and adopt varying values of p∗. We consider q∗= 2 and
p∗= 2,3, 5,7,9. The values of the score function and ranking
order of the alternatives for varying values of p∗ gotten by the
provided method has manifested in Table 3. In additional,
we interpret these experimental findings graphically, as rep-
resented in Figure 3. From Table 3, we can confirm that in
this case, the decision making results are independent of the
parameter p∗. Besides, if we fix p∗= 2 and q∗= 2,3, 5,7,9 the
impact in light of p,q-ROFAAHG executive is tabulated in
Table 3. FromTable 3 it is clear that when the value of q∗ rises
for p,q-ROFAAHG operator, the score values of alternatives
decreases progressively. And the ranking position of some
alternatives also alters which shows the dependability of the
formulated p,q-ROFAAHG operator on q∗. Anyhow, the best
alternative is always o1 in each case.

2) IMPACT OF PARAMETER 3 ON DECISION-MAKING
RESULTS
To showcase the influence of varying magnitudes of the
parameter 3, we employ distinct parametric values of 3

within our stated method to describe the alternatives. Tables
4 and 5 display the ranking implications of the alterna-
tives oi(i = 1, 2, . . .m) based on the p,q-ROFAAHA and
p,q-ROFAAHG operators, respectively, as shown visually
in Figs. 4 and 5. It is clear that as the magnitude of 3

for the p,q-ROFAAHA operator increases, so do the score
values of the available alternatives, but as the magnitude of
3 increases for p,q-ROFAAHG operator, the score values
of alternatives decreases. However, the associated ranking
remains constant in both cases, indicating that the proposed
approach always had the isotonicity property, allowing DMs
to choose the appropriate value based on their preferences.
From these values and analysis, it is concluded that a DM
can choose the respective value of 3 depending upon its
behavior towards the decision making. For instance, if the
DM is the most optimistic towards the decision, then he/she
can choose the p,q-ROFAAHG operator with lower values of
3. On the other hand, if he/she chooses p,q-ROFAAHA oper-
ator to aggregate the process, then he/she can choose larger
values of the parameters 3. Besides this, if a DM utilizes
p,q-ROFAAHA operator towards the aggregation process to
get the most pessimistic decision, he/she can choose smaller
values of 3. This impact of 3 values on the decision makes
our suggested approach more flexible as DMs can choose
the parameters according to their preferences and practical
situations. Furthermore, we can observe in Figs. 4 and 5
that even when the values of 3 are varied throughout the
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TABLE 2. Ranking results by p,q-ROFAAHA with various p∗ and q∗.

TABLE 3. Ranking results by p,q-ROFAAHG with various p∗ and q∗.

FIGURE 2. Ranking of alternatives for different values p∗ and q∗ by p,q-ROFAAHA operator.

demonstration, the choices’ outputs seem to be the same,
indicating the consistency of the suggested operators.

VII. COMPARATIVE ANALYSIS
In this chapter, we compare our suggested technique
with some prevailing operators, including q-rung orthopair

fuzzy weighted averaging (q-ROFWA) operator [28],
q-rung orthopair fuzzy weighted geometric (q-ROFWG)
operator [28], q-rung orthopair fuzzy Einstein ordered
weighted averaging (q-ROFEOWA) operator [27],
q-rung orthopair fuzzy Einstein weighted geometric
(q-ROFEWG) operator [27], weighted q-rung orthopair
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FIGURE 3. Ranking of alternatives for different values p∗ and q∗ by p,q-ROFAAHG operator.

TABLE 4. Ranking results by p,q-ROFAAHA with various 3.

fuzzy Hamacher average (Wq-ROFHA) operator [47],
intuitionistic fuzzy AA weighted average (IFAAWA)
operator [45] and intuitionistic fuzzy AA hybrid aver-
age (IFAAHA) operator [45]. Table 6 contains the
comparison results, which are graphically depicted in
Fig. 6.

From the listed results in Table 6, it is evident that the
ranking results derived by the q-ROFWA operator [28] totally
match with the proposed aggregation operators’ results. Next
to utilizing q-ROFWG operator [28], we get o1 ≻ o4 ≻ o2 ≻

o3. Thus, the ranking result varies little with respect to the q-
ROFWG operator. Both q-ROFWA and q-ROFWG operators
weights just the q-ROFNs and neglect the ordered positions
of the q-ROFNs, whereas the proposed operators encounter
both the q-ROFNs as well as their ordered positions weights.
What’smore, the experimental results obtained on the basis of
Einstein operators [27] i.e., q-ROFEOWA and q-ROFEOWG
operators are the same as the ones acquired by our suggested
operators. Albeit these Einstein operators suffer from the
drawback of paying no attention to q-ROFNs weights and

dealing with only ordered positions weights. In addition, the
result based on theWq-ROFHA operator [47] is little change,
i.e., the alternative o2 and o3 have swapped their positions.
This can be attributed to the fact that likewise q-ROFWA
and q-ROFWG operators Wq-ROFHA operator neglects the
ordered positions of q-ROFNs. And this shortfall is overcome
by the suggested q-ROFAAHA and q-ROFAAHG operators.
For good measure, likewise the proposed aggregation oper-
ators, the Wq-ROFHA operator also permits the DMs to
choose their preferences with respect to the different val-
ues of the parameter. Furthermore, Senapati et al. presented
work [45] is limited notion and can work only with intuition-
istic fuzzy data i.e., µP + νP ≤ 1. From this restriction, it is
clear that Senapati et al. [45] operators are not capable of han-
dling the data given in Table 6. FromTable 6, it is easy to note
that

(
µP12 , νP12

)
= (0.5, 0.6) is not intuitionistic fuzzy data

because 0.5+0.6 ≰ 1. Due to this reason, the data provided in
Table 6 cannot be handled by [45], and only the proposed AA
operators are able to resolve all such data where µ

q
P + ν

q
P ≤

1; q ≥ 1. This implies that the expounded work is dominant
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FIGURE 4. Ranking of alternatives for different values 3 by p,q-ROFAAHA operator.

TABLE 5. Ranking results by p,q-ROFAAHG with various 3.

FIGURE 5. Ranking of alternatives for different values 3 by p,q-ROFAAHG operator.

than [45] and provides more space to DMs to make their
decisions.

We summarise the advantages of the proposed approach as
follows:
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TABLE 6. Ranking results based on different aggregation operators.

FIGURE 6. Comparative analysis with existing aggregation operators.

1). Generality: The aggregation operators utilized in the
proposed method are the generalization of certain pre-
vailing aggregation operators. For instance, q-ROFWA
and q-ROFWG operators are special cases of the sug-
gested p,q-ROFAAHA and p,q-ROFAAHG operators,
respectively. And this happens when 3 = 1 and ϖ =(
1
n ,

1
n , . . . ,

1
n

)T
. So our methodology is more compre-

hensive and more reasonable.
2). Parameter 3: The devised aggregation operators include

a parameter 3 that allows DMs to alter the aggre-
gate value based on real-world decision demands, and
they capture numerous current p,q-quasirung orthopair
aggregation operators. Along these lines, the benefit
is that the proposed operators have a better level of
consensus and flexibility.

3). Property of isotonicity: In contrast to the Wq-ROFHA
operator [47], the provided operators adhere to the iso-

tonicity property. The p,q-ROFAAHA (p,q-ROFAAHG)
operator values grow (reduce) monotonically with the
increase of parameter 3, allowing DMs to select the
right value based on their risk preferences. If the DMs
are risk preference, they may take the parameter value
as low as fairly practicable; if the DMs are risk aversion,
they can take the parameter value as high as reasonably
achievable in the case of the p,q-ROFAAHA operator,
and vice versa for the p,q-ROFAAHG operator. Thus,
the DMs can use the appropriate parameter value based
on their risk tolerance and real demands.

VIII. CONCLUSION AND RECOMMENDATIONS
This manuscript defined some novel p,q-quasirung orthopair
fuzzy operation rules based on AA t-norm and t-conorm and
investigated their relevant characteristics. In view of these
AA operational rules, we explored some novel p,q-quasirung
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orthopair fuzzy weighted, ordered weighted and hybrid aver-
aging as well as geometric aggregation operators. We also
examined various alluring properties and special cases of the
presented operators in depth. Based on the explored opera-
tors, an MCDM approach was outlined to access the optimal
alternative(s) according to their ranking order. An example
was demonstrated to justify the implication of the presented
work in real life. Also, the influence of the parameter 3

employed in the suggested aggregation operators on the score
values of alternatives was detailed. According to the experi-
mental findings, it was observed that the suggested technique
is stable and adheres to the isotonicity condition. At last,
a comparative study of the suggested MCDM technique with
various earlier approaches was provided in order to Scruti-
nize the validity, advantages, and reliability of the proposed
generalized aggregation operators and MCDM approach.

Moving forward, wewill continue to work on the following
aspects:
i. The suggested AA aggregation operators have the draw-

back that they cannot capture interrelationships between
criteria [49]. To widen the scope of application, we will
define other functional aggregation operators such as
power Maclaurin symmetric mean operators in terms of
AA operations.

ii. Based on the suggested operational rules, we will rede-
fine the operational rules for some other advanced
fuzzy sets, including the T-spherical fuzzy set [50], and
link them to fuzzy graph theory and fuzzy-regression
approaches [51].

iii. We will further enhance the presented study by consid-
ering the relative weights of DMs. To this end, we will
put forward a mathematical model [52] to acquire the
weights.

ABBREVIATIONS
q-rung orthopair fuzzy set: q-ROFS. p,q-quasirung orthopair
fuzzy set: p,q-ROFS. Aczel-Alsina: AA. Multi-criteria
decision-making: MCDM. Fuzzy set: FS. Intuitionistic FS:
IFS. Pythagorean fuzzy set: PFS. q-quasirung orthopair
fuzzy numbers: q-ROFNs. p,q-quasirung orthopair fuzzy
AA weighted averaging: p,q-ROFAAWA. p,q-quasirung
orthopair fuzzy AA ordered weighted averaging: p,q-
ROFAAOWA. p,q-quasirung orthopair fuzzy AA hybrid
averaging: p,q-ROFAAHA. p,q-quasirung orthopair fuzzy
AA weighted geometric: p,q-ROFAAWG. p,q-quasirung
orthopair fuzzy AA ordered weighted geometric: p, q-
ROFAAOWG. p, q-quasirung orthopair fuzzy AA hybrid
geometric: p, q-ROFAAHG. least common multiple: lcm.
Decision maker: DM. Bonferroni mean: BM. Weighted
aggregated sum product assessment: WASPAS. Technique
for order of preference by similarity to ideal solution: TOP-
SIS. Triangle norms: t-norms.

AVAILABILITY OF DATA AND MATERIALS
All data generated or analysed during this study are included
in this published article.
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