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ABSTRACT In the positioning and anti-swing control of bridge crane, amodel-free adaptive control (MFAC)
based on data-driven is proposed in order to eliminate the dependence of controller design on the model and
the influence of unmodeled dynamics and uncertain disturbances on the controller performance. Only using
the input and output data of the bridge crane system, the virtual full format dynamic linearized data model of
the bridge crane nonlinear system is obtained through the data-driven modeling method. On the basis of this
virtual data model, a model-free adaptive control law and a pseudo-Jacobian matrix estimation algorithm
are designed according to the optimization theory under the constraint conditions. The stability of the closed
loop system and the convergence of the system error are analyzed and proved by Lipschitz condition and
inequality theory. The effectiveness of the control strategy for positioning and anti-swing control of bridge
cranes is verified on simulated simulation and experimental platform of bridge crane. The results show that
the proposed method is feasible and has good anti-disturbance performance and robustness.

INDEX TERMS Bridge crane, data-driven control, dynamic linearized data model, model-free adaptive
control.

I. INTRODUCTION
In the current large-scale production industry, bridge cranes
are the most widely used transportation tools and mainly used
for loading and transporting goods. However, in the process
of work, due to the strong coupling between system states
and the influence of uncertain disturbance factors, whether
the goods can reach the designated position accurately and
quickly during the transportation and whether the load swing
angle is within the allowable range are the fundamental prob-
lems to be solved [1], [2].

In order to solve the positioning and anti-swing control
problems of bridge crane systems, domestic and foreign
scholars have made in-depth research. At present, the posi-
tioning and anti-swing control methods for bridge cranes
are mainly designed based on the system model, such as
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slidingmode control [3], [4], predictive control [5], [6], active
disturbance rejection control [7], [8], robust control [9], [10]
and other control methods. In [4], a hierarchical global fast
terminal sliding mode control is designed to reduce the dis-
turbance of rope length change and system uncertainty on the
control performance, and the simulation results show that the
control method can achieve good trolley positioning and load
anti-swing control. Reference [6] proposes a novel control
approach based on a multivariable model predictive control
and a particle swarm optimizer for limiting the transient and
residual swing of a payload transferred by an overhead crane
and the experimental research proves the effectiveness of
the control method. In [8], an active disturbance rejection
controller is designed to improve the anti-disturbance and
anti-swing performance of the bridge crane. The controller
parameters are improved through the salp algorithm. The
experimental results show that the controller has significantly
improved the anti-disturbance performance of the system.
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Reference [10] introduces approximate linearization method
and iterative algorithm to establish the linearized equiva-
lent model of the bridge crane system and uses a nonlinear
H-infinity control to compensate the modeling error. The
results show that the method is robust to modelling errors and
external disturbance.

Although the above methods can realize the positioning
and anti-swing control of the bridge crane system, they are all
model-based control methods. The actual bridge crane system
is a very complex nonlinear system, and the precise modeling
results of the system cannot be obtained by using mathe-
matical theory or system identification theory. The controller
design of data-driven control does not depend on the model
of the system itself. The controller design is only conducted
through offline or real-time online input and output data of the
controlled system. At present, the data-driven control method
has been developed and improved continuously, and has
been recognized symbolically at home and abroad [11], [12],
amongwhich PID control [13], [14], iterative learning control
[15], [16], iterative feedback tuning [17], [18], approximate
dynamic programming [19], [20] and other methods have
been widely used.

Model-free adaptive control is a kind of data-driven con-
trol. By introducing the concepts of pseudo partial derivative,
pseudo gradient and pseudo-Jacobian matrix, and adopting
dynamic linearization technology, the nonlinear relationship
of the original system in the whole operation process is
equivalent to the system with linear input and output at each
working point. Then the controller is designed according to
the optimization theory under constraint conditions [21], [22]
by minimizing the criterion function of expected output and
actual output. At present, mode-free adaptive control strat-
egy has been successfully applied to tower crane system
[23], quad rotor unmanned aerial vehicle [24], synchronous
motor [25] and other systems, but no scholar has designed
model-free adaptive control strategy for bridge crane system.

The bridge crane system is nonlinear, multivariable and
strong coupling system, so it is difficult to obtain an accurate
mathematical model of the system. In this paper, a filtering
error signal is introduced and the full format dynamic lin-
earization method is adopted to establish the dynamic lin-
earization data model of the bridge crane based on input and
output data. The controller is designed by using the optimiza-
tion theory under constraint conditions and the model-free
adaptive control theory. The stability of the closed loop sys-
tem and the boundedness of the system error are proved by
Lipschitz condition and inequality theory. Finally, simula-
tion and experimental results demonstrate the feasibility and
effectiveness of the proposed method.

The innovation and contribution of this paper are summa-
rized in the following three aspects:

1) A virtual dynamic linearized data model of bridge crane
is established by using only the input and output data of
the crane system. Therefore, the influence of unmodeled
dynamics and system model parameter uncertainties can be
avoided.

FIGURE 1. 2-D bridge crane system structure diagram.

2) A data-driven model-free adaptive control method is
designed based on the virtual dynamic linearized data model
for bridge crane, which doesn’t require the system dynamic
nonlinear model. This method can easily obtain the stability
control of the system and is applied to the bridge system for
the first time.

3) The algorithm proposed in this paper has strong
anti-disturbance ability and has been used for real-time con-
trol of bridge cranes on an experimental platform.

The rest of this paper is arranged as follows. In Section II
the dynamic model of 2-D bridge crane is introduced and
gives the conversion process of bridge crane dynamic lin-
earization data model. In Section III, model-free adaptive
control algorithm and Pseudo-Jacobian matrix are designed.
Section IV presents the stability analysis of the control sys-
tem. Section V exhibits the simulation and experimental
results, and compares the proposed method with the refer-
ence method. In Section VI, the main work of this paper is
summarized.

II. SYSTEM MATHEMATICAL MODEL
A. SYSTEM DYNAMICS MODEL
The structure diagram of 2-D bridge crane system is shown
in Fig. 1, where l,M and m are the length of rope, the masses
of the trolley and load respectively. x(t), θ(t) is horizontal
displacement of the trolley and the swing angle of the load
with respect to the vertical respectively. g is the gravitational
acceleration. Fx denotes the control input on the trolley. Fp =

pẋ represents the rail friction force during trolley movement
and p is the friction coefficient between the trolley and the
rail.

The dynamic model of 2-D bridge crane system with con-
stant rope length can be described as follows:

B(q)q̈+ C(q, q̇)q̇+ G(q) = Au (1)

where q =
[
x(t) θ (t)

]T denotes the system state vector,
B(q) is the inertia matrix which is symmetric and positive,
C(q, q̇) is the centripetal Coriolis matrix,G(q) and u represent
the gravity vector and the control input respectively. They are
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provided as follows:

B(q) =

[
M + m ml cos θ
ml cos θ ml2

]
(2)

C(q, q̇) =

[
p −mlθ̇ sin θ
0 0

]
(3)

G(q) =
[
0 mgl sin θ

]T (4)

A =
[
1 0

]T (5)

u = Fx (6)

B. DYNAMICS LINEARIZATION DATA MODEL
In the control system, the controller is designed to minimize
the error between the expected output and the actual output
of the system, so the error signal e(t) ∈ R2×1 is defined as

e(t) = qd − q (7)

where qd =
[
xd θd

]T is the expected output of the system.
xd denotes the trolley target displacement and θd is the desired
load swing angle.

In order to facilitate the conversion of bridge crane
dynamic linearization data model, the following filtering
error signal r(t) ∈ R2×1 of the system is introduced.

r(t) = ė+ αe = (q̇d − q̇) + α × (qd − q) (8)

where α = diag {α1, α2} is the positive definite symmetric
gain matrix.

The first derivative of signal r(t) with respect to time is

ṙ(t) = (q̈d − q̈) + α × (q̇d − q̇) (9)

There exists ∥B∥ ̸= 0. Now multiplying (1) on the left and
right by B−1, we may rewrite (2) as

q̈+ B−1Cq̇+ B−1G = B−1Au (10)

Substitute (10) into (9), and the open-loop dynamic equa-
tion based on filtering error signal is

ṙ(t) = (α − B−1C)r+ B−1C(q̇d + αe) + q̈d − α2e

+B−1G− B−1Au (11)

Define

N(q̇d , q̈d , q, q̇, q̈) = B−1C(q̇d + αe) + q̈d + B−1G− α2e

(12)

Then Eq. (11) can be written as

ṙ(t) = (α − B−1C)r+ N − B−1Au (13)

Using the forward Euler discretization method, we can
have

ṙ(k) =
r(k + 1) − r(k)

T
(14)

where the sampling time T is 0.01s and k is a positive integer
greater than zero.

Let y(k) = r(k) and (13) can be converted into the follow-
ing form:

ẏ(k) =
αB(k) − C(k)

B(k)
y(k) −

Au(k)
B(k)

+ N(k) (15)

Substituting (14) into (15) has

y(k + 1) = [I +
αB(k) − C(k)

B(k)
× T ]y(k)

−
Au(k)
B(k)

× T + N(k) × T (16)

Therefore, the relationship between the input and output
of the bridge crane system has been obtained. (16) provides
the basis for whether the subsequent bridge crane system
can be converted into a linear model with standard input and
output changes, and whether the model-free adaptive control
method can be used. So, the following assumptions are made
to analyze (16).
Assumption 1: The partial derivative of y(k + 1) with

respect to y(k) and u(k) are continuous.
Assumption 2: (16) satisfies the generalized Lipschitz

condition, that is, for any k1 ≥ 0, k2 ≥ 0, b′ > 0 and k1 ̸= k2,
H(k1) ̸= H(k2), the following inequality holds.

∥y(k1 + 1) − y(k2 + 1)∥ ≤ b′
∥H(k1) −H(k2)∥ (17)

where H(k) =
[
y(k) u(k)

]T.
According to the definition of partial derivative there are

the following formulas.

lim
1y(k)→0

f (y(k) +1y(k)) − f (y(k))
1y(k)

= lim
1y(k)→0

[I +
αB(k)−C(k)

B(k) × T ] ×1y(k)

1y(k)

= I +
αB(k) − C(k)

B(k)
× T (18)

lim
1u(k)→0

f (u(k) +1u(k)) − f (u(k))
1u(k)

= lim
1u(k)→0

−
A

B(k) × T ×1u(k)

1u(k)

= −
A

B(k)
× T (19)

Continuous partial derivative of y(k + 1) for y(k) and u(k)
exists. Therefore, (16) satisfies Assumption 1.

In (2) and (3), θ (k) changes very little at adjacent moments,
so it can be ignored. Let B(k1) = B(k2), C(k1) = C(k2), there
is

y(k1 + 1) − y(k2 + 1)

= [I +
αB(k1) − C(k1)

B(k1)
× T ] × [y(k1) − y(k2)]

−
AT
B(k1)

[u(k1) − u(k2)] + T [N(k1) − N(k2)]

=

[
I +

αB(k1) − C(k1)
B(k1)

× T −
AT
B(k1)

]
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×

[
y(k1) − y(k2)
u(k1) − u(k2)

]
+ T [N(k1) − N(k2)] (20)

Because ∥H(k1) −H(k2)∥ =

∥∥∥∥[
y(k1) − y(k2)
u(k1) − u(k2)

]∥∥∥∥ ̸= 0,

there is
∥y(k1 + 1) − y(k2 + 1)∥∥∥∥∥[

y(k1) − y(k2)
u(k1) − u(k2)

]∥∥∥∥
≤

∥∥∥∥[
I +

αB(k1) − C(k1)
B(k1)

× T −
AT
B(k1)

]∥∥∥∥
+

∥T [N(k1) − N(k2)]∥∥∥∥∥[
y(k1) − y(k2)
u(k1) − u(k2)

]∥∥∥∥ (21)

Because
∥∥∥ I +

αB(k1)−C(k1)
B(k1)

× T −
AT
B(k1)

∥∥∥ and ∥N(k1) −

N(k2)∥ exist at any moment k, therefore, (16) satisfies
Assumption 2.
Theorem 1: The bridge crane system is a single-input

double-output system. If Assumption 1 and Assumption 2
are satisfied, (16) can be converted into the following bridge
crane dynamic linearized data model.

1y(k + 1) = 8(k)1H(k) = φ11y(k) + φ21u(k) (22)

in which 8(k) =
[
φ1(k) φ2(k)

]
is time-varying Pseudo-

Jacobian parameter matrix, φ1(k) ∈ R2×2, 0 <
∥∥φ1(k)

∥∥ ≤

b1, φ2(k) ∈ R2×1, 0 <
∥∥φ2(k)

∥∥ ≤ b2, 0 < ∥φ(k)∥ ≤√
b21 + b22 = b, 1H(k) =

[
1y(k) 1u(k)

]T, and b1, b2 are
all bounded positive numbers.

Proof: According to (16), there is

1y(k + 1)

= y(k + 1) − y(k)

= [I +
αB(k) − C(k)

B(k)
× T ]y(k) −

Au(k)
B(k)

× T

+N(k)×T − [I +
αB(k − 1) − C(k − 1)

B(k − 1)
×T ]y(k−1)

+
Au(k − 1)
B(k − 1)

× T − N(k − 1) × T

= [I +
αB(k) − C(k)

B(k)
× T ]y(k) −

Au(k)
B(k)

× T

+N(k) × T + [I +
αB(k) − C(k)

B(k)
× T ]y(k − 1)

−
Au(k − 1)
B(k)

× T + N(k) × T − [I +
αB(k) − C(k)

B(k)

×T ]y(k − 1) +
Au(k − 1)
B(k)

× T − N(k) × T

− [I +
αB(k − 1) − C(k − 1)

B(k − 1)
× T ]y(k − 1)

+
Au(k − 1)
B(k − 1)

× T − N(k − 1) × T (23)

For the convenience of controller design, let

Z(k) = [I +
αB(k) − C(k)

B(k)
T ]y(k − 1) −

Au(k − 1)
B(k)

T

+N(k)T − [I +
αB(k − 1) − C(k − 1)

B(k − 1)
T ]y(k − 1)

+
Au(k − 1)
B(k − 1)

× T − N(k − 1) × T (24)

where Z(k) ∈ R2×1.
According to the definition of partial derivative, the follow-

ing equations can be obtained.

∂y(k + 1)
∂y(k)

= I +
αB(k) − C(k)

B(k)
× T (25)

∂y(k + 1)
∂u(k)

= −
A

B(k)
× T (26)

Then, (23) can be converted into the following form:

1y(k + 1)

= [I +
αB(k) − C(k)

B(k)
T ]y(k) −

Au(k)
B(k)

T + N(k)T

− [I +
αB(k) − C(k)

B(k)
T ]y(k − 1) +

Au(k − 1)
B(k)

× T

−N(k) × T + Z(k)

= [I +
αB(k) − C(k)

B(k)
T ][y(k) − y(k − 1)] −

T
B(k)

× [Au(k) − Au(k − 1)] + Z(k)

=
∂y(k + 1)
∂y(k)

×1y(k) +
∂y(k + 1)
∂u(k)

×1u(k) + Z(k)

(27)

For a fixed moment k , Z(k) can be expressed as

Z(k) = z(k) ×1H(k) (28)

where z(k) ∈ R2×3.
For any moment k , ∥1H(k)∥ ̸= 0, (28) has at least one

non-zero solution z∗(k), so that

Z(k) = z∗(k) ×1H(k) (29)

Let 8(k) = z∗(k) +

[
∂y(k+1)
∂y(k)

∂y(k+1)
∂u(k)

]
, (27) can be con-

verted to the following form:

1y(k + 1) = φ1(k)1y(k) + φ2(k)1u(k) (30)

Therefore, the full format dynamic linearized data model
of bridge crane system is

y(k + 1) = y(k) + 8(k)1H(k)

= y(k) + φ1(k)1y(k) + φ2(k)1u(k) (31)

Equation (31) does not contain the information of the
systemmodel of the bridge crane and it is only a virtual model
which provides the basis for subsequent controller design and
system stability analysis.

III. CONTROLLER DESIGN
A. MODEL-FREE ADAPTIVE CONTROL LAW DESIGN
In order to eliminate system deviation, it can be seen from
(31) that the input change at the current k moment will affect
the output change at the next moment. According to the
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optimization theory, the criterion function under constraint
conditions can be obtained.

J (u(k)) =
∥∥yd (k + 1) − y(k + 1)

∥∥2 + λ ∥u(k) − u(k − 1)∥2

(32)

where yd (k+1) is the filter desired output of the system at the
moment k + 1 and λ > 0 is the penalty factor for the control
input which affects the error of the system.

Substituting (31) into (32) has

J (u(k)) =
∥∥yd (k+1) − φ1(k)1y(k) − φ2(k)1u(k)− y(k)∥2

+ λ ∥u(k) − u(k − 1)∥2 (33)

Then, by differentiating J (u(k)) with respect to u(k)
and making the result zero, the following equation can be
obtained.∥∥−φ2(k)

∥∥×
∥∥yd (k+1)−φ1(k)1y(k)−φ2(k)1u(k)−y(k)

∥∥
+λ (u(k) − u(k − 1)) = 0 (34)

Thus, the model-free adaptive control law of the bridge
crane system is determined as follows:

u(k) = u(k − 1) + ρ1 × φT
2 (k) ×

yd (k + 1) − y(k)

λ +
∥∥φ2(k)

∥∥2
− ρ2 × φT

2 (k) ×
φ1(k)1y(k)

λ +
∥∥φ2(k)

∥∥2 (35)

where ρ1 = ρ2 ∈ (0, 1] are the step size factors to make
the algorithm more flexible and general, φ1(k) and φ2(k) are
time-varying parameter matrices which can be obtained by
estimation algorithm.

B. THE DESIGN OF PSEUDO-JACOBI MATRIX ESTIMATION
ALGORITHM
In order to realize (35), it is necessary to know the exact value
of the Pseudo-Jacobian matrix. The model of the bridge crane
system is unknown and the Pseudo-Jacobian matrix value is
difficult to obtain. Therefore, the estimation algorithm using
the system input and output data is adopted.

The traditional parameter estimation criterion function is
to minimize the square of the difference between the sys-
tem model output and the actual output. The model-free
adaptive control algorithm can achieve stable control of the
system only by using the input and output data of the system.
This algorithm requires high data accuracy. In addition, its
parameter estimation is too sensitive to data changes caused
by disturbance and other factors. So, the following criteria
function is used to calculate the time-varying parameters of
the Pseudo-Jacobian matrix.

J (8(k)) = ∥y(k) − y(k − 1) − 8(k)1H(k − 1))∥2

+µ

∥∥∥8(k) − 8̂(k − 1)
∥∥∥2 (36)

where 8̂(k) = 8̂(k − 1) + 18(k) is the estimated value
of 8(k), and µ > 0 is the weight factor used to limit the
variation of parameter estimation.

For (36), by differentiating J (8(k)) with 8(k) respect to
and making the result zero, we can obtain.

∥(1y(k) − 8(k)1H(k − 1))∥ × ∥−1H(k − 1)∥

+µ

∥∥∥8(k) − 8̂(k − 1)
∥∥∥ = 0 (37)

The Pseudo-Jacobi matrix estimation algorithm for the
model-free adaptive control law of the bridge crane system
can be obtained by simplifying (37) as follows.

8̂(k) = 8̂(k − 1) + η ×
1

µ+ ∥1H(k − 1)∥2

× (1y(k) − 8̂(k − 1) ×1H(k − 1))

× (1H(k − 1))T (38)

where η ∈ (0, 2] is the step size factor which makes the
algorithm more flexible and general.

φ̂1(k) = φ̂1(k − 1) + η ×
1

µ+ ∥1H(k − 1)∥2

× (1y(k) − 8̂(k − 1)×1H(k − 1))× (1y(k−1))T

(39)

φ̂2(k) = φ̂2(k − 1) + η ×
1

µ+ ∥1H(k − 1)∥2

× (1y(k) − 8̂(k − 1)×1H(k − 1))×(1u(k − 1))
(40)

where φ̂1(k) and φ̂2(k) are the estimated values of φ1(k) and
φ2(k), respectively. φ1(k) represents the linear relationship of
filtering error output at any moment k and φ2(k) represents
the linear relationship of filtering error output and input at any
moment k.

Since φ̂1(k) and φ̂2(k) are real-time changing values, the
following reset algorithm is introduced to reduce the impact
on control performance caused by excessive or small estima-
tion tracking error.

If
∥∥∥φ̂i(k)

∥∥∥ ≤ c or
∥∥∥φ̂i(k)

∥∥∥ > ac or sign(φ̂i(k)) ̸=

sign(φ̂i(1)), then φ̂i(k) ̸= φ̂i(1) (i = 1, 2), where φ̂i(1) is
the initial value of φ̂i(k), a is a very large positive number
and c is a very small positive number.

In summary, the proposed control method can be summa-
rized as the following steps.

(1) Set the initial parameters λ , ρ1, ρ2, µ, η and
φ1(1),φ2(1) of the controller.
(2) Assume the system outputs y(1) = y(2) =

[
0 0

]T and
inputs u(1) = u(2) = 0.
(3) Calculate the values of parameters φ̂1(k) and φ̂2(k) by

using the Jacobian estimation algorithm of (39) and (40).
(4) The model-free adaptive control law u(k) is obtained

by (35).

IV. STABILITY ANALYSIS
Theorem 2: For the system (16) that satisfies Assump-

tions 1 and 2, the model-free adaptive control law of (35) and
(38) are adopted. When the expected output of the filtering
error is constant, that is, yd (k + 1) = yd (k) = const,
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there is a positive number 0 < λmin ≤ λ that makes
the system tracking error gradually approach zero, that is,
lim
k→∞

∥∥yd (k + 1) − y(k)
∥∥ = 0. And the system is BIBO

stable, that is, the output y(k) and input u(k) are bounded.
Proof: Step 1: According to the definition, the esti-

mated value of Pseudo-Jacobian matrix changes at different
times, so the estimated error of Pseudo-Jacobian matrix is as
follows:

8̃(k) = 8̂(k) − 8(k) (41)

Subtract 8(k) both sides of (38) at the same time, and (38)
is converted into the following form.

8̃(k) = 8̂(k − 1) − 8(k − 1) + 8(k − 1) − 8(k)

+ η ×
(1y(k) − 8̂(k − 1) ×1H(k − 1))

µ+ ∥1H(k − 1)∥2

× (1H(k − 1))T (42)

The size of the matrix is expressed by two norms, in order
to facilitate size comparison the norms on both sides of (42)
are taken.∥∥∥8̃(k)

∥∥∥ =

∥∥∥8̂(k − 1) − 8(k − 1) + 8(k − 1) − 8(k)

+ η ×
1y(k) − 8̂(k − 1) ×1H(k − 1)

µ+ ∥1H(k − 1)∥2

× (1H(k − 1))T
∥∥∥ (43)

When d1 and d2 are arbitrary real numbers, there is
∥d1 ± d2∥ ≤ ∥d1∥+∥d2∥. So (43) can be written in the form
of following inequality.∥∥∥8̃(k)

∥∥∥ ≤

∥∥∥8̃(k − 1)
∥∥∥ + ∥8(k − 1)∥ + ∥8(k)∥

+

∥∥∥∥∥η (1y(k) − 8̂(k − 1) ×1H(k − 1))

µ+ ∥1H(k − 1)∥2

∥∥∥∥∥
×

∥∥∥(1H(k − 1))T
∥∥∥ (44)

Since the dynamic linearized data model (31) of the bridge
crane system satisfies the generalized Lipschitz condition,

that is, 0 < ∥φ(k)∥ ≤

√
b21 + b22 = b, so the following

inequality can be combined.

8̃(k) ≤

∥∥∥8̃(k − 1)
∥∥∥ + b+ b

+

∥∥∥∥∥η (1y(k) − 8̂(k − 1) ×1H(k − 1))

µ+ ∥1H(k − 1)∥2

∥∥∥∥∥
×

∥∥∥(1H(k − 1))T
∥∥∥ (45)

in which there is∥∥∥∥∥η (1y(k) − 8̂(k − 1) ×1H(k − 1))

µ+ ∥1H(k − 1)∥2

∥∥∥∥∥ ×

∥∥∥(1H(k − 1))T
∥∥∥

≤ η ×

∥∥∥∥ 1y(k)

µ+ ∥1H(k − 1)∥2
× (1H(k − 1))T

∥∥∥∥

+ η ×

∥∥∥∥∥ 8̂(k − 1) ×1H(k − 1)

µ+ ∥1H(k − 1)∥2
× (1H(k − 1))T

∥∥∥∥∥
(46)

Due to
∥∥1H(k − 1) × (1H(k − 1))T

∥∥ = ∥1H(k − 1)∥2

and ∥d1 + d2∥ ≥ 2
√
d1d2, let ∥1y(k)∥ ≤ ε1 and

∥1H (k − 1)∥ ≤ ε2, where ε1 and ε2 are any small positive
numbers, there is

η ×

∥∥∥∥ 1y(k)

µ+ ∥1H(k − 1)∥2
× (1H(k − 1))T

∥∥∥∥
= η ×

∥∥∥∥∥ 1y(k)
µ

∥1H(k−1)∥ + ∥1H(k − 1)∥

∥∥∥∥∥
≤ η ×

ε1

2
√
µ

(47)

η ×

∥∥∥∥∥ 8̂(k − 1) ×1H(k − 1)

µ+ ∥1H(k − 1)∥2
× (1H(k − 1))T

∥∥∥∥∥
= η ×

∥∥∥8̃(k − 1) + 8(k − 1)
∥∥∥ ×

∥∥∥∥∥ ∥1H(k − 1)∥2

µ+ ∥1H(k − 1)∥2

∥∥∥∥∥
= η ×

∥∥∥8̃(k − 1) + 8(k − 1)
∥∥∥ ×

1
µ

∥1H(k−1)∥2
+ 1

≤ η ×

∥∥∥8̃(k − 1) + 8(k − 1)
∥∥∥ ×

∥1H(k − 1)∥
2
√
µ

≤ η ×

∥∥∥8̃(k − 1)
∥∥∥ ×

ε2

2
√
µ

+ η × b
ε2

2
√
µ

(48)

In the end, there is∥∥∥8̃(k)
∥∥∥ ≤

∥∥∥8̃(k − 1)
∥∥∥ + b+ b+ η

ε1

2
√
µ

+ η

∥∥∥8̃(k − 1)
∥∥∥ ε2

2
√
µ

+ ηb
ε2

2
√
µ

(49)

By sorting out the above inequalities, we can obtain∥∥∥8̃(k)
∥∥∥ ≤

2
√
µ+ ηε2

2
√
µ

∥∥∥8̃(k − 1)
∥∥∥ + 2b+

ηε1 + ηbε2
2
√
µ

(50)

Let ε = 2b +
ηε1+ηbε2

2
√
µ

=
4b

√
µ+ηε1+ηbε2
2
√
µ

and τ = 1 +

ηε2
2
√
µ

=
2
√
µ+ηε2
2
√
µ

, through recursive reasoning there is∥∥∥8̃(k)
∥∥∥ ≤ τ

∥∥∥8̃(k − 1)
∥∥∥ + ε

≤ τ × τ ×

∥∥∥8̃(k − 2)
∥∥∥ + τε + ε

≤ τ k−1
∥∥∥8̃(1)

∥∥∥ +
ε(1 − τ k−1)

1 − τ
(51)

where

τ k−1
= (

2
√
µ+ ηε2

2
√
µ

)k−1
= (1 +

ηε2

2
√
µ
)k−1 (52)

ε(1−τ k−1)
1−τ

=
4b

√
µ+ ηε1 + ηbε2

2
√
µ

×

1 − ( 2
√
µ+ηε2
2
√
µ

)k−1

−
ηε2
2
√
µ
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=
4b

√
µ+ηε1+ηbε2

−ηε2
×(1−(

2
√
µ+ηε2

2
√
µ

)k−1)

(53)

In (52) and (53), µ, η, b, ε1, ε2 are bounded values and
8̃(1) = 8̂(1) − 8(1),8(1) is an initial value. Therefore,
8̃(k) = 8̂(k) − 8(k) is bounded. And 0 < ∥φ(k)∥ ≤ b,
so 8̂(k) is also bounded.
Step 2: The system tracking error is defined as follows.

E(k + 1) = yd (k + 1) − y(k + 1) (54)

Substitute (31) into (54) and yd (k + 1) = yd (k) = const,
so there is

E(k + 1)

= yd (k + 1) − y(k + 1)

= yd (k + 1) − y(k) − φ1(k)1y(k) − φ2(k)1u(k)

= E(k) − φ1(k)1y(k) − φ2(k) × (ρ1 × φT
2 (k)

×
yd (k + 1) − y(k)

λ +
∥∥φ2(k)

∥∥2 − ρ2 × φT
2 (k) ×

φ1(k)1y(k)

λ +
∥∥φ2(k)

∥∥2 )
= [I −

ρ1φ2(k) × φT
2 (k)

λ +
∥∥φ2(k)

∥∥2 ]E(k)

+ [
ρ2φ2(k)φ

T
2 (k)

λ +
∥∥φ2(k)

∥∥2 − I ]φ1(k)1y(k) (55)

Because ρ1, ρ2 ∈ (0, 1], 0 <
∥∥φ1(k)

∥∥ ≤ b1, 0 <∥∥φ2(k)
∥∥ ≤ b2, λ > 0, d1 + d2 ≥ 2

√
d1d2, there must be

an 0 < ψ < 1 and b2 > 2
√

λ is selected at the same time,
so that the following formula holds.

0 < ψ <

∥∥∥∥∥ φ2(k)φ
T
2 (k)

λ +
∥∥φ2(k)

∥∥2
∥∥∥∥∥ =

1
λ

∥φ2(k)∥
2 + 1

≤

∥∥φ2(k)
∥∥

2
√

λ
≤

b2
2
√

λ
< 1 (56)

So, (55) can be rewritten as

∥E(k + 1)∥ =

∥∥∥∥∥[I −
ρ1 × φ2(k) × φT

2 (k)

λ +
∥∥φ2(k)

∥∥2 ]E(k)

+ [
ρ2φ2(k)φ

T
2 (k)

λ +
∥∥φ2(k)

∥∥2 − I]φ1(k)1y(k)

∥∥∥∥∥
≤ ∥(1−ρ1ψ)E(k)∥+

∥∥∥∥( ρ2b22
√

λ
−1)φ1(k)1y(k)

∥∥∥∥
(57)

The following formula can be obtained by recursion.

∥E(k + 1)∥

≤ (1 − ρ1ψ) ∥E(k)∥ + (
ρ2b2
2
√

λ
− 1)b1ε1

≤ (1 − ρ1ψ)2 ∥E(k − 1)∥ + (1 − ρ1ψ)(
ρ2b2
2
√

λ
− 1)b1ε1

+ (
ρ2b2
2
√

λ
− 1)b1ε1

≤ (1 − ρ1ψ)k ∥E(1)∥ +
(1 − (1 − ρ1ψ)k )

ρ1ψ
(
ρ2b2
2
√

λ
− 1)b1ε1

(58)

in which E(1) = yd (1) − y(1), yd (1) = yd (k) is the expected
output, y(1) =

[
0 0

]T is the initial value and b1, b2, ρ1, ρ2,
ε1, λ , ψ are bounded, so E(k + 1) = yd (k + 1) − y(k + 1)
is bounded and y(k) is also bounded. From the front, there
are ρ1 = ρ2 ∈ (0, 1] and 0 < ψ < 1. In (56), there is
ρ2b2

2
√

λmin
− 1 = 0 when 0 < λmim ≤ λ , so 0 < 1 − ρ1ψ ≤ 1,

that is

lim
k→∞

(1 − ρ1ψ)k = 0 (59)

So

lim
k→∞

∥E(k + 1)∥

≤ lim
k→∞

(1 − ρ1ψ)k ∥E(1)∥

+ lim
k→∞

(1 − (1 − ρ1ψ)k )
ρ1ψ

(
ρ2b2

2
√

λmin
− 1)b1ε1

= 0 (60)

The size of the matrix is greater than zero, therefore
lim
k→∞

∥E(k + 1)∥ = 0.

As can be seen from the above, the system error will be
bounded, and when k tends to infinity, the system error will
also tend to zero.

Let ∥E(k + 1)∥ ≤ M1, according to the model-free adap-
tive control algorithm there is the following inequality.

u(k) ≤ u(k − 1) + ρ1φ
T
2 (k) ×

yd (k + 1) − y(k)

λ +
∥∥φ2(k)

∥∥2
+ ρ2φ

T
2 (k) ×

φ1(k)1y(k)

λ +
∥∥φ2(k)

∥∥2
≤ u(k − 1) +

ρ1M1

2
√

λ
+
ρ2b1ε1
2
√

λ
(61)

If the recursion idea is adopted for (61), there is

u(k) ≤ u(k − 1) +
ρ1M1

2
√

λ
+
ρ2b1ε1
2
√

λ

≤ u(k − 2) + 2
ρ1M1 + ρ2b1ε1

2
√

λ

≤ u(1) + (k − 1)
ρ1M1 + ρ2b1ε1

2
√

λ
(62)

In (62), ρ1, ρ2, b1, ε1, M1, λ are bounded, therefore, u(k)
is also bounded.

According to the above analysis, it can be seen that the
system is stable and the system error is convergent.

V. SIMULATION AND EXPERIMENT IMPLEMENTATION
In this section, some simulation and experiment results are
presented to verify the practical control performance of the
proposed method.
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FIGURE 2. Simulation results of different parameters.

A. SIMULATION RESULTS AND ANALYSIS
In order to verify the effectiveness of the proposed MFAC
control method, some simulations are conducted in the MAT-
LAB/Simulink environment. Here, we choose the parameters
of the system as

M = 6.50 kg, m = 2.00 kg, l = 0.53 m, p = 0.04

The desired position of the trolley is set as xd = 0.2m. The
initial parameters of model free adaptive control are set as

µ = 1, η = 1, φ1(1) =

[
1.5 0.1
0.1 1.5

]
, φ2(1) =

[
1.5
0.1

]
,

u(1) = u(2) = 0, y(1) = y(2) =
[
0 0

]T
, α1 = 0.01,

α2 = 0.05.

Simulation Group 1: λ , ρ1 and ρ2 parameter selection
The values of λ , ρ1 and ρ2 will affect the control per-

formance of the system. To select the appropriate parameter
values, the following three cases are given.

Case 1: λ = 0.03, ρ1 = ρ2 = 0.035

Case 2: λ = 0.30, ρ1 = ρ2 = 0.035

Case 3: λ = 0.03, ρ1 = ρ2 = 0.045

The simulation results are shown in Fig. 2. Quantified
results of three cases are shown in Table. 1.
The simulation results show when the penalty factor λ of

the control force is changed separately, the larger λ is and
the slower the trolley reaches the designated position, and the
greater the load swing angle is. When the step factors ρ1 and
ρ2 are changed, the greater the step factor ρ1 and ρ2 are, the
faster the trolley reaches the specified position. However, the
corresponding trolley displacement will produce overshoot,
and the load swing angle is also be larger.

TABLE 1. Quantified results of three cases.

According to Tab. 1, although the overshoot and load swing
angle in Case 1 are slightly larger than those in Case 2,
the adjustment time is 3.36 s shorter. After comprehensive
consideration, λ = 0.03, ρ1 = ρ2 = 0.035 are selected and
all performance indicators of the system are relatively good.
Simulation Group 2: Comparative study
The PID control method [26] is chosen for comparison.

The incremental PID control law is given as

1Upid = kxp(e(k) − e(k − 1)) + kxie(k)

+ kxd (e(k) − 2e(k − 1)

+ e(k − 2)) + kθp(e(k) − e(k − 1)) + kθ ie(k)

+ kθd (e(k) − 2e(k − 1) + e(k − 2)) (63)

where kxp = 1, kxi = 0.01, kxd = 6, kθp = −4, kθ i = 0.01,
kθd = −2 are selected.

A pulse disturbance signal with a duration of 0.3 s and an
amplitude of 4 N is added at 25 s. The simulation results are
shown in Fig. 3.

It can be seen both methods can make the trolley reach the
target position without residual swing angle of the load. But
our method has faster trolley positioning speed and smaller
load swing angle. When encountering matched disturbance,
the MFAC method has smaller changes in trolley displace-
ment and load swing angle, shorter recovery time and less
control force than the PID method. The results indicate that
the MFACmethod has good tracking performance and strong
anti-disturbance ability.
Simulation Group 3: Robustness study
To test the robustness of the control system, the rope length

and loadmass are changedwhile theMFAC controller param-
eters remain consistent. The three sets of data are selected as
follows.

Case 1: m = 2 kg, l = 0.53 m

Case 2: m = 3 kg, l = 0.53 m

Case 3: m = 2 kg, l = 0.43 m

The simulation results are shown in Fig. 4.
As can be seen from Fig.4, the proposed method can

still achieve better positioning control and the maximum
load swing angle is still relatively small while keeping the
controller parameters unchanged. The results show that the
system has strong robustness.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In order to further validate the practical control performance
of MFAC approach, we conduct some experiments on the
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FIGURE 3. Simulation results for contrast method under disturbance.

FIGURE 4. Simulation result of different model parameters.

bridge crane experimental platform. The experimental plat-
form is shown in Fig. 5.

FIGURE 5. Bridge crane experimental platform.

In Fig.5, the trolley is driven by DC servo motor, the
coders are used to measure trolley displacement and load
swing angle. The experimental box includes a motion con-
trol module and a servo drive module. The motion control
module reads information from the coders and sends it to the
computer for generating real-time control commands, which
are sent to the servo drivers to control the motors. The control
algorithm runs in the environment MATLAB/Simulink, and
the sampling period is set as 0.01 s. TheMFAC algorithm (35)
and the Pseudo-Jacobianmatrix estimation algorithm (38) are
written using the S function on MATLAB/Simulink.

In this experiment study, the physical parameters are con-
figured as:

M = 1.55 kg, m = 0.22 kg, l = 0.20 m, p = 0.04.

The desired position of the trolley is xd =0.10 m. The
initial parameters of model free adaptive control are

µ = 1, η = 1, φ1(1) =

[
0.2 0.5
0.1 0.3

]
, φ2(1) =

[
1.5
0.1

]
,

u(1) = u(2) = 0, y(1) = y(2) =
[
0 0

]T
, α1 = 0.01,

α1 = 0.05.

Experiment Group 1: λ , ρ1 and ρ2 parameter selection
In order to verify the influence of different MFAC param-

eters λ , ρ1 and ρ2 on the control performance, the following
three cases are selected.

Case 1: λ = 0.03, ρ1 = ρ2 = 0.042

Case 2: λ = 0.30, ρ1 = ρ2 = 0.042

Case 3: λ = 0.03, ρ1 = ρ2 = 0.060

The experimental results of trolley displacement and load
swing angle are shown in Fig. 6.

Using the same principles as the simulation group 1,
parameters λ = 0.03, ρ1 = ρ2 = 0.042 are selected
according to Fig.6.
Experiment Group 2: Comparative study
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FIGURE 6. Experimental results of different controller parameters.

In experimental study, the PID parameters of refence [26]
are selected as following.

kxp = 5, kxi = 0.01, kxd = 6, kθp = −2,

kθ i = 0.01, kθd = −1.

When the trolley runs to 4.9 s, a pulse disturbance signal
with duration of 0.3 s and amplitude of 4 N is added to the
system in the control channel.

The experimental results of two control methods are shown
in Fig.7.

It can be seen from the experimental results from Fig.7 that
the MFAC method is faster than the PID method in trolley
positioning and anti-swing. When the disturbance is added,
both the PID method and the proposed method can make the
trolley displacement return to the designated position after
a period of time. The load swing angle can also reach a
stable state. However, comparedwith the PID controlmethod,
this proposed method has shorter trolley positioning time,
smaller load swing amplitude and less control force which
verifies that the positioning and anti-swing control effect of
the proposed controller is better than the PID control method.
Experiment Group 3: Robustness study
To test the robustness of MFAC, the rope length and load

mass are changedwhile theMFAC controller parameters keep
unchanged. The two sets of data are selected as follows.

Case 1: m = 0.22 kg, l = 0.40 m

Case 2: m = 0.42 kg, l = 0.20 m

The corresponding experimental results are shown in
Fig. 8.

It can be seen from the experimental results in Fig. 8 that
when the mass and rope length change, the trolley displace-
ment and load swing angle will change, but the changes are

FIGURE 7. Experimental results of different methods under disturbance.

FIGURE 8. Experiment of different system parameters.

within a certain allowable range. The experimental results
indicate that the proposed method has satisfactory robustness
with respect to parameter changes.
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VI. CONCLUSION
In this paper, we have proposed a data-driven model-free
adaptive positioning and anti-swing control for bridge cranes.
The full-format dynamic linearized data model of the bridge
crane system is obtained by input and output data and a
model-free adaptive control strategy is designed on the basis
of data-driven model. The stability of the closed-loop system
is proved through strict theoretical analysis. The effectiveness
of this method is verified on the simulation and experiment
platform. The proposed control method has a simple struc-
ture, good tracking performance and strong robustness for
bridge cranes. However, designing the controller requires a
large amount of system input and output data, which puts
forward higher requirements for the accuracy and rapidity of
testing equipment.

In practice, the bridge crane system is generally considered
as a 3D system, which has a more complex model structure
than 2D. At present, we have conducted some theoretical
research on the application of this method in 3D bridge crane
system, and the positioning and anti-swing control results will
be given in the subsequent research work.
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